xref: /linux/kernel/power/swap.c (revision 4cff5c05e076d2ee4e34122aa956b84a2eaac587)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <crypto/acompress.h>
16 #include <linux/module.h>
17 #include <linux/file.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/cpumask.h>
29 #include <linux/atomic.h>
30 #include <linux/kthread.h>
31 #include <linux/crc32.h>
32 #include <linux/ktime.h>
33 
34 #include "power.h"
35 
36 #define HIBERNATE_SIG	"S1SUSPEND"
37 
38 u32 swsusp_hardware_signature;
39 
40 /*
41  * When reading an {un,}compressed image, we may restore pages in place,
42  * in which case some architectures need these pages cleaning before they
43  * can be executed. We don't know which pages these may be, so clean the lot.
44  */
45 static bool clean_pages_on_read;
46 static bool clean_pages_on_decompress;
47 
48 /*
49  * The swap map is a data structure used for keeping track of each page
50  * written to a swap partition.  It consists of many swap_map_page structures
51  * that contain each an array of MAP_PAGE_ENTRIES swap entries.  These
52  * structures are stored on the swap and linked together with the help of the
53  * .next_swap member.
54  *
55  * The swap map is created during suspend.  The swap map pages are allocated and
56  * populated one at a time, so we only need one memory page to set up the entire
57  * structure.
58  *
59  * During resume we pick up all swap_map_page structures into a list.
60  */
61 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
62 
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68 	return nr_free_pages() - nr_free_highpages();
69 }
70 
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77 	return low_free_pages() / 2;
78 }
79 
80 struct swap_map_page {
81 	sector_t entries[MAP_PAGE_ENTRIES];
82 	sector_t next_swap;
83 };
84 
85 struct swap_map_page_list {
86 	struct swap_map_page *map;
87 	struct swap_map_page_list *next;
88 };
89 
90 /*
91  * The swap_map_handle structure is used for handling swap in a file-alike way.
92  */
93 struct swap_map_handle {
94 	struct swap_map_page *cur;
95 	struct swap_map_page_list *maps;
96 	sector_t cur_swap;
97 	sector_t first_sector;
98 	unsigned int k;
99 	unsigned long reqd_free_pages;
100 	u32 crc32;
101 };
102 
103 struct swsusp_header {
104 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
105 	              sizeof(u32) - sizeof(u32)];
106 	u32	hw_sig;
107 	u32	crc32;
108 	sector_t image;
109 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
110 	char	orig_sig[10];
111 	char	sig[10];
112 } __packed;
113 
114 static struct swsusp_header *swsusp_header;
115 
116 /*
117  * The following functions are used for tracing the allocated swap pages, so
118  * that they can be freed in case of an error.
119  */
120 struct swsusp_extent {
121 	struct rb_node node;
122 	unsigned long start;
123 	unsigned long end;
124 };
125 
126 static struct rb_root swsusp_extents = RB_ROOT;
127 
128 static int swsusp_extents_insert(unsigned long swap_offset)
129 {
130 	struct rb_node **new = &(swsusp_extents.rb_node);
131 	struct rb_node *parent = NULL;
132 	struct swsusp_extent *ext;
133 
134 	/* Figure out where to put the new node */
135 	while (*new) {
136 		ext = rb_entry(*new, struct swsusp_extent, node);
137 		parent = *new;
138 		if (swap_offset < ext->start) {
139 			/* Try to merge */
140 			if (swap_offset == ext->start - 1) {
141 				ext->start--;
142 				return 0;
143 			}
144 			new = &((*new)->rb_left);
145 		} else if (swap_offset > ext->end) {
146 			/* Try to merge */
147 			if (swap_offset == ext->end + 1) {
148 				ext->end++;
149 				return 0;
150 			}
151 			new = &((*new)->rb_right);
152 		} else {
153 			/* It already is in the tree */
154 			return -EINVAL;
155 		}
156 	}
157 	/* Add the new node and rebalance the tree. */
158 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
159 	if (!ext)
160 		return -ENOMEM;
161 
162 	ext->start = swap_offset;
163 	ext->end = swap_offset;
164 	rb_link_node(&ext->node, parent, new);
165 	rb_insert_color(&ext->node, &swsusp_extents);
166 	return 0;
167 }
168 
169 sector_t alloc_swapdev_block(int swap)
170 {
171 	unsigned long offset;
172 
173 	/*
174 	 * Allocate a swap page and register that it has been allocated, so that
175 	 * it can be freed in case of an error.
176 	 */
177 	offset = swp_offset(swap_alloc_hibernation_slot(swap));
178 	if (offset) {
179 		if (swsusp_extents_insert(offset))
180 			swap_free_hibernation_slot(swp_entry(swap, offset));
181 		else
182 			return swapdev_block(swap, offset);
183 	}
184 	return 0;
185 }
186 
187 void free_all_swap_pages(int swap)
188 {
189 	unsigned long offset;
190 	struct rb_node *node;
191 
192 	/*
193 	 * Free swap pages allocated for saving image data.  It also frees the
194 	 * extents used to register which swap entries had been allocated.
195 	 */
196 	while ((node = swsusp_extents.rb_node)) {
197 		struct swsusp_extent *ext;
198 
199 		ext = rb_entry(node, struct swsusp_extent, node);
200 		rb_erase(node, &swsusp_extents);
201 
202 		for (offset = ext->start; offset <= ext->end; offset++)
203 			swap_free_hibernation_slot(swp_entry(swap, offset));
204 
205 		kfree(ext);
206 	}
207 }
208 
209 int swsusp_swap_in_use(void)
210 {
211 	return (swsusp_extents.rb_node != NULL);
212 }
213 
214 /*
215  * General things
216  */
217 
218 static unsigned short root_swap = 0xffff;
219 static struct file *hib_resume_bdev_file;
220 
221 struct hib_bio_batch {
222 	atomic_t		count;
223 	wait_queue_head_t	wait;
224 	blk_status_t		error;
225 	struct blk_plug		plug;
226 };
227 
228 static void hib_init_batch(struct hib_bio_batch *hb)
229 {
230 	atomic_set(&hb->count, 0);
231 	init_waitqueue_head(&hb->wait);
232 	hb->error = BLK_STS_OK;
233 	blk_start_plug(&hb->plug);
234 }
235 
236 static void hib_finish_batch(struct hib_bio_batch *hb)
237 {
238 	blk_finish_plug(&hb->plug);
239 }
240 
241 static void hib_end_io(struct bio *bio)
242 {
243 	struct hib_bio_batch *hb = bio->bi_private;
244 	struct page *page = bio_first_page_all(bio);
245 
246 	if (bio->bi_status) {
247 		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
248 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
249 			 (unsigned long long)bio->bi_iter.bi_sector);
250 	}
251 
252 	if (bio_data_dir(bio) == WRITE)
253 		put_page(page);
254 	else if (clean_pages_on_read)
255 		flush_icache_range((unsigned long)page_address(page),
256 				   (unsigned long)page_address(page) + PAGE_SIZE);
257 
258 	if (bio->bi_status && !hb->error)
259 		hb->error = bio->bi_status;
260 	if (atomic_dec_and_test(&hb->count))
261 		wake_up(&hb->wait);
262 
263 	bio_put(bio);
264 }
265 
266 static int hib_submit_io_sync(blk_opf_t opf, pgoff_t page_off, void *addr)
267 {
268 	return bdev_rw_virt(file_bdev(hib_resume_bdev_file),
269 			page_off * (PAGE_SIZE >> 9), addr, PAGE_SIZE, opf);
270 }
271 
272 static int hib_submit_io_async(blk_opf_t opf, pgoff_t page_off, void *addr,
273 			 struct hib_bio_batch *hb)
274 {
275 	struct bio *bio;
276 
277 	bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
278 			GFP_NOIO | __GFP_HIGH);
279 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
280 	bio_add_virt_nofail(bio, addr, PAGE_SIZE);
281 	bio->bi_end_io = hib_end_io;
282 	bio->bi_private = hb;
283 	atomic_inc(&hb->count);
284 	submit_bio(bio);
285 	return 0;
286 }
287 
288 static int hib_wait_io(struct hib_bio_batch *hb)
289 {
290 	/*
291 	 * We are relying on the behavior of blk_plug that a thread with
292 	 * a plug will flush the plug list before sleeping.
293 	 */
294 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
295 	return blk_status_to_errno(hb->error);
296 }
297 
298 /*
299  * Saving part
300  */
301 
302 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
303 {
304 	int error;
305 
306 	hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block, swsusp_header);
307 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
308 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
309 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
310 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
311 		swsusp_header->image = handle->first_sector;
312 		if (swsusp_hardware_signature) {
313 			swsusp_header->hw_sig = swsusp_hardware_signature;
314 			flags |= SF_HW_SIG;
315 		}
316 		swsusp_header->flags = flags;
317 		if (flags & SF_CRC32_MODE)
318 			swsusp_header->crc32 = handle->crc32;
319 		error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC,
320 				      swsusp_resume_block, swsusp_header);
321 	} else {
322 		pr_err("Swap header not found!\n");
323 		error = -ENODEV;
324 	}
325 	return error;
326 }
327 
328 /*
329  * Hold the swsusp_header flag. This is used in software_resume() in
330  * 'kernel/power/hibernate' to check if the image is compressed and query
331  * for the compression algorithm support(if so).
332  */
333 unsigned int swsusp_header_flags;
334 
335 static int swsusp_swap_check(void)
336 {
337 	int res;
338 
339 	/*
340 	 * Check if the resume device is a swap device and get its index (if so).
341 	 * This is called before saving the image.
342 	 */
343 	if (swsusp_resume_device)
344 		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
345 	else
346 		res = find_first_swap(&swsusp_resume_device);
347 	if (res < 0)
348 		return res;
349 	root_swap = res;
350 
351 	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
352 			BLK_OPEN_WRITE, NULL, NULL);
353 	if (IS_ERR(hib_resume_bdev_file))
354 		return PTR_ERR(hib_resume_bdev_file);
355 
356 	return 0;
357 }
358 
359 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
360 {
361 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
362 	void *src;
363 	int ret;
364 
365 	if (!offset)
366 		return -ENOSPC;
367 
368 	if (!hb)
369 		goto sync_io;
370 
371 	src = (void *)__get_free_page(gfp);
372 	if (!src) {
373 		ret = hib_wait_io(hb); /* Free pages */
374 		if (ret)
375 			return ret;
376 		src = (void *)__get_free_page(gfp);
377 		if (WARN_ON_ONCE(!src))
378 			goto sync_io;
379 	}
380 
381 	copy_page(src, buf);
382 	return hib_submit_io_async(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
383 sync_io:
384 	return hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC, offset, buf);
385 }
386 
387 static void release_swap_writer(struct swap_map_handle *handle)
388 {
389 	if (handle->cur)
390 		free_page((unsigned long)handle->cur);
391 	handle->cur = NULL;
392 }
393 
394 static int get_swap_writer(struct swap_map_handle *handle)
395 {
396 	int ret;
397 
398 	ret = swsusp_swap_check();
399 	if (ret) {
400 		if (ret != -ENOSPC)
401 			pr_err("Cannot find swap device, try swapon -a\n");
402 		return ret;
403 	}
404 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
405 	if (!handle->cur) {
406 		ret = -ENOMEM;
407 		goto err_close;
408 	}
409 	handle->cur_swap = alloc_swapdev_block(root_swap);
410 	if (!handle->cur_swap) {
411 		ret = -ENOSPC;
412 		goto err_rel;
413 	}
414 	handle->k = 0;
415 	handle->reqd_free_pages = reqd_free_pages();
416 	handle->first_sector = handle->cur_swap;
417 	return 0;
418 err_rel:
419 	release_swap_writer(handle);
420 err_close:
421 	swsusp_close();
422 	return ret;
423 }
424 
425 static int swap_write_page(struct swap_map_handle *handle, void *buf,
426 		struct hib_bio_batch *hb)
427 {
428 	int error;
429 	sector_t offset;
430 
431 	if (!handle->cur)
432 		return -EINVAL;
433 	offset = alloc_swapdev_block(root_swap);
434 	error = write_page(buf, offset, hb);
435 	if (error)
436 		return error;
437 	handle->cur->entries[handle->k++] = offset;
438 	if (handle->k >= MAP_PAGE_ENTRIES) {
439 		offset = alloc_swapdev_block(root_swap);
440 		if (!offset)
441 			return -ENOSPC;
442 		handle->cur->next_swap = offset;
443 		error = write_page(handle->cur, handle->cur_swap, hb);
444 		if (error)
445 			goto out;
446 		clear_page(handle->cur);
447 		handle->cur_swap = offset;
448 		handle->k = 0;
449 
450 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
451 			error = hib_wait_io(hb);
452 			if (error)
453 				goto out;
454 			/*
455 			 * Recalculate the number of required free pages, to
456 			 * make sure we never take more than half.
457 			 */
458 			handle->reqd_free_pages = reqd_free_pages();
459 		}
460 	}
461  out:
462 	return error;
463 }
464 
465 static int flush_swap_writer(struct swap_map_handle *handle)
466 {
467 	if (handle->cur && handle->cur_swap)
468 		return write_page(handle->cur, handle->cur_swap, NULL);
469 	else
470 		return -EINVAL;
471 }
472 
473 static int swap_writer_finish(struct swap_map_handle *handle,
474 		unsigned int flags, int error)
475 {
476 	if (!error) {
477 		pr_info("S");
478 		error = mark_swapfiles(handle, flags);
479 		pr_cont("|\n");
480 		flush_swap_writer(handle);
481 	}
482 
483 	if (error)
484 		free_all_swap_pages(root_swap);
485 	release_swap_writer(handle);
486 	swsusp_close();
487 
488 	return error;
489 }
490 
491 /*
492  * Bytes we need for compressed data in worst case. We assume(limitation)
493  * this is the worst of all the compression algorithms.
494  */
495 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
496 
497 /* We need to remember how much compressed data we need to read. */
498 #define CMP_HEADER	sizeof(size_t)
499 
500 /* Number of pages/bytes we'll compress at one time. */
501 #define UNC_PAGES	32
502 #define UNC_SIZE	(UNC_PAGES * PAGE_SIZE)
503 
504 /* Number of pages we need for compressed data (worst case). */
505 #define CMP_PAGES	DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
506 				CMP_HEADER, PAGE_SIZE)
507 #define CMP_SIZE	(CMP_PAGES * PAGE_SIZE)
508 
509 /* Default number of threads for compression/decompression. */
510 #define CMP_THREADS    3
511 static unsigned int hibernate_compression_threads = CMP_THREADS;
512 
513 /* Minimum/maximum number of pages for read buffering. */
514 #define CMP_MIN_RD_PAGES	1024
515 #define CMP_MAX_RD_PAGES	8192
516 
517 static int save_image(struct swap_map_handle *handle,
518                       struct snapshot_handle *snapshot,
519                       unsigned int nr_to_write)
520 {
521 	unsigned int m;
522 	int ret;
523 	int nr_pages;
524 	int err2;
525 	struct hib_bio_batch hb;
526 	ktime_t start;
527 	ktime_t stop;
528 
529 	hib_init_batch(&hb);
530 
531 	pr_info("Saving image data pages (%u pages)...\n",
532 		nr_to_write);
533 	m = nr_to_write / 10;
534 	if (!m)
535 		m = 1;
536 	nr_pages = 0;
537 	start = ktime_get();
538 	while (1) {
539 		ret = snapshot_read_next(snapshot);
540 		if (ret <= 0)
541 			break;
542 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
543 		if (ret)
544 			break;
545 		if (!(nr_pages % m))
546 			pr_info("Image saving progress: %3d%%\n",
547 				nr_pages / m * 10);
548 		nr_pages++;
549 	}
550 	err2 = hib_wait_io(&hb);
551 	hib_finish_batch(&hb);
552 	stop = ktime_get();
553 	if (!ret)
554 		ret = err2;
555 	if (!ret)
556 		pr_info("Image saving done\n");
557 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
558 	return ret;
559 }
560 
561 /*
562  * Structure used for CRC32.
563  */
564 struct crc_data {
565 	struct task_struct *thr;                  /* thread */
566 	atomic_t ready;                           /* ready to start flag */
567 	atomic_t stop;                            /* ready to stop flag */
568 	unsigned run_threads;                     /* nr current threads */
569 	wait_queue_head_t go;                     /* start crc update */
570 	wait_queue_head_t done;                   /* crc update done */
571 	u32 *crc32;                               /* points to handle's crc32 */
572 	size_t **unc_len;			  /* uncompressed lengths */
573 	unsigned char **unc;			  /* uncompressed data */
574 };
575 
576 static struct crc_data *alloc_crc_data(int nr_threads)
577 {
578 	struct crc_data *crc;
579 
580 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
581 	if (!crc)
582 		return NULL;
583 
584 	crc->unc = kcalloc(nr_threads, sizeof(*crc->unc), GFP_KERNEL);
585 	if (!crc->unc)
586 		goto err_free_crc;
587 
588 	crc->unc_len = kcalloc(nr_threads, sizeof(*crc->unc_len), GFP_KERNEL);
589 	if (!crc->unc_len)
590 		goto err_free_unc;
591 
592 	return crc;
593 
594 err_free_unc:
595 	kfree(crc->unc);
596 err_free_crc:
597 	kfree(crc);
598 	return NULL;
599 }
600 
601 static void free_crc_data(struct crc_data *crc)
602 {
603 	if (!crc)
604 		return;
605 
606 	if (crc->thr)
607 		kthread_stop(crc->thr);
608 
609 	kfree(crc->unc_len);
610 	kfree(crc->unc);
611 	kfree(crc);
612 }
613 
614 static int crc32_threadfn(void *data)
615 {
616 	struct crc_data *d = data;
617 	unsigned i;
618 
619 	while (1) {
620 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
621 		                  kthread_should_stop());
622 		if (kthread_should_stop()) {
623 			d->thr = NULL;
624 			atomic_set_release(&d->stop, 1);
625 			wake_up(&d->done);
626 			break;
627 		}
628 		atomic_set(&d->ready, 0);
629 
630 		for (i = 0; i < d->run_threads; i++)
631 			*d->crc32 = crc32_le(*d->crc32,
632 			                     d->unc[i], *d->unc_len[i]);
633 		atomic_set_release(&d->stop, 1);
634 		wake_up(&d->done);
635 	}
636 	return 0;
637 }
638 
639 /*
640  * Structure used for data compression.
641  */
642 struct cmp_data {
643 	struct task_struct *thr;                  /* thread */
644 	struct crypto_acomp *cc;		  /* crypto compressor */
645 	struct acomp_req *cr;			  /* crypto request */
646 	atomic_t ready;                           /* ready to start flag */
647 	atomic_t stop;                            /* ready to stop flag */
648 	int ret;                                  /* return code */
649 	wait_queue_head_t go;                     /* start compression */
650 	wait_queue_head_t done;                   /* compression done */
651 	size_t unc_len;                           /* uncompressed length */
652 	size_t cmp_len;                           /* compressed length */
653 	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
654 	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
655 };
656 
657 /* Indicates the image size after compression */
658 static atomic64_t compressed_size = ATOMIC_INIT(0);
659 
660 static int compress_threadfn(void *data)
661 {
662 	struct cmp_data *d = data;
663 
664 	while (1) {
665 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
666 		                  kthread_should_stop());
667 		if (kthread_should_stop()) {
668 			d->thr = NULL;
669 			d->ret = -1;
670 			atomic_set_release(&d->stop, 1);
671 			wake_up(&d->done);
672 			break;
673 		}
674 		atomic_set(&d->ready, 0);
675 
676 		acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP,
677 					   NULL, NULL);
678 		acomp_request_set_src_nondma(d->cr, d->unc, d->unc_len);
679 		acomp_request_set_dst_nondma(d->cr, d->cmp + CMP_HEADER,
680 					     CMP_SIZE - CMP_HEADER);
681 		d->ret = crypto_acomp_compress(d->cr);
682 		d->cmp_len = d->cr->dlen;
683 
684 		atomic64_add(d->cmp_len, &compressed_size);
685 		atomic_set_release(&d->stop, 1);
686 		wake_up(&d->done);
687 	}
688 	return 0;
689 }
690 
691 static int save_compressed_image(struct swap_map_handle *handle,
692 				 struct snapshot_handle *snapshot,
693 				 unsigned int nr_to_write)
694 {
695 	unsigned int m;
696 	int ret = 0;
697 	int nr_pages;
698 	int err2;
699 	struct hib_bio_batch hb;
700 	ktime_t start;
701 	ktime_t stop;
702 	size_t off;
703 	unsigned int thr, run_threads, nr_threads;
704 	unsigned char *page = NULL;
705 	struct cmp_data *data = NULL;
706 	struct crc_data *crc = NULL;
707 
708 	hib_init_batch(&hb);
709 
710 	atomic64_set(&compressed_size, 0);
711 
712 	/*
713 	 * We'll limit the number of threads for compression to limit memory
714 	 * footprint.
715 	 */
716 	nr_threads = num_online_cpus() - 1;
717 	nr_threads = clamp_val(nr_threads, 1, hibernate_compression_threads);
718 
719 	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
720 	if (!page) {
721 		pr_err("Failed to allocate %s page\n", hib_comp_algo);
722 		ret = -ENOMEM;
723 		goto out_clean;
724 	}
725 
726 	data = vcalloc(nr_threads, sizeof(*data));
727 	if (!data) {
728 		pr_err("Failed to allocate %s data\n", hib_comp_algo);
729 		ret = -ENOMEM;
730 		goto out_clean;
731 	}
732 
733 	crc = alloc_crc_data(nr_threads);
734 	if (!crc) {
735 		pr_err("Failed to allocate crc\n");
736 		ret = -ENOMEM;
737 		goto out_clean;
738 	}
739 
740 	/*
741 	 * Start the compression threads.
742 	 */
743 	for (thr = 0; thr < nr_threads; thr++) {
744 		init_waitqueue_head(&data[thr].go);
745 		init_waitqueue_head(&data[thr].done);
746 
747 		data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC);
748 		if (IS_ERR_OR_NULL(data[thr].cc)) {
749 			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
750 			ret = -EFAULT;
751 			goto out_clean;
752 		}
753 
754 		data[thr].cr = acomp_request_alloc(data[thr].cc);
755 		if (!data[thr].cr) {
756 			pr_err("Could not allocate comp request\n");
757 			ret = -ENOMEM;
758 			goto out_clean;
759 		}
760 
761 		data[thr].thr = kthread_run(compress_threadfn,
762 		                            &data[thr],
763 		                            "image_compress/%u", thr);
764 		if (IS_ERR(data[thr].thr)) {
765 			data[thr].thr = NULL;
766 			pr_err("Cannot start compression threads\n");
767 			ret = -ENOMEM;
768 			goto out_clean;
769 		}
770 	}
771 
772 	/*
773 	 * Start the CRC32 thread.
774 	 */
775 	init_waitqueue_head(&crc->go);
776 	init_waitqueue_head(&crc->done);
777 
778 	handle->crc32 = 0;
779 	crc->crc32 = &handle->crc32;
780 	for (thr = 0; thr < nr_threads; thr++) {
781 		crc->unc[thr] = data[thr].unc;
782 		crc->unc_len[thr] = &data[thr].unc_len;
783 	}
784 
785 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
786 	if (IS_ERR(crc->thr)) {
787 		crc->thr = NULL;
788 		pr_err("Cannot start CRC32 thread\n");
789 		ret = -ENOMEM;
790 		goto out_clean;
791 	}
792 
793 	/*
794 	 * Adjust the number of required free pages after all allocations have
795 	 * been done. We don't want to run out of pages when writing.
796 	 */
797 	handle->reqd_free_pages = reqd_free_pages();
798 
799 	pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
800 	pr_info("Compressing and saving image data (%u pages)...\n",
801 		nr_to_write);
802 	m = nr_to_write / 10;
803 	if (!m)
804 		m = 1;
805 	nr_pages = 0;
806 	start = ktime_get();
807 	for (;;) {
808 		for (thr = 0; thr < nr_threads; thr++) {
809 			for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
810 				ret = snapshot_read_next(snapshot);
811 				if (ret < 0)
812 					goto out_finish;
813 
814 				if (!ret)
815 					break;
816 
817 				memcpy(data[thr].unc + off,
818 				       data_of(*snapshot), PAGE_SIZE);
819 
820 				if (!(nr_pages % m))
821 					pr_info("Image saving progress: %3d%%\n",
822 						nr_pages / m * 10);
823 				nr_pages++;
824 			}
825 			if (!off)
826 				break;
827 
828 			data[thr].unc_len = off;
829 
830 			atomic_set_release(&data[thr].ready, 1);
831 			wake_up(&data[thr].go);
832 		}
833 
834 		if (!thr)
835 			break;
836 
837 		crc->run_threads = thr;
838 		atomic_set_release(&crc->ready, 1);
839 		wake_up(&crc->go);
840 
841 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
842 			wait_event(data[thr].done,
843 				atomic_read_acquire(&data[thr].stop));
844 			atomic_set(&data[thr].stop, 0);
845 
846 			ret = data[thr].ret;
847 
848 			if (ret < 0) {
849 				pr_err("%s compression failed\n", hib_comp_algo);
850 				goto out_finish;
851 			}
852 
853 			if (unlikely(!data[thr].cmp_len ||
854 			             data[thr].cmp_len >
855 				     bytes_worst_compress(data[thr].unc_len))) {
856 				pr_err("Invalid %s compressed length\n", hib_comp_algo);
857 				ret = -1;
858 				goto out_finish;
859 			}
860 
861 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
862 
863 			/*
864 			 * Given we are writing one page at a time to disk, we
865 			 * copy that much from the buffer, although the last
866 			 * bit will likely be smaller than full page. This is
867 			 * OK - we saved the length of the compressed data, so
868 			 * any garbage at the end will be discarded when we
869 			 * read it.
870 			 */
871 			for (off = 0;
872 			     off < CMP_HEADER + data[thr].cmp_len;
873 			     off += PAGE_SIZE) {
874 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
875 
876 				ret = swap_write_page(handle, page, &hb);
877 				if (ret)
878 					goto out_finish;
879 			}
880 		}
881 
882 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
883 		atomic_set(&crc->stop, 0);
884 	}
885 
886 out_finish:
887 	err2 = hib_wait_io(&hb);
888 	stop = ktime_get();
889 	if (!ret)
890 		ret = err2;
891 	if (!ret) {
892 		swsusp_show_speed(start, stop, nr_to_write, "Wrote");
893 		pr_info("Image size after compression: %lld kbytes\n",
894 			(atomic64_read(&compressed_size) / 1024));
895 		pr_info("Image saving done\n");
896 	} else {
897 		pr_err("Image saving failed: %d\n", ret);
898 	}
899 
900 out_clean:
901 	hib_finish_batch(&hb);
902 	free_crc_data(crc);
903 	if (data) {
904 		for (thr = 0; thr < nr_threads; thr++) {
905 			if (data[thr].thr)
906 				kthread_stop(data[thr].thr);
907 
908 			acomp_request_free(data[thr].cr);
909 
910 			if (!IS_ERR_OR_NULL(data[thr].cc))
911 				crypto_free_acomp(data[thr].cc);
912 		}
913 		vfree(data);
914 	}
915 	if (page)
916 		free_page((unsigned long)page);
917 
918 	return ret;
919 }
920 
921 static int enough_swap(unsigned int nr_pages)
922 {
923 	unsigned int free_swap = count_swap_pages(root_swap, 1);
924 	unsigned int required;
925 
926 	pr_debug("Free swap pages: %u\n", free_swap);
927 
928 	required = PAGES_FOR_IO + nr_pages;
929 	return free_swap > required;
930 }
931 
932 /**
933  * swsusp_write - Write entire image and metadata.
934  * @flags: flags to pass to the "boot" kernel in the image header
935  *
936  * It is important _NOT_ to umount filesystems at this point. We want them
937  * synced (in case something goes wrong) but we DO not want to mark filesystem
938  * clean: it is not. (And it does not matter, if we resume correctly, we'll mark
939  * system clean, anyway.)
940  *
941  * Return: 0 on success, negative error code on failure.
942  */
943 int swsusp_write(unsigned int flags)
944 {
945 	struct swap_map_handle handle;
946 	struct snapshot_handle snapshot;
947 	struct swsusp_info *header;
948 	unsigned long pages;
949 	int error;
950 
951 	pages = snapshot_get_image_size();
952 	error = get_swap_writer(&handle);
953 	if (error) {
954 		pr_err("Cannot get swap writer\n");
955 		return error;
956 	}
957 	if (flags & SF_NOCOMPRESS_MODE) {
958 		if (!enough_swap(pages)) {
959 			pr_err("Not enough free swap\n");
960 			error = -ENOSPC;
961 			goto out_finish;
962 		}
963 	}
964 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
965 	error = snapshot_read_next(&snapshot);
966 	if (error < (int)PAGE_SIZE) {
967 		if (error >= 0)
968 			error = -EFAULT;
969 
970 		goto out_finish;
971 	}
972 	header = (struct swsusp_info *)data_of(snapshot);
973 	error = swap_write_page(&handle, header, NULL);
974 	if (!error) {
975 		error = (flags & SF_NOCOMPRESS_MODE) ?
976 			save_image(&handle, &snapshot, pages - 1) :
977 			save_compressed_image(&handle, &snapshot, pages - 1);
978 	}
979 out_finish:
980 	error = swap_writer_finish(&handle, flags, error);
981 	return error;
982 }
983 
984 /*
985  * The following functions allow us to read data using a swap map in a file-like
986  * way.
987  */
988 
989 static void release_swap_reader(struct swap_map_handle *handle)
990 {
991 	struct swap_map_page_list *tmp;
992 
993 	while (handle->maps) {
994 		if (handle->maps->map)
995 			free_page((unsigned long)handle->maps->map);
996 		tmp = handle->maps;
997 		handle->maps = handle->maps->next;
998 		kfree(tmp);
999 	}
1000 	handle->cur = NULL;
1001 }
1002 
1003 static int get_swap_reader(struct swap_map_handle *handle,
1004 		unsigned int *flags_p)
1005 {
1006 	int error;
1007 	struct swap_map_page_list *tmp, *last;
1008 	sector_t offset;
1009 
1010 	*flags_p = swsusp_header->flags;
1011 
1012 	if (!swsusp_header->image) /* how can this happen? */
1013 		return -EINVAL;
1014 
1015 	handle->cur = NULL;
1016 	last = handle->maps = NULL;
1017 	offset = swsusp_header->image;
1018 	while (offset) {
1019 		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1020 		if (!tmp) {
1021 			release_swap_reader(handle);
1022 			return -ENOMEM;
1023 		}
1024 		if (!handle->maps)
1025 			handle->maps = tmp;
1026 		if (last)
1027 			last->next = tmp;
1028 		last = tmp;
1029 
1030 		tmp->map = (struct swap_map_page *)
1031 			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1032 		if (!tmp->map) {
1033 			release_swap_reader(handle);
1034 			return -ENOMEM;
1035 		}
1036 
1037 		error = hib_submit_io_sync(REQ_OP_READ, offset, tmp->map);
1038 		if (error) {
1039 			release_swap_reader(handle);
1040 			return error;
1041 		}
1042 		offset = tmp->map->next_swap;
1043 	}
1044 	handle->k = 0;
1045 	handle->cur = handle->maps->map;
1046 	return 0;
1047 }
1048 
1049 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1050 		struct hib_bio_batch *hb)
1051 {
1052 	sector_t offset;
1053 	int error;
1054 	struct swap_map_page_list *tmp;
1055 
1056 	if (!handle->cur)
1057 		return -EINVAL;
1058 	offset = handle->cur->entries[handle->k];
1059 	if (!offset)
1060 		return -EFAULT;
1061 	if (hb)
1062 		error = hib_submit_io_async(REQ_OP_READ, offset, buf, hb);
1063 	else
1064 		error = hib_submit_io_sync(REQ_OP_READ, offset, buf);
1065 	if (error)
1066 		return error;
1067 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1068 		handle->k = 0;
1069 		free_page((unsigned long)handle->maps->map);
1070 		tmp = handle->maps;
1071 		handle->maps = handle->maps->next;
1072 		kfree(tmp);
1073 		if (!handle->maps)
1074 			release_swap_reader(handle);
1075 		else
1076 			handle->cur = handle->maps->map;
1077 	}
1078 	return error;
1079 }
1080 
1081 static int swap_reader_finish(struct swap_map_handle *handle)
1082 {
1083 	release_swap_reader(handle);
1084 
1085 	return 0;
1086 }
1087 
1088 static int load_image(struct swap_map_handle *handle,
1089                       struct snapshot_handle *snapshot,
1090                       unsigned int nr_to_read)
1091 {
1092 	unsigned int m;
1093 	int ret = 0;
1094 	ktime_t start;
1095 	ktime_t stop;
1096 	struct hib_bio_batch hb;
1097 	int err2;
1098 	unsigned nr_pages;
1099 
1100 	hib_init_batch(&hb);
1101 
1102 	clean_pages_on_read = true;
1103 	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1104 	m = nr_to_read / 10;
1105 	if (!m)
1106 		m = 1;
1107 	nr_pages = 0;
1108 	start = ktime_get();
1109 	for ( ; ; ) {
1110 		ret = snapshot_write_next(snapshot);
1111 		if (ret <= 0)
1112 			break;
1113 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1114 		if (ret)
1115 			break;
1116 		if (snapshot->sync_read)
1117 			ret = hib_wait_io(&hb);
1118 		if (ret)
1119 			break;
1120 		if (!(nr_pages % m))
1121 			pr_info("Image loading progress: %3d%%\n",
1122 				nr_pages / m * 10);
1123 		nr_pages++;
1124 	}
1125 	err2 = hib_wait_io(&hb);
1126 	hib_finish_batch(&hb);
1127 	stop = ktime_get();
1128 	if (!ret)
1129 		ret = err2;
1130 	if (!ret) {
1131 		pr_info("Image loading done\n");
1132 		ret = snapshot_write_finalize(snapshot);
1133 		if (!ret && !snapshot_image_loaded(snapshot))
1134 			ret = -ENODATA;
1135 	}
1136 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1137 	return ret;
1138 }
1139 
1140 /*
1141  * Structure used for data decompression.
1142  */
1143 struct dec_data {
1144 	struct task_struct *thr;                  /* thread */
1145 	struct crypto_acomp *cc;		  /* crypto compressor */
1146 	struct acomp_req *cr;			  /* crypto request */
1147 	atomic_t ready;                           /* ready to start flag */
1148 	atomic_t stop;                            /* ready to stop flag */
1149 	int ret;                                  /* return code */
1150 	wait_queue_head_t go;                     /* start decompression */
1151 	wait_queue_head_t done;                   /* decompression done */
1152 	size_t unc_len;                           /* uncompressed length */
1153 	size_t cmp_len;                           /* compressed length */
1154 	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1155 	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1156 };
1157 
1158 static int decompress_threadfn(void *data)
1159 {
1160 	struct dec_data *d = data;
1161 
1162 	while (1) {
1163 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1164 		                  kthread_should_stop());
1165 		if (kthread_should_stop()) {
1166 			d->thr = NULL;
1167 			d->ret = -1;
1168 			atomic_set_release(&d->stop, 1);
1169 			wake_up(&d->done);
1170 			break;
1171 		}
1172 		atomic_set(&d->ready, 0);
1173 
1174 		acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP,
1175 					   NULL, NULL);
1176 		acomp_request_set_src_nondma(d->cr, d->cmp + CMP_HEADER,
1177 					     d->cmp_len);
1178 		acomp_request_set_dst_nondma(d->cr, d->unc, UNC_SIZE);
1179 		d->ret = crypto_acomp_decompress(d->cr);
1180 		d->unc_len = d->cr->dlen;
1181 
1182 		if (clean_pages_on_decompress)
1183 			flush_icache_range((unsigned long)d->unc,
1184 					   (unsigned long)d->unc + d->unc_len);
1185 
1186 		atomic_set_release(&d->stop, 1);
1187 		wake_up(&d->done);
1188 	}
1189 	return 0;
1190 }
1191 
1192 static int load_compressed_image(struct swap_map_handle *handle,
1193 				 struct snapshot_handle *snapshot,
1194 				 unsigned int nr_to_read)
1195 {
1196 	unsigned int m;
1197 	int ret = 0;
1198 	int eof = 0;
1199 	struct hib_bio_batch hb;
1200 	ktime_t start;
1201 	ktime_t stop;
1202 	unsigned nr_pages;
1203 	size_t off;
1204 	unsigned i, thr, run_threads, nr_threads;
1205 	unsigned ring = 0, pg = 0, ring_size = 0,
1206 	         have = 0, want, need, asked = 0;
1207 	unsigned long read_pages = 0;
1208 	unsigned char **page = NULL;
1209 	struct dec_data *data = NULL;
1210 	struct crc_data *crc = NULL;
1211 
1212 	hib_init_batch(&hb);
1213 
1214 	/*
1215 	 * We'll limit the number of threads for decompression to limit memory
1216 	 * footprint.
1217 	 */
1218 	nr_threads = num_online_cpus() - 1;
1219 	nr_threads = clamp_val(nr_threads, 1, hibernate_compression_threads);
1220 
1221 	page = vmalloc_array(CMP_MAX_RD_PAGES, sizeof(*page));
1222 	if (!page) {
1223 		pr_err("Failed to allocate %s page\n", hib_comp_algo);
1224 		ret = -ENOMEM;
1225 		goto out_clean;
1226 	}
1227 
1228 	data = vcalloc(nr_threads, sizeof(*data));
1229 	if (!data) {
1230 		pr_err("Failed to allocate %s data\n", hib_comp_algo);
1231 		ret = -ENOMEM;
1232 		goto out_clean;
1233 	}
1234 
1235 	crc = alloc_crc_data(nr_threads);
1236 	if (!crc) {
1237 		pr_err("Failed to allocate crc\n");
1238 		ret = -ENOMEM;
1239 		goto out_clean;
1240 	}
1241 
1242 	clean_pages_on_decompress = true;
1243 
1244 	/*
1245 	 * Start the decompression threads.
1246 	 */
1247 	for (thr = 0; thr < nr_threads; thr++) {
1248 		init_waitqueue_head(&data[thr].go);
1249 		init_waitqueue_head(&data[thr].done);
1250 
1251 		data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC);
1252 		if (IS_ERR_OR_NULL(data[thr].cc)) {
1253 			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1254 			ret = -EFAULT;
1255 			goto out_clean;
1256 		}
1257 
1258 		data[thr].cr = acomp_request_alloc(data[thr].cc);
1259 		if (!data[thr].cr) {
1260 			pr_err("Could not allocate comp request\n");
1261 			ret = -ENOMEM;
1262 			goto out_clean;
1263 		}
1264 
1265 		data[thr].thr = kthread_run(decompress_threadfn,
1266 		                            &data[thr],
1267 		                            "image_decompress/%u", thr);
1268 		if (IS_ERR(data[thr].thr)) {
1269 			data[thr].thr = NULL;
1270 			pr_err("Cannot start decompression threads\n");
1271 			ret = -ENOMEM;
1272 			goto out_clean;
1273 		}
1274 	}
1275 
1276 	/*
1277 	 * Start the CRC32 thread.
1278 	 */
1279 	init_waitqueue_head(&crc->go);
1280 	init_waitqueue_head(&crc->done);
1281 
1282 	handle->crc32 = 0;
1283 	crc->crc32 = &handle->crc32;
1284 	for (thr = 0; thr < nr_threads; thr++) {
1285 		crc->unc[thr] = data[thr].unc;
1286 		crc->unc_len[thr] = &data[thr].unc_len;
1287 	}
1288 
1289 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1290 	if (IS_ERR(crc->thr)) {
1291 		crc->thr = NULL;
1292 		pr_err("Cannot start CRC32 thread\n");
1293 		ret = -ENOMEM;
1294 		goto out_clean;
1295 	}
1296 
1297 	/*
1298 	 * Set the number of pages for read buffering.
1299 	 * This is complete guesswork, because we'll only know the real
1300 	 * picture once prepare_image() is called, which is much later on
1301 	 * during the image load phase. We'll assume the worst case and
1302 	 * say that none of the image pages are from high memory.
1303 	 */
1304 	if (low_free_pages() > snapshot_get_image_size())
1305 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1306 	read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1307 
1308 	for (i = 0; i < read_pages; i++) {
1309 		page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1310 						  GFP_NOIO | __GFP_HIGH :
1311 						  GFP_NOIO | __GFP_NOWARN |
1312 						  __GFP_NORETRY);
1313 
1314 		if (!page[i]) {
1315 			if (i < CMP_PAGES) {
1316 				ring_size = i;
1317 				pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1318 				ret = -ENOMEM;
1319 				goto out_clean;
1320 			} else {
1321 				break;
1322 			}
1323 		}
1324 	}
1325 	want = ring_size = i;
1326 
1327 	pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1328 	pr_info("Loading and decompressing image data (%u pages)...\n",
1329 		nr_to_read);
1330 	m = nr_to_read / 10;
1331 	if (!m)
1332 		m = 1;
1333 	nr_pages = 0;
1334 	start = ktime_get();
1335 
1336 	ret = snapshot_write_next(snapshot);
1337 	if (ret <= 0)
1338 		goto out_finish;
1339 
1340 	for(;;) {
1341 		for (i = 0; !eof && i < want; i++) {
1342 			ret = swap_read_page(handle, page[ring], &hb);
1343 			if (ret) {
1344 				/*
1345 				 * On real read error, finish. On end of data,
1346 				 * set EOF flag and just exit the read loop.
1347 				 */
1348 				if (handle->cur &&
1349 				    handle->cur->entries[handle->k]) {
1350 					goto out_finish;
1351 				} else {
1352 					eof = 1;
1353 					break;
1354 				}
1355 			}
1356 			if (++ring >= ring_size)
1357 				ring = 0;
1358 		}
1359 		asked += i;
1360 		want -= i;
1361 
1362 		/*
1363 		 * We are out of data, wait for some more.
1364 		 */
1365 		if (!have) {
1366 			if (!asked)
1367 				break;
1368 
1369 			ret = hib_wait_io(&hb);
1370 			if (ret)
1371 				goto out_finish;
1372 			have += asked;
1373 			asked = 0;
1374 			if (eof)
1375 				eof = 2;
1376 		}
1377 
1378 		if (crc->run_threads) {
1379 			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1380 			atomic_set(&crc->stop, 0);
1381 			crc->run_threads = 0;
1382 		}
1383 
1384 		for (thr = 0; have && thr < nr_threads; thr++) {
1385 			data[thr].cmp_len = *(size_t *)page[pg];
1386 			if (unlikely(!data[thr].cmp_len ||
1387 			             data[thr].cmp_len >
1388 					bytes_worst_compress(UNC_SIZE))) {
1389 				pr_err("Invalid %s compressed length\n", hib_comp_algo);
1390 				ret = -1;
1391 				goto out_finish;
1392 			}
1393 
1394 			need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1395 			                    PAGE_SIZE);
1396 			if (need > have) {
1397 				if (eof > 1) {
1398 					ret = -1;
1399 					goto out_finish;
1400 				}
1401 				break;
1402 			}
1403 
1404 			for (off = 0;
1405 			     off < CMP_HEADER + data[thr].cmp_len;
1406 			     off += PAGE_SIZE) {
1407 				memcpy(data[thr].cmp + off,
1408 				       page[pg], PAGE_SIZE);
1409 				have--;
1410 				want++;
1411 				if (++pg >= ring_size)
1412 					pg = 0;
1413 			}
1414 
1415 			atomic_set_release(&data[thr].ready, 1);
1416 			wake_up(&data[thr].go);
1417 		}
1418 
1419 		/*
1420 		 * Wait for more data while we are decompressing.
1421 		 */
1422 		if (have < CMP_PAGES && asked) {
1423 			ret = hib_wait_io(&hb);
1424 			if (ret)
1425 				goto out_finish;
1426 			have += asked;
1427 			asked = 0;
1428 			if (eof)
1429 				eof = 2;
1430 		}
1431 
1432 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1433 			wait_event(data[thr].done,
1434 				atomic_read_acquire(&data[thr].stop));
1435 			atomic_set(&data[thr].stop, 0);
1436 
1437 			ret = data[thr].ret;
1438 
1439 			if (ret < 0) {
1440 				pr_err("%s decompression failed\n", hib_comp_algo);
1441 				goto out_finish;
1442 			}
1443 
1444 			if (unlikely(!data[thr].unc_len ||
1445 				data[thr].unc_len > UNC_SIZE ||
1446 				data[thr].unc_len & (PAGE_SIZE - 1))) {
1447 				pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1448 				ret = -1;
1449 				goto out_finish;
1450 			}
1451 
1452 			for (off = 0;
1453 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1454 				memcpy(data_of(*snapshot),
1455 				       data[thr].unc + off, PAGE_SIZE);
1456 
1457 				if (!(nr_pages % m))
1458 					pr_info("Image loading progress: %3d%%\n",
1459 						nr_pages / m * 10);
1460 				nr_pages++;
1461 
1462 				ret = snapshot_write_next(snapshot);
1463 				if (ret <= 0) {
1464 					crc->run_threads = thr + 1;
1465 					atomic_set_release(&crc->ready, 1);
1466 					wake_up(&crc->go);
1467 					goto out_finish;
1468 				}
1469 			}
1470 		}
1471 
1472 		crc->run_threads = thr;
1473 		atomic_set_release(&crc->ready, 1);
1474 		wake_up(&crc->go);
1475 	}
1476 
1477 out_finish:
1478 	if (crc->run_threads) {
1479 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1480 		atomic_set(&crc->stop, 0);
1481 	}
1482 	stop = ktime_get();
1483 	if (!ret) {
1484 		pr_info("Image loading done\n");
1485 		ret = snapshot_write_finalize(snapshot);
1486 		if (!ret && !snapshot_image_loaded(snapshot))
1487 			ret = -ENODATA;
1488 		if (!ret) {
1489 			if (swsusp_header->flags & SF_CRC32_MODE) {
1490 				if(handle->crc32 != swsusp_header->crc32) {
1491 					pr_err("Invalid image CRC32!\n");
1492 					ret = -ENODATA;
1493 				}
1494 			}
1495 		}
1496 	}
1497 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1498 out_clean:
1499 	hib_finish_batch(&hb);
1500 	for (i = 0; i < ring_size; i++)
1501 		free_page((unsigned long)page[i]);
1502 	free_crc_data(crc);
1503 	if (data) {
1504 		for (thr = 0; thr < nr_threads; thr++) {
1505 			if (data[thr].thr)
1506 				kthread_stop(data[thr].thr);
1507 
1508 			acomp_request_free(data[thr].cr);
1509 
1510 			if (!IS_ERR_OR_NULL(data[thr].cc))
1511 				crypto_free_acomp(data[thr].cc);
1512 		}
1513 		vfree(data);
1514 	}
1515 	vfree(page);
1516 
1517 	return ret;
1518 }
1519 
1520 /**
1521  *	swsusp_read - read the hibernation image.
1522  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1523  *		  be written into this memory location
1524  *
1525  *	Return: 0 on success, negative error code on failure.
1526  */
1527 int swsusp_read(unsigned int *flags_p)
1528 {
1529 	int error;
1530 	struct swap_map_handle handle;
1531 	struct snapshot_handle snapshot;
1532 	struct swsusp_info *header;
1533 
1534 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1535 	error = snapshot_write_next(&snapshot);
1536 	if (error < (int)PAGE_SIZE)
1537 		return error < 0 ? error : -EFAULT;
1538 	header = (struct swsusp_info *)data_of(snapshot);
1539 	error = get_swap_reader(&handle, flags_p);
1540 	if (error)
1541 		goto end;
1542 	if (!error)
1543 		error = swap_read_page(&handle, header, NULL);
1544 	if (!error) {
1545 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1546 			load_image(&handle, &snapshot, header->pages - 1) :
1547 			load_compressed_image(&handle, &snapshot, header->pages - 1);
1548 	}
1549 	swap_reader_finish(&handle);
1550 end:
1551 	if (!error)
1552 		pr_debug("Image successfully loaded\n");
1553 	else
1554 		pr_debug("Error %d resuming\n", error);
1555 	return error;
1556 }
1557 
1558 static void *swsusp_holder;
1559 
1560 /**
1561  * swsusp_check - Open the resume device and check for the swsusp signature.
1562  * @exclusive: Open the resume device exclusively.
1563  *
1564  * Return: 0 if a valid image is found, negative error code otherwise.
1565  */
1566 int swsusp_check(bool exclusive)
1567 {
1568 	void *holder = exclusive ? &swsusp_holder : NULL;
1569 	int error;
1570 
1571 	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1572 				BLK_OPEN_READ, holder, NULL);
1573 	if (!IS_ERR(hib_resume_bdev_file)) {
1574 		clear_page(swsusp_header);
1575 		error = hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block,
1576 					swsusp_header);
1577 		if (error)
1578 			goto put;
1579 
1580 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1581 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1582 			swsusp_header_flags = swsusp_header->flags;
1583 			/* Reset swap signature now */
1584 			error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC,
1585 						swsusp_resume_block,
1586 						swsusp_header);
1587 		} else {
1588 			error = -EINVAL;
1589 		}
1590 		if (!error && swsusp_header->flags & SF_HW_SIG &&
1591 		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1592 			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1593 				swsusp_header->hw_sig, swsusp_hardware_signature);
1594 			error = -EINVAL;
1595 		}
1596 
1597 put:
1598 		if (error)
1599 			bdev_fput(hib_resume_bdev_file);
1600 		else
1601 			pr_debug("Image signature found, resuming\n");
1602 	} else {
1603 		error = PTR_ERR(hib_resume_bdev_file);
1604 	}
1605 
1606 	if (error)
1607 		pr_debug("Image not found (code %d)\n", error);
1608 
1609 	return error;
1610 }
1611 
1612 /**
1613  * swsusp_close - close resume device.
1614  */
1615 void swsusp_close(void)
1616 {
1617 	if (IS_ERR(hib_resume_bdev_file)) {
1618 		pr_debug("Image device not initialised\n");
1619 		return;
1620 	}
1621 
1622 	fput(hib_resume_bdev_file);
1623 }
1624 
1625 /**
1626  * swsusp_unmark - Unmark swsusp signature in the resume device
1627  *
1628  * Return: 0 on success, negative error code on failure.
1629  */
1630 #ifdef CONFIG_SUSPEND
1631 int swsusp_unmark(void)
1632 {
1633 	int error;
1634 
1635 	hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block, swsusp_header);
1636 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1637 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1638 		error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC,
1639 					swsusp_resume_block,
1640 					swsusp_header);
1641 	} else {
1642 		pr_err("Cannot find swsusp signature!\n");
1643 		error = -ENODEV;
1644 	}
1645 
1646 	/*
1647 	 * We just returned from suspend, we don't need the image any more.
1648 	 */
1649 	free_all_swap_pages(root_swap);
1650 
1651 	return error;
1652 }
1653 #endif
1654 
1655 static ssize_t hibernate_compression_threads_show(struct kobject *kobj,
1656 				struct kobj_attribute *attr, char *buf)
1657 {
1658 	return sysfs_emit(buf, "%d\n", hibernate_compression_threads);
1659 }
1660 
1661 static ssize_t hibernate_compression_threads_store(struct kobject *kobj,
1662 				struct kobj_attribute *attr,
1663 				const char *buf, size_t n)
1664 {
1665 	unsigned long val;
1666 
1667 	if (kstrtoul(buf, 0, &val))
1668 		return -EINVAL;
1669 
1670 	if (val < 1)
1671 		return -EINVAL;
1672 
1673 	hibernate_compression_threads = val;
1674 	return n;
1675 }
1676 power_attr(hibernate_compression_threads);
1677 
1678 static struct attribute *g[] = {
1679 	&hibernate_compression_threads_attr.attr,
1680 	NULL,
1681 };
1682 
1683 static const struct attribute_group attr_group = {
1684 	.attrs = g,
1685 };
1686 
1687 static int __init swsusp_header_init(void)
1688 {
1689 	int error;
1690 
1691 	error = sysfs_create_group(power_kobj, &attr_group);
1692 	if (error)
1693 		return -ENOMEM;
1694 
1695 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1696 	if (!swsusp_header)
1697 		panic("Could not allocate memory for swsusp_header\n");
1698 	return 0;
1699 }
1700 
1701 core_initcall(swsusp_header_init);
1702 
1703 static int __init hibernate_compression_threads_setup(char *str)
1704 {
1705 	int rc = kstrtouint(str, 0, &hibernate_compression_threads);
1706 
1707 	if (rc)
1708 		return rc;
1709 
1710 	if (hibernate_compression_threads < 1)
1711 		hibernate_compression_threads = CMP_THREADS;
1712 
1713 	return 1;
1714 
1715 }
1716 
1717 __setup("hibernate_compression_threads=", hibernate_compression_threads_setup);
1718