1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52
53 #include <trace/events/ipi.h>
54
55 #include "capabilities.h"
56 #include "cpuid.h"
57 #include "hyperv.h"
58 #include "kvm_onhyperv.h"
59 #include "irq.h"
60 #include "kvm_cache_regs.h"
61 #include "lapic.h"
62 #include "mmu.h"
63 #include "nested.h"
64 #include "pmu.h"
65 #include "sgx.h"
66 #include "trace.h"
67 #include "vmcs.h"
68 #include "vmcs12.h"
69 #include "vmx.h"
70 #include "x86.h"
71 #include "x86_ops.h"
72 #include "smm.h"
73 #include "vmx_onhyperv.h"
74 #include "posted_intr.h"
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
78 MODULE_LICENSE("GPL");
79
80 #ifdef MODULE
81 static const struct x86_cpu_id vmx_cpu_id[] = {
82 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
83 {}
84 };
85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
86 #endif
87
88 bool __read_mostly enable_vpid = 1;
89 module_param_named(vpid, enable_vpid, bool, 0444);
90
91 static bool __read_mostly enable_vnmi = 1;
92 module_param_named(vnmi, enable_vnmi, bool, 0444);
93
94 bool __read_mostly flexpriority_enabled = 1;
95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
96
97 bool __read_mostly enable_ept = 1;
98 module_param_named(ept, enable_ept, bool, 0444);
99
100 bool __read_mostly enable_unrestricted_guest = 1;
101 module_param_named(unrestricted_guest,
102 enable_unrestricted_guest, bool, 0444);
103
104 bool __read_mostly enable_ept_ad_bits = 1;
105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
106
107 static bool __read_mostly emulate_invalid_guest_state = true;
108 module_param(emulate_invalid_guest_state, bool, 0444);
109
110 static bool __read_mostly fasteoi = 1;
111 module_param(fasteoi, bool, 0444);
112
113 module_param(enable_apicv, bool, 0444);
114
115 bool __read_mostly enable_ipiv = true;
116 module_param(enable_ipiv, bool, 0444);
117
118 /*
119 * If nested=1, nested virtualization is supported, i.e., guests may use
120 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
121 * use VMX instructions.
122 */
123 static bool __read_mostly nested = 1;
124 module_param(nested, bool, 0444);
125
126 bool __read_mostly enable_pml = 1;
127 module_param_named(pml, enable_pml, bool, 0444);
128
129 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
130 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
131
132 static bool __read_mostly dump_invalid_vmcs = 0;
133 module_param(dump_invalid_vmcs, bool, 0644);
134
135 #define MSR_BITMAP_MODE_X2APIC 1
136 #define MSR_BITMAP_MODE_X2APIC_APICV 2
137
138 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
139
140 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
141 static int __read_mostly cpu_preemption_timer_multi;
142 static bool __read_mostly enable_preemption_timer = 1;
143 #ifdef CONFIG_X86_64
144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
145 #endif
146
147 extern bool __read_mostly allow_smaller_maxphyaddr;
148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
149
150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
152 #define KVM_VM_CR0_ALWAYS_ON \
153 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
154
155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
158
159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
160
161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
162 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
163 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
164 RTIT_STATUS_BYTECNT))
165
166 /*
167 * List of MSRs that can be directly passed to the guest.
168 * In addition to these x2apic, PT and LBR MSRs are handled specially.
169 */
170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
171 MSR_IA32_SPEC_CTRL,
172 MSR_IA32_PRED_CMD,
173 MSR_IA32_FLUSH_CMD,
174 MSR_IA32_TSC,
175 #ifdef CONFIG_X86_64
176 MSR_FS_BASE,
177 MSR_GS_BASE,
178 MSR_KERNEL_GS_BASE,
179 MSR_IA32_XFD,
180 MSR_IA32_XFD_ERR,
181 #endif
182 MSR_IA32_SYSENTER_CS,
183 MSR_IA32_SYSENTER_ESP,
184 MSR_IA32_SYSENTER_EIP,
185 MSR_CORE_C1_RES,
186 MSR_CORE_C3_RESIDENCY,
187 MSR_CORE_C6_RESIDENCY,
188 MSR_CORE_C7_RESIDENCY,
189 };
190
191 /*
192 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
193 * ple_gap: upper bound on the amount of time between two successive
194 * executions of PAUSE in a loop. Also indicate if ple enabled.
195 * According to test, this time is usually smaller than 128 cycles.
196 * ple_window: upper bound on the amount of time a guest is allowed to execute
197 * in a PAUSE loop. Tests indicate that most spinlocks are held for
198 * less than 2^12 cycles
199 * Time is measured based on a counter that runs at the same rate as the TSC,
200 * refer SDM volume 3b section 21.6.13 & 22.1.3.
201 */
202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
203 module_param(ple_gap, uint, 0444);
204
205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
206 module_param(ple_window, uint, 0444);
207
208 /* Default doubles per-vcpu window every exit. */
209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
210 module_param(ple_window_grow, uint, 0444);
211
212 /* Default resets per-vcpu window every exit to ple_window. */
213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
214 module_param(ple_window_shrink, uint, 0444);
215
216 /* Default is to compute the maximum so we can never overflow. */
217 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
218 module_param(ple_window_max, uint, 0444);
219
220 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
221 int __read_mostly pt_mode = PT_MODE_SYSTEM;
222 #ifdef CONFIG_BROKEN
223 module_param(pt_mode, int, S_IRUGO);
224 #endif
225
226 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
227
228 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
229 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
230 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
231
232 /* Storage for pre module init parameter parsing */
233 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
234
235 static const struct {
236 const char *option;
237 bool for_parse;
238 } vmentry_l1d_param[] = {
239 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
240 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
241 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
242 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
243 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
244 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
245 };
246
247 #define L1D_CACHE_ORDER 4
248 static void *vmx_l1d_flush_pages;
249
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)250 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
251 {
252 struct page *page;
253 unsigned int i;
254
255 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
256 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
257 return 0;
258 }
259
260 if (!enable_ept) {
261 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
262 return 0;
263 }
264
265 if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
266 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
267 return 0;
268 }
269
270 /* If set to auto use the default l1tf mitigation method */
271 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
272 switch (l1tf_mitigation) {
273 case L1TF_MITIGATION_OFF:
274 l1tf = VMENTER_L1D_FLUSH_NEVER;
275 break;
276 case L1TF_MITIGATION_FLUSH_NOWARN:
277 case L1TF_MITIGATION_FLUSH:
278 case L1TF_MITIGATION_FLUSH_NOSMT:
279 l1tf = VMENTER_L1D_FLUSH_COND;
280 break;
281 case L1TF_MITIGATION_FULL:
282 case L1TF_MITIGATION_FULL_FORCE:
283 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 break;
285 }
286 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
287 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
288 }
289
290 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
291 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
292 /*
293 * This allocation for vmx_l1d_flush_pages is not tied to a VM
294 * lifetime and so should not be charged to a memcg.
295 */
296 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
297 if (!page)
298 return -ENOMEM;
299 vmx_l1d_flush_pages = page_address(page);
300
301 /*
302 * Initialize each page with a different pattern in
303 * order to protect against KSM in the nested
304 * virtualization case.
305 */
306 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
307 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
308 PAGE_SIZE);
309 }
310 }
311
312 l1tf_vmx_mitigation = l1tf;
313
314 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
315 static_branch_enable(&vmx_l1d_should_flush);
316 else
317 static_branch_disable(&vmx_l1d_should_flush);
318
319 if (l1tf == VMENTER_L1D_FLUSH_COND)
320 static_branch_enable(&vmx_l1d_flush_cond);
321 else
322 static_branch_disable(&vmx_l1d_flush_cond);
323 return 0;
324 }
325
vmentry_l1d_flush_parse(const char * s)326 static int vmentry_l1d_flush_parse(const char *s)
327 {
328 unsigned int i;
329
330 if (s) {
331 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
332 if (vmentry_l1d_param[i].for_parse &&
333 sysfs_streq(s, vmentry_l1d_param[i].option))
334 return i;
335 }
336 }
337 return -EINVAL;
338 }
339
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)340 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
341 {
342 int l1tf, ret;
343
344 l1tf = vmentry_l1d_flush_parse(s);
345 if (l1tf < 0)
346 return l1tf;
347
348 if (!boot_cpu_has(X86_BUG_L1TF))
349 return 0;
350
351 /*
352 * Has vmx_init() run already? If not then this is the pre init
353 * parameter parsing. In that case just store the value and let
354 * vmx_init() do the proper setup after enable_ept has been
355 * established.
356 */
357 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
358 vmentry_l1d_flush_param = l1tf;
359 return 0;
360 }
361
362 mutex_lock(&vmx_l1d_flush_mutex);
363 ret = vmx_setup_l1d_flush(l1tf);
364 mutex_unlock(&vmx_l1d_flush_mutex);
365 return ret;
366 }
367
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)368 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
369 {
370 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
371 return sysfs_emit(s, "???\n");
372
373 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
374 }
375
vmx_disable_fb_clear(struct vcpu_vmx * vmx)376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 u64 msr;
379
380 if (!vmx->disable_fb_clear)
381 return;
382
383 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 msr |= FB_CLEAR_DIS;
385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 /* Cache the MSR value to avoid reading it later */
387 vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389
vmx_enable_fb_clear(struct vcpu_vmx * vmx)390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 if (!vmx->disable_fb_clear)
393 return;
394
395 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 /*
402 * Disable VERW's behavior of clearing CPU buffers for the guest if the
403 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
404 * the mitigation. Disabling the clearing behavior provides a
405 * performance boost for guests that aren't aware that manually clearing
406 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
407 * and VM-Exit.
408 */
409 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
410 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
411 !boot_cpu_has_bug(X86_BUG_MDS) &&
412 !boot_cpu_has_bug(X86_BUG_TAA);
413
414 /*
415 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
416 * at VMEntry. Skip the MSR read/write when a guest has no use case to
417 * execute VERW.
418 */
419 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
420 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
421 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
422 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
423 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
424 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
425 vmx->disable_fb_clear = false;
426 }
427
428 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
429 .set = vmentry_l1d_flush_set,
430 .get = vmentry_l1d_flush_get,
431 };
432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
433
434 static u32 vmx_segment_access_rights(struct kvm_segment *var);
435
436 void vmx_vmexit(void);
437
438 #define vmx_insn_failed(fmt...) \
439 do { \
440 WARN_ONCE(1, fmt); \
441 pr_warn_ratelimited(fmt); \
442 } while (0)
443
vmread_error(unsigned long field)444 noinline void vmread_error(unsigned long field)
445 {
446 vmx_insn_failed("vmread failed: field=%lx\n", field);
447 }
448
449 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)450 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
451 {
452 if (fault) {
453 kvm_spurious_fault();
454 } else {
455 instrumentation_begin();
456 vmread_error(field);
457 instrumentation_end();
458 }
459 }
460 #endif
461
vmwrite_error(unsigned long field,unsigned long value)462 noinline void vmwrite_error(unsigned long field, unsigned long value)
463 {
464 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
465 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467
vmclear_error(struct vmcs * vmcs,u64 phys_addr)468 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
469 {
470 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
471 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
472 }
473
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)474 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
475 {
476 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
477 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
478 }
479
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)480 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
481 {
482 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
483 ext, vpid, gva);
484 }
485
invept_error(unsigned long ext,u64 eptp)486 noinline void invept_error(unsigned long ext, u64 eptp)
487 {
488 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
489 }
490
491 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
492 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
493 /*
494 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
495 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
496 */
497 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
498
499 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
500 static DEFINE_SPINLOCK(vmx_vpid_lock);
501
502 struct vmcs_config vmcs_config __ro_after_init;
503 struct vmx_capability vmx_capability __ro_after_init;
504
505 #define VMX_SEGMENT_FIELD(seg) \
506 [VCPU_SREG_##seg] = { \
507 .selector = GUEST_##seg##_SELECTOR, \
508 .base = GUEST_##seg##_BASE, \
509 .limit = GUEST_##seg##_LIMIT, \
510 .ar_bytes = GUEST_##seg##_AR_BYTES, \
511 }
512
513 static const struct kvm_vmx_segment_field {
514 unsigned selector;
515 unsigned base;
516 unsigned limit;
517 unsigned ar_bytes;
518 } kvm_vmx_segment_fields[] = {
519 VMX_SEGMENT_FIELD(CS),
520 VMX_SEGMENT_FIELD(DS),
521 VMX_SEGMENT_FIELD(ES),
522 VMX_SEGMENT_FIELD(FS),
523 VMX_SEGMENT_FIELD(GS),
524 VMX_SEGMENT_FIELD(SS),
525 VMX_SEGMENT_FIELD(TR),
526 VMX_SEGMENT_FIELD(LDTR),
527 };
528
529
530 static unsigned long host_idt_base;
531
532 #if IS_ENABLED(CONFIG_HYPERV)
533 static bool __read_mostly enlightened_vmcs = true;
534 module_param(enlightened_vmcs, bool, 0444);
535
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)536 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
537 {
538 struct hv_enlightened_vmcs *evmcs;
539 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
540
541 if (partition_assist_page == INVALID_PAGE)
542 return -ENOMEM;
543
544 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
545
546 evmcs->partition_assist_page = partition_assist_page;
547 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
548 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
549
550 return 0;
551 }
552
hv_init_evmcs(void)553 static __init void hv_init_evmcs(void)
554 {
555 int cpu;
556
557 if (!enlightened_vmcs)
558 return;
559
560 /*
561 * Enlightened VMCS usage should be recommended and the host needs
562 * to support eVMCS v1 or above.
563 */
564 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
565 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
566 KVM_EVMCS_VERSION) {
567
568 /* Check that we have assist pages on all online CPUs */
569 for_each_online_cpu(cpu) {
570 if (!hv_get_vp_assist_page(cpu)) {
571 enlightened_vmcs = false;
572 break;
573 }
574 }
575
576 if (enlightened_vmcs) {
577 pr_info("Using Hyper-V Enlightened VMCS\n");
578 static_branch_enable(&__kvm_is_using_evmcs);
579 }
580
581 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
582 vt_x86_ops.enable_l2_tlb_flush
583 = hv_enable_l2_tlb_flush;
584 } else {
585 enlightened_vmcs = false;
586 }
587 }
588
hv_reset_evmcs(void)589 static void hv_reset_evmcs(void)
590 {
591 struct hv_vp_assist_page *vp_ap;
592
593 if (!kvm_is_using_evmcs())
594 return;
595
596 /*
597 * KVM should enable eVMCS if and only if all CPUs have a VP assist
598 * page, and should reject CPU onlining if eVMCS is enabled the CPU
599 * doesn't have a VP assist page allocated.
600 */
601 vp_ap = hv_get_vp_assist_page(smp_processor_id());
602 if (WARN_ON_ONCE(!vp_ap))
603 return;
604
605 /*
606 * Reset everything to support using non-enlightened VMCS access later
607 * (e.g. when we reload the module with enlightened_vmcs=0)
608 */
609 vp_ap->nested_control.features.directhypercall = 0;
610 vp_ap->current_nested_vmcs = 0;
611 vp_ap->enlighten_vmentry = 0;
612 }
613
614 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)615 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)616 static void hv_reset_evmcs(void) {}
617 #endif /* IS_ENABLED(CONFIG_HYPERV) */
618
619 /*
620 * Comment's format: document - errata name - stepping - processor name.
621 * Refer from
622 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
623 */
624 static u32 vmx_preemption_cpu_tfms[] = {
625 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
626 0x000206E6,
627 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
628 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
629 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
630 0x00020652,
631 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
632 0x00020655,
633 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
634 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
635 /*
636 * 320767.pdf - AAP86 - B1 -
637 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
638 */
639 0x000106E5,
640 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
641 0x000106A0,
642 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
643 0x000106A1,
644 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
645 0x000106A4,
646 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
647 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
648 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
649 0x000106A5,
650 /* Xeon E3-1220 V2 */
651 0x000306A8,
652 };
653
cpu_has_broken_vmx_preemption_timer(void)654 static inline bool cpu_has_broken_vmx_preemption_timer(void)
655 {
656 u32 eax = cpuid_eax(0x00000001), i;
657
658 /* Clear the reserved bits */
659 eax &= ~(0x3U << 14 | 0xfU << 28);
660 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
661 if (eax == vmx_preemption_cpu_tfms[i])
662 return true;
663
664 return false;
665 }
666
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)667 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
668 {
669 return flexpriority_enabled && lapic_in_kernel(vcpu);
670 }
671
vmx_get_passthrough_msr_slot(u32 msr)672 static int vmx_get_passthrough_msr_slot(u32 msr)
673 {
674 int i;
675
676 switch (msr) {
677 case 0x800 ... 0x8ff:
678 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
679 return -ENOENT;
680 case MSR_IA32_RTIT_STATUS:
681 case MSR_IA32_RTIT_OUTPUT_BASE:
682 case MSR_IA32_RTIT_OUTPUT_MASK:
683 case MSR_IA32_RTIT_CR3_MATCH:
684 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
685 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
686 case MSR_LBR_SELECT:
687 case MSR_LBR_TOS:
688 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
689 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
690 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
691 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
692 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
693 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
694 return -ENOENT;
695 }
696
697 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
698 if (vmx_possible_passthrough_msrs[i] == msr)
699 return i;
700 }
701
702 WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
703 return -ENOENT;
704 }
705
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)706 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
707 {
708 int i;
709
710 i = kvm_find_user_return_msr(msr);
711 if (i >= 0)
712 return &vmx->guest_uret_msrs[i];
713 return NULL;
714 }
715
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)716 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
717 struct vmx_uret_msr *msr, u64 data)
718 {
719 unsigned int slot = msr - vmx->guest_uret_msrs;
720 int ret = 0;
721
722 if (msr->load_into_hardware) {
723 preempt_disable();
724 ret = kvm_set_user_return_msr(slot, data, msr->mask);
725 preempt_enable();
726 }
727 if (!ret)
728 msr->data = data;
729 return ret;
730 }
731
732 /*
733 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
734 *
735 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
736 * atomically track post-VMXON state, e.g. this may be called in NMI context.
737 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
738 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
739 * magically in RM, VM86, compat mode, or at CPL>0.
740 */
kvm_cpu_vmxoff(void)741 static int kvm_cpu_vmxoff(void)
742 {
743 asm goto("1: vmxoff\n\t"
744 _ASM_EXTABLE(1b, %l[fault])
745 ::: "cc", "memory" : fault);
746
747 cr4_clear_bits(X86_CR4_VMXE);
748 return 0;
749
750 fault:
751 cr4_clear_bits(X86_CR4_VMXE);
752 return -EIO;
753 }
754
vmx_emergency_disable_virtualization_cpu(void)755 void vmx_emergency_disable_virtualization_cpu(void)
756 {
757 int cpu = raw_smp_processor_id();
758 struct loaded_vmcs *v;
759
760 kvm_rebooting = true;
761
762 /*
763 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
764 * set in task context. If this races with VMX is disabled by an NMI,
765 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
766 * kvm_rebooting set.
767 */
768 if (!(__read_cr4() & X86_CR4_VMXE))
769 return;
770
771 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
772 loaded_vmcss_on_cpu_link)
773 vmcs_clear(v->vmcs);
774
775 kvm_cpu_vmxoff();
776 }
777
__loaded_vmcs_clear(void * arg)778 static void __loaded_vmcs_clear(void *arg)
779 {
780 struct loaded_vmcs *loaded_vmcs = arg;
781 int cpu = raw_smp_processor_id();
782
783 if (loaded_vmcs->cpu != cpu)
784 return; /* vcpu migration can race with cpu offline */
785 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
786 per_cpu(current_vmcs, cpu) = NULL;
787
788 vmcs_clear(loaded_vmcs->vmcs);
789 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
790 vmcs_clear(loaded_vmcs->shadow_vmcs);
791
792 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
793
794 /*
795 * Ensure all writes to loaded_vmcs, including deleting it from its
796 * current percpu list, complete before setting loaded_vmcs->cpu to
797 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
798 * and add loaded_vmcs to its percpu list before it's deleted from this
799 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
800 */
801 smp_wmb();
802
803 loaded_vmcs->cpu = -1;
804 loaded_vmcs->launched = 0;
805 }
806
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)807 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
808 {
809 int cpu = loaded_vmcs->cpu;
810
811 if (cpu != -1)
812 smp_call_function_single(cpu,
813 __loaded_vmcs_clear, loaded_vmcs, 1);
814 }
815
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)816 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
817 unsigned field)
818 {
819 bool ret;
820 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
821
822 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
823 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
824 vmx->segment_cache.bitmask = 0;
825 }
826 ret = vmx->segment_cache.bitmask & mask;
827 vmx->segment_cache.bitmask |= mask;
828 return ret;
829 }
830
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)831 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
832 {
833 u16 *p = &vmx->segment_cache.seg[seg].selector;
834
835 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
836 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
837 return *p;
838 }
839
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)840 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
841 {
842 ulong *p = &vmx->segment_cache.seg[seg].base;
843
844 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
845 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
846 return *p;
847 }
848
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)849 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
850 {
851 u32 *p = &vmx->segment_cache.seg[seg].limit;
852
853 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
854 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
855 return *p;
856 }
857
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)858 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
859 {
860 u32 *p = &vmx->segment_cache.seg[seg].ar;
861
862 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
863 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
864 return *p;
865 }
866
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)867 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
868 {
869 u32 eb;
870
871 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
872 (1u << DB_VECTOR) | (1u << AC_VECTOR);
873 /*
874 * #VE isn't used for VMX. To test against unexpected changes
875 * related to #VE for VMX, intercept unexpected #VE and warn on it.
876 */
877 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
878 eb |= 1u << VE_VECTOR;
879 /*
880 * Guest access to VMware backdoor ports could legitimately
881 * trigger #GP because of TSS I/O permission bitmap.
882 * We intercept those #GP and allow access to them anyway
883 * as VMware does.
884 */
885 if (enable_vmware_backdoor)
886 eb |= (1u << GP_VECTOR);
887 if ((vcpu->guest_debug &
888 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
889 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
890 eb |= 1u << BP_VECTOR;
891 if (to_vmx(vcpu)->rmode.vm86_active)
892 eb = ~0;
893 if (!vmx_need_pf_intercept(vcpu))
894 eb &= ~(1u << PF_VECTOR);
895
896 /* When we are running a nested L2 guest and L1 specified for it a
897 * certain exception bitmap, we must trap the same exceptions and pass
898 * them to L1. When running L2, we will only handle the exceptions
899 * specified above if L1 did not want them.
900 */
901 if (is_guest_mode(vcpu))
902 eb |= get_vmcs12(vcpu)->exception_bitmap;
903 else {
904 int mask = 0, match = 0;
905
906 if (enable_ept && (eb & (1u << PF_VECTOR))) {
907 /*
908 * If EPT is enabled, #PF is currently only intercepted
909 * if MAXPHYADDR is smaller on the guest than on the
910 * host. In that case we only care about present,
911 * non-reserved faults. For vmcs02, however, PFEC_MASK
912 * and PFEC_MATCH are set in prepare_vmcs02_rare.
913 */
914 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
915 match = PFERR_PRESENT_MASK;
916 }
917 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
918 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
919 }
920
921 /*
922 * Disabling xfd interception indicates that dynamic xfeatures
923 * might be used in the guest. Always trap #NM in this case
924 * to save guest xfd_err timely.
925 */
926 if (vcpu->arch.xfd_no_write_intercept)
927 eb |= (1u << NM_VECTOR);
928
929 vmcs_write32(EXCEPTION_BITMAP, eb);
930 }
931
932 /*
933 * Check if MSR is intercepted for currently loaded MSR bitmap.
934 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)935 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
936 {
937 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
938 return true;
939
940 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
941 }
942
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)943 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
944 {
945 unsigned int flags = 0;
946
947 if (vmx->loaded_vmcs->launched)
948 flags |= VMX_RUN_VMRESUME;
949
950 /*
951 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
952 * to change it directly without causing a vmexit. In that case read
953 * it after vmexit and store it in vmx->spec_ctrl.
954 */
955 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
956 flags |= VMX_RUN_SAVE_SPEC_CTRL;
957
958 return flags;
959 }
960
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)961 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
962 unsigned long entry, unsigned long exit)
963 {
964 vm_entry_controls_clearbit(vmx, entry);
965 vm_exit_controls_clearbit(vmx, exit);
966 }
967
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)968 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
969 {
970 unsigned int i;
971
972 for (i = 0; i < m->nr; ++i) {
973 if (m->val[i].index == msr)
974 return i;
975 }
976 return -ENOENT;
977 }
978
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)979 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
980 {
981 int i;
982 struct msr_autoload *m = &vmx->msr_autoload;
983
984 switch (msr) {
985 case MSR_EFER:
986 if (cpu_has_load_ia32_efer()) {
987 clear_atomic_switch_msr_special(vmx,
988 VM_ENTRY_LOAD_IA32_EFER,
989 VM_EXIT_LOAD_IA32_EFER);
990 return;
991 }
992 break;
993 case MSR_CORE_PERF_GLOBAL_CTRL:
994 if (cpu_has_load_perf_global_ctrl()) {
995 clear_atomic_switch_msr_special(vmx,
996 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
997 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
998 return;
999 }
1000 break;
1001 }
1002 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1003 if (i < 0)
1004 goto skip_guest;
1005 --m->guest.nr;
1006 m->guest.val[i] = m->guest.val[m->guest.nr];
1007 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1008
1009 skip_guest:
1010 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1011 if (i < 0)
1012 return;
1013
1014 --m->host.nr;
1015 m->host.val[i] = m->host.val[m->host.nr];
1016 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1017 }
1018
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1019 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1020 unsigned long entry, unsigned long exit,
1021 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1022 u64 guest_val, u64 host_val)
1023 {
1024 vmcs_write64(guest_val_vmcs, guest_val);
1025 if (host_val_vmcs != HOST_IA32_EFER)
1026 vmcs_write64(host_val_vmcs, host_val);
1027 vm_entry_controls_setbit(vmx, entry);
1028 vm_exit_controls_setbit(vmx, exit);
1029 }
1030
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1031 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1032 u64 guest_val, u64 host_val, bool entry_only)
1033 {
1034 int i, j = 0;
1035 struct msr_autoload *m = &vmx->msr_autoload;
1036
1037 switch (msr) {
1038 case MSR_EFER:
1039 if (cpu_has_load_ia32_efer()) {
1040 add_atomic_switch_msr_special(vmx,
1041 VM_ENTRY_LOAD_IA32_EFER,
1042 VM_EXIT_LOAD_IA32_EFER,
1043 GUEST_IA32_EFER,
1044 HOST_IA32_EFER,
1045 guest_val, host_val);
1046 return;
1047 }
1048 break;
1049 case MSR_CORE_PERF_GLOBAL_CTRL:
1050 if (cpu_has_load_perf_global_ctrl()) {
1051 add_atomic_switch_msr_special(vmx,
1052 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1053 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1054 GUEST_IA32_PERF_GLOBAL_CTRL,
1055 HOST_IA32_PERF_GLOBAL_CTRL,
1056 guest_val, host_val);
1057 return;
1058 }
1059 break;
1060 case MSR_IA32_PEBS_ENABLE:
1061 /* PEBS needs a quiescent period after being disabled (to write
1062 * a record). Disabling PEBS through VMX MSR swapping doesn't
1063 * provide that period, so a CPU could write host's record into
1064 * guest's memory.
1065 */
1066 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1067 }
1068
1069 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1070 if (!entry_only)
1071 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1072
1073 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1074 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1075 printk_once(KERN_WARNING "Not enough msr switch entries. "
1076 "Can't add msr %x\n", msr);
1077 return;
1078 }
1079 if (i < 0) {
1080 i = m->guest.nr++;
1081 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1082 }
1083 m->guest.val[i].index = msr;
1084 m->guest.val[i].value = guest_val;
1085
1086 if (entry_only)
1087 return;
1088
1089 if (j < 0) {
1090 j = m->host.nr++;
1091 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1092 }
1093 m->host.val[j].index = msr;
1094 m->host.val[j].value = host_val;
1095 }
1096
update_transition_efer(struct vcpu_vmx * vmx)1097 static bool update_transition_efer(struct vcpu_vmx *vmx)
1098 {
1099 u64 guest_efer = vmx->vcpu.arch.efer;
1100 u64 ignore_bits = 0;
1101 int i;
1102
1103 /* Shadow paging assumes NX to be available. */
1104 if (!enable_ept)
1105 guest_efer |= EFER_NX;
1106
1107 /*
1108 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1109 */
1110 ignore_bits |= EFER_SCE;
1111 #ifdef CONFIG_X86_64
1112 ignore_bits |= EFER_LMA | EFER_LME;
1113 /* SCE is meaningful only in long mode on Intel */
1114 if (guest_efer & EFER_LMA)
1115 ignore_bits &= ~(u64)EFER_SCE;
1116 #endif
1117
1118 /*
1119 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1120 * On CPUs that support "load IA32_EFER", always switch EFER
1121 * atomically, since it's faster than switching it manually.
1122 */
1123 if (cpu_has_load_ia32_efer() ||
1124 (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1125 if (!(guest_efer & EFER_LMA))
1126 guest_efer &= ~EFER_LME;
1127 if (guest_efer != kvm_host.efer)
1128 add_atomic_switch_msr(vmx, MSR_EFER,
1129 guest_efer, kvm_host.efer, false);
1130 else
1131 clear_atomic_switch_msr(vmx, MSR_EFER);
1132 return false;
1133 }
1134
1135 i = kvm_find_user_return_msr(MSR_EFER);
1136 if (i < 0)
1137 return false;
1138
1139 clear_atomic_switch_msr(vmx, MSR_EFER);
1140
1141 guest_efer &= ~ignore_bits;
1142 guest_efer |= kvm_host.efer & ignore_bits;
1143
1144 vmx->guest_uret_msrs[i].data = guest_efer;
1145 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1146
1147 return true;
1148 }
1149
1150 #ifdef CONFIG_X86_32
1151 /*
1152 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1153 * VMCS rather than the segment table. KVM uses this helper to figure
1154 * out the current bases to poke them into the VMCS before entry.
1155 */
segment_base(u16 selector)1156 static unsigned long segment_base(u16 selector)
1157 {
1158 struct desc_struct *table;
1159 unsigned long v;
1160
1161 if (!(selector & ~SEGMENT_RPL_MASK))
1162 return 0;
1163
1164 table = get_current_gdt_ro();
1165
1166 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1167 u16 ldt_selector = kvm_read_ldt();
1168
1169 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1170 return 0;
1171
1172 table = (struct desc_struct *)segment_base(ldt_selector);
1173 }
1174 v = get_desc_base(&table[selector >> 3]);
1175 return v;
1176 }
1177 #endif
1178
pt_can_write_msr(struct vcpu_vmx * vmx)1179 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1180 {
1181 return vmx_pt_mode_is_host_guest() &&
1182 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1183 }
1184
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1185 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1186 {
1187 /* The base must be 128-byte aligned and a legal physical address. */
1188 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1189 }
1190
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1191 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1192 {
1193 u32 i;
1194
1195 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1196 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1197 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1198 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1199 for (i = 0; i < addr_range; i++) {
1200 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1201 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1202 }
1203 }
1204
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1205 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1206 {
1207 u32 i;
1208
1209 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1210 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1211 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1212 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1213 for (i = 0; i < addr_range; i++) {
1214 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1215 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1216 }
1217 }
1218
pt_guest_enter(struct vcpu_vmx * vmx)1219 static void pt_guest_enter(struct vcpu_vmx *vmx)
1220 {
1221 if (vmx_pt_mode_is_system())
1222 return;
1223
1224 /*
1225 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1226 * Save host state before VM entry.
1227 */
1228 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1229 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1230 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1231 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1232 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1233 }
1234 }
1235
pt_guest_exit(struct vcpu_vmx * vmx)1236 static void pt_guest_exit(struct vcpu_vmx *vmx)
1237 {
1238 if (vmx_pt_mode_is_system())
1239 return;
1240
1241 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1242 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1243 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1244 }
1245
1246 /*
1247 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1248 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1249 */
1250 if (vmx->pt_desc.host.ctl)
1251 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1252 }
1253
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1254 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1255 unsigned long fs_base, unsigned long gs_base)
1256 {
1257 if (unlikely(fs_sel != host->fs_sel)) {
1258 if (!(fs_sel & 7))
1259 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1260 else
1261 vmcs_write16(HOST_FS_SELECTOR, 0);
1262 host->fs_sel = fs_sel;
1263 }
1264 if (unlikely(gs_sel != host->gs_sel)) {
1265 if (!(gs_sel & 7))
1266 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1267 else
1268 vmcs_write16(HOST_GS_SELECTOR, 0);
1269 host->gs_sel = gs_sel;
1270 }
1271 if (unlikely(fs_base != host->fs_base)) {
1272 vmcs_writel(HOST_FS_BASE, fs_base);
1273 host->fs_base = fs_base;
1274 }
1275 if (unlikely(gs_base != host->gs_base)) {
1276 vmcs_writel(HOST_GS_BASE, gs_base);
1277 host->gs_base = gs_base;
1278 }
1279 }
1280
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1281 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1282 {
1283 struct vcpu_vmx *vmx = to_vmx(vcpu);
1284 struct vmcs_host_state *host_state;
1285 #ifdef CONFIG_X86_64
1286 int cpu = raw_smp_processor_id();
1287 #endif
1288 unsigned long fs_base, gs_base;
1289 u16 fs_sel, gs_sel;
1290 int i;
1291
1292 /*
1293 * Note that guest MSRs to be saved/restored can also be changed
1294 * when guest state is loaded. This happens when guest transitions
1295 * to/from long-mode by setting MSR_EFER.LMA.
1296 */
1297 if (!vmx->guest_uret_msrs_loaded) {
1298 vmx->guest_uret_msrs_loaded = true;
1299 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1300 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1301 continue;
1302
1303 kvm_set_user_return_msr(i,
1304 vmx->guest_uret_msrs[i].data,
1305 vmx->guest_uret_msrs[i].mask);
1306 }
1307 }
1308
1309 if (vmx->nested.need_vmcs12_to_shadow_sync)
1310 nested_sync_vmcs12_to_shadow(vcpu);
1311
1312 if (vmx->guest_state_loaded)
1313 return;
1314
1315 host_state = &vmx->loaded_vmcs->host_state;
1316
1317 /*
1318 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1319 * allow segment selectors with cpl > 0 or ti == 1.
1320 */
1321 host_state->ldt_sel = kvm_read_ldt();
1322
1323 #ifdef CONFIG_X86_64
1324 savesegment(ds, host_state->ds_sel);
1325 savesegment(es, host_state->es_sel);
1326
1327 gs_base = cpu_kernelmode_gs_base(cpu);
1328 if (likely(is_64bit_mm(current->mm))) {
1329 current_save_fsgs();
1330 fs_sel = current->thread.fsindex;
1331 gs_sel = current->thread.gsindex;
1332 fs_base = current->thread.fsbase;
1333 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1334 } else {
1335 savesegment(fs, fs_sel);
1336 savesegment(gs, gs_sel);
1337 fs_base = read_msr(MSR_FS_BASE);
1338 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1339 }
1340
1341 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1342 #else
1343 savesegment(fs, fs_sel);
1344 savesegment(gs, gs_sel);
1345 fs_base = segment_base(fs_sel);
1346 gs_base = segment_base(gs_sel);
1347 #endif
1348
1349 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1350 vmx->guest_state_loaded = true;
1351 }
1352
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1353 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1354 {
1355 struct vmcs_host_state *host_state;
1356
1357 if (!vmx->guest_state_loaded)
1358 return;
1359
1360 host_state = &vmx->loaded_vmcs->host_state;
1361
1362 ++vmx->vcpu.stat.host_state_reload;
1363
1364 #ifdef CONFIG_X86_64
1365 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1366 #endif
1367 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1368 kvm_load_ldt(host_state->ldt_sel);
1369 #ifdef CONFIG_X86_64
1370 load_gs_index(host_state->gs_sel);
1371 #else
1372 loadsegment(gs, host_state->gs_sel);
1373 #endif
1374 }
1375 if (host_state->fs_sel & 7)
1376 loadsegment(fs, host_state->fs_sel);
1377 #ifdef CONFIG_X86_64
1378 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1379 loadsegment(ds, host_state->ds_sel);
1380 loadsegment(es, host_state->es_sel);
1381 }
1382 #endif
1383 invalidate_tss_limit();
1384 #ifdef CONFIG_X86_64
1385 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1386 #endif
1387 load_fixmap_gdt(raw_smp_processor_id());
1388 vmx->guest_state_loaded = false;
1389 vmx->guest_uret_msrs_loaded = false;
1390 }
1391
1392 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1393 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1394 {
1395 preempt_disable();
1396 if (vmx->guest_state_loaded)
1397 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1398 preempt_enable();
1399 return vmx->msr_guest_kernel_gs_base;
1400 }
1401
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1402 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1403 {
1404 preempt_disable();
1405 if (vmx->guest_state_loaded)
1406 wrmsrl(MSR_KERNEL_GS_BASE, data);
1407 preempt_enable();
1408 vmx->msr_guest_kernel_gs_base = data;
1409 }
1410 #endif
1411
grow_ple_window(struct kvm_vcpu * vcpu)1412 static void grow_ple_window(struct kvm_vcpu *vcpu)
1413 {
1414 struct vcpu_vmx *vmx = to_vmx(vcpu);
1415 unsigned int old = vmx->ple_window;
1416
1417 vmx->ple_window = __grow_ple_window(old, ple_window,
1418 ple_window_grow,
1419 ple_window_max);
1420
1421 if (vmx->ple_window != old) {
1422 vmx->ple_window_dirty = true;
1423 trace_kvm_ple_window_update(vcpu->vcpu_id,
1424 vmx->ple_window, old);
1425 }
1426 }
1427
shrink_ple_window(struct kvm_vcpu * vcpu)1428 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1429 {
1430 struct vcpu_vmx *vmx = to_vmx(vcpu);
1431 unsigned int old = vmx->ple_window;
1432
1433 vmx->ple_window = __shrink_ple_window(old, ple_window,
1434 ple_window_shrink,
1435 ple_window);
1436
1437 if (vmx->ple_window != old) {
1438 vmx->ple_window_dirty = true;
1439 trace_kvm_ple_window_update(vcpu->vcpu_id,
1440 vmx->ple_window, old);
1441 }
1442 }
1443
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1444 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1445 struct loaded_vmcs *buddy)
1446 {
1447 struct vcpu_vmx *vmx = to_vmx(vcpu);
1448 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1449 struct vmcs *prev;
1450
1451 if (!already_loaded) {
1452 loaded_vmcs_clear(vmx->loaded_vmcs);
1453 local_irq_disable();
1454
1455 /*
1456 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1457 * this cpu's percpu list, otherwise it may not yet be deleted
1458 * from its previous cpu's percpu list. Pairs with the
1459 * smb_wmb() in __loaded_vmcs_clear().
1460 */
1461 smp_rmb();
1462
1463 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1464 &per_cpu(loaded_vmcss_on_cpu, cpu));
1465 local_irq_enable();
1466 }
1467
1468 prev = per_cpu(current_vmcs, cpu);
1469 if (prev != vmx->loaded_vmcs->vmcs) {
1470 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1471 vmcs_load(vmx->loaded_vmcs->vmcs);
1472
1473 /*
1474 * No indirect branch prediction barrier needed when switching
1475 * the active VMCS within a vCPU, unless IBRS is advertised to
1476 * the vCPU. To minimize the number of IBPBs executed, KVM
1477 * performs IBPB on nested VM-Exit (a single nested transition
1478 * may switch the active VMCS multiple times).
1479 */
1480 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1481 indirect_branch_prediction_barrier();
1482 }
1483
1484 if (!already_loaded) {
1485 void *gdt = get_current_gdt_ro();
1486
1487 /*
1488 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1489 * TLB entries from its previous association with the vCPU.
1490 */
1491 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1492
1493 /*
1494 * Linux uses per-cpu TSS and GDT, so set these when switching
1495 * processors. See 22.2.4.
1496 */
1497 vmcs_writel(HOST_TR_BASE,
1498 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1499 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1500
1501 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1502 /* 22.2.3 */
1503 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1504 (unsigned long)(cpu_entry_stack(cpu) + 1));
1505 }
1506
1507 vmx->loaded_vmcs->cpu = cpu;
1508 }
1509 }
1510
1511 /*
1512 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1513 * vcpu mutex is already taken.
1514 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1515 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1516 {
1517 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1518 shrink_ple_window(vcpu);
1519
1520 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1521
1522 vmx_vcpu_pi_load(vcpu, cpu);
1523 }
1524
vmx_vcpu_put(struct kvm_vcpu * vcpu)1525 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1526 {
1527 vmx_vcpu_pi_put(vcpu);
1528
1529 vmx_prepare_switch_to_host(to_vmx(vcpu));
1530 }
1531
vmx_emulation_required(struct kvm_vcpu * vcpu)1532 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1533 {
1534 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1535 }
1536
vmx_get_rflags(struct kvm_vcpu * vcpu)1537 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1538 {
1539 struct vcpu_vmx *vmx = to_vmx(vcpu);
1540 unsigned long rflags, save_rflags;
1541
1542 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1543 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1544 rflags = vmcs_readl(GUEST_RFLAGS);
1545 if (vmx->rmode.vm86_active) {
1546 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1547 save_rflags = vmx->rmode.save_rflags;
1548 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1549 }
1550 vmx->rflags = rflags;
1551 }
1552 return vmx->rflags;
1553 }
1554
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1555 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1556 {
1557 struct vcpu_vmx *vmx = to_vmx(vcpu);
1558 unsigned long old_rflags;
1559
1560 /*
1561 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1562 * is an unrestricted guest in order to mark L2 as needing emulation
1563 * if L1 runs L2 as a restricted guest.
1564 */
1565 if (is_unrestricted_guest(vcpu)) {
1566 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1567 vmx->rflags = rflags;
1568 vmcs_writel(GUEST_RFLAGS, rflags);
1569 return;
1570 }
1571
1572 old_rflags = vmx_get_rflags(vcpu);
1573 vmx->rflags = rflags;
1574 if (vmx->rmode.vm86_active) {
1575 vmx->rmode.save_rflags = rflags;
1576 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1577 }
1578 vmcs_writel(GUEST_RFLAGS, rflags);
1579
1580 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1581 vmx->emulation_required = vmx_emulation_required(vcpu);
1582 }
1583
vmx_get_if_flag(struct kvm_vcpu * vcpu)1584 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1585 {
1586 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1587 }
1588
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1589 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1590 {
1591 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1592 int ret = 0;
1593
1594 if (interruptibility & GUEST_INTR_STATE_STI)
1595 ret |= KVM_X86_SHADOW_INT_STI;
1596 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1597 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1598
1599 return ret;
1600 }
1601
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1602 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1603 {
1604 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1605 u32 interruptibility = interruptibility_old;
1606
1607 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1608
1609 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1610 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1611 else if (mask & KVM_X86_SHADOW_INT_STI)
1612 interruptibility |= GUEST_INTR_STATE_STI;
1613
1614 if ((interruptibility != interruptibility_old))
1615 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1616 }
1617
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1618 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1619 {
1620 struct vcpu_vmx *vmx = to_vmx(vcpu);
1621 unsigned long value;
1622
1623 /*
1624 * Any MSR write that attempts to change bits marked reserved will
1625 * case a #GP fault.
1626 */
1627 if (data & vmx->pt_desc.ctl_bitmask)
1628 return 1;
1629
1630 /*
1631 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1632 * result in a #GP unless the same write also clears TraceEn.
1633 */
1634 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1635 (data & RTIT_CTL_TRACEEN) &&
1636 data != vmx->pt_desc.guest.ctl)
1637 return 1;
1638
1639 /*
1640 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1641 * and FabricEn would cause #GP, if
1642 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1643 */
1644 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1645 !(data & RTIT_CTL_FABRIC_EN) &&
1646 !intel_pt_validate_cap(vmx->pt_desc.caps,
1647 PT_CAP_single_range_output))
1648 return 1;
1649
1650 /*
1651 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1652 * utilize encodings marked reserved will cause a #GP fault.
1653 */
1654 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1655 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1656 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1657 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1658 return 1;
1659 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1660 PT_CAP_cycle_thresholds);
1661 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1662 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1663 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1664 return 1;
1665 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1666 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1667 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1668 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1669 return 1;
1670
1671 /*
1672 * If ADDRx_CFG is reserved or the encodings is >2 will
1673 * cause a #GP fault.
1674 */
1675 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1676 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1677 return 1;
1678 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1679 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1680 return 1;
1681 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1682 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1683 return 1;
1684 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1685 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1686 return 1;
1687
1688 return 0;
1689 }
1690
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1691 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1692 void *insn, int insn_len)
1693 {
1694 /*
1695 * Emulation of instructions in SGX enclaves is impossible as RIP does
1696 * not point at the failing instruction, and even if it did, the code
1697 * stream is inaccessible. Inject #UD instead of exiting to userspace
1698 * so that guest userspace can't DoS the guest simply by triggering
1699 * emulation (enclaves are CPL3 only).
1700 */
1701 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1702 kvm_queue_exception(vcpu, UD_VECTOR);
1703 return X86EMUL_PROPAGATE_FAULT;
1704 }
1705
1706 /* Check that emulation is possible during event vectoring */
1707 if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1708 !kvm_can_emulate_event_vectoring(emul_type))
1709 return X86EMUL_UNHANDLEABLE_VECTORING;
1710
1711 return X86EMUL_CONTINUE;
1712 }
1713
skip_emulated_instruction(struct kvm_vcpu * vcpu)1714 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1715 {
1716 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1717 unsigned long rip, orig_rip;
1718 u32 instr_len;
1719
1720 /*
1721 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1722 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1723 * set when EPT misconfig occurs. In practice, real hardware updates
1724 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1725 * (namely Hyper-V) don't set it due to it being undefined behavior,
1726 * i.e. we end up advancing IP with some random value.
1727 */
1728 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1729 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1730 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1731
1732 /*
1733 * Emulating an enclave's instructions isn't supported as KVM
1734 * cannot access the enclave's memory or its true RIP, e.g. the
1735 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1736 * the RIP that actually triggered the VM-Exit. But, because
1737 * most instructions that cause VM-Exit will #UD in an enclave,
1738 * most instruction-based VM-Exits simply do not occur.
1739 *
1740 * There are a few exceptions, notably the debug instructions
1741 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1742 * and generate #DB/#BP as expected, which KVM might intercept.
1743 * But again, the CPU does the dirty work and saves an instr
1744 * length of zero so VMMs don't shoot themselves in the foot.
1745 * WARN if KVM tries to skip a non-zero length instruction on
1746 * a VM-Exit from an enclave.
1747 */
1748 if (!instr_len)
1749 goto rip_updated;
1750
1751 WARN_ONCE(exit_reason.enclave_mode,
1752 "skipping instruction after SGX enclave VM-Exit");
1753
1754 orig_rip = kvm_rip_read(vcpu);
1755 rip = orig_rip + instr_len;
1756 #ifdef CONFIG_X86_64
1757 /*
1758 * We need to mask out the high 32 bits of RIP if not in 64-bit
1759 * mode, but just finding out that we are in 64-bit mode is
1760 * quite expensive. Only do it if there was a carry.
1761 */
1762 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1763 rip = (u32)rip;
1764 #endif
1765 kvm_rip_write(vcpu, rip);
1766 } else {
1767 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1768 return 0;
1769 }
1770
1771 rip_updated:
1772 /* skipping an emulated instruction also counts */
1773 vmx_set_interrupt_shadow(vcpu, 0);
1774
1775 return 1;
1776 }
1777
1778 /*
1779 * Recognizes a pending MTF VM-exit and records the nested state for later
1780 * delivery.
1781 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1782 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1783 {
1784 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1785 struct vcpu_vmx *vmx = to_vmx(vcpu);
1786
1787 if (!is_guest_mode(vcpu))
1788 return;
1789
1790 /*
1791 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1792 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1793 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1794 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1795 * as ICEBP is higher priority than both. As instruction emulation is
1796 * completed at this point (i.e. KVM is at the instruction boundary),
1797 * any #DB exception pending delivery must be a debug-trap of lower
1798 * priority than MTF. Record the pending MTF state to be delivered in
1799 * vmx_check_nested_events().
1800 */
1801 if (nested_cpu_has_mtf(vmcs12) &&
1802 (!vcpu->arch.exception.pending ||
1803 vcpu->arch.exception.vector == DB_VECTOR) &&
1804 (!vcpu->arch.exception_vmexit.pending ||
1805 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1806 vmx->nested.mtf_pending = true;
1807 kvm_make_request(KVM_REQ_EVENT, vcpu);
1808 } else {
1809 vmx->nested.mtf_pending = false;
1810 }
1811 }
1812
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1813 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1814 {
1815 vmx_update_emulated_instruction(vcpu);
1816 return skip_emulated_instruction(vcpu);
1817 }
1818
vmx_clear_hlt(struct kvm_vcpu * vcpu)1819 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1820 {
1821 /*
1822 * Ensure that we clear the HLT state in the VMCS. We don't need to
1823 * explicitly skip the instruction because if the HLT state is set,
1824 * then the instruction is already executing and RIP has already been
1825 * advanced.
1826 */
1827 if (kvm_hlt_in_guest(vcpu->kvm) &&
1828 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1829 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1830 }
1831
vmx_inject_exception(struct kvm_vcpu * vcpu)1832 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1833 {
1834 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1835 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1836 struct vcpu_vmx *vmx = to_vmx(vcpu);
1837
1838 kvm_deliver_exception_payload(vcpu, ex);
1839
1840 if (ex->has_error_code) {
1841 /*
1842 * Despite the error code being architecturally defined as 32
1843 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1844 * VMX don't actually supporting setting bits 31:16. Hardware
1845 * will (should) never provide a bogus error code, but AMD CPUs
1846 * do generate error codes with bits 31:16 set, and so KVM's
1847 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1848 * the upper bits to avoid VM-Fail, losing information that
1849 * doesn't really exist is preferable to killing the VM.
1850 */
1851 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1852 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1853 }
1854
1855 if (vmx->rmode.vm86_active) {
1856 int inc_eip = 0;
1857 if (kvm_exception_is_soft(ex->vector))
1858 inc_eip = vcpu->arch.event_exit_inst_len;
1859 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1860 return;
1861 }
1862
1863 WARN_ON_ONCE(vmx->emulation_required);
1864
1865 if (kvm_exception_is_soft(ex->vector)) {
1866 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1867 vmx->vcpu.arch.event_exit_inst_len);
1868 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1869 } else
1870 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1871
1872 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1873
1874 vmx_clear_hlt(vcpu);
1875 }
1876
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1877 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1878 bool load_into_hardware)
1879 {
1880 struct vmx_uret_msr *uret_msr;
1881
1882 uret_msr = vmx_find_uret_msr(vmx, msr);
1883 if (!uret_msr)
1884 return;
1885
1886 uret_msr->load_into_hardware = load_into_hardware;
1887 }
1888
1889 /*
1890 * Configuring user return MSRs to automatically save, load, and restore MSRs
1891 * that need to be shoved into hardware when running the guest. Note, omitting
1892 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1893 * loaded into hardware when running the guest.
1894 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1895 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1896 {
1897 #ifdef CONFIG_X86_64
1898 bool load_syscall_msrs;
1899
1900 /*
1901 * The SYSCALL MSRs are only needed on long mode guests, and only
1902 * when EFER.SCE is set.
1903 */
1904 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1905 (vmx->vcpu.arch.efer & EFER_SCE);
1906
1907 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1908 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1909 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1910 #endif
1911 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1912
1913 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1914 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1915 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1916
1917 /*
1918 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1919 * kernel and old userspace. If those guests run on a tsx=off host, do
1920 * allow guests to use TSX_CTRL, but don't change the value in hardware
1921 * so that TSX remains always disabled.
1922 */
1923 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1924
1925 /*
1926 * The set of MSRs to load may have changed, reload MSRs before the
1927 * next VM-Enter.
1928 */
1929 vmx->guest_uret_msrs_loaded = false;
1930 }
1931
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1932 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1933 {
1934 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1935
1936 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1937 return vmcs12->tsc_offset;
1938
1939 return 0;
1940 }
1941
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1942 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1943 {
1944 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1945
1946 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1947 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1948 return vmcs12->tsc_multiplier;
1949
1950 return kvm_caps.default_tsc_scaling_ratio;
1951 }
1952
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1953 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1954 {
1955 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1956 }
1957
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1958 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1959 {
1960 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1961 }
1962
1963 /*
1964 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1965 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1966 * backwards compatibility even though KVM doesn't support emulating SMX. And
1967 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1968 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1969 */
1970 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1971 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1972 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1973 FEAT_CTL_SGX_LC_ENABLED | \
1974 FEAT_CTL_SGX_ENABLED | \
1975 FEAT_CTL_LMCE_ENABLED)
1976
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1977 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1978 struct msr_data *msr)
1979 {
1980 uint64_t valid_bits;
1981
1982 /*
1983 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1984 * exposed to the guest.
1985 */
1986 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1987 ~KVM_SUPPORTED_FEATURE_CONTROL);
1988
1989 if (!msr->host_initiated &&
1990 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1991 return false;
1992
1993 if (msr->host_initiated)
1994 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1995 else
1996 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1997
1998 return !(msr->data & ~valid_bits);
1999 }
2000
vmx_get_feature_msr(u32 msr,u64 * data)2001 int vmx_get_feature_msr(u32 msr, u64 *data)
2002 {
2003 switch (msr) {
2004 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2005 if (!nested)
2006 return 1;
2007 return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2008 default:
2009 return KVM_MSR_RET_UNSUPPORTED;
2010 }
2011 }
2012
2013 /*
2014 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2015 * Returns 0 on success, non-0 otherwise.
2016 * Assumes vcpu_load() was already called.
2017 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2018 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2019 {
2020 struct vcpu_vmx *vmx = to_vmx(vcpu);
2021 struct vmx_uret_msr *msr;
2022 u32 index;
2023
2024 switch (msr_info->index) {
2025 #ifdef CONFIG_X86_64
2026 case MSR_FS_BASE:
2027 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2028 break;
2029 case MSR_GS_BASE:
2030 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2031 break;
2032 case MSR_KERNEL_GS_BASE:
2033 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2034 break;
2035 #endif
2036 case MSR_EFER:
2037 return kvm_get_msr_common(vcpu, msr_info);
2038 case MSR_IA32_TSX_CTRL:
2039 if (!msr_info->host_initiated &&
2040 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2041 return 1;
2042 goto find_uret_msr;
2043 case MSR_IA32_UMWAIT_CONTROL:
2044 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2045 return 1;
2046
2047 msr_info->data = vmx->msr_ia32_umwait_control;
2048 break;
2049 case MSR_IA32_SPEC_CTRL:
2050 if (!msr_info->host_initiated &&
2051 !guest_has_spec_ctrl_msr(vcpu))
2052 return 1;
2053
2054 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2055 break;
2056 case MSR_IA32_SYSENTER_CS:
2057 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2058 break;
2059 case MSR_IA32_SYSENTER_EIP:
2060 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2061 break;
2062 case MSR_IA32_SYSENTER_ESP:
2063 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2064 break;
2065 case MSR_IA32_BNDCFGS:
2066 if (!kvm_mpx_supported() ||
2067 (!msr_info->host_initiated &&
2068 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2069 return 1;
2070 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2071 break;
2072 case MSR_IA32_MCG_EXT_CTL:
2073 if (!msr_info->host_initiated &&
2074 !(vmx->msr_ia32_feature_control &
2075 FEAT_CTL_LMCE_ENABLED))
2076 return 1;
2077 msr_info->data = vcpu->arch.mcg_ext_ctl;
2078 break;
2079 case MSR_IA32_FEAT_CTL:
2080 msr_info->data = vmx->msr_ia32_feature_control;
2081 break;
2082 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2083 if (!msr_info->host_initiated &&
2084 !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2085 return 1;
2086 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2087 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2088 break;
2089 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2090 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2091 return 1;
2092 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2093 &msr_info->data))
2094 return 1;
2095 #ifdef CONFIG_KVM_HYPERV
2096 /*
2097 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2098 * instead of just ignoring the features, different Hyper-V
2099 * versions are either trying to use them and fail or do some
2100 * sanity checking and refuse to boot. Filter all unsupported
2101 * features out.
2102 */
2103 if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2104 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2105 &msr_info->data);
2106 #endif
2107 break;
2108 case MSR_IA32_RTIT_CTL:
2109 if (!vmx_pt_mode_is_host_guest())
2110 return 1;
2111 msr_info->data = vmx->pt_desc.guest.ctl;
2112 break;
2113 case MSR_IA32_RTIT_STATUS:
2114 if (!vmx_pt_mode_is_host_guest())
2115 return 1;
2116 msr_info->data = vmx->pt_desc.guest.status;
2117 break;
2118 case MSR_IA32_RTIT_CR3_MATCH:
2119 if (!vmx_pt_mode_is_host_guest() ||
2120 !intel_pt_validate_cap(vmx->pt_desc.caps,
2121 PT_CAP_cr3_filtering))
2122 return 1;
2123 msr_info->data = vmx->pt_desc.guest.cr3_match;
2124 break;
2125 case MSR_IA32_RTIT_OUTPUT_BASE:
2126 if (!vmx_pt_mode_is_host_guest() ||
2127 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2128 PT_CAP_topa_output) &&
2129 !intel_pt_validate_cap(vmx->pt_desc.caps,
2130 PT_CAP_single_range_output)))
2131 return 1;
2132 msr_info->data = vmx->pt_desc.guest.output_base;
2133 break;
2134 case MSR_IA32_RTIT_OUTPUT_MASK:
2135 if (!vmx_pt_mode_is_host_guest() ||
2136 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2137 PT_CAP_topa_output) &&
2138 !intel_pt_validate_cap(vmx->pt_desc.caps,
2139 PT_CAP_single_range_output)))
2140 return 1;
2141 msr_info->data = vmx->pt_desc.guest.output_mask;
2142 break;
2143 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2144 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2145 if (!vmx_pt_mode_is_host_guest() ||
2146 (index >= 2 * vmx->pt_desc.num_address_ranges))
2147 return 1;
2148 if (index % 2)
2149 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2150 else
2151 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2152 break;
2153 case MSR_IA32_DEBUGCTLMSR:
2154 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2155 break;
2156 default:
2157 find_uret_msr:
2158 msr = vmx_find_uret_msr(vmx, msr_info->index);
2159 if (msr) {
2160 msr_info->data = msr->data;
2161 break;
2162 }
2163 return kvm_get_msr_common(vcpu, msr_info);
2164 }
2165
2166 return 0;
2167 }
2168
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2169 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2170 u64 data)
2171 {
2172 #ifdef CONFIG_X86_64
2173 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2174 return (u32)data;
2175 #endif
2176 return (unsigned long)data;
2177 }
2178
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2179 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2180 {
2181 u64 debugctl = 0;
2182
2183 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2184 (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2185 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2186
2187 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2188 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2189 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2190
2191 return debugctl;
2192 }
2193
2194 /*
2195 * Writes msr value into the appropriate "register".
2196 * Returns 0 on success, non-0 otherwise.
2197 * Assumes vcpu_load() was already called.
2198 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2199 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2200 {
2201 struct vcpu_vmx *vmx = to_vmx(vcpu);
2202 struct vmx_uret_msr *msr;
2203 int ret = 0;
2204 u32 msr_index = msr_info->index;
2205 u64 data = msr_info->data;
2206 u32 index;
2207
2208 switch (msr_index) {
2209 case MSR_EFER:
2210 ret = kvm_set_msr_common(vcpu, msr_info);
2211 break;
2212 #ifdef CONFIG_X86_64
2213 case MSR_FS_BASE:
2214 vmx_segment_cache_clear(vmx);
2215 vmcs_writel(GUEST_FS_BASE, data);
2216 break;
2217 case MSR_GS_BASE:
2218 vmx_segment_cache_clear(vmx);
2219 vmcs_writel(GUEST_GS_BASE, data);
2220 break;
2221 case MSR_KERNEL_GS_BASE:
2222 vmx_write_guest_kernel_gs_base(vmx, data);
2223 break;
2224 case MSR_IA32_XFD:
2225 ret = kvm_set_msr_common(vcpu, msr_info);
2226 /*
2227 * Always intercepting WRMSR could incur non-negligible
2228 * overhead given xfd might be changed frequently in
2229 * guest context switch. Disable write interception
2230 * upon the first write with a non-zero value (indicating
2231 * potential usage on dynamic xfeatures). Also update
2232 * exception bitmap to trap #NM for proper virtualization
2233 * of guest xfd_err.
2234 */
2235 if (!ret && data) {
2236 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2237 MSR_TYPE_RW);
2238 vcpu->arch.xfd_no_write_intercept = true;
2239 vmx_update_exception_bitmap(vcpu);
2240 }
2241 break;
2242 #endif
2243 case MSR_IA32_SYSENTER_CS:
2244 if (is_guest_mode(vcpu))
2245 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2246 vmcs_write32(GUEST_SYSENTER_CS, data);
2247 break;
2248 case MSR_IA32_SYSENTER_EIP:
2249 if (is_guest_mode(vcpu)) {
2250 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2251 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2252 }
2253 vmcs_writel(GUEST_SYSENTER_EIP, data);
2254 break;
2255 case MSR_IA32_SYSENTER_ESP:
2256 if (is_guest_mode(vcpu)) {
2257 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2258 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2259 }
2260 vmcs_writel(GUEST_SYSENTER_ESP, data);
2261 break;
2262 case MSR_IA32_DEBUGCTLMSR: {
2263 u64 invalid;
2264
2265 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2266 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2267 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2268 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2269 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2270 }
2271
2272 if (invalid)
2273 return 1;
2274
2275 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2276 VM_EXIT_SAVE_DEBUG_CONTROLS)
2277 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2278
2279 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2280 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2281 (data & DEBUGCTLMSR_LBR))
2282 intel_pmu_create_guest_lbr_event(vcpu);
2283 return 0;
2284 }
2285 case MSR_IA32_BNDCFGS:
2286 if (!kvm_mpx_supported() ||
2287 (!msr_info->host_initiated &&
2288 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2289 return 1;
2290 if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2291 (data & MSR_IA32_BNDCFGS_RSVD))
2292 return 1;
2293
2294 if (is_guest_mode(vcpu) &&
2295 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2296 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2297 get_vmcs12(vcpu)->guest_bndcfgs = data;
2298
2299 vmcs_write64(GUEST_BNDCFGS, data);
2300 break;
2301 case MSR_IA32_UMWAIT_CONTROL:
2302 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2303 return 1;
2304
2305 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2306 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2307 return 1;
2308
2309 vmx->msr_ia32_umwait_control = data;
2310 break;
2311 case MSR_IA32_SPEC_CTRL:
2312 if (!msr_info->host_initiated &&
2313 !guest_has_spec_ctrl_msr(vcpu))
2314 return 1;
2315
2316 if (kvm_spec_ctrl_test_value(data))
2317 return 1;
2318
2319 vmx->spec_ctrl = data;
2320 if (!data)
2321 break;
2322
2323 /*
2324 * For non-nested:
2325 * When it's written (to non-zero) for the first time, pass
2326 * it through.
2327 *
2328 * For nested:
2329 * The handling of the MSR bitmap for L2 guests is done in
2330 * nested_vmx_prepare_msr_bitmap. We should not touch the
2331 * vmcs02.msr_bitmap here since it gets completely overwritten
2332 * in the merging. We update the vmcs01 here for L1 as well
2333 * since it will end up touching the MSR anyway now.
2334 */
2335 vmx_disable_intercept_for_msr(vcpu,
2336 MSR_IA32_SPEC_CTRL,
2337 MSR_TYPE_RW);
2338 break;
2339 case MSR_IA32_TSX_CTRL:
2340 if (!msr_info->host_initiated &&
2341 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2342 return 1;
2343 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2344 return 1;
2345 goto find_uret_msr;
2346 case MSR_IA32_CR_PAT:
2347 ret = kvm_set_msr_common(vcpu, msr_info);
2348 if (ret)
2349 break;
2350
2351 if (is_guest_mode(vcpu) &&
2352 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2353 get_vmcs12(vcpu)->guest_ia32_pat = data;
2354
2355 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2356 vmcs_write64(GUEST_IA32_PAT, data);
2357 break;
2358 case MSR_IA32_MCG_EXT_CTL:
2359 if ((!msr_info->host_initiated &&
2360 !(to_vmx(vcpu)->msr_ia32_feature_control &
2361 FEAT_CTL_LMCE_ENABLED)) ||
2362 (data & ~MCG_EXT_CTL_LMCE_EN))
2363 return 1;
2364 vcpu->arch.mcg_ext_ctl = data;
2365 break;
2366 case MSR_IA32_FEAT_CTL:
2367 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2368 return 1;
2369
2370 vmx->msr_ia32_feature_control = data;
2371 if (msr_info->host_initiated && data == 0)
2372 vmx_leave_nested(vcpu);
2373
2374 /* SGX may be enabled/disabled by guest's firmware */
2375 vmx_write_encls_bitmap(vcpu, NULL);
2376 break;
2377 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2378 /*
2379 * On real hardware, the LE hash MSRs are writable before
2380 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2381 * at which point SGX related bits in IA32_FEATURE_CONTROL
2382 * become writable.
2383 *
2384 * KVM does not emulate SGX activation for simplicity, so
2385 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2386 * is unlocked. This is technically not architectural
2387 * behavior, but it's close enough.
2388 */
2389 if (!msr_info->host_initiated &&
2390 (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2391 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2392 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2393 return 1;
2394 vmx->msr_ia32_sgxlepubkeyhash
2395 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2396 break;
2397 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2398 if (!msr_info->host_initiated)
2399 return 1; /* they are read-only */
2400 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2401 return 1;
2402 return vmx_set_vmx_msr(vcpu, msr_index, data);
2403 case MSR_IA32_RTIT_CTL:
2404 if (!vmx_pt_mode_is_host_guest() ||
2405 vmx_rtit_ctl_check(vcpu, data) ||
2406 vmx->nested.vmxon)
2407 return 1;
2408 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2409 vmx->pt_desc.guest.ctl = data;
2410 pt_update_intercept_for_msr(vcpu);
2411 break;
2412 case MSR_IA32_RTIT_STATUS:
2413 if (!pt_can_write_msr(vmx))
2414 return 1;
2415 if (data & MSR_IA32_RTIT_STATUS_MASK)
2416 return 1;
2417 vmx->pt_desc.guest.status = data;
2418 break;
2419 case MSR_IA32_RTIT_CR3_MATCH:
2420 if (!pt_can_write_msr(vmx))
2421 return 1;
2422 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2423 PT_CAP_cr3_filtering))
2424 return 1;
2425 vmx->pt_desc.guest.cr3_match = data;
2426 break;
2427 case MSR_IA32_RTIT_OUTPUT_BASE:
2428 if (!pt_can_write_msr(vmx))
2429 return 1;
2430 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2431 PT_CAP_topa_output) &&
2432 !intel_pt_validate_cap(vmx->pt_desc.caps,
2433 PT_CAP_single_range_output))
2434 return 1;
2435 if (!pt_output_base_valid(vcpu, data))
2436 return 1;
2437 vmx->pt_desc.guest.output_base = data;
2438 break;
2439 case MSR_IA32_RTIT_OUTPUT_MASK:
2440 if (!pt_can_write_msr(vmx))
2441 return 1;
2442 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2443 PT_CAP_topa_output) &&
2444 !intel_pt_validate_cap(vmx->pt_desc.caps,
2445 PT_CAP_single_range_output))
2446 return 1;
2447 vmx->pt_desc.guest.output_mask = data;
2448 break;
2449 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2450 if (!pt_can_write_msr(vmx))
2451 return 1;
2452 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2453 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2454 return 1;
2455 if (is_noncanonical_msr_address(data, vcpu))
2456 return 1;
2457 if (index % 2)
2458 vmx->pt_desc.guest.addr_b[index / 2] = data;
2459 else
2460 vmx->pt_desc.guest.addr_a[index / 2] = data;
2461 break;
2462 case MSR_IA32_PERF_CAPABILITIES:
2463 if (data & PMU_CAP_LBR_FMT) {
2464 if ((data & PMU_CAP_LBR_FMT) !=
2465 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2466 return 1;
2467 if (!cpuid_model_is_consistent(vcpu))
2468 return 1;
2469 }
2470 if (data & PERF_CAP_PEBS_FORMAT) {
2471 if ((data & PERF_CAP_PEBS_MASK) !=
2472 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2473 return 1;
2474 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2475 return 1;
2476 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2477 return 1;
2478 if (!cpuid_model_is_consistent(vcpu))
2479 return 1;
2480 }
2481 ret = kvm_set_msr_common(vcpu, msr_info);
2482 break;
2483
2484 default:
2485 find_uret_msr:
2486 msr = vmx_find_uret_msr(vmx, msr_index);
2487 if (msr)
2488 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2489 else
2490 ret = kvm_set_msr_common(vcpu, msr_info);
2491 }
2492
2493 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2494 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2495 vmx_update_fb_clear_dis(vcpu, vmx);
2496
2497 return ret;
2498 }
2499
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2500 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2501 {
2502 unsigned long guest_owned_bits;
2503
2504 kvm_register_mark_available(vcpu, reg);
2505
2506 switch (reg) {
2507 case VCPU_REGS_RSP:
2508 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2509 break;
2510 case VCPU_REGS_RIP:
2511 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2512 break;
2513 case VCPU_EXREG_PDPTR:
2514 if (enable_ept)
2515 ept_save_pdptrs(vcpu);
2516 break;
2517 case VCPU_EXREG_CR0:
2518 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2519
2520 vcpu->arch.cr0 &= ~guest_owned_bits;
2521 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2522 break;
2523 case VCPU_EXREG_CR3:
2524 /*
2525 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2526 * CR3 is loaded into hardware, not the guest's CR3.
2527 */
2528 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2529 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2530 break;
2531 case VCPU_EXREG_CR4:
2532 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2533
2534 vcpu->arch.cr4 &= ~guest_owned_bits;
2535 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2536 break;
2537 default:
2538 KVM_BUG_ON(1, vcpu->kvm);
2539 break;
2540 }
2541 }
2542
2543 /*
2544 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2545 * directly instead of going through cpu_has(), to ensure KVM is trapping
2546 * ENCLS whenever it's supported in hardware. It does not matter whether
2547 * the host OS supports or has enabled SGX.
2548 */
cpu_has_sgx(void)2549 static bool cpu_has_sgx(void)
2550 {
2551 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2552 }
2553
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2554 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2555 {
2556 u32 vmx_msr_low, vmx_msr_high;
2557 u32 ctl = ctl_min | ctl_opt;
2558
2559 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2560
2561 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2562 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2563
2564 /* Ensure minimum (required) set of control bits are supported. */
2565 if (ctl_min & ~ctl)
2566 return -EIO;
2567
2568 *result = ctl;
2569 return 0;
2570 }
2571
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2572 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2573 {
2574 u64 allowed;
2575
2576 rdmsrl(msr, allowed);
2577
2578 return ctl_opt & allowed;
2579 }
2580
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2581 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2582 struct vmx_capability *vmx_cap)
2583 {
2584 u32 _pin_based_exec_control = 0;
2585 u32 _cpu_based_exec_control = 0;
2586 u32 _cpu_based_2nd_exec_control = 0;
2587 u64 _cpu_based_3rd_exec_control = 0;
2588 u32 _vmexit_control = 0;
2589 u32 _vmentry_control = 0;
2590 u64 basic_msr;
2591 u64 misc_msr;
2592 int i;
2593
2594 /*
2595 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2596 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2597 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2598 */
2599 struct {
2600 u32 entry_control;
2601 u32 exit_control;
2602 } const vmcs_entry_exit_pairs[] = {
2603 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2604 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2605 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2606 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2607 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2608 };
2609
2610 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2611
2612 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2613 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2614 MSR_IA32_VMX_PROCBASED_CTLS,
2615 &_cpu_based_exec_control))
2616 return -EIO;
2617 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2618 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2619 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2620 MSR_IA32_VMX_PROCBASED_CTLS2,
2621 &_cpu_based_2nd_exec_control))
2622 return -EIO;
2623 }
2624 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2625 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2626
2627 #ifndef CONFIG_X86_64
2628 if (!(_cpu_based_2nd_exec_control &
2629 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2630 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2631 #endif
2632
2633 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2634 _cpu_based_2nd_exec_control &= ~(
2635 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2636 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2637 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2638
2639 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2640 &vmx_cap->ept, &vmx_cap->vpid);
2641
2642 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2643 vmx_cap->ept) {
2644 pr_warn_once("EPT CAP should not exist if not support "
2645 "1-setting enable EPT VM-execution control\n");
2646
2647 if (error_on_inconsistent_vmcs_config)
2648 return -EIO;
2649
2650 vmx_cap->ept = 0;
2651 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2652 }
2653 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2654 vmx_cap->vpid) {
2655 pr_warn_once("VPID CAP should not exist if not support "
2656 "1-setting enable VPID VM-execution control\n");
2657
2658 if (error_on_inconsistent_vmcs_config)
2659 return -EIO;
2660
2661 vmx_cap->vpid = 0;
2662 }
2663
2664 if (!cpu_has_sgx())
2665 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2666
2667 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2668 _cpu_based_3rd_exec_control =
2669 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2670 MSR_IA32_VMX_PROCBASED_CTLS3);
2671
2672 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2673 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2674 MSR_IA32_VMX_EXIT_CTLS,
2675 &_vmexit_control))
2676 return -EIO;
2677
2678 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2679 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2680 MSR_IA32_VMX_PINBASED_CTLS,
2681 &_pin_based_exec_control))
2682 return -EIO;
2683
2684 if (cpu_has_broken_vmx_preemption_timer())
2685 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2686 if (!(_cpu_based_2nd_exec_control &
2687 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2688 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2689
2690 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2691 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2692 MSR_IA32_VMX_ENTRY_CTLS,
2693 &_vmentry_control))
2694 return -EIO;
2695
2696 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2697 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2698 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2699
2700 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2701 continue;
2702
2703 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2704 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2705
2706 if (error_on_inconsistent_vmcs_config)
2707 return -EIO;
2708
2709 _vmentry_control &= ~n_ctrl;
2710 _vmexit_control &= ~x_ctrl;
2711 }
2712
2713 /*
2714 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2715 * can't be used due to an errata where VM Exit may incorrectly clear
2716 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2717 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2718 */
2719 switch (boot_cpu_data.x86_vfm) {
2720 case INTEL_NEHALEM_EP: /* AAK155 */
2721 case INTEL_NEHALEM: /* AAP115 */
2722 case INTEL_WESTMERE: /* AAT100 */
2723 case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */
2724 case INTEL_NEHALEM_EX: /* BA97 */
2725 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2726 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2727 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2728 "does not work properly. Using workaround\n");
2729 break;
2730 default:
2731 break;
2732 }
2733
2734 rdmsrl(MSR_IA32_VMX_BASIC, basic_msr);
2735
2736 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2737 if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2738 return -EIO;
2739
2740 #ifdef CONFIG_X86_64
2741 /*
2742 * KVM expects to be able to shove all legal physical addresses into
2743 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2744 * 0 for processors that support Intel 64 architecture".
2745 */
2746 if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2747 return -EIO;
2748 #endif
2749
2750 /* Require Write-Back (WB) memory type for VMCS accesses. */
2751 if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2752 return -EIO;
2753
2754 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2755
2756 vmcs_conf->basic = basic_msr;
2757 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2758 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2759 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2760 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2761 vmcs_conf->vmexit_ctrl = _vmexit_control;
2762 vmcs_conf->vmentry_ctrl = _vmentry_control;
2763 vmcs_conf->misc = misc_msr;
2764
2765 #if IS_ENABLED(CONFIG_HYPERV)
2766 if (enlightened_vmcs)
2767 evmcs_sanitize_exec_ctrls(vmcs_conf);
2768 #endif
2769
2770 return 0;
2771 }
2772
__kvm_is_vmx_supported(void)2773 static bool __kvm_is_vmx_supported(void)
2774 {
2775 int cpu = smp_processor_id();
2776
2777 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2778 pr_err("VMX not supported by CPU %d\n", cpu);
2779 return false;
2780 }
2781
2782 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2783 !this_cpu_has(X86_FEATURE_VMX)) {
2784 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2785 return false;
2786 }
2787
2788 return true;
2789 }
2790
kvm_is_vmx_supported(void)2791 static bool kvm_is_vmx_supported(void)
2792 {
2793 bool supported;
2794
2795 migrate_disable();
2796 supported = __kvm_is_vmx_supported();
2797 migrate_enable();
2798
2799 return supported;
2800 }
2801
vmx_check_processor_compat(void)2802 int vmx_check_processor_compat(void)
2803 {
2804 int cpu = raw_smp_processor_id();
2805 struct vmcs_config vmcs_conf;
2806 struct vmx_capability vmx_cap;
2807
2808 if (!__kvm_is_vmx_supported())
2809 return -EIO;
2810
2811 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2812 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2813 return -EIO;
2814 }
2815 if (nested)
2816 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2817 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2818 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2819 return -EIO;
2820 }
2821 return 0;
2822 }
2823
kvm_cpu_vmxon(u64 vmxon_pointer)2824 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2825 {
2826 u64 msr;
2827
2828 cr4_set_bits(X86_CR4_VMXE);
2829
2830 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2831 _ASM_EXTABLE(1b, %l[fault])
2832 : : [vmxon_pointer] "m"(vmxon_pointer)
2833 : : fault);
2834 return 0;
2835
2836 fault:
2837 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2838 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2839 cr4_clear_bits(X86_CR4_VMXE);
2840
2841 return -EFAULT;
2842 }
2843
vmx_enable_virtualization_cpu(void)2844 int vmx_enable_virtualization_cpu(void)
2845 {
2846 int cpu = raw_smp_processor_id();
2847 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2848 int r;
2849
2850 if (cr4_read_shadow() & X86_CR4_VMXE)
2851 return -EBUSY;
2852
2853 /*
2854 * This can happen if we hot-added a CPU but failed to allocate
2855 * VP assist page for it.
2856 */
2857 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2858 return -EFAULT;
2859
2860 intel_pt_handle_vmx(1);
2861
2862 r = kvm_cpu_vmxon(phys_addr);
2863 if (r) {
2864 intel_pt_handle_vmx(0);
2865 return r;
2866 }
2867
2868 return 0;
2869 }
2870
vmclear_local_loaded_vmcss(void)2871 static void vmclear_local_loaded_vmcss(void)
2872 {
2873 int cpu = raw_smp_processor_id();
2874 struct loaded_vmcs *v, *n;
2875
2876 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2877 loaded_vmcss_on_cpu_link)
2878 __loaded_vmcs_clear(v);
2879 }
2880
vmx_disable_virtualization_cpu(void)2881 void vmx_disable_virtualization_cpu(void)
2882 {
2883 vmclear_local_loaded_vmcss();
2884
2885 if (kvm_cpu_vmxoff())
2886 kvm_spurious_fault();
2887
2888 hv_reset_evmcs();
2889
2890 intel_pt_handle_vmx(0);
2891 }
2892
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2893 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2894 {
2895 int node = cpu_to_node(cpu);
2896 struct page *pages;
2897 struct vmcs *vmcs;
2898
2899 pages = __alloc_pages_node(node, flags, 0);
2900 if (!pages)
2901 return NULL;
2902 vmcs = page_address(pages);
2903 memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2904
2905 /* KVM supports Enlightened VMCS v1 only */
2906 if (kvm_is_using_evmcs())
2907 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2908 else
2909 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2910
2911 if (shadow)
2912 vmcs->hdr.shadow_vmcs = 1;
2913 return vmcs;
2914 }
2915
free_vmcs(struct vmcs * vmcs)2916 void free_vmcs(struct vmcs *vmcs)
2917 {
2918 free_page((unsigned long)vmcs);
2919 }
2920
2921 /*
2922 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2923 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2924 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2925 {
2926 if (!loaded_vmcs->vmcs)
2927 return;
2928 loaded_vmcs_clear(loaded_vmcs);
2929 free_vmcs(loaded_vmcs->vmcs);
2930 loaded_vmcs->vmcs = NULL;
2931 if (loaded_vmcs->msr_bitmap)
2932 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2933 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2934 }
2935
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2936 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2937 {
2938 loaded_vmcs->vmcs = alloc_vmcs(false);
2939 if (!loaded_vmcs->vmcs)
2940 return -ENOMEM;
2941
2942 vmcs_clear(loaded_vmcs->vmcs);
2943
2944 loaded_vmcs->shadow_vmcs = NULL;
2945 loaded_vmcs->hv_timer_soft_disabled = false;
2946 loaded_vmcs->cpu = -1;
2947 loaded_vmcs->launched = 0;
2948
2949 if (cpu_has_vmx_msr_bitmap()) {
2950 loaded_vmcs->msr_bitmap = (unsigned long *)
2951 __get_free_page(GFP_KERNEL_ACCOUNT);
2952 if (!loaded_vmcs->msr_bitmap)
2953 goto out_vmcs;
2954 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2955 }
2956
2957 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2958 memset(&loaded_vmcs->controls_shadow, 0,
2959 sizeof(struct vmcs_controls_shadow));
2960
2961 return 0;
2962
2963 out_vmcs:
2964 free_loaded_vmcs(loaded_vmcs);
2965 return -ENOMEM;
2966 }
2967
free_kvm_area(void)2968 static void free_kvm_area(void)
2969 {
2970 int cpu;
2971
2972 for_each_possible_cpu(cpu) {
2973 free_vmcs(per_cpu(vmxarea, cpu));
2974 per_cpu(vmxarea, cpu) = NULL;
2975 }
2976 }
2977
alloc_kvm_area(void)2978 static __init int alloc_kvm_area(void)
2979 {
2980 int cpu;
2981
2982 for_each_possible_cpu(cpu) {
2983 struct vmcs *vmcs;
2984
2985 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2986 if (!vmcs) {
2987 free_kvm_area();
2988 return -ENOMEM;
2989 }
2990
2991 /*
2992 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2993 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2994 * revision_id reported by MSR_IA32_VMX_BASIC.
2995 *
2996 * However, even though not explicitly documented by
2997 * TLFS, VMXArea passed as VMXON argument should
2998 * still be marked with revision_id reported by
2999 * physical CPU.
3000 */
3001 if (kvm_is_using_evmcs())
3002 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3003
3004 per_cpu(vmxarea, cpu) = vmcs;
3005 }
3006 return 0;
3007 }
3008
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3009 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3010 struct kvm_segment *save)
3011 {
3012 if (!emulate_invalid_guest_state) {
3013 /*
3014 * CS and SS RPL should be equal during guest entry according
3015 * to VMX spec, but in reality it is not always so. Since vcpu
3016 * is in the middle of the transition from real mode to
3017 * protected mode it is safe to assume that RPL 0 is a good
3018 * default value.
3019 */
3020 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3021 save->selector &= ~SEGMENT_RPL_MASK;
3022 save->dpl = save->selector & SEGMENT_RPL_MASK;
3023 save->s = 1;
3024 }
3025 __vmx_set_segment(vcpu, save, seg);
3026 }
3027
enter_pmode(struct kvm_vcpu * vcpu)3028 static void enter_pmode(struct kvm_vcpu *vcpu)
3029 {
3030 unsigned long flags;
3031 struct vcpu_vmx *vmx = to_vmx(vcpu);
3032
3033 /*
3034 * Update real mode segment cache. It may be not up-to-date if segment
3035 * register was written while vcpu was in a guest mode.
3036 */
3037 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3038 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3039 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3040 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3041 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3042 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3043
3044 vmx->rmode.vm86_active = 0;
3045
3046 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3047
3048 flags = vmcs_readl(GUEST_RFLAGS);
3049 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3050 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3051 vmcs_writel(GUEST_RFLAGS, flags);
3052
3053 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3054 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3055
3056 vmx_update_exception_bitmap(vcpu);
3057
3058 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3059 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3060 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3061 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3062 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3063 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3064 }
3065
fix_rmode_seg(int seg,struct kvm_segment * save)3066 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3067 {
3068 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3069 struct kvm_segment var = *save;
3070
3071 var.dpl = 0x3;
3072 if (seg == VCPU_SREG_CS)
3073 var.type = 0x3;
3074
3075 if (!emulate_invalid_guest_state) {
3076 var.selector = var.base >> 4;
3077 var.base = var.base & 0xffff0;
3078 var.limit = 0xffff;
3079 var.g = 0;
3080 var.db = 0;
3081 var.present = 1;
3082 var.s = 1;
3083 var.l = 0;
3084 var.unusable = 0;
3085 var.type = 0x3;
3086 var.avl = 0;
3087 if (save->base & 0xf)
3088 pr_warn_once("segment base is not paragraph aligned "
3089 "when entering protected mode (seg=%d)", seg);
3090 }
3091
3092 vmcs_write16(sf->selector, var.selector);
3093 vmcs_writel(sf->base, var.base);
3094 vmcs_write32(sf->limit, var.limit);
3095 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3096 }
3097
enter_rmode(struct kvm_vcpu * vcpu)3098 static void enter_rmode(struct kvm_vcpu *vcpu)
3099 {
3100 unsigned long flags;
3101 struct vcpu_vmx *vmx = to_vmx(vcpu);
3102 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3103
3104 /*
3105 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3106 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3107 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3108 * should VM-Fail and KVM should reject userspace attempts to stuff
3109 * CR0.PG=0 when L2 is active.
3110 */
3111 WARN_ON_ONCE(is_guest_mode(vcpu));
3112
3113 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3114 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3115 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3116 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3117 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3118 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3119 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3120
3121 vmx->rmode.vm86_active = 1;
3122
3123 vmx_segment_cache_clear(vmx);
3124
3125 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3126 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3127 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3128
3129 flags = vmcs_readl(GUEST_RFLAGS);
3130 vmx->rmode.save_rflags = flags;
3131
3132 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3133
3134 vmcs_writel(GUEST_RFLAGS, flags);
3135 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3136 vmx_update_exception_bitmap(vcpu);
3137
3138 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3139 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3140 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3141 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3142 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3143 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3144 }
3145
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3146 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3147 {
3148 struct vcpu_vmx *vmx = to_vmx(vcpu);
3149
3150 /* Nothing to do if hardware doesn't support EFER. */
3151 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3152 return 0;
3153
3154 vcpu->arch.efer = efer;
3155 #ifdef CONFIG_X86_64
3156 if (efer & EFER_LMA)
3157 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3158 else
3159 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3160 #else
3161 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3162 return 1;
3163 #endif
3164
3165 vmx_setup_uret_msrs(vmx);
3166 return 0;
3167 }
3168
3169 #ifdef CONFIG_X86_64
3170
enter_lmode(struct kvm_vcpu * vcpu)3171 static void enter_lmode(struct kvm_vcpu *vcpu)
3172 {
3173 u32 guest_tr_ar;
3174
3175 vmx_segment_cache_clear(to_vmx(vcpu));
3176
3177 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3178 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3179 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3180 __func__);
3181 vmcs_write32(GUEST_TR_AR_BYTES,
3182 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3183 | VMX_AR_TYPE_BUSY_64_TSS);
3184 }
3185 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3186 }
3187
exit_lmode(struct kvm_vcpu * vcpu)3188 static void exit_lmode(struct kvm_vcpu *vcpu)
3189 {
3190 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3191 }
3192
3193 #endif
3194
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3195 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3196 {
3197 struct vcpu_vmx *vmx = to_vmx(vcpu);
3198
3199 /*
3200 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3201 * the CPU is not required to invalidate guest-physical mappings on
3202 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3203 * associated with the root EPT structure and not any particular VPID
3204 * (INVVPID also isn't required to invalidate guest-physical mappings).
3205 */
3206 if (enable_ept) {
3207 ept_sync_global();
3208 } else if (enable_vpid) {
3209 if (cpu_has_vmx_invvpid_global()) {
3210 vpid_sync_vcpu_global();
3211 } else {
3212 vpid_sync_vcpu_single(vmx->vpid);
3213 vpid_sync_vcpu_single(vmx->nested.vpid02);
3214 }
3215 }
3216 }
3217
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3218 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3219 {
3220 if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3221 return nested_get_vpid02(vcpu);
3222 return to_vmx(vcpu)->vpid;
3223 }
3224
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3225 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3226 {
3227 struct kvm_mmu *mmu = vcpu->arch.mmu;
3228 u64 root_hpa = mmu->root.hpa;
3229
3230 /* No flush required if the current context is invalid. */
3231 if (!VALID_PAGE(root_hpa))
3232 return;
3233
3234 if (enable_ept)
3235 ept_sync_context(construct_eptp(vcpu, root_hpa,
3236 mmu->root_role.level));
3237 else
3238 vpid_sync_context(vmx_get_current_vpid(vcpu));
3239 }
3240
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3241 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3242 {
3243 /*
3244 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3245 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3246 */
3247 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3248 }
3249
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3250 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3251 {
3252 /*
3253 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3254 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3255 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3256 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3257 * i.e. no explicit INVVPID is necessary.
3258 */
3259 vpid_sync_context(vmx_get_current_vpid(vcpu));
3260 }
3261
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3262 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3263 {
3264 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3265
3266 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3267 return;
3268
3269 if (is_pae_paging(vcpu)) {
3270 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3271 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3272 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3273 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3274 }
3275 }
3276
ept_save_pdptrs(struct kvm_vcpu * vcpu)3277 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3278 {
3279 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3280
3281 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3282 return;
3283
3284 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3285 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3286 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3287 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3288
3289 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3290 }
3291
3292 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3293 CPU_BASED_CR3_STORE_EXITING)
3294
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3295 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3296 {
3297 if (is_guest_mode(vcpu))
3298 return nested_guest_cr0_valid(vcpu, cr0);
3299
3300 if (to_vmx(vcpu)->nested.vmxon)
3301 return nested_host_cr0_valid(vcpu, cr0);
3302
3303 return true;
3304 }
3305
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3306 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3307 {
3308 struct vcpu_vmx *vmx = to_vmx(vcpu);
3309 unsigned long hw_cr0, old_cr0_pg;
3310 u32 tmp;
3311
3312 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3313
3314 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3315 if (enable_unrestricted_guest)
3316 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3317 else {
3318 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3319 if (!enable_ept)
3320 hw_cr0 |= X86_CR0_WP;
3321
3322 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3323 enter_pmode(vcpu);
3324
3325 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3326 enter_rmode(vcpu);
3327 }
3328
3329 vmcs_writel(CR0_READ_SHADOW, cr0);
3330 vmcs_writel(GUEST_CR0, hw_cr0);
3331 vcpu->arch.cr0 = cr0;
3332 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3333
3334 #ifdef CONFIG_X86_64
3335 if (vcpu->arch.efer & EFER_LME) {
3336 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3337 enter_lmode(vcpu);
3338 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3339 exit_lmode(vcpu);
3340 }
3341 #endif
3342
3343 if (enable_ept && !enable_unrestricted_guest) {
3344 /*
3345 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3346 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3347 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3348 * KVM's CR3 is installed.
3349 */
3350 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3351 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3352
3353 /*
3354 * When running with EPT but not unrestricted guest, KVM must
3355 * intercept CR3 accesses when paging is _disabled_. This is
3356 * necessary because restricted guests can't actually run with
3357 * paging disabled, and so KVM stuffs its own CR3 in order to
3358 * run the guest when identity mapped page tables.
3359 *
3360 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3361 * update, it may be stale with respect to CR3 interception,
3362 * e.g. after nested VM-Enter.
3363 *
3364 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3365 * stores to forward them to L1, even if KVM does not need to
3366 * intercept them to preserve its identity mapped page tables.
3367 */
3368 if (!(cr0 & X86_CR0_PG)) {
3369 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3370 } else if (!is_guest_mode(vcpu)) {
3371 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3372 } else {
3373 tmp = exec_controls_get(vmx);
3374 tmp &= ~CR3_EXITING_BITS;
3375 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3376 exec_controls_set(vmx, tmp);
3377 }
3378
3379 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3380 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3381 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3382
3383 /*
3384 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3385 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3386 */
3387 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3388 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3389 }
3390
3391 /* depends on vcpu->arch.cr0 to be set to a new value */
3392 vmx->emulation_required = vmx_emulation_required(vcpu);
3393 }
3394
vmx_get_max_ept_level(void)3395 static int vmx_get_max_ept_level(void)
3396 {
3397 if (cpu_has_vmx_ept_5levels())
3398 return 5;
3399 return 4;
3400 }
3401
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3402 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3403 {
3404 u64 eptp = VMX_EPTP_MT_WB;
3405
3406 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3407
3408 if (enable_ept_ad_bits &&
3409 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3410 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3411 eptp |= root_hpa;
3412
3413 return eptp;
3414 }
3415
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3416 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3417 {
3418 struct kvm *kvm = vcpu->kvm;
3419 bool update_guest_cr3 = true;
3420 unsigned long guest_cr3;
3421 u64 eptp;
3422
3423 if (enable_ept) {
3424 eptp = construct_eptp(vcpu, root_hpa, root_level);
3425 vmcs_write64(EPT_POINTER, eptp);
3426
3427 hv_track_root_tdp(vcpu, root_hpa);
3428
3429 if (!enable_unrestricted_guest && !is_paging(vcpu))
3430 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3431 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3432 guest_cr3 = vcpu->arch.cr3;
3433 else /* vmcs.GUEST_CR3 is already up-to-date. */
3434 update_guest_cr3 = false;
3435 vmx_ept_load_pdptrs(vcpu);
3436 } else {
3437 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3438 kvm_get_active_cr3_lam_bits(vcpu);
3439 }
3440
3441 if (update_guest_cr3)
3442 vmcs_writel(GUEST_CR3, guest_cr3);
3443 }
3444
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3445 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3446 {
3447 /*
3448 * We operate under the default treatment of SMM, so VMX cannot be
3449 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3450 * i.e. is a reserved bit, is handled by common x86 code.
3451 */
3452 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3453 return false;
3454
3455 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3456 return false;
3457
3458 return true;
3459 }
3460
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3461 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3462 {
3463 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3464 struct vcpu_vmx *vmx = to_vmx(vcpu);
3465 unsigned long hw_cr4;
3466
3467 /*
3468 * Pass through host's Machine Check Enable value to hw_cr4, which
3469 * is in force while we are in guest mode. Do not let guests control
3470 * this bit, even if host CR4.MCE == 0.
3471 */
3472 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3473 if (enable_unrestricted_guest)
3474 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3475 else if (vmx->rmode.vm86_active)
3476 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3477 else
3478 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3479
3480 if (vmx_umip_emulated()) {
3481 if (cr4 & X86_CR4_UMIP) {
3482 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3483 hw_cr4 &= ~X86_CR4_UMIP;
3484 } else if (!is_guest_mode(vcpu) ||
3485 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3486 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3487 }
3488 }
3489
3490 vcpu->arch.cr4 = cr4;
3491 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3492
3493 if (!enable_unrestricted_guest) {
3494 if (enable_ept) {
3495 if (!is_paging(vcpu)) {
3496 hw_cr4 &= ~X86_CR4_PAE;
3497 hw_cr4 |= X86_CR4_PSE;
3498 } else if (!(cr4 & X86_CR4_PAE)) {
3499 hw_cr4 &= ~X86_CR4_PAE;
3500 }
3501 }
3502
3503 /*
3504 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3505 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3506 * to be manually disabled when guest switches to non-paging
3507 * mode.
3508 *
3509 * If !enable_unrestricted_guest, the CPU is always running
3510 * with CR0.PG=1 and CR4 needs to be modified.
3511 * If enable_unrestricted_guest, the CPU automatically
3512 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3513 */
3514 if (!is_paging(vcpu))
3515 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3516 }
3517
3518 vmcs_writel(CR4_READ_SHADOW, cr4);
3519 vmcs_writel(GUEST_CR4, hw_cr4);
3520
3521 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3522 kvm_update_cpuid_runtime(vcpu);
3523 }
3524
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3525 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3526 {
3527 struct vcpu_vmx *vmx = to_vmx(vcpu);
3528 u32 ar;
3529
3530 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3531 *var = vmx->rmode.segs[seg];
3532 if (seg == VCPU_SREG_TR
3533 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3534 return;
3535 var->base = vmx_read_guest_seg_base(vmx, seg);
3536 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3537 return;
3538 }
3539 var->base = vmx_read_guest_seg_base(vmx, seg);
3540 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3541 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3542 ar = vmx_read_guest_seg_ar(vmx, seg);
3543 var->unusable = (ar >> 16) & 1;
3544 var->type = ar & 15;
3545 var->s = (ar >> 4) & 1;
3546 var->dpl = (ar >> 5) & 3;
3547 /*
3548 * Some userspaces do not preserve unusable property. Since usable
3549 * segment has to be present according to VMX spec we can use present
3550 * property to amend userspace bug by making unusable segment always
3551 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3552 * segment as unusable.
3553 */
3554 var->present = !var->unusable;
3555 var->avl = (ar >> 12) & 1;
3556 var->l = (ar >> 13) & 1;
3557 var->db = (ar >> 14) & 1;
3558 var->g = (ar >> 15) & 1;
3559 }
3560
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3561 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3562 {
3563 struct kvm_segment s;
3564
3565 if (to_vmx(vcpu)->rmode.vm86_active) {
3566 vmx_get_segment(vcpu, &s, seg);
3567 return s.base;
3568 }
3569 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3570 }
3571
__vmx_get_cpl(struct kvm_vcpu * vcpu,bool no_cache)3572 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3573 {
3574 struct vcpu_vmx *vmx = to_vmx(vcpu);
3575 int ar;
3576
3577 if (unlikely(vmx->rmode.vm86_active))
3578 return 0;
3579
3580 if (no_cache)
3581 ar = vmcs_read32(GUEST_SS_AR_BYTES);
3582 else
3583 ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3584 return VMX_AR_DPL(ar);
3585 }
3586
vmx_get_cpl(struct kvm_vcpu * vcpu)3587 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3588 {
3589 return __vmx_get_cpl(vcpu, false);
3590 }
3591
vmx_get_cpl_no_cache(struct kvm_vcpu * vcpu)3592 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3593 {
3594 return __vmx_get_cpl(vcpu, true);
3595 }
3596
vmx_segment_access_rights(struct kvm_segment * var)3597 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3598 {
3599 u32 ar;
3600
3601 ar = var->type & 15;
3602 ar |= (var->s & 1) << 4;
3603 ar |= (var->dpl & 3) << 5;
3604 ar |= (var->present & 1) << 7;
3605 ar |= (var->avl & 1) << 12;
3606 ar |= (var->l & 1) << 13;
3607 ar |= (var->db & 1) << 14;
3608 ar |= (var->g & 1) << 15;
3609 ar |= (var->unusable || !var->present) << 16;
3610
3611 return ar;
3612 }
3613
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3614 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3615 {
3616 struct vcpu_vmx *vmx = to_vmx(vcpu);
3617 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3618
3619 vmx_segment_cache_clear(vmx);
3620
3621 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3622 vmx->rmode.segs[seg] = *var;
3623 if (seg == VCPU_SREG_TR)
3624 vmcs_write16(sf->selector, var->selector);
3625 else if (var->s)
3626 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3627 return;
3628 }
3629
3630 vmcs_writel(sf->base, var->base);
3631 vmcs_write32(sf->limit, var->limit);
3632 vmcs_write16(sf->selector, var->selector);
3633
3634 /*
3635 * Fix the "Accessed" bit in AR field of segment registers for older
3636 * qemu binaries.
3637 * IA32 arch specifies that at the time of processor reset the
3638 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3639 * is setting it to 0 in the userland code. This causes invalid guest
3640 * state vmexit when "unrestricted guest" mode is turned on.
3641 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3642 * tree. Newer qemu binaries with that qemu fix would not need this
3643 * kvm hack.
3644 */
3645 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3646 var->type |= 0x1; /* Accessed */
3647
3648 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3649 }
3650
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3651 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3652 {
3653 __vmx_set_segment(vcpu, var, seg);
3654
3655 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3656 }
3657
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3658 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3659 {
3660 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3661
3662 *db = (ar >> 14) & 1;
3663 *l = (ar >> 13) & 1;
3664 }
3665
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3666 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3667 {
3668 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3669 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3670 }
3671
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3672 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3673 {
3674 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3675 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3676 }
3677
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3678 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3679 {
3680 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3681 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3682 }
3683
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3684 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3685 {
3686 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3687 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3688 }
3689
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3690 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3691 {
3692 struct kvm_segment var;
3693 u32 ar;
3694
3695 vmx_get_segment(vcpu, &var, seg);
3696 var.dpl = 0x3;
3697 if (seg == VCPU_SREG_CS)
3698 var.type = 0x3;
3699 ar = vmx_segment_access_rights(&var);
3700
3701 if (var.base != (var.selector << 4))
3702 return false;
3703 if (var.limit != 0xffff)
3704 return false;
3705 if (ar != 0xf3)
3706 return false;
3707
3708 return true;
3709 }
3710
code_segment_valid(struct kvm_vcpu * vcpu)3711 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3712 {
3713 struct kvm_segment cs;
3714 unsigned int cs_rpl;
3715
3716 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3717 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3718
3719 if (cs.unusable)
3720 return false;
3721 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3722 return false;
3723 if (!cs.s)
3724 return false;
3725 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3726 if (cs.dpl > cs_rpl)
3727 return false;
3728 } else {
3729 if (cs.dpl != cs_rpl)
3730 return false;
3731 }
3732 if (!cs.present)
3733 return false;
3734
3735 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3736 return true;
3737 }
3738
stack_segment_valid(struct kvm_vcpu * vcpu)3739 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3740 {
3741 struct kvm_segment ss;
3742 unsigned int ss_rpl;
3743
3744 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3745 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3746
3747 if (ss.unusable)
3748 return true;
3749 if (ss.type != 3 && ss.type != 7)
3750 return false;
3751 if (!ss.s)
3752 return false;
3753 if (ss.dpl != ss_rpl) /* DPL != RPL */
3754 return false;
3755 if (!ss.present)
3756 return false;
3757
3758 return true;
3759 }
3760
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3761 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3762 {
3763 struct kvm_segment var;
3764 unsigned int rpl;
3765
3766 vmx_get_segment(vcpu, &var, seg);
3767 rpl = var.selector & SEGMENT_RPL_MASK;
3768
3769 if (var.unusable)
3770 return true;
3771 if (!var.s)
3772 return false;
3773 if (!var.present)
3774 return false;
3775 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3776 if (var.dpl < rpl) /* DPL < RPL */
3777 return false;
3778 }
3779
3780 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3781 * rights flags
3782 */
3783 return true;
3784 }
3785
tr_valid(struct kvm_vcpu * vcpu)3786 static bool tr_valid(struct kvm_vcpu *vcpu)
3787 {
3788 struct kvm_segment tr;
3789
3790 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3791
3792 if (tr.unusable)
3793 return false;
3794 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3795 return false;
3796 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3797 return false;
3798 if (!tr.present)
3799 return false;
3800
3801 return true;
3802 }
3803
ldtr_valid(struct kvm_vcpu * vcpu)3804 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3805 {
3806 struct kvm_segment ldtr;
3807
3808 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3809
3810 if (ldtr.unusable)
3811 return true;
3812 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3813 return false;
3814 if (ldtr.type != 2)
3815 return false;
3816 if (!ldtr.present)
3817 return false;
3818
3819 return true;
3820 }
3821
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3822 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3823 {
3824 struct kvm_segment cs, ss;
3825
3826 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3827 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3828
3829 return ((cs.selector & SEGMENT_RPL_MASK) ==
3830 (ss.selector & SEGMENT_RPL_MASK));
3831 }
3832
3833 /*
3834 * Check if guest state is valid. Returns true if valid, false if
3835 * not.
3836 * We assume that registers are always usable
3837 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3838 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3839 {
3840 /* real mode guest state checks */
3841 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3842 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3843 return false;
3844 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3845 return false;
3846 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3847 return false;
3848 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3849 return false;
3850 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3851 return false;
3852 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3853 return false;
3854 } else {
3855 /* protected mode guest state checks */
3856 if (!cs_ss_rpl_check(vcpu))
3857 return false;
3858 if (!code_segment_valid(vcpu))
3859 return false;
3860 if (!stack_segment_valid(vcpu))
3861 return false;
3862 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3863 return false;
3864 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3865 return false;
3866 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3867 return false;
3868 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3869 return false;
3870 if (!tr_valid(vcpu))
3871 return false;
3872 if (!ldtr_valid(vcpu))
3873 return false;
3874 }
3875 /* TODO:
3876 * - Add checks on RIP
3877 * - Add checks on RFLAGS
3878 */
3879
3880 return true;
3881 }
3882
init_rmode_tss(struct kvm * kvm,void __user * ua)3883 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3884 {
3885 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3886 u16 data;
3887 int i;
3888
3889 for (i = 0; i < 3; i++) {
3890 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3891 return -EFAULT;
3892 }
3893
3894 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3895 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3896 return -EFAULT;
3897
3898 data = ~0;
3899 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3900 return -EFAULT;
3901
3902 return 0;
3903 }
3904
init_rmode_identity_map(struct kvm * kvm)3905 static int init_rmode_identity_map(struct kvm *kvm)
3906 {
3907 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3908 int i, r = 0;
3909 void __user *uaddr;
3910 u32 tmp;
3911
3912 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3913 mutex_lock(&kvm->slots_lock);
3914
3915 if (likely(kvm_vmx->ept_identity_pagetable_done))
3916 goto out;
3917
3918 if (!kvm_vmx->ept_identity_map_addr)
3919 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3920
3921 uaddr = __x86_set_memory_region(kvm,
3922 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3923 kvm_vmx->ept_identity_map_addr,
3924 PAGE_SIZE);
3925 if (IS_ERR(uaddr)) {
3926 r = PTR_ERR(uaddr);
3927 goto out;
3928 }
3929
3930 /* Set up identity-mapping pagetable for EPT in real mode */
3931 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3932 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3933 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3934 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3935 r = -EFAULT;
3936 goto out;
3937 }
3938 }
3939 kvm_vmx->ept_identity_pagetable_done = true;
3940
3941 out:
3942 mutex_unlock(&kvm->slots_lock);
3943 return r;
3944 }
3945
seg_setup(int seg)3946 static void seg_setup(int seg)
3947 {
3948 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3949 unsigned int ar;
3950
3951 vmcs_write16(sf->selector, 0);
3952 vmcs_writel(sf->base, 0);
3953 vmcs_write32(sf->limit, 0xffff);
3954 ar = 0x93;
3955 if (seg == VCPU_SREG_CS)
3956 ar |= 0x08; /* code segment */
3957
3958 vmcs_write32(sf->ar_bytes, ar);
3959 }
3960
allocate_vpid(void)3961 int allocate_vpid(void)
3962 {
3963 int vpid;
3964
3965 if (!enable_vpid)
3966 return 0;
3967 spin_lock(&vmx_vpid_lock);
3968 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3969 if (vpid < VMX_NR_VPIDS)
3970 __set_bit(vpid, vmx_vpid_bitmap);
3971 else
3972 vpid = 0;
3973 spin_unlock(&vmx_vpid_lock);
3974 return vpid;
3975 }
3976
free_vpid(int vpid)3977 void free_vpid(int vpid)
3978 {
3979 if (!enable_vpid || vpid == 0)
3980 return;
3981 spin_lock(&vmx_vpid_lock);
3982 __clear_bit(vpid, vmx_vpid_bitmap);
3983 spin_unlock(&vmx_vpid_lock);
3984 }
3985
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3986 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3987 {
3988 /*
3989 * When KVM is a nested hypervisor on top of Hyper-V and uses
3990 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3991 * bitmap has changed.
3992 */
3993 if (kvm_is_using_evmcs()) {
3994 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3995
3996 if (evmcs->hv_enlightenments_control.msr_bitmap)
3997 evmcs->hv_clean_fields &=
3998 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3999 }
4000
4001 vmx->nested.force_msr_bitmap_recalc = true;
4002 }
4003
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4004 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4005 {
4006 struct vcpu_vmx *vmx = to_vmx(vcpu);
4007 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4008 int idx;
4009
4010 if (!cpu_has_vmx_msr_bitmap())
4011 return;
4012
4013 vmx_msr_bitmap_l01_changed(vmx);
4014
4015 /*
4016 * Mark the desired intercept state in shadow bitmap, this is needed
4017 * for resync when the MSR filters change.
4018 */
4019 idx = vmx_get_passthrough_msr_slot(msr);
4020 if (idx >= 0) {
4021 if (type & MSR_TYPE_R)
4022 clear_bit(idx, vmx->shadow_msr_intercept.read);
4023 if (type & MSR_TYPE_W)
4024 clear_bit(idx, vmx->shadow_msr_intercept.write);
4025 }
4026
4027 if ((type & MSR_TYPE_R) &&
4028 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4029 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4030 type &= ~MSR_TYPE_R;
4031 }
4032
4033 if ((type & MSR_TYPE_W) &&
4034 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4035 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4036 type &= ~MSR_TYPE_W;
4037 }
4038
4039 if (type & MSR_TYPE_R)
4040 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4041
4042 if (type & MSR_TYPE_W)
4043 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4044 }
4045
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4046 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4047 {
4048 struct vcpu_vmx *vmx = to_vmx(vcpu);
4049 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4050 int idx;
4051
4052 if (!cpu_has_vmx_msr_bitmap())
4053 return;
4054
4055 vmx_msr_bitmap_l01_changed(vmx);
4056
4057 /*
4058 * Mark the desired intercept state in shadow bitmap, this is needed
4059 * for resync when the MSR filter changes.
4060 */
4061 idx = vmx_get_passthrough_msr_slot(msr);
4062 if (idx >= 0) {
4063 if (type & MSR_TYPE_R)
4064 set_bit(idx, vmx->shadow_msr_intercept.read);
4065 if (type & MSR_TYPE_W)
4066 set_bit(idx, vmx->shadow_msr_intercept.write);
4067 }
4068
4069 if (type & MSR_TYPE_R)
4070 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4071
4072 if (type & MSR_TYPE_W)
4073 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4074 }
4075
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4076 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4077 {
4078 /*
4079 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4080 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4081 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4082 */
4083 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4084 const int write_idx = read_idx + (0x800 / sizeof(u64));
4085 struct vcpu_vmx *vmx = to_vmx(vcpu);
4086 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4087 u8 mode;
4088
4089 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4090 return;
4091
4092 if (cpu_has_secondary_exec_ctrls() &&
4093 (secondary_exec_controls_get(vmx) &
4094 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4095 mode = MSR_BITMAP_MODE_X2APIC;
4096 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4097 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4098 } else {
4099 mode = 0;
4100 }
4101
4102 if (mode == vmx->x2apic_msr_bitmap_mode)
4103 return;
4104
4105 vmx->x2apic_msr_bitmap_mode = mode;
4106
4107 /*
4108 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4109 * registers (0x840 and above) intercepted, KVM doesn't support them.
4110 * Intercept all writes by default and poke holes as needed. Pass
4111 * through reads for all valid registers by default in x2APIC+APICv
4112 * mode, only the current timer count needs on-demand emulation by KVM.
4113 */
4114 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4115 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4116 else
4117 msr_bitmap[read_idx] = ~0ull;
4118 msr_bitmap[write_idx] = ~0ull;
4119
4120 /*
4121 * TPR reads and writes can be virtualized even if virtual interrupt
4122 * delivery is not in use.
4123 */
4124 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4125 !(mode & MSR_BITMAP_MODE_X2APIC));
4126
4127 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4128 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4129 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4130 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4131 if (enable_ipiv)
4132 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4133 }
4134 }
4135
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4136 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4137 {
4138 struct vcpu_vmx *vmx = to_vmx(vcpu);
4139 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4140 u32 i;
4141
4142 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4143 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4144 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4145 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4146 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4147 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4148 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4149 }
4150 }
4151
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4152 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4153 {
4154 struct vcpu_vmx *vmx = to_vmx(vcpu);
4155 u32 i;
4156
4157 if (!cpu_has_vmx_msr_bitmap())
4158 return;
4159
4160 /*
4161 * Redo intercept permissions for MSRs that KVM is passing through to
4162 * the guest. Disabling interception will check the new MSR filter and
4163 * ensure that KVM enables interception if usersepace wants to filter
4164 * the MSR. MSRs that KVM is already intercepting don't need to be
4165 * refreshed since KVM is going to intercept them regardless of what
4166 * userspace wants.
4167 */
4168 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4169 u32 msr = vmx_possible_passthrough_msrs[i];
4170
4171 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4172 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4173
4174 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4175 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4176 }
4177
4178 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4179 if (vmx_pt_mode_is_host_guest())
4180 pt_update_intercept_for_msr(vcpu);
4181 }
4182
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4183 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4184 int pi_vec)
4185 {
4186 #ifdef CONFIG_SMP
4187 if (vcpu->mode == IN_GUEST_MODE) {
4188 /*
4189 * The vector of the virtual has already been set in the PIR.
4190 * Send a notification event to deliver the virtual interrupt
4191 * unless the vCPU is the currently running vCPU, i.e. the
4192 * event is being sent from a fastpath VM-Exit handler, in
4193 * which case the PIR will be synced to the vIRR before
4194 * re-entering the guest.
4195 *
4196 * When the target is not the running vCPU, the following
4197 * possibilities emerge:
4198 *
4199 * Case 1: vCPU stays in non-root mode. Sending a notification
4200 * event posts the interrupt to the vCPU.
4201 *
4202 * Case 2: vCPU exits to root mode and is still runnable. The
4203 * PIR will be synced to the vIRR before re-entering the guest.
4204 * Sending a notification event is ok as the host IRQ handler
4205 * will ignore the spurious event.
4206 *
4207 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4208 * has already synced PIR to vIRR and never blocks the vCPU if
4209 * the vIRR is not empty. Therefore, a blocked vCPU here does
4210 * not wait for any requested interrupts in PIR, and sending a
4211 * notification event also results in a benign, spurious event.
4212 */
4213
4214 if (vcpu != kvm_get_running_vcpu())
4215 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4216 return;
4217 }
4218 #endif
4219 /*
4220 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4221 * otherwise do nothing as KVM will grab the highest priority pending
4222 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4223 */
4224 kvm_vcpu_wake_up(vcpu);
4225 }
4226
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4227 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4228 int vector)
4229 {
4230 struct vcpu_vmx *vmx = to_vmx(vcpu);
4231
4232 /*
4233 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4234 * and freed, and must not be accessed outside of vcpu->mutex. The
4235 * vCPU's cached PI NV is valid if and only if posted interrupts
4236 * enabled in its vmcs12, i.e. checking the vector also checks that
4237 * L1 has enabled posted interrupts for L2.
4238 */
4239 if (is_guest_mode(vcpu) &&
4240 vector == vmx->nested.posted_intr_nv) {
4241 /*
4242 * If a posted intr is not recognized by hardware,
4243 * we will accomplish it in the next vmentry.
4244 */
4245 vmx->nested.pi_pending = true;
4246 kvm_make_request(KVM_REQ_EVENT, vcpu);
4247
4248 /*
4249 * This pairs with the smp_mb_*() after setting vcpu->mode in
4250 * vcpu_enter_guest() to guarantee the vCPU sees the event
4251 * request if triggering a posted interrupt "fails" because
4252 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4253 * the smb_wmb() in kvm_make_request() only ensures everything
4254 * done before making the request is visible when the request
4255 * is visible, it doesn't ensure ordering between the store to
4256 * vcpu->requests and the load from vcpu->mode.
4257 */
4258 smp_mb__after_atomic();
4259
4260 /* the PIR and ON have been set by L1. */
4261 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4262 return 0;
4263 }
4264 return -1;
4265 }
4266 /*
4267 * Send interrupt to vcpu via posted interrupt way.
4268 * 1. If target vcpu is running(non-root mode), send posted interrupt
4269 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4270 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4271 * interrupt from PIR in next vmentry.
4272 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4273 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4274 {
4275 struct vcpu_vmx *vmx = to_vmx(vcpu);
4276 int r;
4277
4278 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4279 if (!r)
4280 return 0;
4281
4282 /* Note, this is called iff the local APIC is in-kernel. */
4283 if (!vcpu->arch.apic->apicv_active)
4284 return -1;
4285
4286 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4287 return 0;
4288
4289 /* If a previous notification has sent the IPI, nothing to do. */
4290 if (pi_test_and_set_on(&vmx->pi_desc))
4291 return 0;
4292
4293 /*
4294 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4295 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4296 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4297 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4298 */
4299 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4300 return 0;
4301 }
4302
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4303 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4304 int trig_mode, int vector)
4305 {
4306 struct kvm_vcpu *vcpu = apic->vcpu;
4307
4308 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4309 kvm_lapic_set_irr(vector, apic);
4310 kvm_make_request(KVM_REQ_EVENT, vcpu);
4311 kvm_vcpu_kick(vcpu);
4312 } else {
4313 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4314 trig_mode, vector);
4315 }
4316 }
4317
4318 /*
4319 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4320 * will not change in the lifetime of the guest.
4321 * Note that host-state that does change is set elsewhere. E.g., host-state
4322 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4323 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4324 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4325 {
4326 u32 low32, high32;
4327 unsigned long tmpl;
4328 unsigned long cr0, cr3, cr4;
4329
4330 cr0 = read_cr0();
4331 WARN_ON(cr0 & X86_CR0_TS);
4332 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4333
4334 /*
4335 * Save the most likely value for this task's CR3 in the VMCS.
4336 * We can't use __get_current_cr3_fast() because we're not atomic.
4337 */
4338 cr3 = __read_cr3();
4339 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4340 vmx->loaded_vmcs->host_state.cr3 = cr3;
4341
4342 /* Save the most likely value for this task's CR4 in the VMCS. */
4343 cr4 = cr4_read_shadow();
4344 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4345 vmx->loaded_vmcs->host_state.cr4 = cr4;
4346
4347 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4348 #ifdef CONFIG_X86_64
4349 /*
4350 * Load null selectors, so we can avoid reloading them in
4351 * vmx_prepare_switch_to_host(), in case userspace uses
4352 * the null selectors too (the expected case).
4353 */
4354 vmcs_write16(HOST_DS_SELECTOR, 0);
4355 vmcs_write16(HOST_ES_SELECTOR, 0);
4356 #else
4357 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4358 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4359 #endif
4360 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4361 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4362
4363 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4364
4365 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4366
4367 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4368 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4369
4370 /*
4371 * SYSENTER is used for 32-bit system calls on either 32-bit or
4372 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4373 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4374 * have already done so!).
4375 */
4376 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4377 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4378
4379 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4380 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4381
4382 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4383 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4384 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4385 }
4386
4387 if (cpu_has_load_ia32_efer())
4388 vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4389 }
4390
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4391 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4392 {
4393 struct kvm_vcpu *vcpu = &vmx->vcpu;
4394
4395 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4396 ~vcpu->arch.cr4_guest_rsvd_bits;
4397 if (!enable_ept) {
4398 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4399 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4400 }
4401 if (is_guest_mode(&vmx->vcpu))
4402 vcpu->arch.cr4_guest_owned_bits &=
4403 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4404 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4405 }
4406
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4407 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4408 {
4409 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4410
4411 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4412 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4413
4414 if (!enable_vnmi)
4415 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4416
4417 if (!enable_preemption_timer)
4418 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4419
4420 return pin_based_exec_ctrl;
4421 }
4422
vmx_vmentry_ctrl(void)4423 static u32 vmx_vmentry_ctrl(void)
4424 {
4425 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4426
4427 if (vmx_pt_mode_is_system())
4428 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4429 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4430 /*
4431 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4432 */
4433 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4434 VM_ENTRY_LOAD_IA32_EFER |
4435 VM_ENTRY_IA32E_MODE);
4436
4437 return vmentry_ctrl;
4438 }
4439
vmx_vmexit_ctrl(void)4440 static u32 vmx_vmexit_ctrl(void)
4441 {
4442 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4443
4444 /*
4445 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4446 * nested virtualization and thus allowed to be set in vmcs12.
4447 */
4448 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4449 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4450
4451 if (vmx_pt_mode_is_system())
4452 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4453 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4454 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4455 return vmexit_ctrl &
4456 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4457 }
4458
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4459 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4460 {
4461 struct vcpu_vmx *vmx = to_vmx(vcpu);
4462
4463 if (is_guest_mode(vcpu)) {
4464 vmx->nested.update_vmcs01_apicv_status = true;
4465 return;
4466 }
4467
4468 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4469
4470 if (kvm_vcpu_apicv_active(vcpu)) {
4471 secondary_exec_controls_setbit(vmx,
4472 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4473 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4474 if (enable_ipiv)
4475 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4476 } else {
4477 secondary_exec_controls_clearbit(vmx,
4478 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4479 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4480 if (enable_ipiv)
4481 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4482 }
4483
4484 vmx_update_msr_bitmap_x2apic(vcpu);
4485 }
4486
vmx_exec_control(struct vcpu_vmx * vmx)4487 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4488 {
4489 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4490
4491 /*
4492 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4493 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4494 */
4495 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4496 CPU_BASED_USE_IO_BITMAPS |
4497 CPU_BASED_MONITOR_TRAP_FLAG |
4498 CPU_BASED_PAUSE_EXITING);
4499
4500 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4501 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4502 CPU_BASED_NMI_WINDOW_EXITING);
4503
4504 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4505 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4506
4507 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4508 exec_control &= ~CPU_BASED_TPR_SHADOW;
4509
4510 #ifdef CONFIG_X86_64
4511 if (exec_control & CPU_BASED_TPR_SHADOW)
4512 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4513 CPU_BASED_CR8_STORE_EXITING);
4514 else
4515 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4516 CPU_BASED_CR8_LOAD_EXITING;
4517 #endif
4518 /* No need to intercept CR3 access or INVPLG when using EPT. */
4519 if (enable_ept)
4520 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4521 CPU_BASED_CR3_STORE_EXITING |
4522 CPU_BASED_INVLPG_EXITING);
4523 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4524 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4525 CPU_BASED_MONITOR_EXITING);
4526 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4527 exec_control &= ~CPU_BASED_HLT_EXITING;
4528 return exec_control;
4529 }
4530
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4531 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4532 {
4533 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4534
4535 /*
4536 * IPI virtualization relies on APICv. Disable IPI virtualization if
4537 * APICv is inhibited.
4538 */
4539 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4540 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4541
4542 return exec_control;
4543 }
4544
4545 /*
4546 * Adjust a single secondary execution control bit to intercept/allow an
4547 * instruction in the guest. This is usually done based on whether or not a
4548 * feature has been exposed to the guest in order to correctly emulate faults.
4549 */
4550 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4551 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4552 u32 control, bool enabled, bool exiting)
4553 {
4554 /*
4555 * If the control is for an opt-in feature, clear the control if the
4556 * feature is not exposed to the guest, i.e. not enabled. If the
4557 * control is opt-out, i.e. an exiting control, clear the control if
4558 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4559 * disabled for the associated instruction. Note, the caller is
4560 * responsible presetting exec_control to set all supported bits.
4561 */
4562 if (enabled == exiting)
4563 *exec_control &= ~control;
4564
4565 /*
4566 * Update the nested MSR settings so that a nested VMM can/can't set
4567 * controls for features that are/aren't exposed to the guest.
4568 */
4569 if (nested &&
4570 kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4571 /*
4572 * All features that can be added or removed to VMX MSRs must
4573 * be supported in the first place for nested virtualization.
4574 */
4575 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4576 enabled = false;
4577
4578 if (enabled)
4579 vmx->nested.msrs.secondary_ctls_high |= control;
4580 else
4581 vmx->nested.msrs.secondary_ctls_high &= ~control;
4582 }
4583 }
4584
4585 /*
4586 * Wrapper macro for the common case of adjusting a secondary execution control
4587 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4588 * verifies that the control is actually supported by KVM and hardware.
4589 */
4590 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4591 ({ \
4592 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4593 bool __enabled; \
4594 \
4595 if (cpu_has_vmx_##name()) { \
4596 __enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name); \
4597 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4598 __enabled, exiting); \
4599 } \
4600 })
4601
4602 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4603 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4604 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4605
4606 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4607 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4608
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4609 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4610 {
4611 struct kvm_vcpu *vcpu = &vmx->vcpu;
4612
4613 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4614
4615 if (vmx_pt_mode_is_system())
4616 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4617 if (!cpu_need_virtualize_apic_accesses(vcpu))
4618 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4619 if (vmx->vpid == 0)
4620 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4621 if (!enable_ept) {
4622 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4623 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4624 enable_unrestricted_guest = 0;
4625 }
4626 if (!enable_unrestricted_guest)
4627 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4628 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4629 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4630 if (!kvm_vcpu_apicv_active(vcpu))
4631 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4632 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4633 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4634
4635 /*
4636 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4637 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4638 */
4639 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4640
4641 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4642 * in vmx_set_cr4. */
4643 exec_control &= ~SECONDARY_EXEC_DESC;
4644
4645 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4646 (handle_vmptrld).
4647 We can NOT enable shadow_vmcs here because we don't have yet
4648 a current VMCS12
4649 */
4650 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4651
4652 /*
4653 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4654 * it needs to be set here when dirty logging is already active, e.g.
4655 * if this vCPU was created after dirty logging was enabled.
4656 */
4657 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4658 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4659
4660 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4661
4662 /*
4663 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4664 * feature is exposed to the guest. This creates a virtualization hole
4665 * if both are supported in hardware but only one is exposed to the
4666 * guest, but letting the guest execute RDTSCP or RDPID when either one
4667 * is advertised is preferable to emulating the advertised instruction
4668 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4669 */
4670 if (cpu_has_vmx_rdtscp()) {
4671 bool rdpid_or_rdtscp_enabled =
4672 guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4673 guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4674
4675 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4676 SECONDARY_EXEC_ENABLE_RDTSCP,
4677 rdpid_or_rdtscp_enabled, false);
4678 }
4679
4680 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4681
4682 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4683 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4684
4685 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4686 ENABLE_USR_WAIT_PAUSE, false);
4687
4688 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4689 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4690
4691 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4692 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4693
4694 return exec_control;
4695 }
4696
vmx_get_pid_table_order(struct kvm * kvm)4697 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4698 {
4699 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4700 }
4701
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4702 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4703 {
4704 struct page *pages;
4705 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4706
4707 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4708 return 0;
4709
4710 if (kvm_vmx->pid_table)
4711 return 0;
4712
4713 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4714 vmx_get_pid_table_order(kvm));
4715 if (!pages)
4716 return -ENOMEM;
4717
4718 kvm_vmx->pid_table = (void *)page_address(pages);
4719 return 0;
4720 }
4721
vmx_vcpu_precreate(struct kvm * kvm)4722 int vmx_vcpu_precreate(struct kvm *kvm)
4723 {
4724 return vmx_alloc_ipiv_pid_table(kvm);
4725 }
4726
4727 #define VMX_XSS_EXIT_BITMAP 0
4728
init_vmcs(struct vcpu_vmx * vmx)4729 static void init_vmcs(struct vcpu_vmx *vmx)
4730 {
4731 struct kvm *kvm = vmx->vcpu.kvm;
4732 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4733
4734 if (nested)
4735 nested_vmx_set_vmcs_shadowing_bitmap();
4736
4737 if (cpu_has_vmx_msr_bitmap())
4738 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4739
4740 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4741
4742 /* Control */
4743 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4744
4745 exec_controls_set(vmx, vmx_exec_control(vmx));
4746
4747 if (cpu_has_secondary_exec_ctrls()) {
4748 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4749 if (vmx->ve_info)
4750 vmcs_write64(VE_INFORMATION_ADDRESS,
4751 __pa(vmx->ve_info));
4752 }
4753
4754 if (cpu_has_tertiary_exec_ctrls())
4755 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4756
4757 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4758 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4759 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4760 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4761 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4762
4763 vmcs_write16(GUEST_INTR_STATUS, 0);
4764
4765 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4766 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4767 }
4768
4769 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4770 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4771 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4772 }
4773
4774 if (!kvm_pause_in_guest(kvm)) {
4775 vmcs_write32(PLE_GAP, ple_gap);
4776 vmx->ple_window = ple_window;
4777 vmx->ple_window_dirty = true;
4778 }
4779
4780 if (kvm_notify_vmexit_enabled(kvm))
4781 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4782
4783 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4784 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4785 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4786
4787 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4788 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4789 vmx_set_constant_host_state(vmx);
4790 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4791 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4792
4793 if (cpu_has_vmx_vmfunc())
4794 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4795
4796 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4797 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4798 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4799 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4800 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4801
4802 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4803 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4804
4805 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4806
4807 /* 22.2.1, 20.8.1 */
4808 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4809
4810 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4811 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4812
4813 set_cr4_guest_host_mask(vmx);
4814
4815 if (vmx->vpid != 0)
4816 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4817
4818 if (cpu_has_vmx_xsaves())
4819 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4820
4821 if (enable_pml) {
4822 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4823 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4824 }
4825
4826 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4827
4828 if (vmx_pt_mode_is_host_guest()) {
4829 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4830 /* Bit[6~0] are forced to 1, writes are ignored. */
4831 vmx->pt_desc.guest.output_mask = 0x7F;
4832 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4833 }
4834
4835 vmcs_write32(GUEST_SYSENTER_CS, 0);
4836 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4837 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4838 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4839
4840 if (cpu_has_vmx_tpr_shadow()) {
4841 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4842 if (cpu_need_tpr_shadow(&vmx->vcpu))
4843 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4844 __pa(vmx->vcpu.arch.apic->regs));
4845 vmcs_write32(TPR_THRESHOLD, 0);
4846 }
4847
4848 vmx_setup_uret_msrs(vmx);
4849 }
4850
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4851 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4852 {
4853 struct vcpu_vmx *vmx = to_vmx(vcpu);
4854
4855 init_vmcs(vmx);
4856
4857 if (nested &&
4858 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4859 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4860
4861 vcpu_setup_sgx_lepubkeyhash(vcpu);
4862
4863 vmx->nested.posted_intr_nv = -1;
4864 vmx->nested.vmxon_ptr = INVALID_GPA;
4865 vmx->nested.current_vmptr = INVALID_GPA;
4866
4867 #ifdef CONFIG_KVM_HYPERV
4868 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4869 #endif
4870
4871 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4872 vcpu->arch.microcode_version = 0x100000000ULL;
4873 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4874
4875 /*
4876 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4877 * or POSTED_INTR_WAKEUP_VECTOR.
4878 */
4879 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4880 __pi_set_sn(&vmx->pi_desc);
4881 }
4882
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4883 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4884 {
4885 struct vcpu_vmx *vmx = to_vmx(vcpu);
4886
4887 if (!init_event)
4888 __vmx_vcpu_reset(vcpu);
4889
4890 vmx->rmode.vm86_active = 0;
4891 vmx->spec_ctrl = 0;
4892
4893 vmx->msr_ia32_umwait_control = 0;
4894
4895 vmx->hv_deadline_tsc = -1;
4896 kvm_set_cr8(vcpu, 0);
4897
4898 seg_setup(VCPU_SREG_CS);
4899 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4900 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4901
4902 seg_setup(VCPU_SREG_DS);
4903 seg_setup(VCPU_SREG_ES);
4904 seg_setup(VCPU_SREG_FS);
4905 seg_setup(VCPU_SREG_GS);
4906 seg_setup(VCPU_SREG_SS);
4907
4908 vmcs_write16(GUEST_TR_SELECTOR, 0);
4909 vmcs_writel(GUEST_TR_BASE, 0);
4910 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4911 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4912
4913 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4914 vmcs_writel(GUEST_LDTR_BASE, 0);
4915 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4916 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4917
4918 vmcs_writel(GUEST_GDTR_BASE, 0);
4919 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4920
4921 vmcs_writel(GUEST_IDTR_BASE, 0);
4922 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4923
4924 vmx_segment_cache_clear(vmx);
4925 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4926
4927 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4928 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4929 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4930 if (kvm_mpx_supported())
4931 vmcs_write64(GUEST_BNDCFGS, 0);
4932
4933 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4934
4935 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4936
4937 vpid_sync_context(vmx->vpid);
4938
4939 vmx_update_fb_clear_dis(vcpu, vmx);
4940 }
4941
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4942 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4943 {
4944 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4945 }
4946
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4947 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4948 {
4949 if (!enable_vnmi ||
4950 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4951 vmx_enable_irq_window(vcpu);
4952 return;
4953 }
4954
4955 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4956 }
4957
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4958 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4959 {
4960 struct vcpu_vmx *vmx = to_vmx(vcpu);
4961 uint32_t intr;
4962 int irq = vcpu->arch.interrupt.nr;
4963
4964 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4965
4966 ++vcpu->stat.irq_injections;
4967 if (vmx->rmode.vm86_active) {
4968 int inc_eip = 0;
4969 if (vcpu->arch.interrupt.soft)
4970 inc_eip = vcpu->arch.event_exit_inst_len;
4971 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4972 return;
4973 }
4974 intr = irq | INTR_INFO_VALID_MASK;
4975 if (vcpu->arch.interrupt.soft) {
4976 intr |= INTR_TYPE_SOFT_INTR;
4977 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4978 vmx->vcpu.arch.event_exit_inst_len);
4979 } else
4980 intr |= INTR_TYPE_EXT_INTR;
4981 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4982
4983 vmx_clear_hlt(vcpu);
4984 }
4985
vmx_inject_nmi(struct kvm_vcpu * vcpu)4986 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4987 {
4988 struct vcpu_vmx *vmx = to_vmx(vcpu);
4989
4990 if (!enable_vnmi) {
4991 /*
4992 * Tracking the NMI-blocked state in software is built upon
4993 * finding the next open IRQ window. This, in turn, depends on
4994 * well-behaving guests: They have to keep IRQs disabled at
4995 * least as long as the NMI handler runs. Otherwise we may
4996 * cause NMI nesting, maybe breaking the guest. But as this is
4997 * highly unlikely, we can live with the residual risk.
4998 */
4999 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5000 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5001 }
5002
5003 ++vcpu->stat.nmi_injections;
5004 vmx->loaded_vmcs->nmi_known_unmasked = false;
5005
5006 if (vmx->rmode.vm86_active) {
5007 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
5008 return;
5009 }
5010
5011 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5012 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5013
5014 vmx_clear_hlt(vcpu);
5015 }
5016
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)5017 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5018 {
5019 struct vcpu_vmx *vmx = to_vmx(vcpu);
5020 bool masked;
5021
5022 if (!enable_vnmi)
5023 return vmx->loaded_vmcs->soft_vnmi_blocked;
5024 if (vmx->loaded_vmcs->nmi_known_unmasked)
5025 return false;
5026 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5027 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5028 return masked;
5029 }
5030
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5031 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5032 {
5033 struct vcpu_vmx *vmx = to_vmx(vcpu);
5034
5035 if (!enable_vnmi) {
5036 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5037 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5038 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5039 }
5040 } else {
5041 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5042 if (masked)
5043 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5044 GUEST_INTR_STATE_NMI);
5045 else
5046 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5047 GUEST_INTR_STATE_NMI);
5048 }
5049 }
5050
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5051 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5052 {
5053 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5054 return false;
5055
5056 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5057 return true;
5058
5059 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5060 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5061 GUEST_INTR_STATE_NMI));
5062 }
5063
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5064 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5065 {
5066 if (to_vmx(vcpu)->nested.nested_run_pending)
5067 return -EBUSY;
5068
5069 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5070 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5071 return -EBUSY;
5072
5073 return !vmx_nmi_blocked(vcpu);
5074 }
5075
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5076 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5077 {
5078 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5079 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5080 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5081 }
5082
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5083 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5084 {
5085 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5086 return false;
5087
5088 return __vmx_interrupt_blocked(vcpu);
5089 }
5090
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5091 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5092 {
5093 if (to_vmx(vcpu)->nested.nested_run_pending)
5094 return -EBUSY;
5095
5096 /*
5097 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5098 * e.g. if the IRQ arrived asynchronously after checking nested events.
5099 */
5100 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5101 return -EBUSY;
5102
5103 return !vmx_interrupt_blocked(vcpu);
5104 }
5105
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5106 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5107 {
5108 void __user *ret;
5109
5110 if (enable_unrestricted_guest)
5111 return 0;
5112
5113 mutex_lock(&kvm->slots_lock);
5114 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5115 PAGE_SIZE * 3);
5116 mutex_unlock(&kvm->slots_lock);
5117
5118 if (IS_ERR(ret))
5119 return PTR_ERR(ret);
5120
5121 to_kvm_vmx(kvm)->tss_addr = addr;
5122
5123 return init_rmode_tss(kvm, ret);
5124 }
5125
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5126 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5127 {
5128 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5129 return 0;
5130 }
5131
rmode_exception(struct kvm_vcpu * vcpu,int vec)5132 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5133 {
5134 switch (vec) {
5135 case BP_VECTOR:
5136 /*
5137 * Update instruction length as we may reinject the exception
5138 * from user space while in guest debugging mode.
5139 */
5140 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5141 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5142 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5143 return false;
5144 fallthrough;
5145 case DB_VECTOR:
5146 return !(vcpu->guest_debug &
5147 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5148 case DE_VECTOR:
5149 case OF_VECTOR:
5150 case BR_VECTOR:
5151 case UD_VECTOR:
5152 case DF_VECTOR:
5153 case SS_VECTOR:
5154 case GP_VECTOR:
5155 case MF_VECTOR:
5156 return true;
5157 }
5158 return false;
5159 }
5160
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5161 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5162 int vec, u32 err_code)
5163 {
5164 /*
5165 * Instruction with address size override prefix opcode 0x67
5166 * Cause the #SS fault with 0 error code in VM86 mode.
5167 */
5168 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5169 if (kvm_emulate_instruction(vcpu, 0)) {
5170 if (vcpu->arch.halt_request) {
5171 vcpu->arch.halt_request = 0;
5172 return kvm_emulate_halt_noskip(vcpu);
5173 }
5174 return 1;
5175 }
5176 return 0;
5177 }
5178
5179 /*
5180 * Forward all other exceptions that are valid in real mode.
5181 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5182 * the required debugging infrastructure rework.
5183 */
5184 kvm_queue_exception(vcpu, vec);
5185 return 1;
5186 }
5187
handle_machine_check(struct kvm_vcpu * vcpu)5188 static int handle_machine_check(struct kvm_vcpu *vcpu)
5189 {
5190 /* handled by vmx_vcpu_run() */
5191 return 1;
5192 }
5193
5194 /*
5195 * If the host has split lock detection disabled, then #AC is
5196 * unconditionally injected into the guest, which is the pre split lock
5197 * detection behaviour.
5198 *
5199 * If the host has split lock detection enabled then #AC is
5200 * only injected into the guest when:
5201 * - Guest CPL == 3 (user mode)
5202 * - Guest has #AC detection enabled in CR0
5203 * - Guest EFLAGS has AC bit set
5204 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5205 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5206 {
5207 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5208 return true;
5209
5210 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5211 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5212 }
5213
handle_exception_nmi(struct kvm_vcpu * vcpu)5214 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5215 {
5216 struct vcpu_vmx *vmx = to_vmx(vcpu);
5217 struct kvm_run *kvm_run = vcpu->run;
5218 u32 intr_info, ex_no, error_code;
5219 unsigned long cr2, dr6;
5220 u32 vect_info;
5221
5222 vect_info = vmx->idt_vectoring_info;
5223 intr_info = vmx_get_intr_info(vcpu);
5224
5225 /*
5226 * Machine checks are handled by handle_exception_irqoff(), or by
5227 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5228 * vmx_vcpu_enter_exit().
5229 */
5230 if (is_machine_check(intr_info) || is_nmi(intr_info))
5231 return 1;
5232
5233 /*
5234 * Queue the exception here instead of in handle_nm_fault_irqoff().
5235 * This ensures the nested_vmx check is not skipped so vmexit can
5236 * be reflected to L1 (when it intercepts #NM) before reaching this
5237 * point.
5238 */
5239 if (is_nm_fault(intr_info)) {
5240 kvm_queue_exception(vcpu, NM_VECTOR);
5241 return 1;
5242 }
5243
5244 if (is_invalid_opcode(intr_info))
5245 return handle_ud(vcpu);
5246
5247 if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5248 struct vmx_ve_information *ve_info = vmx->ve_info;
5249
5250 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5251 "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5252 dump_vmcs(vcpu);
5253 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5254 return 1;
5255 }
5256
5257 error_code = 0;
5258 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5259 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5260
5261 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5262 WARN_ON_ONCE(!enable_vmware_backdoor);
5263
5264 /*
5265 * VMware backdoor emulation on #GP interception only handles
5266 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5267 * error code on #GP.
5268 */
5269 if (error_code) {
5270 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5271 return 1;
5272 }
5273 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5274 }
5275
5276 /*
5277 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5278 * MMIO, it is better to report an internal error.
5279 * See the comments in vmx_handle_exit.
5280 */
5281 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5282 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5283 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5284 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5285 vcpu->run->internal.ndata = 4;
5286 vcpu->run->internal.data[0] = vect_info;
5287 vcpu->run->internal.data[1] = intr_info;
5288 vcpu->run->internal.data[2] = error_code;
5289 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5290 return 0;
5291 }
5292
5293 if (is_page_fault(intr_info)) {
5294 cr2 = vmx_get_exit_qual(vcpu);
5295 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5296 /*
5297 * EPT will cause page fault only if we need to
5298 * detect illegal GPAs.
5299 */
5300 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5301 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5302 return 1;
5303 } else
5304 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5305 }
5306
5307 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5308
5309 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5310 return handle_rmode_exception(vcpu, ex_no, error_code);
5311
5312 switch (ex_no) {
5313 case DB_VECTOR:
5314 dr6 = vmx_get_exit_qual(vcpu);
5315 if (!(vcpu->guest_debug &
5316 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5317 /*
5318 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5319 * instruction. ICEBP generates a trap-like #DB, but
5320 * despite its interception control being tied to #DB,
5321 * is an instruction intercept, i.e. the VM-Exit occurs
5322 * on the ICEBP itself. Use the inner "skip" helper to
5323 * avoid single-step #DB and MTF updates, as ICEBP is
5324 * higher priority. Note, skipping ICEBP still clears
5325 * STI and MOVSS blocking.
5326 *
5327 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5328 * if single-step is enabled in RFLAGS and STI or MOVSS
5329 * blocking is active, as the CPU doesn't set the bit
5330 * on VM-Exit due to #DB interception. VM-Entry has a
5331 * consistency check that a single-step #DB is pending
5332 * in this scenario as the previous instruction cannot
5333 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5334 * don't modify RFLAGS), therefore the one instruction
5335 * delay when activating single-step breakpoints must
5336 * have already expired. Note, the CPU sets/clears BS
5337 * as appropriate for all other VM-Exits types.
5338 */
5339 if (is_icebp(intr_info))
5340 WARN_ON(!skip_emulated_instruction(vcpu));
5341 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5342 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5343 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5344 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5345 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5346
5347 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5348 return 1;
5349 }
5350 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5351 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5352 fallthrough;
5353 case BP_VECTOR:
5354 /*
5355 * Update instruction length as we may reinject #BP from
5356 * user space while in guest debugging mode. Reading it for
5357 * #DB as well causes no harm, it is not used in that case.
5358 */
5359 vmx->vcpu.arch.event_exit_inst_len =
5360 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5361 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5362 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5363 kvm_run->debug.arch.exception = ex_no;
5364 break;
5365 case AC_VECTOR:
5366 if (vmx_guest_inject_ac(vcpu)) {
5367 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5368 return 1;
5369 }
5370
5371 /*
5372 * Handle split lock. Depending on detection mode this will
5373 * either warn and disable split lock detection for this
5374 * task or force SIGBUS on it.
5375 */
5376 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5377 return 1;
5378 fallthrough;
5379 default:
5380 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5381 kvm_run->ex.exception = ex_no;
5382 kvm_run->ex.error_code = error_code;
5383 break;
5384 }
5385 return 0;
5386 }
5387
handle_external_interrupt(struct kvm_vcpu * vcpu)5388 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5389 {
5390 ++vcpu->stat.irq_exits;
5391 return 1;
5392 }
5393
handle_triple_fault(struct kvm_vcpu * vcpu)5394 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5395 {
5396 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5397 vcpu->mmio_needed = 0;
5398 return 0;
5399 }
5400
handle_io(struct kvm_vcpu * vcpu)5401 static int handle_io(struct kvm_vcpu *vcpu)
5402 {
5403 unsigned long exit_qualification;
5404 int size, in, string;
5405 unsigned port;
5406
5407 exit_qualification = vmx_get_exit_qual(vcpu);
5408 string = (exit_qualification & 16) != 0;
5409
5410 ++vcpu->stat.io_exits;
5411
5412 if (string)
5413 return kvm_emulate_instruction(vcpu, 0);
5414
5415 port = exit_qualification >> 16;
5416 size = (exit_qualification & 7) + 1;
5417 in = (exit_qualification & 8) != 0;
5418
5419 return kvm_fast_pio(vcpu, size, port, in);
5420 }
5421
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5422 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5423 {
5424 /*
5425 * Patch in the VMCALL instruction:
5426 */
5427 hypercall[0] = 0x0f;
5428 hypercall[1] = 0x01;
5429 hypercall[2] = 0xc1;
5430 }
5431
5432 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5433 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5434 {
5435 if (is_guest_mode(vcpu)) {
5436 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5437 unsigned long orig_val = val;
5438
5439 /*
5440 * We get here when L2 changed cr0 in a way that did not change
5441 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5442 * but did change L0 shadowed bits. So we first calculate the
5443 * effective cr0 value that L1 would like to write into the
5444 * hardware. It consists of the L2-owned bits from the new
5445 * value combined with the L1-owned bits from L1's guest_cr0.
5446 */
5447 val = (val & ~vmcs12->cr0_guest_host_mask) |
5448 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5449
5450 if (kvm_set_cr0(vcpu, val))
5451 return 1;
5452 vmcs_writel(CR0_READ_SHADOW, orig_val);
5453 return 0;
5454 } else {
5455 return kvm_set_cr0(vcpu, val);
5456 }
5457 }
5458
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5459 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5460 {
5461 if (is_guest_mode(vcpu)) {
5462 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5463 unsigned long orig_val = val;
5464
5465 /* analogously to handle_set_cr0 */
5466 val = (val & ~vmcs12->cr4_guest_host_mask) |
5467 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5468 if (kvm_set_cr4(vcpu, val))
5469 return 1;
5470 vmcs_writel(CR4_READ_SHADOW, orig_val);
5471 return 0;
5472 } else
5473 return kvm_set_cr4(vcpu, val);
5474 }
5475
handle_desc(struct kvm_vcpu * vcpu)5476 static int handle_desc(struct kvm_vcpu *vcpu)
5477 {
5478 /*
5479 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5480 * and other code needs to be updated if UMIP can be guest owned.
5481 */
5482 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5483
5484 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5485 return kvm_emulate_instruction(vcpu, 0);
5486 }
5487
handle_cr(struct kvm_vcpu * vcpu)5488 static int handle_cr(struct kvm_vcpu *vcpu)
5489 {
5490 unsigned long exit_qualification, val;
5491 int cr;
5492 int reg;
5493 int err;
5494 int ret;
5495
5496 exit_qualification = vmx_get_exit_qual(vcpu);
5497 cr = exit_qualification & 15;
5498 reg = (exit_qualification >> 8) & 15;
5499 switch ((exit_qualification >> 4) & 3) {
5500 case 0: /* mov to cr */
5501 val = kvm_register_read(vcpu, reg);
5502 trace_kvm_cr_write(cr, val);
5503 switch (cr) {
5504 case 0:
5505 err = handle_set_cr0(vcpu, val);
5506 return kvm_complete_insn_gp(vcpu, err);
5507 case 3:
5508 WARN_ON_ONCE(enable_unrestricted_guest);
5509
5510 err = kvm_set_cr3(vcpu, val);
5511 return kvm_complete_insn_gp(vcpu, err);
5512 case 4:
5513 err = handle_set_cr4(vcpu, val);
5514 return kvm_complete_insn_gp(vcpu, err);
5515 case 8: {
5516 u8 cr8_prev = kvm_get_cr8(vcpu);
5517 u8 cr8 = (u8)val;
5518 err = kvm_set_cr8(vcpu, cr8);
5519 ret = kvm_complete_insn_gp(vcpu, err);
5520 if (lapic_in_kernel(vcpu))
5521 return ret;
5522 if (cr8_prev <= cr8)
5523 return ret;
5524 /*
5525 * TODO: we might be squashing a
5526 * KVM_GUESTDBG_SINGLESTEP-triggered
5527 * KVM_EXIT_DEBUG here.
5528 */
5529 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5530 return 0;
5531 }
5532 }
5533 break;
5534 case 2: /* clts */
5535 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5536 return -EIO;
5537 case 1: /*mov from cr*/
5538 switch (cr) {
5539 case 3:
5540 WARN_ON_ONCE(enable_unrestricted_guest);
5541
5542 val = kvm_read_cr3(vcpu);
5543 kvm_register_write(vcpu, reg, val);
5544 trace_kvm_cr_read(cr, val);
5545 return kvm_skip_emulated_instruction(vcpu);
5546 case 8:
5547 val = kvm_get_cr8(vcpu);
5548 kvm_register_write(vcpu, reg, val);
5549 trace_kvm_cr_read(cr, val);
5550 return kvm_skip_emulated_instruction(vcpu);
5551 }
5552 break;
5553 case 3: /* lmsw */
5554 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5555 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5556 kvm_lmsw(vcpu, val);
5557
5558 return kvm_skip_emulated_instruction(vcpu);
5559 default:
5560 break;
5561 }
5562 vcpu->run->exit_reason = 0;
5563 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5564 (int)(exit_qualification >> 4) & 3, cr);
5565 return 0;
5566 }
5567
handle_dr(struct kvm_vcpu * vcpu)5568 static int handle_dr(struct kvm_vcpu *vcpu)
5569 {
5570 unsigned long exit_qualification;
5571 int dr, dr7, reg;
5572 int err = 1;
5573
5574 exit_qualification = vmx_get_exit_qual(vcpu);
5575 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5576
5577 /* First, if DR does not exist, trigger UD */
5578 if (!kvm_require_dr(vcpu, dr))
5579 return 1;
5580
5581 if (vmx_get_cpl(vcpu) > 0)
5582 goto out;
5583
5584 dr7 = vmcs_readl(GUEST_DR7);
5585 if (dr7 & DR7_GD) {
5586 /*
5587 * As the vm-exit takes precedence over the debug trap, we
5588 * need to emulate the latter, either for the host or the
5589 * guest debugging itself.
5590 */
5591 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5592 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5593 vcpu->run->debug.arch.dr7 = dr7;
5594 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5595 vcpu->run->debug.arch.exception = DB_VECTOR;
5596 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5597 return 0;
5598 } else {
5599 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5600 return 1;
5601 }
5602 }
5603
5604 if (vcpu->guest_debug == 0) {
5605 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5606
5607 /*
5608 * No more DR vmexits; force a reload of the debug registers
5609 * and reenter on this instruction. The next vmexit will
5610 * retrieve the full state of the debug registers.
5611 */
5612 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5613 return 1;
5614 }
5615
5616 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5617 if (exit_qualification & TYPE_MOV_FROM_DR) {
5618 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5619 err = 0;
5620 } else {
5621 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5622 }
5623
5624 out:
5625 return kvm_complete_insn_gp(vcpu, err);
5626 }
5627
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5628 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5629 {
5630 get_debugreg(vcpu->arch.db[0], 0);
5631 get_debugreg(vcpu->arch.db[1], 1);
5632 get_debugreg(vcpu->arch.db[2], 2);
5633 get_debugreg(vcpu->arch.db[3], 3);
5634 get_debugreg(vcpu->arch.dr6, 6);
5635 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5636
5637 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5638 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5639
5640 /*
5641 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5642 * a stale dr6 from the guest.
5643 */
5644 set_debugreg(DR6_RESERVED, 6);
5645 }
5646
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)5647 void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5648 {
5649 lockdep_assert_irqs_disabled();
5650 set_debugreg(vcpu->arch.dr6, 6);
5651 }
5652
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5653 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5654 {
5655 vmcs_writel(GUEST_DR7, val);
5656 }
5657
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5658 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5659 {
5660 kvm_apic_update_ppr(vcpu);
5661 return 1;
5662 }
5663
handle_interrupt_window(struct kvm_vcpu * vcpu)5664 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5665 {
5666 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5667
5668 kvm_make_request(KVM_REQ_EVENT, vcpu);
5669
5670 ++vcpu->stat.irq_window_exits;
5671 return 1;
5672 }
5673
handle_invlpg(struct kvm_vcpu * vcpu)5674 static int handle_invlpg(struct kvm_vcpu *vcpu)
5675 {
5676 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5677
5678 kvm_mmu_invlpg(vcpu, exit_qualification);
5679 return kvm_skip_emulated_instruction(vcpu);
5680 }
5681
handle_apic_access(struct kvm_vcpu * vcpu)5682 static int handle_apic_access(struct kvm_vcpu *vcpu)
5683 {
5684 if (likely(fasteoi)) {
5685 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5686 int access_type, offset;
5687
5688 access_type = exit_qualification & APIC_ACCESS_TYPE;
5689 offset = exit_qualification & APIC_ACCESS_OFFSET;
5690 /*
5691 * Sane guest uses MOV to write EOI, with written value
5692 * not cared. So make a short-circuit here by avoiding
5693 * heavy instruction emulation.
5694 */
5695 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5696 (offset == APIC_EOI)) {
5697 kvm_lapic_set_eoi(vcpu);
5698 return kvm_skip_emulated_instruction(vcpu);
5699 }
5700 }
5701 return kvm_emulate_instruction(vcpu, 0);
5702 }
5703
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5704 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5705 {
5706 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5707 int vector = exit_qualification & 0xff;
5708
5709 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5710 kvm_apic_set_eoi_accelerated(vcpu, vector);
5711 return 1;
5712 }
5713
handle_apic_write(struct kvm_vcpu * vcpu)5714 static int handle_apic_write(struct kvm_vcpu *vcpu)
5715 {
5716 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5717
5718 /*
5719 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5720 * hardware has done any necessary aliasing, offset adjustments, etc...
5721 * for the access. I.e. the correct value has already been written to
5722 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5723 * retrieve the register value and emulate the access.
5724 */
5725 u32 offset = exit_qualification & 0xff0;
5726
5727 kvm_apic_write_nodecode(vcpu, offset);
5728 return 1;
5729 }
5730
handle_task_switch(struct kvm_vcpu * vcpu)5731 static int handle_task_switch(struct kvm_vcpu *vcpu)
5732 {
5733 struct vcpu_vmx *vmx = to_vmx(vcpu);
5734 unsigned long exit_qualification;
5735 bool has_error_code = false;
5736 u32 error_code = 0;
5737 u16 tss_selector;
5738 int reason, type, idt_v, idt_index;
5739
5740 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5741 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5742 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5743
5744 exit_qualification = vmx_get_exit_qual(vcpu);
5745
5746 reason = (u32)exit_qualification >> 30;
5747 if (reason == TASK_SWITCH_GATE && idt_v) {
5748 switch (type) {
5749 case INTR_TYPE_NMI_INTR:
5750 vcpu->arch.nmi_injected = false;
5751 vmx_set_nmi_mask(vcpu, true);
5752 break;
5753 case INTR_TYPE_EXT_INTR:
5754 case INTR_TYPE_SOFT_INTR:
5755 kvm_clear_interrupt_queue(vcpu);
5756 break;
5757 case INTR_TYPE_HARD_EXCEPTION:
5758 if (vmx->idt_vectoring_info &
5759 VECTORING_INFO_DELIVER_CODE_MASK) {
5760 has_error_code = true;
5761 error_code =
5762 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5763 }
5764 fallthrough;
5765 case INTR_TYPE_SOFT_EXCEPTION:
5766 kvm_clear_exception_queue(vcpu);
5767 break;
5768 default:
5769 break;
5770 }
5771 }
5772 tss_selector = exit_qualification;
5773
5774 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5775 type != INTR_TYPE_EXT_INTR &&
5776 type != INTR_TYPE_NMI_INTR))
5777 WARN_ON(!skip_emulated_instruction(vcpu));
5778
5779 /*
5780 * TODO: What about debug traps on tss switch?
5781 * Are we supposed to inject them and update dr6?
5782 */
5783 return kvm_task_switch(vcpu, tss_selector,
5784 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5785 reason, has_error_code, error_code);
5786 }
5787
handle_ept_violation(struct kvm_vcpu * vcpu)5788 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5789 {
5790 unsigned long exit_qualification;
5791 gpa_t gpa;
5792 u64 error_code;
5793
5794 exit_qualification = vmx_get_exit_qual(vcpu);
5795
5796 /*
5797 * EPT violation happened while executing iret from NMI,
5798 * "blocked by NMI" bit has to be set before next VM entry.
5799 * There are errata that may cause this bit to not be set:
5800 * AAK134, BY25.
5801 */
5802 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5803 enable_vnmi &&
5804 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5805 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5806
5807 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5808 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5809
5810 /* Is it a read fault? */
5811 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5812 ? PFERR_USER_MASK : 0;
5813 /* Is it a write fault? */
5814 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5815 ? PFERR_WRITE_MASK : 0;
5816 /* Is it a fetch fault? */
5817 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5818 ? PFERR_FETCH_MASK : 0;
5819 /* ept page table entry is present? */
5820 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5821 ? PFERR_PRESENT_MASK : 0;
5822
5823 if (error_code & EPT_VIOLATION_GVA_IS_VALID)
5824 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) ?
5825 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5826
5827 /*
5828 * Check that the GPA doesn't exceed physical memory limits, as that is
5829 * a guest page fault. We have to emulate the instruction here, because
5830 * if the illegal address is that of a paging structure, then
5831 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5832 * would also use advanced VM-exit information for EPT violations to
5833 * reconstruct the page fault error code.
5834 */
5835 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5836 return kvm_emulate_instruction(vcpu, 0);
5837
5838 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5839 }
5840
handle_ept_misconfig(struct kvm_vcpu * vcpu)5841 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5842 {
5843 gpa_t gpa;
5844
5845 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5846 return 1;
5847
5848 /*
5849 * A nested guest cannot optimize MMIO vmexits, because we have an
5850 * nGPA here instead of the required GPA.
5851 */
5852 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5853 if (!is_guest_mode(vcpu) &&
5854 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5855 trace_kvm_fast_mmio(gpa);
5856 return kvm_skip_emulated_instruction(vcpu);
5857 }
5858
5859 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5860 }
5861
handle_nmi_window(struct kvm_vcpu * vcpu)5862 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5863 {
5864 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5865 return -EIO;
5866
5867 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5868 ++vcpu->stat.nmi_window_exits;
5869 kvm_make_request(KVM_REQ_EVENT, vcpu);
5870
5871 return 1;
5872 }
5873
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5874 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5875 {
5876 struct vcpu_vmx *vmx = to_vmx(vcpu);
5877
5878 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5879 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5880 }
5881
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5882 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5883 {
5884 struct vcpu_vmx *vmx = to_vmx(vcpu);
5885 bool intr_window_requested;
5886 unsigned count = 130;
5887
5888 intr_window_requested = exec_controls_get(vmx) &
5889 CPU_BASED_INTR_WINDOW_EXITING;
5890
5891 while (vmx->emulation_required && count-- != 0) {
5892 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5893 return handle_interrupt_window(&vmx->vcpu);
5894
5895 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5896 return 1;
5897
5898 if (!kvm_emulate_instruction(vcpu, 0))
5899 return 0;
5900
5901 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5902 kvm_prepare_emulation_failure_exit(vcpu);
5903 return 0;
5904 }
5905
5906 if (vcpu->arch.halt_request) {
5907 vcpu->arch.halt_request = 0;
5908 return kvm_emulate_halt_noskip(vcpu);
5909 }
5910
5911 /*
5912 * Note, return 1 and not 0, vcpu_run() will invoke
5913 * xfer_to_guest_mode() which will create a proper return
5914 * code.
5915 */
5916 if (__xfer_to_guest_mode_work_pending())
5917 return 1;
5918 }
5919
5920 return 1;
5921 }
5922
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5923 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5924 {
5925 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5926 kvm_prepare_emulation_failure_exit(vcpu);
5927 return 0;
5928 }
5929
5930 return 1;
5931 }
5932
5933 /*
5934 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5935 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5936 */
handle_pause(struct kvm_vcpu * vcpu)5937 static int handle_pause(struct kvm_vcpu *vcpu)
5938 {
5939 if (!kvm_pause_in_guest(vcpu->kvm))
5940 grow_ple_window(vcpu);
5941
5942 /*
5943 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5944 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5945 * never set PAUSE_EXITING and just set PLE if supported,
5946 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5947 */
5948 kvm_vcpu_on_spin(vcpu, true);
5949 return kvm_skip_emulated_instruction(vcpu);
5950 }
5951
handle_monitor_trap(struct kvm_vcpu * vcpu)5952 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5953 {
5954 return 1;
5955 }
5956
handle_invpcid(struct kvm_vcpu * vcpu)5957 static int handle_invpcid(struct kvm_vcpu *vcpu)
5958 {
5959 u32 vmx_instruction_info;
5960 unsigned long type;
5961 gva_t gva;
5962 struct {
5963 u64 pcid;
5964 u64 gla;
5965 } operand;
5966 int gpr_index;
5967
5968 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
5969 kvm_queue_exception(vcpu, UD_VECTOR);
5970 return 1;
5971 }
5972
5973 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5974 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5975 type = kvm_register_read(vcpu, gpr_index);
5976
5977 /* According to the Intel instruction reference, the memory operand
5978 * is read even if it isn't needed (e.g., for type==all)
5979 */
5980 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5981 vmx_instruction_info, false,
5982 sizeof(operand), &gva))
5983 return 1;
5984
5985 return kvm_handle_invpcid(vcpu, type, gva);
5986 }
5987
handle_pml_full(struct kvm_vcpu * vcpu)5988 static int handle_pml_full(struct kvm_vcpu *vcpu)
5989 {
5990 unsigned long exit_qualification;
5991
5992 trace_kvm_pml_full(vcpu->vcpu_id);
5993
5994 exit_qualification = vmx_get_exit_qual(vcpu);
5995
5996 /*
5997 * PML buffer FULL happened while executing iret from NMI,
5998 * "blocked by NMI" bit has to be set before next VM entry.
5999 */
6000 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6001 enable_vnmi &&
6002 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6003 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6004 GUEST_INTR_STATE_NMI);
6005
6006 /*
6007 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
6008 * here.., and there's no userspace involvement needed for PML.
6009 */
6010 return 1;
6011 }
6012
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)6013 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6014 bool force_immediate_exit)
6015 {
6016 struct vcpu_vmx *vmx = to_vmx(vcpu);
6017
6018 /*
6019 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6020 * due to the timer expiring while it was "soft" disabled, just eat the
6021 * exit and re-enter the guest.
6022 */
6023 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6024 return EXIT_FASTPATH_REENTER_GUEST;
6025
6026 /*
6027 * If the timer expired because KVM used it to force an immediate exit,
6028 * then mission accomplished.
6029 */
6030 if (force_immediate_exit)
6031 return EXIT_FASTPATH_EXIT_HANDLED;
6032
6033 /*
6034 * If L2 is active, go down the slow path as emulating the guest timer
6035 * expiration likely requires synthesizing a nested VM-Exit.
6036 */
6037 if (is_guest_mode(vcpu))
6038 return EXIT_FASTPATH_NONE;
6039
6040 kvm_lapic_expired_hv_timer(vcpu);
6041 return EXIT_FASTPATH_REENTER_GUEST;
6042 }
6043
handle_preemption_timer(struct kvm_vcpu * vcpu)6044 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6045 {
6046 /*
6047 * This non-fastpath handler is reached if and only if the preemption
6048 * timer was being used to emulate a guest timer while L2 is active.
6049 * All other scenarios are supposed to be handled in the fastpath.
6050 */
6051 WARN_ON_ONCE(!is_guest_mode(vcpu));
6052 kvm_lapic_expired_hv_timer(vcpu);
6053 return 1;
6054 }
6055
6056 /*
6057 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6058 * are overwritten by nested_vmx_hardware_setup() when nested=1.
6059 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6060 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6061 {
6062 kvm_queue_exception(vcpu, UD_VECTOR);
6063 return 1;
6064 }
6065
6066 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6067 static int handle_encls(struct kvm_vcpu *vcpu)
6068 {
6069 /*
6070 * SGX virtualization is disabled. There is no software enable bit for
6071 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6072 * the guest from executing ENCLS (when SGX is supported by hardware).
6073 */
6074 kvm_queue_exception(vcpu, UD_VECTOR);
6075 return 1;
6076 }
6077 #endif /* CONFIG_X86_SGX_KVM */
6078
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6079 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6080 {
6081 /*
6082 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6083 * VM-Exits. Unconditionally set the flag here and leave the handling to
6084 * vmx_handle_exit().
6085 */
6086 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6087 return 1;
6088 }
6089
handle_notify(struct kvm_vcpu * vcpu)6090 static int handle_notify(struct kvm_vcpu *vcpu)
6091 {
6092 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6093 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6094
6095 ++vcpu->stat.notify_window_exits;
6096
6097 /*
6098 * Notify VM exit happened while executing iret from NMI,
6099 * "blocked by NMI" bit has to be set before next VM entry.
6100 */
6101 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6102 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6103 GUEST_INTR_STATE_NMI);
6104
6105 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6106 context_invalid) {
6107 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6108 vcpu->run->notify.flags = context_invalid ?
6109 KVM_NOTIFY_CONTEXT_INVALID : 0;
6110 return 0;
6111 }
6112
6113 return 1;
6114 }
6115
6116 /*
6117 * The exit handlers return 1 if the exit was handled fully and guest execution
6118 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6119 * to be done to userspace and return 0.
6120 */
6121 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6122 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6123 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6124 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6125 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6126 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6127 [EXIT_REASON_CR_ACCESS] = handle_cr,
6128 [EXIT_REASON_DR_ACCESS] = handle_dr,
6129 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6130 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6131 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6132 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6133 [EXIT_REASON_HLT] = kvm_emulate_halt,
6134 [EXIT_REASON_INVD] = kvm_emulate_invd,
6135 [EXIT_REASON_INVLPG] = handle_invlpg,
6136 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6137 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6138 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6139 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6140 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6141 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6142 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6143 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6144 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6145 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6146 [EXIT_REASON_VMON] = handle_vmx_instruction,
6147 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6148 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6149 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6150 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6151 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6152 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6153 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6154 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6155 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6156 [EXIT_REASON_LDTR_TR] = handle_desc,
6157 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6158 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6159 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6160 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6161 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6162 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6163 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6164 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6165 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6166 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6167 [EXIT_REASON_PML_FULL] = handle_pml_full,
6168 [EXIT_REASON_INVPCID] = handle_invpcid,
6169 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6170 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6171 [EXIT_REASON_ENCLS] = handle_encls,
6172 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6173 [EXIT_REASON_NOTIFY] = handle_notify,
6174 };
6175
6176 static const int kvm_vmx_max_exit_handlers =
6177 ARRAY_SIZE(kvm_vmx_exit_handlers);
6178
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6179 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6180 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6181 {
6182 struct vcpu_vmx *vmx = to_vmx(vcpu);
6183
6184 *reason = vmx->exit_reason.full;
6185 *info1 = vmx_get_exit_qual(vcpu);
6186 if (!(vmx->exit_reason.failed_vmentry)) {
6187 *info2 = vmx->idt_vectoring_info;
6188 *intr_info = vmx_get_intr_info(vcpu);
6189 if (is_exception_with_error_code(*intr_info))
6190 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6191 else
6192 *error_code = 0;
6193 } else {
6194 *info2 = 0;
6195 *intr_info = 0;
6196 *error_code = 0;
6197 }
6198 }
6199
vmx_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)6200 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6201 {
6202 *intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6203 if (is_exception_with_error_code(*intr_info))
6204 *error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6205 else
6206 *error_code = 0;
6207 }
6208
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6209 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6210 {
6211 if (vmx->pml_pg) {
6212 __free_page(vmx->pml_pg);
6213 vmx->pml_pg = NULL;
6214 }
6215 }
6216
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6217 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6218 {
6219 struct vcpu_vmx *vmx = to_vmx(vcpu);
6220 u16 pml_idx, pml_tail_index;
6221 u64 *pml_buf;
6222 int i;
6223
6224 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6225
6226 /* Do nothing if PML buffer is empty */
6227 if (pml_idx == PML_HEAD_INDEX)
6228 return;
6229 /*
6230 * PML index always points to the next available PML buffer entity
6231 * unless PML log has just overflowed.
6232 */
6233 pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6234
6235 /*
6236 * PML log is written backwards: the CPU first writes the entry 511
6237 * then the entry 510, and so on.
6238 *
6239 * Read the entries in the same order they were written, to ensure that
6240 * the dirty ring is filled in the same order the CPU wrote them.
6241 */
6242 pml_buf = page_address(vmx->pml_pg);
6243
6244 for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6245 u64 gpa;
6246
6247 gpa = pml_buf[i];
6248 WARN_ON(gpa & (PAGE_SIZE - 1));
6249 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6250 }
6251
6252 /* reset PML index */
6253 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6254 }
6255
vmx_dump_sel(char * name,uint32_t sel)6256 static void vmx_dump_sel(char *name, uint32_t sel)
6257 {
6258 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6259 name, vmcs_read16(sel),
6260 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6261 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6262 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6263 }
6264
vmx_dump_dtsel(char * name,uint32_t limit)6265 static void vmx_dump_dtsel(char *name, uint32_t limit)
6266 {
6267 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6268 name, vmcs_read32(limit),
6269 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6270 }
6271
vmx_dump_msrs(char * name,struct vmx_msrs * m)6272 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6273 {
6274 unsigned int i;
6275 struct vmx_msr_entry *e;
6276
6277 pr_err("MSR %s:\n", name);
6278 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6279 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6280 }
6281
dump_vmcs(struct kvm_vcpu * vcpu)6282 void dump_vmcs(struct kvm_vcpu *vcpu)
6283 {
6284 struct vcpu_vmx *vmx = to_vmx(vcpu);
6285 u32 vmentry_ctl, vmexit_ctl;
6286 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6287 u64 tertiary_exec_control;
6288 unsigned long cr4;
6289 int efer_slot;
6290
6291 if (!dump_invalid_vmcs) {
6292 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6293 return;
6294 }
6295
6296 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6297 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6298 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6299 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6300 cr4 = vmcs_readl(GUEST_CR4);
6301
6302 if (cpu_has_secondary_exec_ctrls())
6303 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6304 else
6305 secondary_exec_control = 0;
6306
6307 if (cpu_has_tertiary_exec_ctrls())
6308 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6309 else
6310 tertiary_exec_control = 0;
6311
6312 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6313 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6314 pr_err("*** Guest State ***\n");
6315 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6316 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6317 vmcs_readl(CR0_GUEST_HOST_MASK));
6318 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6319 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6320 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6321 if (cpu_has_vmx_ept()) {
6322 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6323 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6324 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6325 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6326 }
6327 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6328 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6329 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6330 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6331 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6332 vmcs_readl(GUEST_SYSENTER_ESP),
6333 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6334 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6335 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6336 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6337 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6338 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6339 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6340 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6341 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6342 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6343 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6344 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6345 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6346 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6347 else if (efer_slot >= 0)
6348 pr_err("EFER= 0x%016llx (autoload)\n",
6349 vmx->msr_autoload.guest.val[efer_slot].value);
6350 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6351 pr_err("EFER= 0x%016llx (effective)\n",
6352 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6353 else
6354 pr_err("EFER= 0x%016llx (effective)\n",
6355 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6356 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6357 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6358 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6359 vmcs_read64(GUEST_IA32_DEBUGCTL),
6360 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6361 if (cpu_has_load_perf_global_ctrl() &&
6362 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6363 pr_err("PerfGlobCtl = 0x%016llx\n",
6364 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6365 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6366 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6367 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6368 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6369 vmcs_read32(GUEST_ACTIVITY_STATE));
6370 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6371 pr_err("InterruptStatus = %04x\n",
6372 vmcs_read16(GUEST_INTR_STATUS));
6373 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6374 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6375 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6376 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6377
6378 pr_err("*** Host State ***\n");
6379 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6380 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6381 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6382 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6383 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6384 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6385 vmcs_read16(HOST_TR_SELECTOR));
6386 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6387 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6388 vmcs_readl(HOST_TR_BASE));
6389 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6390 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6391 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6392 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6393 vmcs_readl(HOST_CR4));
6394 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6395 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6396 vmcs_read32(HOST_IA32_SYSENTER_CS),
6397 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6398 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6399 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6400 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6401 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6402 if (cpu_has_load_perf_global_ctrl() &&
6403 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6404 pr_err("PerfGlobCtl = 0x%016llx\n",
6405 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6406 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6407 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6408
6409 pr_err("*** Control State ***\n");
6410 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6411 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6412 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6413 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6414 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6415 vmcs_read32(EXCEPTION_BITMAP),
6416 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6417 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6418 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6419 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6420 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6421 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6422 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6423 vmcs_read32(VM_EXIT_INTR_INFO),
6424 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6425 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6426 pr_err(" reason=%08x qualification=%016lx\n",
6427 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6428 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6429 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6430 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6431 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6432 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6433 pr_err("TSC Multiplier = 0x%016llx\n",
6434 vmcs_read64(TSC_MULTIPLIER));
6435 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6436 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6437 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6438 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6439 }
6440 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6441 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6442 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6443 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6444 }
6445 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6446 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6447 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6448 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6449 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6450 pr_err("PLE Gap=%08x Window=%08x\n",
6451 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6452 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6453 pr_err("Virtual processor ID = 0x%04x\n",
6454 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6455 if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6456 struct vmx_ve_information *ve_info = vmx->ve_info;
6457 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6458
6459 /*
6460 * If KVM is dumping the VMCS, then something has gone wrong
6461 * already. Derefencing an address from the VMCS, which could
6462 * very well be corrupted, is a terrible idea. The virtual
6463 * address is known so use it.
6464 */
6465 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6466 ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6467 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6468 ve_info->exit_reason, ve_info->delivery,
6469 ve_info->exit_qualification,
6470 ve_info->guest_linear_address,
6471 ve_info->guest_physical_address, ve_info->eptp_index);
6472 }
6473 }
6474
6475 /*
6476 * The guest has exited. See if we can fix it or if we need userspace
6477 * assistance.
6478 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6479 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6480 {
6481 struct vcpu_vmx *vmx = to_vmx(vcpu);
6482 union vmx_exit_reason exit_reason = vmx->exit_reason;
6483 u32 vectoring_info = vmx->idt_vectoring_info;
6484 u16 exit_handler_index;
6485
6486 /*
6487 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6488 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6489 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6490 * mode as if vcpus is in root mode, the PML buffer must has been
6491 * flushed already. Note, PML is never enabled in hardware while
6492 * running L2.
6493 */
6494 if (enable_pml && !is_guest_mode(vcpu))
6495 vmx_flush_pml_buffer(vcpu);
6496
6497 /*
6498 * KVM should never reach this point with a pending nested VM-Enter.
6499 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6500 * invalid guest state should never happen as that means KVM knowingly
6501 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6502 */
6503 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6504 return -EIO;
6505
6506 if (is_guest_mode(vcpu)) {
6507 /*
6508 * PML is never enabled when running L2, bail immediately if a
6509 * PML full exit occurs as something is horribly wrong.
6510 */
6511 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6512 goto unexpected_vmexit;
6513
6514 /*
6515 * The host physical addresses of some pages of guest memory
6516 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6517 * Page). The CPU may write to these pages via their host
6518 * physical address while L2 is running, bypassing any
6519 * address-translation-based dirty tracking (e.g. EPT write
6520 * protection).
6521 *
6522 * Mark them dirty on every exit from L2 to prevent them from
6523 * getting out of sync with dirty tracking.
6524 */
6525 nested_mark_vmcs12_pages_dirty(vcpu);
6526
6527 /*
6528 * Synthesize a triple fault if L2 state is invalid. In normal
6529 * operation, nested VM-Enter rejects any attempt to enter L2
6530 * with invalid state. However, those checks are skipped if
6531 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6532 * L2 state is invalid, it means either L1 modified SMRAM state
6533 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6534 * doing so is architecturally allowed in the RSM case, and is
6535 * the least awful solution for the userspace case without
6536 * risking false positives.
6537 */
6538 if (vmx->emulation_required) {
6539 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6540 return 1;
6541 }
6542
6543 if (nested_vmx_reflect_vmexit(vcpu))
6544 return 1;
6545 }
6546
6547 /* If guest state is invalid, start emulating. L2 is handled above. */
6548 if (vmx->emulation_required)
6549 return handle_invalid_guest_state(vcpu);
6550
6551 if (exit_reason.failed_vmentry) {
6552 dump_vmcs(vcpu);
6553 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6554 vcpu->run->fail_entry.hardware_entry_failure_reason
6555 = exit_reason.full;
6556 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6557 return 0;
6558 }
6559
6560 if (unlikely(vmx->fail)) {
6561 dump_vmcs(vcpu);
6562 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6563 vcpu->run->fail_entry.hardware_entry_failure_reason
6564 = vmcs_read32(VM_INSTRUCTION_ERROR);
6565 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6566 return 0;
6567 }
6568
6569 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6570 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6571 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6572 exit_reason.basic != EXIT_REASON_PML_FULL &&
6573 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6574 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6575 exit_reason.basic != EXIT_REASON_NOTIFY &&
6576 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6577 kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6578 return 0;
6579 }
6580
6581 if (unlikely(!enable_vnmi &&
6582 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6583 if (!vmx_interrupt_blocked(vcpu)) {
6584 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6585 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6586 vcpu->arch.nmi_pending) {
6587 /*
6588 * This CPU don't support us in finding the end of an
6589 * NMI-blocked window if the guest runs with IRQs
6590 * disabled. So we pull the trigger after 1 s of
6591 * futile waiting, but inform the user about this.
6592 */
6593 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6594 "state on VCPU %d after 1 s timeout\n",
6595 __func__, vcpu->vcpu_id);
6596 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6597 }
6598 }
6599
6600 if (exit_fastpath != EXIT_FASTPATH_NONE)
6601 return 1;
6602
6603 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6604 goto unexpected_vmexit;
6605 #ifdef CONFIG_MITIGATION_RETPOLINE
6606 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6607 return kvm_emulate_wrmsr(vcpu);
6608 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6609 return handle_preemption_timer(vcpu);
6610 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6611 return handle_interrupt_window(vcpu);
6612 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6613 return handle_external_interrupt(vcpu);
6614 else if (exit_reason.basic == EXIT_REASON_HLT)
6615 return kvm_emulate_halt(vcpu);
6616 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6617 return handle_ept_misconfig(vcpu);
6618 #endif
6619
6620 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6621 kvm_vmx_max_exit_handlers);
6622 if (!kvm_vmx_exit_handlers[exit_handler_index])
6623 goto unexpected_vmexit;
6624
6625 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6626
6627 unexpected_vmexit:
6628 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6629 exit_reason.full);
6630 dump_vmcs(vcpu);
6631 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6632 vcpu->run->internal.suberror =
6633 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6634 vcpu->run->internal.ndata = 2;
6635 vcpu->run->internal.data[0] = exit_reason.full;
6636 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6637 return 0;
6638 }
6639
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6640 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6641 {
6642 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6643
6644 /*
6645 * Exit to user space when bus lock detected to inform that there is
6646 * a bus lock in guest.
6647 */
6648 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6649 if (ret > 0)
6650 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6651
6652 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6653 return 0;
6654 }
6655 return ret;
6656 }
6657
6658 /*
6659 * Software based L1D cache flush which is used when microcode providing
6660 * the cache control MSR is not loaded.
6661 *
6662 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6663 * flush it is required to read in 64 KiB because the replacement algorithm
6664 * is not exactly LRU. This could be sized at runtime via topology
6665 * information but as all relevant affected CPUs have 32KiB L1D cache size
6666 * there is no point in doing so.
6667 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6668 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6669 {
6670 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6671
6672 /*
6673 * This code is only executed when the flush mode is 'cond' or
6674 * 'always'
6675 */
6676 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6677 bool flush_l1d;
6678
6679 /*
6680 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6681 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6682 * exits to userspace, or if KVM reaches one of the unsafe
6683 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6684 */
6685 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6686 vcpu->arch.l1tf_flush_l1d = false;
6687
6688 /*
6689 * Clear the per-cpu flush bit, it gets set again from
6690 * the interrupt handlers.
6691 */
6692 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6693 kvm_clear_cpu_l1tf_flush_l1d();
6694
6695 if (!flush_l1d)
6696 return;
6697 }
6698
6699 vcpu->stat.l1d_flush++;
6700
6701 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6702 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6703 return;
6704 }
6705
6706 asm volatile(
6707 /* First ensure the pages are in the TLB */
6708 "xorl %%eax, %%eax\n"
6709 ".Lpopulate_tlb:\n\t"
6710 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6711 "addl $4096, %%eax\n\t"
6712 "cmpl %%eax, %[size]\n\t"
6713 "jne .Lpopulate_tlb\n\t"
6714 "xorl %%eax, %%eax\n\t"
6715 "cpuid\n\t"
6716 /* Now fill the cache */
6717 "xorl %%eax, %%eax\n"
6718 ".Lfill_cache:\n"
6719 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6720 "addl $64, %%eax\n\t"
6721 "cmpl %%eax, %[size]\n\t"
6722 "jne .Lfill_cache\n\t"
6723 "lfence\n"
6724 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6725 [size] "r" (size)
6726 : "eax", "ebx", "ecx", "edx");
6727 }
6728
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6729 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6730 {
6731 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6732 int tpr_threshold;
6733
6734 if (is_guest_mode(vcpu) &&
6735 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6736 return;
6737
6738 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6739 if (is_guest_mode(vcpu))
6740 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6741 else
6742 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6743 }
6744
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6745 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6746 {
6747 struct vcpu_vmx *vmx = to_vmx(vcpu);
6748 u32 sec_exec_control;
6749
6750 if (!lapic_in_kernel(vcpu))
6751 return;
6752
6753 if (!flexpriority_enabled &&
6754 !cpu_has_vmx_virtualize_x2apic_mode())
6755 return;
6756
6757 /* Postpone execution until vmcs01 is the current VMCS. */
6758 if (is_guest_mode(vcpu)) {
6759 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6760 return;
6761 }
6762
6763 sec_exec_control = secondary_exec_controls_get(vmx);
6764 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6765 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6766
6767 switch (kvm_get_apic_mode(vcpu)) {
6768 case LAPIC_MODE_INVALID:
6769 WARN_ONCE(true, "Invalid local APIC state");
6770 break;
6771 case LAPIC_MODE_DISABLED:
6772 break;
6773 case LAPIC_MODE_XAPIC:
6774 if (flexpriority_enabled) {
6775 sec_exec_control |=
6776 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6777 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6778
6779 /*
6780 * Flush the TLB, reloading the APIC access page will
6781 * only do so if its physical address has changed, but
6782 * the guest may have inserted a non-APIC mapping into
6783 * the TLB while the APIC access page was disabled.
6784 */
6785 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6786 }
6787 break;
6788 case LAPIC_MODE_X2APIC:
6789 if (cpu_has_vmx_virtualize_x2apic_mode())
6790 sec_exec_control |=
6791 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6792 break;
6793 }
6794 secondary_exec_controls_set(vmx, sec_exec_control);
6795
6796 vmx_update_msr_bitmap_x2apic(vcpu);
6797 }
6798
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6799 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6800 {
6801 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6802 struct kvm *kvm = vcpu->kvm;
6803 struct kvm_memslots *slots = kvm_memslots(kvm);
6804 struct kvm_memory_slot *slot;
6805 struct page *refcounted_page;
6806 unsigned long mmu_seq;
6807 kvm_pfn_t pfn;
6808 bool writable;
6809
6810 /* Defer reload until vmcs01 is the current VMCS. */
6811 if (is_guest_mode(vcpu)) {
6812 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6813 return;
6814 }
6815
6816 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6817 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6818 return;
6819
6820 /*
6821 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6822 * KVM doesn't unintentionally grab a userspace memslot. It _should_
6823 * be impossible for userspace to create a memslot for the APIC when
6824 * APICv is enabled, but paranoia won't hurt in this case.
6825 */
6826 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6827 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6828 return;
6829
6830 /*
6831 * Ensure that the mmu_notifier sequence count is read before KVM
6832 * retrieves the pfn from the primary MMU. Note, the memslot is
6833 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6834 * in kvm_mmu_invalidate_end().
6835 */
6836 mmu_seq = kvm->mmu_invalidate_seq;
6837 smp_rmb();
6838
6839 /*
6840 * No need to retry if the memslot does not exist or is invalid. KVM
6841 * controls the APIC-access page memslot, and only deletes the memslot
6842 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6843 */
6844 pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6845 if (is_error_noslot_pfn(pfn))
6846 return;
6847
6848 read_lock(&vcpu->kvm->mmu_lock);
6849 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6850 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6851 else
6852 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6853
6854 /*
6855 * Do not pin the APIC access page in memory so that it can be freely
6856 * migrated, the MMU notifier will call us again if it is migrated or
6857 * swapped out. KVM backs the memslot with anonymous memory, the pfn
6858 * should always point at a refcounted page (if the pfn is valid).
6859 */
6860 if (!WARN_ON_ONCE(!refcounted_page))
6861 kvm_release_page_clean(refcounted_page);
6862
6863 /*
6864 * No need for a manual TLB flush at this point, KVM has already done a
6865 * flush if there were SPTEs pointing at the previous page.
6866 */
6867 read_unlock(&vcpu->kvm->mmu_lock);
6868 }
6869
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6870 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6871 {
6872 u16 status;
6873 u8 old;
6874
6875 /*
6876 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6877 * is only relevant for if and only if Virtual Interrupt Delivery is
6878 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6879 * vAPIC, not L1's vAPIC. KVM must update vmcs01 on the next nested
6880 * VM-Exit, otherwise L1 with run with a stale SVI.
6881 */
6882 if (is_guest_mode(vcpu)) {
6883 /*
6884 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6885 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6886 * Note, userspace can stuff state while L2 is active; assert
6887 * that VID is disabled if and only if the vCPU is in KVM_RUN
6888 * to avoid false positives if userspace is setting APIC state.
6889 */
6890 WARN_ON_ONCE(vcpu->wants_to_run &&
6891 nested_cpu_has_vid(get_vmcs12(vcpu)));
6892 to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6893 return;
6894 }
6895
6896 if (max_isr == -1)
6897 max_isr = 0;
6898
6899 status = vmcs_read16(GUEST_INTR_STATUS);
6900 old = status >> 8;
6901 if (max_isr != old) {
6902 status &= 0xff;
6903 status |= max_isr << 8;
6904 vmcs_write16(GUEST_INTR_STATUS, status);
6905 }
6906 }
6907
vmx_set_rvi(int vector)6908 static void vmx_set_rvi(int vector)
6909 {
6910 u16 status;
6911 u8 old;
6912
6913 if (vector == -1)
6914 vector = 0;
6915
6916 status = vmcs_read16(GUEST_INTR_STATUS);
6917 old = (u8)status & 0xff;
6918 if ((u8)vector != old) {
6919 status &= ~0xff;
6920 status |= (u8)vector;
6921 vmcs_write16(GUEST_INTR_STATUS, status);
6922 }
6923 }
6924
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6925 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6926 {
6927 struct vcpu_vmx *vmx = to_vmx(vcpu);
6928 int max_irr;
6929 bool got_posted_interrupt;
6930
6931 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6932 return -EIO;
6933
6934 if (pi_test_on(&vmx->pi_desc)) {
6935 pi_clear_on(&vmx->pi_desc);
6936 /*
6937 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6938 * But on x86 this is just a compiler barrier anyway.
6939 */
6940 smp_mb__after_atomic();
6941 got_posted_interrupt =
6942 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6943 } else {
6944 max_irr = kvm_lapic_find_highest_irr(vcpu);
6945 got_posted_interrupt = false;
6946 }
6947
6948 /*
6949 * Newly recognized interrupts are injected via either virtual interrupt
6950 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6951 * disabled in two cases:
6952 *
6953 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6954 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6955 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6956 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6957 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6958 *
6959 * 2) If APICv is disabled for this vCPU, assigned devices may still
6960 * attempt to post interrupts. The posted interrupt vector will cause
6961 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6962 */
6963 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6964 vmx_set_rvi(max_irr);
6965 else if (got_posted_interrupt)
6966 kvm_make_request(KVM_REQ_EVENT, vcpu);
6967
6968 return max_irr;
6969 }
6970
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6971 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6972 {
6973 if (!kvm_vcpu_apicv_active(vcpu))
6974 return;
6975
6976 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6977 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6978 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6979 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6980 }
6981
vmx_apicv_pre_state_restore(struct kvm_vcpu * vcpu)6982 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6983 {
6984 struct vcpu_vmx *vmx = to_vmx(vcpu);
6985
6986 pi_clear_on(&vmx->pi_desc);
6987 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6988 }
6989
6990 void vmx_do_interrupt_irqoff(unsigned long entry);
6991 void vmx_do_nmi_irqoff(void);
6992
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6993 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6994 {
6995 /*
6996 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6997 * MSR value is not clobbered by the host activity before the guest
6998 * has chance to consume it.
6999 *
7000 * Do not blindly read xfd_err here, since this exception might
7001 * be caused by L1 interception on a platform which doesn't
7002 * support xfd at all.
7003 *
7004 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
7005 * only when xfd contains a non-zero value.
7006 *
7007 * Queuing exception is done in vmx_handle_exit. See comment there.
7008 */
7009 if (vcpu->arch.guest_fpu.fpstate->xfd)
7010 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
7011 }
7012
handle_exception_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7013 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
7014 {
7015 /* if exit due to PF check for async PF */
7016 if (is_page_fault(intr_info))
7017 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7018 /* if exit due to NM, handle before interrupts are enabled */
7019 else if (is_nm_fault(intr_info))
7020 handle_nm_fault_irqoff(vcpu);
7021 /* Handle machine checks before interrupts are enabled */
7022 else if (is_machine_check(intr_info))
7023 kvm_machine_check();
7024 }
7025
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7026 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7027 u32 intr_info)
7028 {
7029 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7030
7031 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7032 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7033 return;
7034
7035 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7036 if (cpu_feature_enabled(X86_FEATURE_FRED))
7037 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7038 else
7039 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7040 kvm_after_interrupt(vcpu);
7041
7042 vcpu->arch.at_instruction_boundary = true;
7043 }
7044
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)7045 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7046 {
7047 struct vcpu_vmx *vmx = to_vmx(vcpu);
7048
7049 if (vmx->emulation_required)
7050 return;
7051
7052 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7053 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7054 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7055 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7056 }
7057
7058 /*
7059 * The kvm parameter can be NULL (module initialization, or invocation before
7060 * VM creation). Be sure to check the kvm parameter before using it.
7061 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7062 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7063 {
7064 switch (index) {
7065 case MSR_IA32_SMBASE:
7066 if (!IS_ENABLED(CONFIG_KVM_SMM))
7067 return false;
7068 /*
7069 * We cannot do SMM unless we can run the guest in big
7070 * real mode.
7071 */
7072 return enable_unrestricted_guest || emulate_invalid_guest_state;
7073 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7074 return nested;
7075 case MSR_AMD64_VIRT_SPEC_CTRL:
7076 case MSR_AMD64_TSC_RATIO:
7077 /* This is AMD only. */
7078 return false;
7079 default:
7080 return true;
7081 }
7082 }
7083
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7084 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7085 {
7086 u32 exit_intr_info;
7087 bool unblock_nmi;
7088 u8 vector;
7089 bool idtv_info_valid;
7090
7091 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7092
7093 if (enable_vnmi) {
7094 if (vmx->loaded_vmcs->nmi_known_unmasked)
7095 return;
7096
7097 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7098 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7099 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7100 /*
7101 * SDM 3: 27.7.1.2 (September 2008)
7102 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7103 * a guest IRET fault.
7104 * SDM 3: 23.2.2 (September 2008)
7105 * Bit 12 is undefined in any of the following cases:
7106 * If the VM exit sets the valid bit in the IDT-vectoring
7107 * information field.
7108 * If the VM exit is due to a double fault.
7109 */
7110 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7111 vector != DF_VECTOR && !idtv_info_valid)
7112 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7113 GUEST_INTR_STATE_NMI);
7114 else
7115 vmx->loaded_vmcs->nmi_known_unmasked =
7116 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7117 & GUEST_INTR_STATE_NMI);
7118 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7119 vmx->loaded_vmcs->vnmi_blocked_time +=
7120 ktime_to_ns(ktime_sub(ktime_get(),
7121 vmx->loaded_vmcs->entry_time));
7122 }
7123
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7124 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7125 u32 idt_vectoring_info,
7126 int instr_len_field,
7127 int error_code_field)
7128 {
7129 u8 vector;
7130 int type;
7131 bool idtv_info_valid;
7132
7133 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7134
7135 vcpu->arch.nmi_injected = false;
7136 kvm_clear_exception_queue(vcpu);
7137 kvm_clear_interrupt_queue(vcpu);
7138
7139 if (!idtv_info_valid)
7140 return;
7141
7142 kvm_make_request(KVM_REQ_EVENT, vcpu);
7143
7144 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7145 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7146
7147 switch (type) {
7148 case INTR_TYPE_NMI_INTR:
7149 vcpu->arch.nmi_injected = true;
7150 /*
7151 * SDM 3: 27.7.1.2 (September 2008)
7152 * Clear bit "block by NMI" before VM entry if a NMI
7153 * delivery faulted.
7154 */
7155 vmx_set_nmi_mask(vcpu, false);
7156 break;
7157 case INTR_TYPE_SOFT_EXCEPTION:
7158 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7159 fallthrough;
7160 case INTR_TYPE_HARD_EXCEPTION:
7161 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7162 u32 err = vmcs_read32(error_code_field);
7163 kvm_requeue_exception_e(vcpu, vector, err);
7164 } else
7165 kvm_requeue_exception(vcpu, vector);
7166 break;
7167 case INTR_TYPE_SOFT_INTR:
7168 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7169 fallthrough;
7170 case INTR_TYPE_EXT_INTR:
7171 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7172 break;
7173 default:
7174 break;
7175 }
7176 }
7177
vmx_complete_interrupts(struct vcpu_vmx * vmx)7178 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7179 {
7180 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7181 VM_EXIT_INSTRUCTION_LEN,
7182 IDT_VECTORING_ERROR_CODE);
7183 }
7184
vmx_cancel_injection(struct kvm_vcpu * vcpu)7185 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7186 {
7187 __vmx_complete_interrupts(vcpu,
7188 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7189 VM_ENTRY_INSTRUCTION_LEN,
7190 VM_ENTRY_EXCEPTION_ERROR_CODE);
7191
7192 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7193 }
7194
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7195 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7196 {
7197 int i, nr_msrs;
7198 struct perf_guest_switch_msr *msrs;
7199 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7200
7201 pmu->host_cross_mapped_mask = 0;
7202 if (pmu->pebs_enable & pmu->global_ctrl)
7203 intel_pmu_cross_mapped_check(pmu);
7204
7205 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7206 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7207 if (!msrs)
7208 return;
7209
7210 for (i = 0; i < nr_msrs; i++)
7211 if (msrs[i].host == msrs[i].guest)
7212 clear_atomic_switch_msr(vmx, msrs[i].msr);
7213 else
7214 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7215 msrs[i].host, false);
7216 }
7217
vmx_update_hv_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)7218 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7219 {
7220 struct vcpu_vmx *vmx = to_vmx(vcpu);
7221 u64 tscl;
7222 u32 delta_tsc;
7223
7224 if (force_immediate_exit) {
7225 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7226 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7227 } else if (vmx->hv_deadline_tsc != -1) {
7228 tscl = rdtsc();
7229 if (vmx->hv_deadline_tsc > tscl)
7230 /* set_hv_timer ensures the delta fits in 32-bits */
7231 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7232 cpu_preemption_timer_multi);
7233 else
7234 delta_tsc = 0;
7235
7236 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7237 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7238 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7239 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7240 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7241 }
7242 }
7243
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7244 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7245 {
7246 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7247 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7248 vmcs_writel(HOST_RSP, host_rsp);
7249 }
7250 }
7251
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7252 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7253 unsigned int flags)
7254 {
7255 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7256
7257 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7258 return;
7259
7260 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7261 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7262
7263 /*
7264 * If the guest/host SPEC_CTRL values differ, restore the host value.
7265 *
7266 * For legacy IBRS, the IBRS bit always needs to be written after
7267 * transitioning from a less privileged predictor mode, regardless of
7268 * whether the guest/host values differ.
7269 */
7270 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7271 vmx->spec_ctrl != hostval)
7272 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7273
7274 barrier_nospec();
7275 }
7276
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu,bool force_immediate_exit)7277 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7278 bool force_immediate_exit)
7279 {
7280 /*
7281 * If L2 is active, some VMX preemption timer exits can be handled in
7282 * the fastpath even, all other exits must use the slow path.
7283 */
7284 if (is_guest_mode(vcpu) &&
7285 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7286 return EXIT_FASTPATH_NONE;
7287
7288 switch (to_vmx(vcpu)->exit_reason.basic) {
7289 case EXIT_REASON_MSR_WRITE:
7290 return handle_fastpath_set_msr_irqoff(vcpu);
7291 case EXIT_REASON_PREEMPTION_TIMER:
7292 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7293 case EXIT_REASON_HLT:
7294 return handle_fastpath_hlt(vcpu);
7295 default:
7296 return EXIT_FASTPATH_NONE;
7297 }
7298 }
7299
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7300 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7301 unsigned int flags)
7302 {
7303 struct vcpu_vmx *vmx = to_vmx(vcpu);
7304
7305 guest_state_enter_irqoff();
7306
7307 /*
7308 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7309 * mitigation for MDS is done late in VMentry and is still
7310 * executed in spite of L1D Flush. This is because an extra VERW
7311 * should not matter much after the big hammer L1D Flush.
7312 */
7313 if (static_branch_unlikely(&vmx_l1d_should_flush))
7314 vmx_l1d_flush(vcpu);
7315 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7316 kvm_arch_has_assigned_device(vcpu->kvm))
7317 mds_clear_cpu_buffers();
7318
7319 vmx_disable_fb_clear(vmx);
7320
7321 if (vcpu->arch.cr2 != native_read_cr2())
7322 native_write_cr2(vcpu->arch.cr2);
7323
7324 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7325 flags);
7326
7327 vcpu->arch.cr2 = native_read_cr2();
7328 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7329
7330 vmx->idt_vectoring_info = 0;
7331
7332 vmx_enable_fb_clear(vmx);
7333
7334 if (unlikely(vmx->fail)) {
7335 vmx->exit_reason.full = 0xdead;
7336 goto out;
7337 }
7338
7339 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7340 if (likely(!vmx->exit_reason.failed_vmentry))
7341 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7342
7343 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7344 is_nmi(vmx_get_intr_info(vcpu))) {
7345 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7346 if (cpu_feature_enabled(X86_FEATURE_FRED))
7347 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7348 else
7349 vmx_do_nmi_irqoff();
7350 kvm_after_interrupt(vcpu);
7351 }
7352
7353 out:
7354 guest_state_exit_irqoff();
7355 }
7356
vmx_vcpu_run(struct kvm_vcpu * vcpu,bool force_immediate_exit)7357 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7358 {
7359 struct vcpu_vmx *vmx = to_vmx(vcpu);
7360 unsigned long cr3, cr4;
7361
7362 /* Record the guest's net vcpu time for enforced NMI injections. */
7363 if (unlikely(!enable_vnmi &&
7364 vmx->loaded_vmcs->soft_vnmi_blocked))
7365 vmx->loaded_vmcs->entry_time = ktime_get();
7366
7367 /*
7368 * Don't enter VMX if guest state is invalid, let the exit handler
7369 * start emulation until we arrive back to a valid state. Synthesize a
7370 * consistency check VM-Exit due to invalid guest state and bail.
7371 */
7372 if (unlikely(vmx->emulation_required)) {
7373 vmx->fail = 0;
7374
7375 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7376 vmx->exit_reason.failed_vmentry = 1;
7377 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7378 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7379 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7380 vmx->exit_intr_info = 0;
7381 return EXIT_FASTPATH_NONE;
7382 }
7383
7384 trace_kvm_entry(vcpu, force_immediate_exit);
7385
7386 if (vmx->ple_window_dirty) {
7387 vmx->ple_window_dirty = false;
7388 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7389 }
7390
7391 /*
7392 * We did this in prepare_switch_to_guest, because it needs to
7393 * be within srcu_read_lock.
7394 */
7395 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7396
7397 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7398 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7399 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7400 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7401 vcpu->arch.regs_dirty = 0;
7402
7403 /*
7404 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7405 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7406 * it switches back to the current->mm, which can occur in KVM context
7407 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7408 * toggles a static key while handling a VM-Exit.
7409 */
7410 cr3 = __get_current_cr3_fast();
7411 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7412 vmcs_writel(HOST_CR3, cr3);
7413 vmx->loaded_vmcs->host_state.cr3 = cr3;
7414 }
7415
7416 cr4 = cr4_read_shadow();
7417 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7418 vmcs_writel(HOST_CR4, cr4);
7419 vmx->loaded_vmcs->host_state.cr4 = cr4;
7420 }
7421
7422 /* When single-stepping over STI and MOV SS, we must clear the
7423 * corresponding interruptibility bits in the guest state. Otherwise
7424 * vmentry fails as it then expects bit 14 (BS) in pending debug
7425 * exceptions being set, but that's not correct for the guest debugging
7426 * case. */
7427 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7428 vmx_set_interrupt_shadow(vcpu, 0);
7429
7430 kvm_load_guest_xsave_state(vcpu);
7431
7432 pt_guest_enter(vmx);
7433
7434 atomic_switch_perf_msrs(vmx);
7435 if (intel_pmu_lbr_is_enabled(vcpu))
7436 vmx_passthrough_lbr_msrs(vcpu);
7437
7438 if (enable_preemption_timer)
7439 vmx_update_hv_timer(vcpu, force_immediate_exit);
7440 else if (force_immediate_exit)
7441 smp_send_reschedule(vcpu->cpu);
7442
7443 kvm_wait_lapic_expire(vcpu);
7444
7445 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7446 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7447
7448 /* All fields are clean at this point */
7449 if (kvm_is_using_evmcs()) {
7450 current_evmcs->hv_clean_fields |=
7451 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7452
7453 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7454 }
7455
7456 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7457 if (vcpu->arch.host_debugctl)
7458 update_debugctlmsr(vcpu->arch.host_debugctl);
7459
7460 #ifndef CONFIG_X86_64
7461 /*
7462 * The sysexit path does not restore ds/es, so we must set them to
7463 * a reasonable value ourselves.
7464 *
7465 * We can't defer this to vmx_prepare_switch_to_host() since that
7466 * function may be executed in interrupt context, which saves and
7467 * restore segments around it, nullifying its effect.
7468 */
7469 loadsegment(ds, __USER_DS);
7470 loadsegment(es, __USER_DS);
7471 #endif
7472
7473 pt_guest_exit(vmx);
7474
7475 kvm_load_host_xsave_state(vcpu);
7476
7477 if (is_guest_mode(vcpu)) {
7478 /*
7479 * Track VMLAUNCH/VMRESUME that have made past guest state
7480 * checking.
7481 */
7482 if (vmx->nested.nested_run_pending &&
7483 !vmx->exit_reason.failed_vmentry)
7484 ++vcpu->stat.nested_run;
7485
7486 vmx->nested.nested_run_pending = 0;
7487 }
7488
7489 if (unlikely(vmx->fail))
7490 return EXIT_FASTPATH_NONE;
7491
7492 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7493 kvm_machine_check();
7494
7495 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7496
7497 if (unlikely(vmx->exit_reason.failed_vmentry))
7498 return EXIT_FASTPATH_NONE;
7499
7500 vmx->loaded_vmcs->launched = 1;
7501
7502 vmx_recover_nmi_blocking(vmx);
7503 vmx_complete_interrupts(vmx);
7504
7505 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7506 }
7507
vmx_vcpu_free(struct kvm_vcpu * vcpu)7508 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7509 {
7510 struct vcpu_vmx *vmx = to_vmx(vcpu);
7511
7512 if (enable_pml)
7513 vmx_destroy_pml_buffer(vmx);
7514 free_vpid(vmx->vpid);
7515 nested_vmx_free_vcpu(vcpu);
7516 free_loaded_vmcs(vmx->loaded_vmcs);
7517 free_page((unsigned long)vmx->ve_info);
7518 }
7519
vmx_vcpu_create(struct kvm_vcpu * vcpu)7520 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7521 {
7522 struct vmx_uret_msr *tsx_ctrl;
7523 struct vcpu_vmx *vmx;
7524 int i, err;
7525
7526 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7527 vmx = to_vmx(vcpu);
7528
7529 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7530
7531 err = -ENOMEM;
7532
7533 vmx->vpid = allocate_vpid();
7534
7535 /*
7536 * If PML is turned on, failure on enabling PML just results in failure
7537 * of creating the vcpu, therefore we can simplify PML logic (by
7538 * avoiding dealing with cases, such as enabling PML partially on vcpus
7539 * for the guest), etc.
7540 */
7541 if (enable_pml) {
7542 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7543 if (!vmx->pml_pg)
7544 goto free_vpid;
7545 }
7546
7547 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7548 vmx->guest_uret_msrs[i].mask = -1ull;
7549 if (boot_cpu_has(X86_FEATURE_RTM)) {
7550 /*
7551 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7552 * Keep the host value unchanged to avoid changing CPUID bits
7553 * under the host kernel's feet.
7554 */
7555 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7556 if (tsx_ctrl)
7557 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7558 }
7559
7560 err = alloc_loaded_vmcs(&vmx->vmcs01);
7561 if (err < 0)
7562 goto free_pml;
7563
7564 /*
7565 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7566 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7567 * feature only for vmcs01, KVM currently isn't equipped to realize any
7568 * performance benefits from enabling it for vmcs02.
7569 */
7570 if (kvm_is_using_evmcs() &&
7571 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7572 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7573
7574 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7575 }
7576
7577 /* The MSR bitmap starts with all ones */
7578 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7579 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7580
7581 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7582 #ifdef CONFIG_X86_64
7583 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7584 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7585 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7586 #endif
7587 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7588 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7589 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7590 if (kvm_cstate_in_guest(vcpu->kvm)) {
7591 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7592 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7593 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7594 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7595 }
7596
7597 vmx->loaded_vmcs = &vmx->vmcs01;
7598
7599 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7600 err = kvm_alloc_apic_access_page(vcpu->kvm);
7601 if (err)
7602 goto free_vmcs;
7603 }
7604
7605 if (enable_ept && !enable_unrestricted_guest) {
7606 err = init_rmode_identity_map(vcpu->kvm);
7607 if (err)
7608 goto free_vmcs;
7609 }
7610
7611 err = -ENOMEM;
7612 if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7613 struct page *page;
7614
7615 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7616
7617 /* ve_info must be page aligned. */
7618 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7619 if (!page)
7620 goto free_vmcs;
7621
7622 vmx->ve_info = page_to_virt(page);
7623 }
7624
7625 if (vmx_can_use_ipiv(vcpu))
7626 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7627 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7628
7629 return 0;
7630
7631 free_vmcs:
7632 free_loaded_vmcs(vmx->loaded_vmcs);
7633 free_pml:
7634 vmx_destroy_pml_buffer(vmx);
7635 free_vpid:
7636 free_vpid(vmx->vpid);
7637 return err;
7638 }
7639
7640 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7641 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7642
vmx_vm_init(struct kvm * kvm)7643 int vmx_vm_init(struct kvm *kvm)
7644 {
7645 if (!ple_gap)
7646 kvm->arch.pause_in_guest = true;
7647
7648 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7649 switch (l1tf_mitigation) {
7650 case L1TF_MITIGATION_OFF:
7651 case L1TF_MITIGATION_FLUSH_NOWARN:
7652 /* 'I explicitly don't care' is set */
7653 break;
7654 case L1TF_MITIGATION_FLUSH:
7655 case L1TF_MITIGATION_FLUSH_NOSMT:
7656 case L1TF_MITIGATION_FULL:
7657 /*
7658 * Warn upon starting the first VM in a potentially
7659 * insecure environment.
7660 */
7661 if (sched_smt_active())
7662 pr_warn_once(L1TF_MSG_SMT);
7663 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7664 pr_warn_once(L1TF_MSG_L1D);
7665 break;
7666 case L1TF_MITIGATION_FULL_FORCE:
7667 /* Flush is enforced */
7668 break;
7669 }
7670 }
7671 return 0;
7672 }
7673
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7674 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7675 {
7676 /*
7677 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7678 * with cacheable accesses will result in Machine Checks.
7679 */
7680 if (is_mmio)
7681 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7682
7683 /*
7684 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent
7685 * device attached. Letting the guest control memory types on Intel
7686 * CPUs may result in unexpected behavior, and so KVM's ABI is to trust
7687 * the guest to behave only as a last resort.
7688 */
7689 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7690 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7691
7692 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7693 }
7694
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7695 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7696 {
7697 /*
7698 * These bits in the secondary execution controls field
7699 * are dynamic, the others are mostly based on the hypervisor
7700 * architecture and the guest's CPUID. Do not touch the
7701 * dynamic bits.
7702 */
7703 u32 mask =
7704 SECONDARY_EXEC_SHADOW_VMCS |
7705 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7706 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7707 SECONDARY_EXEC_DESC;
7708
7709 u32 cur_ctl = secondary_exec_controls_get(vmx);
7710
7711 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7712 }
7713
7714 /*
7715 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7716 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7717 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7718 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7719 {
7720 struct vcpu_vmx *vmx = to_vmx(vcpu);
7721 struct kvm_cpuid_entry2 *entry;
7722
7723 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7724 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7725
7726 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7727 if (entry && (entry->_reg & (_cpuid_mask))) \
7728 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7729 } while (0)
7730
7731 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7732 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7733 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7734 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7735 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7736 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7737 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7738 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7739 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7740 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7741 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7742 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7743 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7744 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7745 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7746
7747 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7748 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7749 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7750 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7751 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7752 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7753 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7754
7755 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7756 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM));
7757
7758 #undef cr4_fixed1_update
7759 }
7760
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7761 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7762 {
7763 struct vcpu_vmx *vmx = to_vmx(vcpu);
7764 struct kvm_cpuid_entry2 *best = NULL;
7765 int i;
7766
7767 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7768 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7769 if (!best)
7770 return;
7771 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7772 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7773 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7774 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7775 }
7776
7777 /* Get the number of configurable Address Ranges for filtering */
7778 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7779 PT_CAP_num_address_ranges);
7780
7781 /* Initialize and clear the no dependency bits */
7782 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7783 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7784 RTIT_CTL_BRANCH_EN);
7785
7786 /*
7787 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7788 * will inject an #GP
7789 */
7790 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7791 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7792
7793 /*
7794 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7795 * PSBFreq can be set
7796 */
7797 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7798 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7799 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7800
7801 /*
7802 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7803 */
7804 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7805 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7806 RTIT_CTL_MTC_RANGE);
7807
7808 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7809 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7810 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7811 RTIT_CTL_PTW_EN);
7812
7813 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7814 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7815 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7816
7817 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7818 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7819 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7820
7821 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7822 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7823 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7824
7825 /* unmask address range configure area */
7826 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7827 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7828 }
7829
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7830 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7831 {
7832 struct vcpu_vmx *vmx = to_vmx(vcpu);
7833
7834 /*
7835 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7836 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7837 * set if and only if XSAVE is supported.
7838 */
7839 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7840 guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7841
7842 vmx_setup_uret_msrs(vmx);
7843
7844 if (cpu_has_secondary_exec_ctrls())
7845 vmcs_set_secondary_exec_control(vmx,
7846 vmx_secondary_exec_control(vmx));
7847
7848 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7849 vmx->msr_ia32_feature_control_valid_bits |=
7850 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7851 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7852 else
7853 vmx->msr_ia32_feature_control_valid_bits &=
7854 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7855 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7856
7857 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7858 nested_vmx_cr_fixed1_bits_update(vcpu);
7859
7860 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7861 guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7862 update_intel_pt_cfg(vcpu);
7863
7864 if (boot_cpu_has(X86_FEATURE_RTM)) {
7865 struct vmx_uret_msr *msr;
7866 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7867 if (msr) {
7868 bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7869 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7870 }
7871 }
7872
7873 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7874 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7875 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
7876
7877 if (boot_cpu_has(X86_FEATURE_IBPB))
7878 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7879 !guest_has_pred_cmd_msr(vcpu));
7880
7881 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7882 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7883 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
7884
7885 set_cr4_guest_host_mask(vmx);
7886
7887 vmx_write_encls_bitmap(vcpu, NULL);
7888 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7889 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7890 else
7891 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7892
7893 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7894 vmx->msr_ia32_feature_control_valid_bits |=
7895 FEAT_CTL_SGX_LC_ENABLED;
7896 else
7897 vmx->msr_ia32_feature_control_valid_bits &=
7898 ~FEAT_CTL_SGX_LC_ENABLED;
7899
7900 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7901 vmx_update_exception_bitmap(vcpu);
7902 }
7903
vmx_get_perf_capabilities(void)7904 static __init u64 vmx_get_perf_capabilities(void)
7905 {
7906 u64 perf_cap = PMU_CAP_FW_WRITES;
7907 u64 host_perf_cap = 0;
7908
7909 if (!enable_pmu)
7910 return 0;
7911
7912 if (boot_cpu_has(X86_FEATURE_PDCM))
7913 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7914
7915 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7916 x86_perf_get_lbr(&vmx_lbr_caps);
7917
7918 /*
7919 * KVM requires LBR callstack support, as the overhead due to
7920 * context switching LBRs without said support is too high.
7921 * See intel_pmu_create_guest_lbr_event() for more info.
7922 */
7923 if (!vmx_lbr_caps.has_callstack)
7924 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7925 else if (vmx_lbr_caps.nr)
7926 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7927 }
7928
7929 if (vmx_pebs_supported()) {
7930 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7931
7932 /*
7933 * Disallow adaptive PEBS as it is functionally broken, can be
7934 * used by the guest to read *host* LBRs, and can be used to
7935 * bypass userspace event filters. To correctly and safely
7936 * support adaptive PEBS, KVM needs to:
7937 *
7938 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7939 * counters.
7940 *
7941 * 2. Gain support from perf (or take direct control of counter
7942 * programming) to support events without adaptive PEBS
7943 * enabled for the hardware counter.
7944 *
7945 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7946 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7947 *
7948 * 4. Document which PMU events are effectively exposed to the
7949 * guest via adaptive PEBS, and make adaptive PEBS mutually
7950 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7951 */
7952 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7953 }
7954
7955 return perf_cap;
7956 }
7957
vmx_set_cpu_caps(void)7958 static __init void vmx_set_cpu_caps(void)
7959 {
7960 kvm_set_cpu_caps();
7961
7962 /* CPUID 0x1 */
7963 if (nested)
7964 kvm_cpu_cap_set(X86_FEATURE_VMX);
7965
7966 /* CPUID 0x7 */
7967 if (kvm_mpx_supported())
7968 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7969 if (!cpu_has_vmx_invpcid())
7970 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7971 if (vmx_pt_mode_is_host_guest())
7972 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7973 if (vmx_pebs_supported()) {
7974 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7975 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7976 }
7977
7978 if (!enable_pmu)
7979 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7980 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7981
7982 if (!enable_sgx) {
7983 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7984 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7985 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7986 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7987 kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7988 }
7989
7990 if (vmx_umip_emulated())
7991 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7992
7993 /* CPUID 0xD.1 */
7994 kvm_caps.supported_xss = 0;
7995 if (!cpu_has_vmx_xsaves())
7996 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7997
7998 /* CPUID 0x80000001 and 0x7 (RDPID) */
7999 if (!cpu_has_vmx_rdtscp()) {
8000 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
8001 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
8002 }
8003
8004 if (cpu_has_vmx_waitpkg())
8005 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
8006 }
8007
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)8008 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
8009 struct x86_instruction_info *info)
8010 {
8011 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8012 unsigned short port;
8013 bool intercept;
8014 int size;
8015
8016 if (info->intercept == x86_intercept_in ||
8017 info->intercept == x86_intercept_ins) {
8018 port = info->src_val;
8019 size = info->dst_bytes;
8020 } else {
8021 port = info->dst_val;
8022 size = info->src_bytes;
8023 }
8024
8025 /*
8026 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8027 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8028 * control.
8029 *
8030 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8031 */
8032 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8033 intercept = nested_cpu_has(vmcs12,
8034 CPU_BASED_UNCOND_IO_EXITING);
8035 else
8036 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
8037
8038 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
8039 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
8040 }
8041
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)8042 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8043 struct x86_instruction_info *info,
8044 enum x86_intercept_stage stage,
8045 struct x86_exception *exception)
8046 {
8047 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8048
8049 switch (info->intercept) {
8050 /*
8051 * RDPID causes #UD if disabled through secondary execution controls.
8052 * Because it is marked as EmulateOnUD, we need to intercept it here.
8053 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8054 */
8055 case x86_intercept_rdpid:
8056 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8057 exception->vector = UD_VECTOR;
8058 exception->error_code_valid = false;
8059 return X86EMUL_PROPAGATE_FAULT;
8060 }
8061 break;
8062
8063 case x86_intercept_in:
8064 case x86_intercept_ins:
8065 case x86_intercept_out:
8066 case x86_intercept_outs:
8067 return vmx_check_intercept_io(vcpu, info);
8068
8069 case x86_intercept_lgdt:
8070 case x86_intercept_lidt:
8071 case x86_intercept_lldt:
8072 case x86_intercept_ltr:
8073 case x86_intercept_sgdt:
8074 case x86_intercept_sidt:
8075 case x86_intercept_sldt:
8076 case x86_intercept_str:
8077 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8078 return X86EMUL_CONTINUE;
8079
8080 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
8081 break;
8082
8083 case x86_intercept_pause:
8084 /*
8085 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8086 * with vanilla NOPs in the emulator. Apply the interception
8087 * check only to actual PAUSE instructions. Don't check
8088 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8089 * exit, i.e. KVM is within its rights to allow L2 to execute
8090 * the PAUSE.
8091 */
8092 if ((info->rep_prefix != REPE_PREFIX) ||
8093 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8094 return X86EMUL_CONTINUE;
8095
8096 break;
8097
8098 /* TODO: check more intercepts... */
8099 default:
8100 break;
8101 }
8102
8103 return X86EMUL_UNHANDLEABLE;
8104 }
8105
8106 #ifdef CONFIG_X86_64
8107 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8108 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8109 u64 divisor, u64 *result)
8110 {
8111 u64 low = a << shift, high = a >> (64 - shift);
8112
8113 /* To avoid the overflow on divq */
8114 if (high >= divisor)
8115 return 1;
8116
8117 /* Low hold the result, high hold rem which is discarded */
8118 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8119 "rm" (divisor), "0" (low), "1" (high));
8120 *result = low;
8121
8122 return 0;
8123 }
8124
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8125 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8126 bool *expired)
8127 {
8128 struct vcpu_vmx *vmx;
8129 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8130 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8131
8132 vmx = to_vmx(vcpu);
8133 tscl = rdtsc();
8134 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8135 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8136 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8137 ktimer->timer_advance_ns);
8138
8139 if (delta_tsc > lapic_timer_advance_cycles)
8140 delta_tsc -= lapic_timer_advance_cycles;
8141 else
8142 delta_tsc = 0;
8143
8144 /* Convert to host delta tsc if tsc scaling is enabled */
8145 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8146 delta_tsc && u64_shl_div_u64(delta_tsc,
8147 kvm_caps.tsc_scaling_ratio_frac_bits,
8148 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8149 return -ERANGE;
8150
8151 /*
8152 * If the delta tsc can't fit in the 32 bit after the multi shift,
8153 * we can't use the preemption timer.
8154 * It's possible that it fits on later vmentries, but checking
8155 * on every vmentry is costly so we just use an hrtimer.
8156 */
8157 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8158 return -ERANGE;
8159
8160 vmx->hv_deadline_tsc = tscl + delta_tsc;
8161 *expired = !delta_tsc;
8162 return 0;
8163 }
8164
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8165 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8166 {
8167 to_vmx(vcpu)->hv_deadline_tsc = -1;
8168 }
8169 #endif
8170
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8171 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8172 {
8173 struct vcpu_vmx *vmx = to_vmx(vcpu);
8174
8175 if (WARN_ON_ONCE(!enable_pml))
8176 return;
8177
8178 if (is_guest_mode(vcpu)) {
8179 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8180 return;
8181 }
8182
8183 /*
8184 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8185 * code, but in that case another update request will be made and so
8186 * the guest will never run with a stale PML value.
8187 */
8188 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8189 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8190 else
8191 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8192 }
8193
vmx_setup_mce(struct kvm_vcpu * vcpu)8194 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8195 {
8196 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8197 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8198 FEAT_CTL_LMCE_ENABLED;
8199 else
8200 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8201 ~FEAT_CTL_LMCE_ENABLED;
8202 }
8203
8204 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8205 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8206 {
8207 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8208 if (to_vmx(vcpu)->nested.nested_run_pending)
8209 return -EBUSY;
8210 return !is_smm(vcpu);
8211 }
8212
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8213 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8214 {
8215 struct vcpu_vmx *vmx = to_vmx(vcpu);
8216
8217 /*
8218 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8219 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8220 * SMI and RSM only modify state that is saved and restored via SMRAM.
8221 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8222 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8223 */
8224 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8225 if (vmx->nested.smm.guest_mode)
8226 nested_vmx_vmexit(vcpu, -1, 0, 0);
8227
8228 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8229 vmx->nested.vmxon = false;
8230 vmx_clear_hlt(vcpu);
8231 return 0;
8232 }
8233
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8234 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8235 {
8236 struct vcpu_vmx *vmx = to_vmx(vcpu);
8237 int ret;
8238
8239 if (vmx->nested.smm.vmxon) {
8240 vmx->nested.vmxon = true;
8241 vmx->nested.smm.vmxon = false;
8242 }
8243
8244 if (vmx->nested.smm.guest_mode) {
8245 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8246 if (ret)
8247 return ret;
8248
8249 vmx->nested.nested_run_pending = 1;
8250 vmx->nested.smm.guest_mode = false;
8251 }
8252 return 0;
8253 }
8254
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8255 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8256 {
8257 /* RSM will cause a vmexit anyway. */
8258 }
8259 #endif
8260
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8261 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8262 {
8263 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8264 }
8265
vmx_migrate_timers(struct kvm_vcpu * vcpu)8266 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8267 {
8268 if (is_guest_mode(vcpu)) {
8269 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8270
8271 if (hrtimer_try_to_cancel(timer) == 1)
8272 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8273 }
8274 }
8275
vmx_hardware_unsetup(void)8276 void vmx_hardware_unsetup(void)
8277 {
8278 kvm_set_posted_intr_wakeup_handler(NULL);
8279
8280 if (nested)
8281 nested_vmx_hardware_unsetup();
8282
8283 free_kvm_area();
8284 }
8285
vmx_vm_destroy(struct kvm * kvm)8286 void vmx_vm_destroy(struct kvm *kvm)
8287 {
8288 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8289
8290 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8291 }
8292
8293 /*
8294 * Note, the SDM states that the linear address is masked *after* the modified
8295 * canonicality check, whereas KVM masks (untags) the address and then performs
8296 * a "normal" canonicality check. Functionally, the two methods are identical,
8297 * and when the masking occurs relative to the canonicality check isn't visible
8298 * to software, i.e. KVM's behavior doesn't violate the SDM.
8299 */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8300 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8301 {
8302 int lam_bit;
8303 unsigned long cr3_bits;
8304
8305 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8306 return gva;
8307
8308 if (!is_64_bit_mode(vcpu))
8309 return gva;
8310
8311 /*
8312 * Bit 63 determines if the address should be treated as user address
8313 * or a supervisor address.
8314 */
8315 if (!(gva & BIT_ULL(63))) {
8316 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8317 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8318 return gva;
8319
8320 /* LAM_U48 is ignored if LAM_U57 is set. */
8321 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8322 } else {
8323 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8324 return gva;
8325
8326 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8327 }
8328
8329 /*
8330 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8331 * Bit 63 is retained from the raw virtual address so that untagging
8332 * doesn't change a user access to a supervisor access, and vice versa.
8333 */
8334 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8335 }
8336
vmx_handle_intel_pt_intr(void)8337 static unsigned int vmx_handle_intel_pt_intr(void)
8338 {
8339 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8340
8341 /* '0' on failure so that the !PT case can use a RET0 static call. */
8342 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8343 return 0;
8344
8345 kvm_make_request(KVM_REQ_PMI, vcpu);
8346 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8347 (unsigned long *)&vcpu->arch.pmu.global_status);
8348 return 1;
8349 }
8350
vmx_setup_user_return_msrs(void)8351 static __init void vmx_setup_user_return_msrs(void)
8352 {
8353
8354 /*
8355 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8356 * will emulate SYSCALL in legacy mode if the vendor string in guest
8357 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8358 * support this emulation, MSR_STAR is included in the list for i386,
8359 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8360 * into hardware and is here purely for emulation purposes.
8361 */
8362 const u32 vmx_uret_msrs_list[] = {
8363 #ifdef CONFIG_X86_64
8364 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8365 #endif
8366 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8367 MSR_IA32_TSX_CTRL,
8368 };
8369 int i;
8370
8371 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8372
8373 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8374 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8375 }
8376
vmx_setup_me_spte_mask(void)8377 static void __init vmx_setup_me_spte_mask(void)
8378 {
8379 u64 me_mask = 0;
8380
8381 /*
8382 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8383 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems,
8384 * boot_cpu_data.x86_phys_bits holds the actual physical address
8385 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8386 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits.
8387 */
8388 if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8389 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8390 kvm_host.maxphyaddr - 1);
8391
8392 /*
8393 * Unlike SME, host kernel doesn't support setting up any
8394 * MKTME KeyID on Intel platforms. No memory encryption
8395 * bits should be included into the SPTE.
8396 */
8397 kvm_mmu_set_me_spte_mask(0, me_mask);
8398 }
8399
vmx_hardware_setup(void)8400 __init int vmx_hardware_setup(void)
8401 {
8402 unsigned long host_bndcfgs;
8403 struct desc_ptr dt;
8404 int r;
8405
8406 store_idt(&dt);
8407 host_idt_base = dt.address;
8408
8409 vmx_setup_user_return_msrs();
8410
8411 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8412 return -EIO;
8413
8414 if (boot_cpu_has(X86_FEATURE_NX))
8415 kvm_enable_efer_bits(EFER_NX);
8416
8417 if (boot_cpu_has(X86_FEATURE_MPX)) {
8418 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8419 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8420 }
8421
8422 if (!cpu_has_vmx_mpx())
8423 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8424 XFEATURE_MASK_BNDCSR);
8425
8426 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8427 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8428 enable_vpid = 0;
8429
8430 if (!cpu_has_vmx_ept() ||
8431 !cpu_has_vmx_ept_4levels() ||
8432 !cpu_has_vmx_ept_mt_wb() ||
8433 !cpu_has_vmx_invept_global())
8434 enable_ept = 0;
8435
8436 /* NX support is required for shadow paging. */
8437 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8438 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8439 return -EOPNOTSUPP;
8440 }
8441
8442 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8443 enable_ept_ad_bits = 0;
8444
8445 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8446 enable_unrestricted_guest = 0;
8447
8448 if (!cpu_has_vmx_flexpriority())
8449 flexpriority_enabled = 0;
8450
8451 if (!cpu_has_virtual_nmis())
8452 enable_vnmi = 0;
8453
8454 #ifdef CONFIG_X86_SGX_KVM
8455 if (!cpu_has_vmx_encls_vmexit())
8456 enable_sgx = false;
8457 #endif
8458
8459 /*
8460 * set_apic_access_page_addr() is used to reload apic access
8461 * page upon invalidation. No need to do anything if not
8462 * using the APIC_ACCESS_ADDR VMCS field.
8463 */
8464 if (!flexpriority_enabled)
8465 vt_x86_ops.set_apic_access_page_addr = NULL;
8466
8467 if (!cpu_has_vmx_tpr_shadow())
8468 vt_x86_ops.update_cr8_intercept = NULL;
8469
8470 #if IS_ENABLED(CONFIG_HYPERV)
8471 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8472 && enable_ept) {
8473 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8474 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8475 }
8476 #endif
8477
8478 if (!cpu_has_vmx_ple()) {
8479 ple_gap = 0;
8480 ple_window = 0;
8481 ple_window_grow = 0;
8482 ple_window_max = 0;
8483 ple_window_shrink = 0;
8484 }
8485
8486 if (!cpu_has_vmx_apicv())
8487 enable_apicv = 0;
8488 if (!enable_apicv)
8489 vt_x86_ops.sync_pir_to_irr = NULL;
8490
8491 if (!enable_apicv || !cpu_has_vmx_ipiv())
8492 enable_ipiv = false;
8493
8494 if (cpu_has_vmx_tsc_scaling())
8495 kvm_caps.has_tsc_control = true;
8496
8497 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8498 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8499 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8500 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8501
8502 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8503
8504 if (enable_ept)
8505 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8506 cpu_has_vmx_ept_execute_only());
8507
8508 /*
8509 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8510 * bits to shadow_zero_check.
8511 */
8512 vmx_setup_me_spte_mask();
8513
8514 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8515 ept_caps_to_lpage_level(vmx_capability.ept));
8516
8517 /*
8518 * Only enable PML when hardware supports PML feature, and both EPT
8519 * and EPT A/D bit features are enabled -- PML depends on them to work.
8520 */
8521 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8522 enable_pml = 0;
8523
8524 if (!enable_pml)
8525 vt_x86_ops.cpu_dirty_log_size = 0;
8526
8527 if (!cpu_has_vmx_preemption_timer())
8528 enable_preemption_timer = false;
8529
8530 if (enable_preemption_timer) {
8531 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8532
8533 cpu_preemption_timer_multi =
8534 vmx_misc_preemption_timer_rate(vmcs_config.misc);
8535
8536 if (tsc_khz)
8537 use_timer_freq = (u64)tsc_khz * 1000;
8538 use_timer_freq >>= cpu_preemption_timer_multi;
8539
8540 /*
8541 * KVM "disables" the preemption timer by setting it to its max
8542 * value. Don't use the timer if it might cause spurious exits
8543 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8544 */
8545 if (use_timer_freq > 0xffffffffu / 10)
8546 enable_preemption_timer = false;
8547 }
8548
8549 if (!enable_preemption_timer) {
8550 vt_x86_ops.set_hv_timer = NULL;
8551 vt_x86_ops.cancel_hv_timer = NULL;
8552 }
8553
8554 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8555 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8556
8557 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8558 return -EINVAL;
8559 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8560 pt_mode = PT_MODE_SYSTEM;
8561 if (pt_mode == PT_MODE_HOST_GUEST)
8562 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8563 else
8564 vt_init_ops.handle_intel_pt_intr = NULL;
8565
8566 setup_default_sgx_lepubkeyhash();
8567
8568 if (nested) {
8569 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8570
8571 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8572 if (r)
8573 return r;
8574 }
8575
8576 vmx_set_cpu_caps();
8577
8578 r = alloc_kvm_area();
8579 if (r && nested)
8580 nested_vmx_hardware_unsetup();
8581
8582 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8583
8584 return r;
8585 }
8586
vmx_cleanup_l1d_flush(void)8587 static void vmx_cleanup_l1d_flush(void)
8588 {
8589 if (vmx_l1d_flush_pages) {
8590 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8591 vmx_l1d_flush_pages = NULL;
8592 }
8593 /* Restore state so sysfs ignores VMX */
8594 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8595 }
8596
__vmx_exit(void)8597 static void __vmx_exit(void)
8598 {
8599 allow_smaller_maxphyaddr = false;
8600
8601 vmx_cleanup_l1d_flush();
8602 }
8603
vmx_exit(void)8604 static void __exit vmx_exit(void)
8605 {
8606 kvm_exit();
8607 __vmx_exit();
8608 kvm_x86_vendor_exit();
8609
8610 }
8611 module_exit(vmx_exit);
8612
vmx_init(void)8613 static int __init vmx_init(void)
8614 {
8615 int r, cpu;
8616
8617 if (!kvm_is_vmx_supported())
8618 return -EOPNOTSUPP;
8619
8620 /*
8621 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8622 * to unwind if a later step fails.
8623 */
8624 hv_init_evmcs();
8625
8626 r = kvm_x86_vendor_init(&vt_init_ops);
8627 if (r)
8628 return r;
8629
8630 /*
8631 * Must be called after common x86 init so enable_ept is properly set
8632 * up. Hand the parameter mitigation value in which was stored in
8633 * the pre module init parser. If no parameter was given, it will
8634 * contain 'auto' which will be turned into the default 'cond'
8635 * mitigation mode.
8636 */
8637 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8638 if (r)
8639 goto err_l1d_flush;
8640
8641 for_each_possible_cpu(cpu) {
8642 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8643
8644 pi_init_cpu(cpu);
8645 }
8646
8647 vmx_check_vmcs12_offsets();
8648
8649 /*
8650 * Shadow paging doesn't have a (further) performance penalty
8651 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8652 * by default
8653 */
8654 if (!enable_ept)
8655 allow_smaller_maxphyaddr = true;
8656
8657 /*
8658 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8659 * exposed to userspace!
8660 */
8661 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8662 THIS_MODULE);
8663 if (r)
8664 goto err_kvm_init;
8665
8666 return 0;
8667
8668 err_kvm_init:
8669 __vmx_exit();
8670 err_l1d_flush:
8671 kvm_x86_vendor_exit();
8672 return r;
8673 }
8674 module_init(vmx_init);
8675