1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 /*
4 * Linux-specific definitions for managing interactions with Microsoft's
5 * Hyper-V hypervisor. The definitions in this file are architecture
6 * independent. See arch/<arch>/include/asm/mshyperv.h for definitions
7 * that are specific to architecture <arch>.
8 *
9 * Definitions that are derived from Hyper-V code or headers should not go in
10 * this file, but should instead go in the relevant files in include/hyperv.
11 *
12 * Copyright (C) 2019, Microsoft, Inc.
13 *
14 * Author : Michael Kelley <mikelley@microsoft.com>
15 */
16
17 #ifndef _ASM_GENERIC_MSHYPERV_H
18 #define _ASM_GENERIC_MSHYPERV_H
19
20 #include <linux/types.h>
21 #include <linux/atomic.h>
22 #include <linux/bitops.h>
23 #include <acpi/acpi_numa.h>
24 #include <linux/cpumask.h>
25 #include <linux/nmi.h>
26 #include <asm/ptrace.h>
27 #include <hyperv/hvhdk.h>
28
29 #define VTPM_BASE_ADDRESS 0xfed40000
30
31 enum hv_partition_type {
32 HV_PARTITION_TYPE_GUEST,
33 HV_PARTITION_TYPE_ROOT,
34 HV_PARTITION_TYPE_L1VH,
35 };
36
37 struct ms_hyperv_info {
38 u32 features;
39 u32 priv_high;
40 u32 ext_features;
41 u32 misc_features;
42 u32 hints;
43 u32 nested_features;
44 u32 max_vp_index;
45 u32 max_lp_index;
46 u8 vtl;
47 union {
48 u32 isolation_config_a;
49 struct {
50 u32 paravisor_present : 1;
51 u32 reserved_a1 : 31;
52 };
53 };
54 union {
55 u32 isolation_config_b;
56 struct {
57 u32 cvm_type : 4;
58 u32 reserved_b1 : 1;
59 u32 shared_gpa_boundary_active : 1;
60 u32 shared_gpa_boundary_bits : 6;
61 u32 reserved_b2 : 20;
62 };
63 };
64 u64 shared_gpa_boundary;
65 bool msi_ext_dest_id;
66 bool confidential_vmbus_available;
67 };
68 extern struct ms_hyperv_info ms_hyperv;
69 extern bool hv_nested;
70 extern u64 hv_current_partition_id;
71 extern enum hv_partition_type hv_curr_partition_type;
72
73 extern void * __percpu *hyperv_pcpu_input_arg;
74 extern void * __percpu *hyperv_pcpu_output_arg;
75
76 u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
77 u64 hv_do_fast_hypercall8(u16 control, u64 input8);
78 u64 hv_do_fast_hypercall16(u16 control, u64 input1, u64 input2);
79
80 bool hv_isolation_type_snp(void);
81 bool hv_isolation_type_tdx(void);
82
83 /*
84 * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
85 * it doesn't provide a recommendation flag and AEOI must be disabled.
86 */
hv_recommend_using_aeoi(void)87 static inline bool hv_recommend_using_aeoi(void)
88 {
89 #ifdef HV_DEPRECATING_AEOI_RECOMMENDED
90 return !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
91 #else
92 return false;
93 #endif
94 }
95
hv_numa_node_to_pxm_info(int node)96 static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node)
97 {
98 struct hv_proximity_domain_info pxm_info = {};
99
100 if (node != NUMA_NO_NODE) {
101 pxm_info.domain_id = node_to_pxm(node);
102 pxm_info.flags.proximity_info_valid = 1;
103 pxm_info.flags.proximity_preferred = 1;
104 }
105
106 return pxm_info;
107 }
108
109 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
hv_result(u64 status)110 static inline int hv_result(u64 status)
111 {
112 return status & HV_HYPERCALL_RESULT_MASK;
113 }
114
hv_result_success(u64 status)115 static inline bool hv_result_success(u64 status)
116 {
117 return hv_result(status) == HV_STATUS_SUCCESS;
118 }
119
hv_repcomp(u64 status)120 static inline unsigned int hv_repcomp(u64 status)
121 {
122 /* Bits [43:32] of status have 'Reps completed' data. */
123 return (status & HV_HYPERCALL_REP_COMP_MASK) >>
124 HV_HYPERCALL_REP_COMP_OFFSET;
125 }
126
127 /*
128 * Rep hypercalls. Callers of this functions are supposed to ensure that
129 * rep_count, varhead_size, and rep_start comply with Hyper-V hypercall
130 * definition.
131 */
hv_do_rep_hypercall_ex(u16 code,u16 rep_count,u16 varhead_size,u16 rep_start,void * input,void * output)132 static inline u64 hv_do_rep_hypercall_ex(u16 code, u16 rep_count,
133 u16 varhead_size, u16 rep_start,
134 void *input, void *output)
135 {
136 u64 control = code;
137 u64 status;
138 u16 rep_comp;
139
140 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
141 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
142 control |= (u64)rep_start << HV_HYPERCALL_REP_START_OFFSET;
143
144 do {
145 status = hv_do_hypercall(control, input, output);
146 if (!hv_result_success(status))
147 return status;
148
149 rep_comp = hv_repcomp(status);
150
151 control &= ~HV_HYPERCALL_REP_START_MASK;
152 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
153
154 touch_nmi_watchdog();
155 } while (rep_comp < rep_count);
156
157 return status;
158 }
159
160 /* For the typical case where rep_start is 0 */
hv_do_rep_hypercall(u16 code,u16 rep_count,u16 varhead_size,void * input,void * output)161 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
162 void *input, void *output)
163 {
164 return hv_do_rep_hypercall_ex(code, rep_count, varhead_size, 0,
165 input, output);
166 }
167
168 /* Generate the guest OS identifier as described in the Hyper-V TLFS */
hv_generate_guest_id(u64 kernel_version)169 static inline u64 hv_generate_guest_id(u64 kernel_version)
170 {
171 u64 guest_id;
172
173 guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48);
174 guest_id |= (kernel_version << 16);
175
176 return guest_id;
177 }
178
179 int hv_get_hypervisor_version(union hv_hypervisor_version_info *info);
180
181 void hv_setup_vmbus_handler(void (*handler)(void));
182 void hv_remove_vmbus_handler(void);
183 void hv_setup_stimer0_handler(void (*handler)(void));
184 void hv_remove_stimer0_handler(void);
185
186 void hv_setup_kexec_handler(void (*handler)(void));
187 void hv_remove_kexec_handler(void);
188 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
189 void hv_remove_crash_handler(void);
190 void hv_setup_mshv_handler(void (*handler)(void));
191
192 #if IS_ENABLED(CONFIG_HYPERV)
193 /*
194 * Hypervisor's notion of virtual processor ID is different from
195 * Linux' notion of CPU ID. This information can only be retrieved
196 * in the context of the calling CPU. Setup a map for easy access
197 * to this information.
198 */
199 extern u32 *hv_vp_index;
200 extern u32 hv_max_vp_index;
201
202 extern u64 (*hv_read_reference_counter)(void);
203
204 /* Sentinel value for an uninitialized entry in hv_vp_index array */
205 #define VP_INVAL U32_MAX
206
207 int __init hv_common_init(void);
208 void __init hv_get_partition_id(void);
209 void __init hv_common_free(void);
210 void __init ms_hyperv_late_init(void);
211 int hv_common_cpu_init(unsigned int cpu);
212 int hv_common_cpu_die(unsigned int cpu);
213 void hv_identify_partition_type(void);
214
215 /**
216 * hv_cpu_number_to_vp_number() - Map CPU to VP.
217 * @cpu_number: CPU number in Linux terms
218 *
219 * This function returns the mapping between the Linux processor
220 * number and the hypervisor's virtual processor number, useful
221 * in making hypercalls and such that talk about specific
222 * processors.
223 *
224 * Return: Virtual processor number in Hyper-V terms
225 */
hv_cpu_number_to_vp_number(int cpu_number)226 static inline int hv_cpu_number_to_vp_number(int cpu_number)
227 {
228 return hv_vp_index[cpu_number];
229 }
230
__cpumask_to_vpset(struct hv_vpset * vpset,const struct cpumask * cpus,bool (* func)(int cpu))231 static inline int __cpumask_to_vpset(struct hv_vpset *vpset,
232 const struct cpumask *cpus,
233 bool (*func)(int cpu))
234 {
235 int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
236 int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK;
237
238 /* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */
239 if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS)
240 return 0;
241
242 /*
243 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
244 * structs are not cleared between calls, we risk flushing unneeded
245 * vCPUs otherwise.
246 */
247 for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++)
248 vpset->bank_contents[vcpu_bank] = 0;
249
250 /*
251 * Some banks may end up being empty but this is acceptable.
252 */
253 for_each_cpu(cpu, cpus) {
254 if (func && func(cpu))
255 continue;
256 vcpu = hv_cpu_number_to_vp_number(cpu);
257 if (vcpu == VP_INVAL)
258 return -1;
259 vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK;
260 vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK;
261 __set_bit(vcpu_offset, (unsigned long *)
262 &vpset->bank_contents[vcpu_bank]);
263 if (vcpu_bank >= nr_bank)
264 nr_bank = vcpu_bank + 1;
265 }
266 vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
267 return nr_bank;
268 }
269
270 /*
271 * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant,
272 * 'func' is called for each CPU present in cpumask. If 'func' returns
273 * true, that CPU is skipped -- i.e., that CPU from cpumask is *not*
274 * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are
275 * skipped.
276 */
cpumask_to_vpset(struct hv_vpset * vpset,const struct cpumask * cpus)277 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
278 const struct cpumask *cpus)
279 {
280 return __cpumask_to_vpset(vpset, cpus, NULL);
281 }
282
cpumask_to_vpset_skip(struct hv_vpset * vpset,const struct cpumask * cpus,bool (* func)(int cpu))283 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset,
284 const struct cpumask *cpus,
285 bool (*func)(int cpu))
286 {
287 return __cpumask_to_vpset(vpset, cpus, func);
288 }
289
290 #define _hv_status_fmt(fmt) "%s: Hyper-V status: %#x = %s: " fmt
291 #define hv_status_printk(level, status, fmt, ...) \
292 do { \
293 u64 __status = (status); \
294 pr_##level(_hv_status_fmt(fmt), __func__, hv_result(__status), \
295 hv_result_to_string(__status), ##__VA_ARGS__); \
296 } while (0)
297 #define hv_status_err(status, fmt, ...) \
298 hv_status_printk(err, status, fmt, ##__VA_ARGS__)
299 #define hv_status_debug(status, fmt, ...) \
300 hv_status_printk(debug, status, fmt, ##__VA_ARGS__)
301
302 const char *hv_result_to_string(u64 hv_status);
303 int hv_result_to_errno(u64 status);
304 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
305 bool hv_is_hyperv_initialized(void);
306 bool hv_is_hibernation_supported(void);
307 enum hv_isolation_type hv_get_isolation_type(void);
308 bool hv_is_isolation_supported(void);
309 bool hv_isolation_type_snp(void);
310 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size);
311 u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2);
312 void hv_enable_coco_interrupt(unsigned int cpu, unsigned int vector, bool set);
313 void hv_para_set_sint_proxy(bool enable);
314 u64 hv_para_get_synic_register(unsigned int reg);
315 void hv_para_set_synic_register(unsigned int reg, u64 val);
316 void hyperv_cleanup(void);
317 bool hv_query_ext_cap(u64 cap_query);
318 void hv_setup_dma_ops(struct device *dev, bool coherent);
319 #else /* CONFIG_HYPERV */
hv_identify_partition_type(void)320 static inline void hv_identify_partition_type(void) {}
hv_is_hyperv_initialized(void)321 static inline bool hv_is_hyperv_initialized(void) { return false; }
hv_is_hibernation_supported(void)322 static inline bool hv_is_hibernation_supported(void) { return false; }
hyperv_cleanup(void)323 static inline void hyperv_cleanup(void) {}
ms_hyperv_late_init(void)324 static inline void ms_hyperv_late_init(void) {}
hv_is_isolation_supported(void)325 static inline bool hv_is_isolation_supported(void) { return false; }
hv_get_isolation_type(void)326 static inline enum hv_isolation_type hv_get_isolation_type(void)
327 {
328 return HV_ISOLATION_TYPE_NONE;
329 }
330 #endif /* CONFIG_HYPERV */
331
332 #if IS_ENABLED(CONFIG_MSHV_ROOT)
hv_root_partition(void)333 static inline bool hv_root_partition(void)
334 {
335 return hv_curr_partition_type == HV_PARTITION_TYPE_ROOT;
336 }
hv_l1vh_partition(void)337 static inline bool hv_l1vh_partition(void)
338 {
339 return hv_curr_partition_type == HV_PARTITION_TYPE_L1VH;
340 }
hv_parent_partition(void)341 static inline bool hv_parent_partition(void)
342 {
343 return hv_root_partition() || hv_l1vh_partition();
344 }
345 int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages);
346 int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id);
347 int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags);
348
349 #else /* CONFIG_MSHV_ROOT */
hv_root_partition(void)350 static inline bool hv_root_partition(void) { return false; }
hv_l1vh_partition(void)351 static inline bool hv_l1vh_partition(void) { return false; }
hv_parent_partition(void)352 static inline bool hv_parent_partition(void) { return false; }
hv_call_deposit_pages(int node,u64 partition_id,u32 num_pages)353 static inline int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages)
354 {
355 return -EOPNOTSUPP;
356 }
hv_call_add_logical_proc(int node,u32 lp_index,u32 acpi_id)357 static inline int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id)
358 {
359 return -EOPNOTSUPP;
360 }
hv_call_create_vp(int node,u64 partition_id,u32 vp_index,u32 flags)361 static inline int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags)
362 {
363 return -EOPNOTSUPP;
364 }
365 #endif /* CONFIG_MSHV_ROOT */
366
367 #if IS_ENABLED(CONFIG_HYPERV_VTL_MODE)
368 u8 __init get_vtl(void);
369 #else
get_vtl(void)370 static inline u8 get_vtl(void) { return 0; }
371 #endif
372
373 #endif
374