1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <crypto/acompress.h> 16 #include <linux/module.h> 17 #include <linux/file.h> 18 #include <linux/delay.h> 19 #include <linux/bitops.h> 20 #include <linux/device.h> 21 #include <linux/bio.h> 22 #include <linux/blkdev.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/pm.h> 26 #include <linux/slab.h> 27 #include <linux/vmalloc.h> 28 #include <linux/cpumask.h> 29 #include <linux/atomic.h> 30 #include <linux/kthread.h> 31 #include <linux/crc32.h> 32 #include <linux/ktime.h> 33 34 #include "power.h" 35 36 #define HIBERNATE_SIG "S1SUSPEND" 37 38 u32 swsusp_hardware_signature; 39 40 /* 41 * When reading an {un,}compressed image, we may restore pages in place, 42 * in which case some architectures need these pages cleaning before they 43 * can be executed. We don't know which pages these may be, so clean the lot. 44 */ 45 static bool clean_pages_on_read; 46 static bool clean_pages_on_decompress; 47 48 /* 49 * The swap map is a data structure used for keeping track of each page 50 * written to a swap partition. It consists of many swap_map_page structures 51 * that contain each an array of MAP_PAGE_ENTRIES swap entries. These 52 * structures are stored on the swap and linked together with the help of the 53 * .next_swap member. 54 * 55 * The swap map is created during suspend. The swap map pages are allocated and 56 * populated one at a time, so we only need one memory page to set up the entire 57 * structure. 58 * 59 * During resume we pick up all swap_map_page structures into a list. 60 */ 61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 62 63 /* 64 * Number of free pages that are not high. 65 */ 66 static inline unsigned long low_free_pages(void) 67 { 68 return nr_free_pages() - nr_free_highpages(); 69 } 70 71 /* 72 * Number of pages required to be kept free while writing the image. Always 73 * half of all available low pages before the writing starts. 74 */ 75 static inline unsigned long reqd_free_pages(void) 76 { 77 return low_free_pages() / 2; 78 } 79 80 struct swap_map_page { 81 sector_t entries[MAP_PAGE_ENTRIES]; 82 sector_t next_swap; 83 }; 84 85 struct swap_map_page_list { 86 struct swap_map_page *map; 87 struct swap_map_page_list *next; 88 }; 89 90 /* 91 * The swap_map_handle structure is used for handling swap in a file-alike way. 92 */ 93 struct swap_map_handle { 94 struct swap_map_page *cur; 95 struct swap_map_page_list *maps; 96 sector_t cur_swap; 97 sector_t first_sector; 98 unsigned int k; 99 unsigned long reqd_free_pages; 100 u32 crc32; 101 }; 102 103 struct swsusp_header { 104 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 105 sizeof(u32) - sizeof(u32)]; 106 u32 hw_sig; 107 u32 crc32; 108 sector_t image; 109 unsigned int flags; /* Flags to pass to the "boot" kernel */ 110 char orig_sig[10]; 111 char sig[10]; 112 } __packed; 113 114 static struct swsusp_header *swsusp_header; 115 116 /* 117 * The following functions are used for tracing the allocated swap pages, so 118 * that they can be freed in case of an error. 119 */ 120 struct swsusp_extent { 121 struct rb_node node; 122 unsigned long start; 123 unsigned long end; 124 }; 125 126 static struct rb_root swsusp_extents = RB_ROOT; 127 128 static int swsusp_extents_insert(unsigned long swap_offset) 129 { 130 struct rb_node **new = &(swsusp_extents.rb_node); 131 struct rb_node *parent = NULL; 132 struct swsusp_extent *ext; 133 134 /* Figure out where to put the new node */ 135 while (*new) { 136 ext = rb_entry(*new, struct swsusp_extent, node); 137 parent = *new; 138 if (swap_offset < ext->start) { 139 /* Try to merge */ 140 if (swap_offset == ext->start - 1) { 141 ext->start--; 142 return 0; 143 } 144 new = &((*new)->rb_left); 145 } else if (swap_offset > ext->end) { 146 /* Try to merge */ 147 if (swap_offset == ext->end + 1) { 148 ext->end++; 149 return 0; 150 } 151 new = &((*new)->rb_right); 152 } else { 153 /* It already is in the tree */ 154 return -EINVAL; 155 } 156 } 157 /* Add the new node and rebalance the tree. */ 158 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 159 if (!ext) 160 return -ENOMEM; 161 162 ext->start = swap_offset; 163 ext->end = swap_offset; 164 rb_link_node(&ext->node, parent, new); 165 rb_insert_color(&ext->node, &swsusp_extents); 166 return 0; 167 } 168 169 sector_t alloc_swapdev_block(int swap) 170 { 171 unsigned long offset; 172 173 /* 174 * Allocate a swap page and register that it has been allocated, so that 175 * it can be freed in case of an error. 176 */ 177 offset = swp_offset(swap_alloc_hibernation_slot(swap)); 178 if (offset) { 179 if (swsusp_extents_insert(offset)) 180 swap_free_hibernation_slot(swp_entry(swap, offset)); 181 else 182 return swapdev_block(swap, offset); 183 } 184 return 0; 185 } 186 187 void free_all_swap_pages(int swap) 188 { 189 unsigned long offset; 190 struct rb_node *node; 191 192 /* 193 * Free swap pages allocated for saving image data. It also frees the 194 * extents used to register which swap entries had been allocated. 195 */ 196 while ((node = swsusp_extents.rb_node)) { 197 struct swsusp_extent *ext; 198 199 ext = rb_entry(node, struct swsusp_extent, node); 200 rb_erase(node, &swsusp_extents); 201 202 for (offset = ext->start; offset <= ext->end; offset++) 203 swap_free_hibernation_slot(swp_entry(swap, offset)); 204 205 kfree(ext); 206 } 207 } 208 209 int swsusp_swap_in_use(void) 210 { 211 return (swsusp_extents.rb_node != NULL); 212 } 213 214 /* 215 * General things 216 */ 217 218 static unsigned short root_swap = 0xffff; 219 static struct file *hib_resume_bdev_file; 220 221 struct hib_bio_batch { 222 atomic_t count; 223 wait_queue_head_t wait; 224 blk_status_t error; 225 struct blk_plug plug; 226 }; 227 228 static void hib_init_batch(struct hib_bio_batch *hb) 229 { 230 atomic_set(&hb->count, 0); 231 init_waitqueue_head(&hb->wait); 232 hb->error = BLK_STS_OK; 233 blk_start_plug(&hb->plug); 234 } 235 236 static void hib_finish_batch(struct hib_bio_batch *hb) 237 { 238 blk_finish_plug(&hb->plug); 239 } 240 241 static void hib_end_io(struct bio *bio) 242 { 243 struct hib_bio_batch *hb = bio->bi_private; 244 struct page *page = bio_first_page_all(bio); 245 246 if (bio->bi_status) { 247 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 248 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 249 (unsigned long long)bio->bi_iter.bi_sector); 250 } 251 252 if (bio_data_dir(bio) == WRITE) 253 put_page(page); 254 else if (clean_pages_on_read) 255 flush_icache_range((unsigned long)page_address(page), 256 (unsigned long)page_address(page) + PAGE_SIZE); 257 258 if (bio->bi_status && !hb->error) 259 hb->error = bio->bi_status; 260 if (atomic_dec_and_test(&hb->count)) 261 wake_up(&hb->wait); 262 263 bio_put(bio); 264 } 265 266 static int hib_submit_io_sync(blk_opf_t opf, pgoff_t page_off, void *addr) 267 { 268 return bdev_rw_virt(file_bdev(hib_resume_bdev_file), 269 page_off * (PAGE_SIZE >> 9), addr, PAGE_SIZE, opf); 270 } 271 272 static int hib_submit_io_async(blk_opf_t opf, pgoff_t page_off, void *addr, 273 struct hib_bio_batch *hb) 274 { 275 struct bio *bio; 276 277 bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf, 278 GFP_NOIO | __GFP_HIGH); 279 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 280 bio_add_virt_nofail(bio, addr, PAGE_SIZE); 281 bio->bi_end_io = hib_end_io; 282 bio->bi_private = hb; 283 atomic_inc(&hb->count); 284 submit_bio(bio); 285 return 0; 286 } 287 288 static int hib_wait_io(struct hib_bio_batch *hb) 289 { 290 /* 291 * We are relying on the behavior of blk_plug that a thread with 292 * a plug will flush the plug list before sleeping. 293 */ 294 wait_event(hb->wait, atomic_read(&hb->count) == 0); 295 return blk_status_to_errno(hb->error); 296 } 297 298 /* 299 * Saving part 300 */ 301 302 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 303 { 304 int error; 305 306 hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block, swsusp_header); 307 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 308 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 309 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 310 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 311 swsusp_header->image = handle->first_sector; 312 if (swsusp_hardware_signature) { 313 swsusp_header->hw_sig = swsusp_hardware_signature; 314 flags |= SF_HW_SIG; 315 } 316 swsusp_header->flags = flags; 317 if (flags & SF_CRC32_MODE) 318 swsusp_header->crc32 = handle->crc32; 319 error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC, 320 swsusp_resume_block, swsusp_header); 321 } else { 322 pr_err("Swap header not found!\n"); 323 error = -ENODEV; 324 } 325 return error; 326 } 327 328 /* 329 * Hold the swsusp_header flag. This is used in software_resume() in 330 * 'kernel/power/hibernate' to check if the image is compressed and query 331 * for the compression algorithm support(if so). 332 */ 333 unsigned int swsusp_header_flags; 334 335 static int swsusp_swap_check(void) 336 { 337 int res; 338 339 /* 340 * Check if the resume device is a swap device and get its index (if so). 341 * This is called before saving the image. 342 */ 343 if (swsusp_resume_device) 344 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 345 else 346 res = find_first_swap(&swsusp_resume_device); 347 if (res < 0) 348 return res; 349 root_swap = res; 350 351 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device, 352 BLK_OPEN_WRITE, NULL, NULL); 353 if (IS_ERR(hib_resume_bdev_file)) 354 return PTR_ERR(hib_resume_bdev_file); 355 356 return 0; 357 } 358 359 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 360 { 361 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 362 void *src; 363 int ret; 364 365 if (!offset) 366 return -ENOSPC; 367 368 if (!hb) 369 goto sync_io; 370 371 src = (void *)__get_free_page(gfp); 372 if (!src) { 373 ret = hib_wait_io(hb); /* Free pages */ 374 if (ret) 375 return ret; 376 src = (void *)__get_free_page(gfp); 377 if (WARN_ON_ONCE(!src)) 378 goto sync_io; 379 } 380 381 copy_page(src, buf); 382 return hib_submit_io_async(REQ_OP_WRITE | REQ_SYNC, offset, src, hb); 383 sync_io: 384 return hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC, offset, buf); 385 } 386 387 static void release_swap_writer(struct swap_map_handle *handle) 388 { 389 if (handle->cur) 390 free_page((unsigned long)handle->cur); 391 handle->cur = NULL; 392 } 393 394 static int get_swap_writer(struct swap_map_handle *handle) 395 { 396 int ret; 397 398 ret = swsusp_swap_check(); 399 if (ret) { 400 if (ret != -ENOSPC) 401 pr_err("Cannot find swap device, try swapon -a\n"); 402 return ret; 403 } 404 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 405 if (!handle->cur) { 406 ret = -ENOMEM; 407 goto err_close; 408 } 409 handle->cur_swap = alloc_swapdev_block(root_swap); 410 if (!handle->cur_swap) { 411 ret = -ENOSPC; 412 goto err_rel; 413 } 414 handle->k = 0; 415 handle->reqd_free_pages = reqd_free_pages(); 416 handle->first_sector = handle->cur_swap; 417 return 0; 418 err_rel: 419 release_swap_writer(handle); 420 err_close: 421 swsusp_close(); 422 return ret; 423 } 424 425 static int swap_write_page(struct swap_map_handle *handle, void *buf, 426 struct hib_bio_batch *hb) 427 { 428 int error; 429 sector_t offset; 430 431 if (!handle->cur) 432 return -EINVAL; 433 offset = alloc_swapdev_block(root_swap); 434 error = write_page(buf, offset, hb); 435 if (error) 436 return error; 437 handle->cur->entries[handle->k++] = offset; 438 if (handle->k >= MAP_PAGE_ENTRIES) { 439 offset = alloc_swapdev_block(root_swap); 440 if (!offset) 441 return -ENOSPC; 442 handle->cur->next_swap = offset; 443 error = write_page(handle->cur, handle->cur_swap, hb); 444 if (error) 445 goto out; 446 clear_page(handle->cur); 447 handle->cur_swap = offset; 448 handle->k = 0; 449 450 if (hb && low_free_pages() <= handle->reqd_free_pages) { 451 error = hib_wait_io(hb); 452 if (error) 453 goto out; 454 /* 455 * Recalculate the number of required free pages, to 456 * make sure we never take more than half. 457 */ 458 handle->reqd_free_pages = reqd_free_pages(); 459 } 460 } 461 out: 462 return error; 463 } 464 465 static int flush_swap_writer(struct swap_map_handle *handle) 466 { 467 if (handle->cur && handle->cur_swap) 468 return write_page(handle->cur, handle->cur_swap, NULL); 469 else 470 return -EINVAL; 471 } 472 473 static int swap_writer_finish(struct swap_map_handle *handle, 474 unsigned int flags, int error) 475 { 476 if (!error) { 477 pr_info("S"); 478 error = mark_swapfiles(handle, flags); 479 pr_cont("|\n"); 480 flush_swap_writer(handle); 481 } 482 483 if (error) 484 free_all_swap_pages(root_swap); 485 release_swap_writer(handle); 486 swsusp_close(); 487 488 return error; 489 } 490 491 /* 492 * Bytes we need for compressed data in worst case. We assume(limitation) 493 * this is the worst of all the compression algorithms. 494 */ 495 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2) 496 497 /* We need to remember how much compressed data we need to read. */ 498 #define CMP_HEADER sizeof(size_t) 499 500 /* Number of pages/bytes we'll compress at one time. */ 501 #define UNC_PAGES 32 502 #define UNC_SIZE (UNC_PAGES * PAGE_SIZE) 503 504 /* Number of pages we need for compressed data (worst case). */ 505 #define CMP_PAGES DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \ 506 CMP_HEADER, PAGE_SIZE) 507 #define CMP_SIZE (CMP_PAGES * PAGE_SIZE) 508 509 /* Default number of threads for compression/decompression. */ 510 #define CMP_THREADS 3 511 static unsigned int hibernate_compression_threads = CMP_THREADS; 512 513 /* Minimum/maximum number of pages for read buffering. */ 514 #define CMP_MIN_RD_PAGES 1024 515 #define CMP_MAX_RD_PAGES 8192 516 517 static int save_image(struct swap_map_handle *handle, 518 struct snapshot_handle *snapshot, 519 unsigned int nr_to_write) 520 { 521 unsigned int m; 522 int ret; 523 int nr_pages; 524 int err2; 525 struct hib_bio_batch hb; 526 ktime_t start; 527 ktime_t stop; 528 529 hib_init_batch(&hb); 530 531 pr_info("Saving image data pages (%u pages)...\n", 532 nr_to_write); 533 m = nr_to_write / 10; 534 if (!m) 535 m = 1; 536 nr_pages = 0; 537 start = ktime_get(); 538 while (1) { 539 ret = snapshot_read_next(snapshot); 540 if (ret <= 0) 541 break; 542 ret = swap_write_page(handle, data_of(*snapshot), &hb); 543 if (ret) 544 break; 545 if (!(nr_pages % m)) 546 pr_info("Image saving progress: %3d%%\n", 547 nr_pages / m * 10); 548 nr_pages++; 549 } 550 err2 = hib_wait_io(&hb); 551 hib_finish_batch(&hb); 552 stop = ktime_get(); 553 if (!ret) 554 ret = err2; 555 if (!ret) 556 pr_info("Image saving done\n"); 557 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 558 return ret; 559 } 560 561 /* 562 * Structure used for CRC32. 563 */ 564 struct crc_data { 565 struct task_struct *thr; /* thread */ 566 atomic_t ready; /* ready to start flag */ 567 atomic_t stop; /* ready to stop flag */ 568 unsigned run_threads; /* nr current threads */ 569 wait_queue_head_t go; /* start crc update */ 570 wait_queue_head_t done; /* crc update done */ 571 u32 *crc32; /* points to handle's crc32 */ 572 size_t **unc_len; /* uncompressed lengths */ 573 unsigned char **unc; /* uncompressed data */ 574 }; 575 576 static struct crc_data *alloc_crc_data(int nr_threads) 577 { 578 struct crc_data *crc; 579 580 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 581 if (!crc) 582 return NULL; 583 584 crc->unc = kcalloc(nr_threads, sizeof(*crc->unc), GFP_KERNEL); 585 if (!crc->unc) 586 goto err_free_crc; 587 588 crc->unc_len = kcalloc(nr_threads, sizeof(*crc->unc_len), GFP_KERNEL); 589 if (!crc->unc_len) 590 goto err_free_unc; 591 592 return crc; 593 594 err_free_unc: 595 kfree(crc->unc); 596 err_free_crc: 597 kfree(crc); 598 return NULL; 599 } 600 601 static void free_crc_data(struct crc_data *crc) 602 { 603 if (!crc) 604 return; 605 606 if (crc->thr) 607 kthread_stop(crc->thr); 608 609 kfree(crc->unc_len); 610 kfree(crc->unc); 611 kfree(crc); 612 } 613 614 static int crc32_threadfn(void *data) 615 { 616 struct crc_data *d = data; 617 unsigned i; 618 619 while (1) { 620 wait_event(d->go, atomic_read_acquire(&d->ready) || 621 kthread_should_stop()); 622 if (kthread_should_stop()) { 623 d->thr = NULL; 624 atomic_set_release(&d->stop, 1); 625 wake_up(&d->done); 626 break; 627 } 628 atomic_set(&d->ready, 0); 629 630 for (i = 0; i < d->run_threads; i++) 631 *d->crc32 = crc32_le(*d->crc32, 632 d->unc[i], *d->unc_len[i]); 633 atomic_set_release(&d->stop, 1); 634 wake_up(&d->done); 635 } 636 return 0; 637 } 638 639 /* 640 * Structure used for data compression. 641 */ 642 struct cmp_data { 643 struct task_struct *thr; /* thread */ 644 struct crypto_acomp *cc; /* crypto compressor */ 645 struct acomp_req *cr; /* crypto request */ 646 atomic_t ready; /* ready to start flag */ 647 atomic_t stop; /* ready to stop flag */ 648 int ret; /* return code */ 649 wait_queue_head_t go; /* start compression */ 650 wait_queue_head_t done; /* compression done */ 651 size_t unc_len; /* uncompressed length */ 652 size_t cmp_len; /* compressed length */ 653 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */ 654 unsigned char cmp[CMP_SIZE]; /* compressed buffer */ 655 }; 656 657 /* Indicates the image size after compression */ 658 static atomic64_t compressed_size = ATOMIC_INIT(0); 659 660 static int compress_threadfn(void *data) 661 { 662 struct cmp_data *d = data; 663 664 while (1) { 665 wait_event(d->go, atomic_read_acquire(&d->ready) || 666 kthread_should_stop()); 667 if (kthread_should_stop()) { 668 d->thr = NULL; 669 d->ret = -1; 670 atomic_set_release(&d->stop, 1); 671 wake_up(&d->done); 672 break; 673 } 674 atomic_set(&d->ready, 0); 675 676 acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP, 677 NULL, NULL); 678 acomp_request_set_src_nondma(d->cr, d->unc, d->unc_len); 679 acomp_request_set_dst_nondma(d->cr, d->cmp + CMP_HEADER, 680 CMP_SIZE - CMP_HEADER); 681 d->ret = crypto_acomp_compress(d->cr); 682 d->cmp_len = d->cr->dlen; 683 684 atomic64_add(d->cmp_len, &compressed_size); 685 atomic_set_release(&d->stop, 1); 686 wake_up(&d->done); 687 } 688 return 0; 689 } 690 691 static int save_compressed_image(struct swap_map_handle *handle, 692 struct snapshot_handle *snapshot, 693 unsigned int nr_to_write) 694 { 695 unsigned int m; 696 int ret = 0; 697 int nr_pages; 698 int err2; 699 struct hib_bio_batch hb; 700 ktime_t start; 701 ktime_t stop; 702 size_t off; 703 unsigned int thr, run_threads, nr_threads; 704 unsigned char *page = NULL; 705 struct cmp_data *data = NULL; 706 struct crc_data *crc = NULL; 707 708 hib_init_batch(&hb); 709 710 atomic64_set(&compressed_size, 0); 711 712 /* 713 * We'll limit the number of threads for compression to limit memory 714 * footprint. 715 */ 716 nr_threads = num_online_cpus() - 1; 717 nr_threads = clamp_val(nr_threads, 1, hibernate_compression_threads); 718 719 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 720 if (!page) { 721 pr_err("Failed to allocate %s page\n", hib_comp_algo); 722 ret = -ENOMEM; 723 goto out_clean; 724 } 725 726 data = vcalloc(nr_threads, sizeof(*data)); 727 if (!data) { 728 pr_err("Failed to allocate %s data\n", hib_comp_algo); 729 ret = -ENOMEM; 730 goto out_clean; 731 } 732 733 crc = alloc_crc_data(nr_threads); 734 if (!crc) { 735 pr_err("Failed to allocate crc\n"); 736 ret = -ENOMEM; 737 goto out_clean; 738 } 739 740 /* 741 * Start the compression threads. 742 */ 743 for (thr = 0; thr < nr_threads; thr++) { 744 init_waitqueue_head(&data[thr].go); 745 init_waitqueue_head(&data[thr].done); 746 747 data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC); 748 if (IS_ERR_OR_NULL(data[thr].cc)) { 749 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc)); 750 ret = -EFAULT; 751 goto out_clean; 752 } 753 754 data[thr].cr = acomp_request_alloc(data[thr].cc); 755 if (!data[thr].cr) { 756 pr_err("Could not allocate comp request\n"); 757 ret = -ENOMEM; 758 goto out_clean; 759 } 760 761 data[thr].thr = kthread_run(compress_threadfn, 762 &data[thr], 763 "image_compress/%u", thr); 764 if (IS_ERR(data[thr].thr)) { 765 data[thr].thr = NULL; 766 pr_err("Cannot start compression threads\n"); 767 ret = -ENOMEM; 768 goto out_clean; 769 } 770 } 771 772 /* 773 * Start the CRC32 thread. 774 */ 775 init_waitqueue_head(&crc->go); 776 init_waitqueue_head(&crc->done); 777 778 handle->crc32 = 0; 779 crc->crc32 = &handle->crc32; 780 for (thr = 0; thr < nr_threads; thr++) { 781 crc->unc[thr] = data[thr].unc; 782 crc->unc_len[thr] = &data[thr].unc_len; 783 } 784 785 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 786 if (IS_ERR(crc->thr)) { 787 crc->thr = NULL; 788 pr_err("Cannot start CRC32 thread\n"); 789 ret = -ENOMEM; 790 goto out_clean; 791 } 792 793 /* 794 * Adjust the number of required free pages after all allocations have 795 * been done. We don't want to run out of pages when writing. 796 */ 797 handle->reqd_free_pages = reqd_free_pages(); 798 799 pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo); 800 pr_info("Compressing and saving image data (%u pages)...\n", 801 nr_to_write); 802 m = nr_to_write / 10; 803 if (!m) 804 m = 1; 805 nr_pages = 0; 806 start = ktime_get(); 807 for (;;) { 808 for (thr = 0; thr < nr_threads; thr++) { 809 for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) { 810 ret = snapshot_read_next(snapshot); 811 if (ret < 0) 812 goto out_finish; 813 814 if (!ret) 815 break; 816 817 memcpy(data[thr].unc + off, 818 data_of(*snapshot), PAGE_SIZE); 819 820 if (!(nr_pages % m)) 821 pr_info("Image saving progress: %3d%%\n", 822 nr_pages / m * 10); 823 nr_pages++; 824 } 825 if (!off) 826 break; 827 828 data[thr].unc_len = off; 829 830 atomic_set_release(&data[thr].ready, 1); 831 wake_up(&data[thr].go); 832 } 833 834 if (!thr) 835 break; 836 837 crc->run_threads = thr; 838 atomic_set_release(&crc->ready, 1); 839 wake_up(&crc->go); 840 841 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 842 wait_event(data[thr].done, 843 atomic_read_acquire(&data[thr].stop)); 844 atomic_set(&data[thr].stop, 0); 845 846 ret = data[thr].ret; 847 848 if (ret < 0) { 849 pr_err("%s compression failed\n", hib_comp_algo); 850 goto out_finish; 851 } 852 853 if (unlikely(!data[thr].cmp_len || 854 data[thr].cmp_len > 855 bytes_worst_compress(data[thr].unc_len))) { 856 pr_err("Invalid %s compressed length\n", hib_comp_algo); 857 ret = -1; 858 goto out_finish; 859 } 860 861 *(size_t *)data[thr].cmp = data[thr].cmp_len; 862 863 /* 864 * Given we are writing one page at a time to disk, we 865 * copy that much from the buffer, although the last 866 * bit will likely be smaller than full page. This is 867 * OK - we saved the length of the compressed data, so 868 * any garbage at the end will be discarded when we 869 * read it. 870 */ 871 for (off = 0; 872 off < CMP_HEADER + data[thr].cmp_len; 873 off += PAGE_SIZE) { 874 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 875 876 ret = swap_write_page(handle, page, &hb); 877 if (ret) 878 goto out_finish; 879 } 880 } 881 882 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 883 atomic_set(&crc->stop, 0); 884 } 885 886 out_finish: 887 err2 = hib_wait_io(&hb); 888 stop = ktime_get(); 889 if (!ret) 890 ret = err2; 891 if (!ret) { 892 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 893 pr_info("Image size after compression: %lld kbytes\n", 894 (atomic64_read(&compressed_size) / 1024)); 895 pr_info("Image saving done\n"); 896 } else { 897 pr_err("Image saving failed: %d\n", ret); 898 } 899 900 out_clean: 901 hib_finish_batch(&hb); 902 free_crc_data(crc); 903 if (data) { 904 for (thr = 0; thr < nr_threads; thr++) { 905 if (data[thr].thr) 906 kthread_stop(data[thr].thr); 907 908 acomp_request_free(data[thr].cr); 909 910 if (!IS_ERR_OR_NULL(data[thr].cc)) 911 crypto_free_acomp(data[thr].cc); 912 } 913 vfree(data); 914 } 915 if (page) 916 free_page((unsigned long)page); 917 918 return ret; 919 } 920 921 static int enough_swap(unsigned int nr_pages) 922 { 923 unsigned int free_swap = count_swap_pages(root_swap, 1); 924 unsigned int required; 925 926 pr_debug("Free swap pages: %u\n", free_swap); 927 928 required = PAGES_FOR_IO + nr_pages; 929 return free_swap > required; 930 } 931 932 /** 933 * swsusp_write - Write entire image and metadata. 934 * @flags: flags to pass to the "boot" kernel in the image header 935 * 936 * It is important _NOT_ to umount filesystems at this point. We want them 937 * synced (in case something goes wrong) but we DO not want to mark filesystem 938 * clean: it is not. (And it does not matter, if we resume correctly, we'll mark 939 * system clean, anyway.) 940 * 941 * Return: 0 on success, negative error code on failure. 942 */ 943 int swsusp_write(unsigned int flags) 944 { 945 struct swap_map_handle handle; 946 struct snapshot_handle snapshot; 947 struct swsusp_info *header; 948 unsigned long pages; 949 int error; 950 951 pages = snapshot_get_image_size(); 952 error = get_swap_writer(&handle); 953 if (error) { 954 pr_err("Cannot get swap writer\n"); 955 return error; 956 } 957 if (flags & SF_NOCOMPRESS_MODE) { 958 if (!enough_swap(pages)) { 959 pr_err("Not enough free swap\n"); 960 error = -ENOSPC; 961 goto out_finish; 962 } 963 } 964 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 965 error = snapshot_read_next(&snapshot); 966 if (error < (int)PAGE_SIZE) { 967 if (error >= 0) 968 error = -EFAULT; 969 970 goto out_finish; 971 } 972 header = (struct swsusp_info *)data_of(snapshot); 973 error = swap_write_page(&handle, header, NULL); 974 if (!error) { 975 error = (flags & SF_NOCOMPRESS_MODE) ? 976 save_image(&handle, &snapshot, pages - 1) : 977 save_compressed_image(&handle, &snapshot, pages - 1); 978 } 979 out_finish: 980 error = swap_writer_finish(&handle, flags, error); 981 return error; 982 } 983 984 /* 985 * The following functions allow us to read data using a swap map in a file-like 986 * way. 987 */ 988 989 static void release_swap_reader(struct swap_map_handle *handle) 990 { 991 struct swap_map_page_list *tmp; 992 993 while (handle->maps) { 994 if (handle->maps->map) 995 free_page((unsigned long)handle->maps->map); 996 tmp = handle->maps; 997 handle->maps = handle->maps->next; 998 kfree(tmp); 999 } 1000 handle->cur = NULL; 1001 } 1002 1003 static int get_swap_reader(struct swap_map_handle *handle, 1004 unsigned int *flags_p) 1005 { 1006 int error; 1007 struct swap_map_page_list *tmp, *last; 1008 sector_t offset; 1009 1010 *flags_p = swsusp_header->flags; 1011 1012 if (!swsusp_header->image) /* how can this happen? */ 1013 return -EINVAL; 1014 1015 handle->cur = NULL; 1016 last = handle->maps = NULL; 1017 offset = swsusp_header->image; 1018 while (offset) { 1019 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 1020 if (!tmp) { 1021 release_swap_reader(handle); 1022 return -ENOMEM; 1023 } 1024 if (!handle->maps) 1025 handle->maps = tmp; 1026 if (last) 1027 last->next = tmp; 1028 last = tmp; 1029 1030 tmp->map = (struct swap_map_page *) 1031 __get_free_page(GFP_NOIO | __GFP_HIGH); 1032 if (!tmp->map) { 1033 release_swap_reader(handle); 1034 return -ENOMEM; 1035 } 1036 1037 error = hib_submit_io_sync(REQ_OP_READ, offset, tmp->map); 1038 if (error) { 1039 release_swap_reader(handle); 1040 return error; 1041 } 1042 offset = tmp->map->next_swap; 1043 } 1044 handle->k = 0; 1045 handle->cur = handle->maps->map; 1046 return 0; 1047 } 1048 1049 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1050 struct hib_bio_batch *hb) 1051 { 1052 sector_t offset; 1053 int error; 1054 struct swap_map_page_list *tmp; 1055 1056 if (!handle->cur) 1057 return -EINVAL; 1058 offset = handle->cur->entries[handle->k]; 1059 if (!offset) 1060 return -EFAULT; 1061 if (hb) 1062 error = hib_submit_io_async(REQ_OP_READ, offset, buf, hb); 1063 else 1064 error = hib_submit_io_sync(REQ_OP_READ, offset, buf); 1065 if (error) 1066 return error; 1067 if (++handle->k >= MAP_PAGE_ENTRIES) { 1068 handle->k = 0; 1069 free_page((unsigned long)handle->maps->map); 1070 tmp = handle->maps; 1071 handle->maps = handle->maps->next; 1072 kfree(tmp); 1073 if (!handle->maps) 1074 release_swap_reader(handle); 1075 else 1076 handle->cur = handle->maps->map; 1077 } 1078 return error; 1079 } 1080 1081 static int swap_reader_finish(struct swap_map_handle *handle) 1082 { 1083 release_swap_reader(handle); 1084 1085 return 0; 1086 } 1087 1088 static int load_image(struct swap_map_handle *handle, 1089 struct snapshot_handle *snapshot, 1090 unsigned int nr_to_read) 1091 { 1092 unsigned int m; 1093 int ret = 0; 1094 ktime_t start; 1095 ktime_t stop; 1096 struct hib_bio_batch hb; 1097 int err2; 1098 unsigned nr_pages; 1099 1100 hib_init_batch(&hb); 1101 1102 clean_pages_on_read = true; 1103 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1104 m = nr_to_read / 10; 1105 if (!m) 1106 m = 1; 1107 nr_pages = 0; 1108 start = ktime_get(); 1109 for ( ; ; ) { 1110 ret = snapshot_write_next(snapshot); 1111 if (ret <= 0) 1112 break; 1113 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1114 if (ret) 1115 break; 1116 if (snapshot->sync_read) 1117 ret = hib_wait_io(&hb); 1118 if (ret) 1119 break; 1120 if (!(nr_pages % m)) 1121 pr_info("Image loading progress: %3d%%\n", 1122 nr_pages / m * 10); 1123 nr_pages++; 1124 } 1125 err2 = hib_wait_io(&hb); 1126 hib_finish_batch(&hb); 1127 stop = ktime_get(); 1128 if (!ret) 1129 ret = err2; 1130 if (!ret) { 1131 pr_info("Image loading done\n"); 1132 ret = snapshot_write_finalize(snapshot); 1133 if (!ret && !snapshot_image_loaded(snapshot)) 1134 ret = -ENODATA; 1135 } 1136 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1137 return ret; 1138 } 1139 1140 /* 1141 * Structure used for data decompression. 1142 */ 1143 struct dec_data { 1144 struct task_struct *thr; /* thread */ 1145 struct crypto_acomp *cc; /* crypto compressor */ 1146 struct acomp_req *cr; /* crypto request */ 1147 atomic_t ready; /* ready to start flag */ 1148 atomic_t stop; /* ready to stop flag */ 1149 int ret; /* return code */ 1150 wait_queue_head_t go; /* start decompression */ 1151 wait_queue_head_t done; /* decompression done */ 1152 size_t unc_len; /* uncompressed length */ 1153 size_t cmp_len; /* compressed length */ 1154 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */ 1155 unsigned char cmp[CMP_SIZE]; /* compressed buffer */ 1156 }; 1157 1158 static int decompress_threadfn(void *data) 1159 { 1160 struct dec_data *d = data; 1161 1162 while (1) { 1163 wait_event(d->go, atomic_read_acquire(&d->ready) || 1164 kthread_should_stop()); 1165 if (kthread_should_stop()) { 1166 d->thr = NULL; 1167 d->ret = -1; 1168 atomic_set_release(&d->stop, 1); 1169 wake_up(&d->done); 1170 break; 1171 } 1172 atomic_set(&d->ready, 0); 1173 1174 acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP, 1175 NULL, NULL); 1176 acomp_request_set_src_nondma(d->cr, d->cmp + CMP_HEADER, 1177 d->cmp_len); 1178 acomp_request_set_dst_nondma(d->cr, d->unc, UNC_SIZE); 1179 d->ret = crypto_acomp_decompress(d->cr); 1180 d->unc_len = d->cr->dlen; 1181 1182 if (clean_pages_on_decompress) 1183 flush_icache_range((unsigned long)d->unc, 1184 (unsigned long)d->unc + d->unc_len); 1185 1186 atomic_set_release(&d->stop, 1); 1187 wake_up(&d->done); 1188 } 1189 return 0; 1190 } 1191 1192 static int load_compressed_image(struct swap_map_handle *handle, 1193 struct snapshot_handle *snapshot, 1194 unsigned int nr_to_read) 1195 { 1196 unsigned int m; 1197 int ret = 0; 1198 int eof = 0; 1199 struct hib_bio_batch hb; 1200 ktime_t start; 1201 ktime_t stop; 1202 unsigned nr_pages; 1203 size_t off; 1204 unsigned i, thr, run_threads, nr_threads; 1205 unsigned ring = 0, pg = 0, ring_size = 0, 1206 have = 0, want, need, asked = 0; 1207 unsigned long read_pages = 0; 1208 unsigned char **page = NULL; 1209 struct dec_data *data = NULL; 1210 struct crc_data *crc = NULL; 1211 1212 hib_init_batch(&hb); 1213 1214 /* 1215 * We'll limit the number of threads for decompression to limit memory 1216 * footprint. 1217 */ 1218 nr_threads = num_online_cpus() - 1; 1219 nr_threads = clamp_val(nr_threads, 1, hibernate_compression_threads); 1220 1221 page = vmalloc_array(CMP_MAX_RD_PAGES, sizeof(*page)); 1222 if (!page) { 1223 pr_err("Failed to allocate %s page\n", hib_comp_algo); 1224 ret = -ENOMEM; 1225 goto out_clean; 1226 } 1227 1228 data = vcalloc(nr_threads, sizeof(*data)); 1229 if (!data) { 1230 pr_err("Failed to allocate %s data\n", hib_comp_algo); 1231 ret = -ENOMEM; 1232 goto out_clean; 1233 } 1234 1235 crc = alloc_crc_data(nr_threads); 1236 if (!crc) { 1237 pr_err("Failed to allocate crc\n"); 1238 ret = -ENOMEM; 1239 goto out_clean; 1240 } 1241 1242 clean_pages_on_decompress = true; 1243 1244 /* 1245 * Start the decompression threads. 1246 */ 1247 for (thr = 0; thr < nr_threads; thr++) { 1248 init_waitqueue_head(&data[thr].go); 1249 init_waitqueue_head(&data[thr].done); 1250 1251 data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC); 1252 if (IS_ERR_OR_NULL(data[thr].cc)) { 1253 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc)); 1254 ret = -EFAULT; 1255 goto out_clean; 1256 } 1257 1258 data[thr].cr = acomp_request_alloc(data[thr].cc); 1259 if (!data[thr].cr) { 1260 pr_err("Could not allocate comp request\n"); 1261 ret = -ENOMEM; 1262 goto out_clean; 1263 } 1264 1265 data[thr].thr = kthread_run(decompress_threadfn, 1266 &data[thr], 1267 "image_decompress/%u", thr); 1268 if (IS_ERR(data[thr].thr)) { 1269 data[thr].thr = NULL; 1270 pr_err("Cannot start decompression threads\n"); 1271 ret = -ENOMEM; 1272 goto out_clean; 1273 } 1274 } 1275 1276 /* 1277 * Start the CRC32 thread. 1278 */ 1279 init_waitqueue_head(&crc->go); 1280 init_waitqueue_head(&crc->done); 1281 1282 handle->crc32 = 0; 1283 crc->crc32 = &handle->crc32; 1284 for (thr = 0; thr < nr_threads; thr++) { 1285 crc->unc[thr] = data[thr].unc; 1286 crc->unc_len[thr] = &data[thr].unc_len; 1287 } 1288 1289 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1290 if (IS_ERR(crc->thr)) { 1291 crc->thr = NULL; 1292 pr_err("Cannot start CRC32 thread\n"); 1293 ret = -ENOMEM; 1294 goto out_clean; 1295 } 1296 1297 /* 1298 * Set the number of pages for read buffering. 1299 * This is complete guesswork, because we'll only know the real 1300 * picture once prepare_image() is called, which is much later on 1301 * during the image load phase. We'll assume the worst case and 1302 * say that none of the image pages are from high memory. 1303 */ 1304 if (low_free_pages() > snapshot_get_image_size()) 1305 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1306 read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES); 1307 1308 for (i = 0; i < read_pages; i++) { 1309 page[i] = (void *)__get_free_page(i < CMP_PAGES ? 1310 GFP_NOIO | __GFP_HIGH : 1311 GFP_NOIO | __GFP_NOWARN | 1312 __GFP_NORETRY); 1313 1314 if (!page[i]) { 1315 if (i < CMP_PAGES) { 1316 ring_size = i; 1317 pr_err("Failed to allocate %s pages\n", hib_comp_algo); 1318 ret = -ENOMEM; 1319 goto out_clean; 1320 } else { 1321 break; 1322 } 1323 } 1324 } 1325 want = ring_size = i; 1326 1327 pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo); 1328 pr_info("Loading and decompressing image data (%u pages)...\n", 1329 nr_to_read); 1330 m = nr_to_read / 10; 1331 if (!m) 1332 m = 1; 1333 nr_pages = 0; 1334 start = ktime_get(); 1335 1336 ret = snapshot_write_next(snapshot); 1337 if (ret <= 0) 1338 goto out_finish; 1339 1340 for(;;) { 1341 for (i = 0; !eof && i < want; i++) { 1342 ret = swap_read_page(handle, page[ring], &hb); 1343 if (ret) { 1344 /* 1345 * On real read error, finish. On end of data, 1346 * set EOF flag and just exit the read loop. 1347 */ 1348 if (handle->cur && 1349 handle->cur->entries[handle->k]) { 1350 goto out_finish; 1351 } else { 1352 eof = 1; 1353 break; 1354 } 1355 } 1356 if (++ring >= ring_size) 1357 ring = 0; 1358 } 1359 asked += i; 1360 want -= i; 1361 1362 /* 1363 * We are out of data, wait for some more. 1364 */ 1365 if (!have) { 1366 if (!asked) 1367 break; 1368 1369 ret = hib_wait_io(&hb); 1370 if (ret) 1371 goto out_finish; 1372 have += asked; 1373 asked = 0; 1374 if (eof) 1375 eof = 2; 1376 } 1377 1378 if (crc->run_threads) { 1379 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1380 atomic_set(&crc->stop, 0); 1381 crc->run_threads = 0; 1382 } 1383 1384 for (thr = 0; have && thr < nr_threads; thr++) { 1385 data[thr].cmp_len = *(size_t *)page[pg]; 1386 if (unlikely(!data[thr].cmp_len || 1387 data[thr].cmp_len > 1388 bytes_worst_compress(UNC_SIZE))) { 1389 pr_err("Invalid %s compressed length\n", hib_comp_algo); 1390 ret = -1; 1391 goto out_finish; 1392 } 1393 1394 need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER, 1395 PAGE_SIZE); 1396 if (need > have) { 1397 if (eof > 1) { 1398 ret = -1; 1399 goto out_finish; 1400 } 1401 break; 1402 } 1403 1404 for (off = 0; 1405 off < CMP_HEADER + data[thr].cmp_len; 1406 off += PAGE_SIZE) { 1407 memcpy(data[thr].cmp + off, 1408 page[pg], PAGE_SIZE); 1409 have--; 1410 want++; 1411 if (++pg >= ring_size) 1412 pg = 0; 1413 } 1414 1415 atomic_set_release(&data[thr].ready, 1); 1416 wake_up(&data[thr].go); 1417 } 1418 1419 /* 1420 * Wait for more data while we are decompressing. 1421 */ 1422 if (have < CMP_PAGES && asked) { 1423 ret = hib_wait_io(&hb); 1424 if (ret) 1425 goto out_finish; 1426 have += asked; 1427 asked = 0; 1428 if (eof) 1429 eof = 2; 1430 } 1431 1432 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1433 wait_event(data[thr].done, 1434 atomic_read_acquire(&data[thr].stop)); 1435 atomic_set(&data[thr].stop, 0); 1436 1437 ret = data[thr].ret; 1438 1439 if (ret < 0) { 1440 pr_err("%s decompression failed\n", hib_comp_algo); 1441 goto out_finish; 1442 } 1443 1444 if (unlikely(!data[thr].unc_len || 1445 data[thr].unc_len > UNC_SIZE || 1446 data[thr].unc_len & (PAGE_SIZE - 1))) { 1447 pr_err("Invalid %s uncompressed length\n", hib_comp_algo); 1448 ret = -1; 1449 goto out_finish; 1450 } 1451 1452 for (off = 0; 1453 off < data[thr].unc_len; off += PAGE_SIZE) { 1454 memcpy(data_of(*snapshot), 1455 data[thr].unc + off, PAGE_SIZE); 1456 1457 if (!(nr_pages % m)) 1458 pr_info("Image loading progress: %3d%%\n", 1459 nr_pages / m * 10); 1460 nr_pages++; 1461 1462 ret = snapshot_write_next(snapshot); 1463 if (ret <= 0) { 1464 crc->run_threads = thr + 1; 1465 atomic_set_release(&crc->ready, 1); 1466 wake_up(&crc->go); 1467 goto out_finish; 1468 } 1469 } 1470 } 1471 1472 crc->run_threads = thr; 1473 atomic_set_release(&crc->ready, 1); 1474 wake_up(&crc->go); 1475 } 1476 1477 out_finish: 1478 if (crc->run_threads) { 1479 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1480 atomic_set(&crc->stop, 0); 1481 } 1482 stop = ktime_get(); 1483 if (!ret) { 1484 pr_info("Image loading done\n"); 1485 ret = snapshot_write_finalize(snapshot); 1486 if (!ret && !snapshot_image_loaded(snapshot)) 1487 ret = -ENODATA; 1488 if (!ret) { 1489 if (swsusp_header->flags & SF_CRC32_MODE) { 1490 if(handle->crc32 != swsusp_header->crc32) { 1491 pr_err("Invalid image CRC32!\n"); 1492 ret = -ENODATA; 1493 } 1494 } 1495 } 1496 } 1497 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1498 out_clean: 1499 hib_finish_batch(&hb); 1500 for (i = 0; i < ring_size; i++) 1501 free_page((unsigned long)page[i]); 1502 free_crc_data(crc); 1503 if (data) { 1504 for (thr = 0; thr < nr_threads; thr++) { 1505 if (data[thr].thr) 1506 kthread_stop(data[thr].thr); 1507 1508 acomp_request_free(data[thr].cr); 1509 1510 if (!IS_ERR_OR_NULL(data[thr].cc)) 1511 crypto_free_acomp(data[thr].cc); 1512 } 1513 vfree(data); 1514 } 1515 vfree(page); 1516 1517 return ret; 1518 } 1519 1520 /** 1521 * swsusp_read - read the hibernation image. 1522 * @flags_p: flags passed by the "frozen" kernel in the image header should 1523 * be written into this memory location 1524 * 1525 * Return: 0 on success, negative error code on failure. 1526 */ 1527 int swsusp_read(unsigned int *flags_p) 1528 { 1529 int error; 1530 struct swap_map_handle handle; 1531 struct snapshot_handle snapshot; 1532 struct swsusp_info *header; 1533 1534 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1535 error = snapshot_write_next(&snapshot); 1536 if (error < (int)PAGE_SIZE) 1537 return error < 0 ? error : -EFAULT; 1538 header = (struct swsusp_info *)data_of(snapshot); 1539 error = get_swap_reader(&handle, flags_p); 1540 if (error) 1541 goto end; 1542 if (!error) 1543 error = swap_read_page(&handle, header, NULL); 1544 if (!error) { 1545 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1546 load_image(&handle, &snapshot, header->pages - 1) : 1547 load_compressed_image(&handle, &snapshot, header->pages - 1); 1548 } 1549 swap_reader_finish(&handle); 1550 end: 1551 if (!error) 1552 pr_debug("Image successfully loaded\n"); 1553 else 1554 pr_debug("Error %d resuming\n", error); 1555 return error; 1556 } 1557 1558 static void *swsusp_holder; 1559 1560 /** 1561 * swsusp_check - Open the resume device and check for the swsusp signature. 1562 * @exclusive: Open the resume device exclusively. 1563 * 1564 * Return: 0 if a valid image is found, negative error code otherwise. 1565 */ 1566 int swsusp_check(bool exclusive) 1567 { 1568 void *holder = exclusive ? &swsusp_holder : NULL; 1569 int error; 1570 1571 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device, 1572 BLK_OPEN_READ, holder, NULL); 1573 if (!IS_ERR(hib_resume_bdev_file)) { 1574 clear_page(swsusp_header); 1575 error = hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block, 1576 swsusp_header); 1577 if (error) 1578 goto put; 1579 1580 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1581 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1582 swsusp_header_flags = swsusp_header->flags; 1583 /* Reset swap signature now */ 1584 error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC, 1585 swsusp_resume_block, 1586 swsusp_header); 1587 } else { 1588 error = -EINVAL; 1589 } 1590 if (!error && swsusp_header->flags & SF_HW_SIG && 1591 swsusp_header->hw_sig != swsusp_hardware_signature) { 1592 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n", 1593 swsusp_header->hw_sig, swsusp_hardware_signature); 1594 error = -EINVAL; 1595 } 1596 1597 put: 1598 if (error) 1599 bdev_fput(hib_resume_bdev_file); 1600 else 1601 pr_debug("Image signature found, resuming\n"); 1602 } else { 1603 error = PTR_ERR(hib_resume_bdev_file); 1604 } 1605 1606 if (error) 1607 pr_debug("Image not found (code %d)\n", error); 1608 1609 return error; 1610 } 1611 1612 /** 1613 * swsusp_close - close resume device. 1614 */ 1615 void swsusp_close(void) 1616 { 1617 if (IS_ERR(hib_resume_bdev_file)) { 1618 pr_debug("Image device not initialised\n"); 1619 return; 1620 } 1621 1622 fput(hib_resume_bdev_file); 1623 } 1624 1625 /** 1626 * swsusp_unmark - Unmark swsusp signature in the resume device 1627 * 1628 * Return: 0 on success, negative error code on failure. 1629 */ 1630 #ifdef CONFIG_SUSPEND 1631 int swsusp_unmark(void) 1632 { 1633 int error; 1634 1635 hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block, swsusp_header); 1636 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1637 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1638 error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC, 1639 swsusp_resume_block, 1640 swsusp_header); 1641 } else { 1642 pr_err("Cannot find swsusp signature!\n"); 1643 error = -ENODEV; 1644 } 1645 1646 /* 1647 * We just returned from suspend, we don't need the image any more. 1648 */ 1649 free_all_swap_pages(root_swap); 1650 1651 return error; 1652 } 1653 #endif 1654 1655 static ssize_t hibernate_compression_threads_show(struct kobject *kobj, 1656 struct kobj_attribute *attr, char *buf) 1657 { 1658 return sysfs_emit(buf, "%d\n", hibernate_compression_threads); 1659 } 1660 1661 static ssize_t hibernate_compression_threads_store(struct kobject *kobj, 1662 struct kobj_attribute *attr, 1663 const char *buf, size_t n) 1664 { 1665 unsigned long val; 1666 1667 if (kstrtoul(buf, 0, &val)) 1668 return -EINVAL; 1669 1670 if (val < 1) 1671 return -EINVAL; 1672 1673 hibernate_compression_threads = val; 1674 return n; 1675 } 1676 power_attr(hibernate_compression_threads); 1677 1678 static struct attribute *g[] = { 1679 &hibernate_compression_threads_attr.attr, 1680 NULL, 1681 }; 1682 1683 static const struct attribute_group attr_group = { 1684 .attrs = g, 1685 }; 1686 1687 static int __init swsusp_header_init(void) 1688 { 1689 int error; 1690 1691 error = sysfs_create_group(power_kobj, &attr_group); 1692 if (error) 1693 return -ENOMEM; 1694 1695 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1696 if (!swsusp_header) 1697 panic("Could not allocate memory for swsusp_header\n"); 1698 return 0; 1699 } 1700 1701 core_initcall(swsusp_header_init); 1702 1703 static int __init hibernate_compression_threads_setup(char *str) 1704 { 1705 int rc = kstrtouint(str, 0, &hibernate_compression_threads); 1706 1707 if (rc) 1708 return rc; 1709 1710 if (hibernate_compression_threads < 1) 1711 hibernate_compression_threads = CMP_THREADS; 1712 1713 return 1; 1714 1715 } 1716 1717 __setup("hibernate_compression_threads=", hibernate_compression_threads_setup); 1718