xref: /linux/include/asm-generic/mshyperv.h (revision feb06d2690bb826fd33798a99ce5cff8d07b38f9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 /*
4  * Linux-specific definitions for managing interactions with Microsoft's
5  * Hyper-V hypervisor. The definitions in this file are architecture
6  * independent. See arch/<arch>/include/asm/mshyperv.h for definitions
7  * that are specific to architecture <arch>.
8  *
9  * Definitions that are derived from Hyper-V code or headers should not go in
10  * this file, but should instead go in the relevant files in include/hyperv.
11  *
12  * Copyright (C) 2019, Microsoft, Inc.
13  *
14  * Author : Michael Kelley <mikelley@microsoft.com>
15  */
16 
17 #ifndef _ASM_GENERIC_MSHYPERV_H
18 #define _ASM_GENERIC_MSHYPERV_H
19 
20 #include <linux/types.h>
21 #include <linux/atomic.h>
22 #include <linux/bitops.h>
23 #include <acpi/acpi_numa.h>
24 #include <linux/cpumask.h>
25 #include <linux/nmi.h>
26 #include <asm/ptrace.h>
27 #include <hyperv/hvhdk.h>
28 
29 #define VTPM_BASE_ADDRESS 0xfed40000
30 
31 enum hv_partition_type {
32 	HV_PARTITION_TYPE_GUEST,
33 	HV_PARTITION_TYPE_ROOT,
34 	HV_PARTITION_TYPE_L1VH,
35 };
36 
37 struct ms_hyperv_info {
38 	u32 features;
39 	u32 priv_high;
40 	u32 ext_features;
41 	u32 misc_features;
42 	u32 hints;
43 	u32 nested_features;
44 	u32 max_vp_index;
45 	u32 max_lp_index;
46 	u8 vtl;
47 	union {
48 		u32 isolation_config_a;
49 		struct {
50 			u32 paravisor_present : 1;
51 			u32 reserved_a1 : 31;
52 		};
53 	};
54 	union {
55 		u32 isolation_config_b;
56 		struct {
57 			u32 cvm_type : 4;
58 			u32 reserved_b1 : 1;
59 			u32 shared_gpa_boundary_active : 1;
60 			u32 shared_gpa_boundary_bits : 6;
61 			u32 reserved_b2 : 20;
62 		};
63 	};
64 	u64 shared_gpa_boundary;
65 	bool msi_ext_dest_id;
66 	bool confidential_vmbus_available;
67 };
68 extern struct ms_hyperv_info ms_hyperv;
69 extern bool hv_nested;
70 extern u64 hv_current_partition_id;
71 extern enum hv_partition_type hv_curr_partition_type;
72 
73 extern void * __percpu *hyperv_pcpu_input_arg;
74 extern void * __percpu *hyperv_pcpu_output_arg;
75 
76 u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
77 u64 hv_do_fast_hypercall8(u16 control, u64 input8);
78 u64 hv_do_fast_hypercall16(u16 control, u64 input1, u64 input2);
79 
80 bool hv_isolation_type_snp(void);
81 bool hv_isolation_type_tdx(void);
82 
83 /*
84  * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
85  * it doesn't provide a recommendation flag and AEOI must be disabled.
86  */
hv_recommend_using_aeoi(void)87 static inline bool hv_recommend_using_aeoi(void)
88 {
89 #ifdef HV_DEPRECATING_AEOI_RECOMMENDED
90 	return !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
91 #else
92 	return false;
93 #endif
94 }
95 
hv_numa_node_to_pxm_info(int node)96 static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node)
97 {
98 	struct hv_proximity_domain_info pxm_info = {};
99 
100 	if (node != NUMA_NO_NODE) {
101 		pxm_info.domain_id = node_to_pxm(node);
102 		pxm_info.flags.proximity_info_valid = 1;
103 		pxm_info.flags.proximity_preferred = 1;
104 	}
105 
106 	return pxm_info;
107 }
108 
109 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
hv_result(u64 status)110 static inline int hv_result(u64 status)
111 {
112 	return status & HV_HYPERCALL_RESULT_MASK;
113 }
114 
hv_result_success(u64 status)115 static inline bool hv_result_success(u64 status)
116 {
117 	return hv_result(status) == HV_STATUS_SUCCESS;
118 }
119 
hv_repcomp(u64 status)120 static inline unsigned int hv_repcomp(u64 status)
121 {
122 	/* Bits [43:32] of status have 'Reps completed' data. */
123 	return (status & HV_HYPERCALL_REP_COMP_MASK) >>
124 			 HV_HYPERCALL_REP_COMP_OFFSET;
125 }
126 
127 /*
128  * Rep hypercalls. Callers of this functions are supposed to ensure that
129  * rep_count, varhead_size, and rep_start comply with Hyper-V hypercall
130  * definition.
131  */
hv_do_rep_hypercall_ex(u16 code,u16 rep_count,u16 varhead_size,u16 rep_start,void * input,void * output)132 static inline u64 hv_do_rep_hypercall_ex(u16 code, u16 rep_count,
133 					 u16 varhead_size, u16 rep_start,
134 					 void *input, void *output)
135 {
136 	u64 control = code;
137 	u64 status;
138 	u16 rep_comp;
139 
140 	control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
141 	control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
142 	control |= (u64)rep_start << HV_HYPERCALL_REP_START_OFFSET;
143 
144 	do {
145 		status = hv_do_hypercall(control, input, output);
146 		if (!hv_result_success(status))
147 			return status;
148 
149 		rep_comp = hv_repcomp(status);
150 
151 		control &= ~HV_HYPERCALL_REP_START_MASK;
152 		control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
153 
154 		touch_nmi_watchdog();
155 	} while (rep_comp < rep_count);
156 
157 	return status;
158 }
159 
160 /* For the typical case where rep_start is 0 */
hv_do_rep_hypercall(u16 code,u16 rep_count,u16 varhead_size,void * input,void * output)161 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
162 				      void *input, void *output)
163 {
164 	return hv_do_rep_hypercall_ex(code, rep_count, varhead_size, 0,
165 				      input, output);
166 }
167 
168 /* Generate the guest OS identifier as described in the Hyper-V TLFS */
hv_generate_guest_id(u64 kernel_version)169 static inline u64 hv_generate_guest_id(u64 kernel_version)
170 {
171 	u64 guest_id;
172 
173 	guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48);
174 	guest_id |= (kernel_version << 16);
175 
176 	return guest_id;
177 }
178 
179 int hv_get_hypervisor_version(union hv_hypervisor_version_info *info);
180 
181 void hv_setup_vmbus_handler(void (*handler)(void));
182 void hv_remove_vmbus_handler(void);
183 void hv_setup_stimer0_handler(void (*handler)(void));
184 void hv_remove_stimer0_handler(void);
185 
186 void hv_setup_kexec_handler(void (*handler)(void));
187 void hv_remove_kexec_handler(void);
188 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
189 void hv_remove_crash_handler(void);
190 void hv_setup_mshv_handler(void (*handler)(void));
191 
192 #if IS_ENABLED(CONFIG_HYPERV)
193 /*
194  * Hypervisor's notion of virtual processor ID is different from
195  * Linux' notion of CPU ID. This information can only be retrieved
196  * in the context of the calling CPU. Setup a map for easy access
197  * to this information.
198  */
199 extern u32 *hv_vp_index;
200 extern u32 hv_max_vp_index;
201 
202 extern u64 (*hv_read_reference_counter)(void);
203 
204 /* Sentinel value for an uninitialized entry in hv_vp_index array */
205 #define VP_INVAL	U32_MAX
206 
207 int __init hv_common_init(void);
208 void __init hv_get_partition_id(void);
209 void __init hv_common_free(void);
210 void __init ms_hyperv_late_init(void);
211 int hv_common_cpu_init(unsigned int cpu);
212 int hv_common_cpu_die(unsigned int cpu);
213 void hv_identify_partition_type(void);
214 
215 /**
216  * hv_cpu_number_to_vp_number() - Map CPU to VP.
217  * @cpu_number: CPU number in Linux terms
218  *
219  * This function returns the mapping between the Linux processor
220  * number and the hypervisor's virtual processor number, useful
221  * in making hypercalls and such that talk about specific
222  * processors.
223  *
224  * Return: Virtual processor number in Hyper-V terms
225  */
hv_cpu_number_to_vp_number(int cpu_number)226 static inline int hv_cpu_number_to_vp_number(int cpu_number)
227 {
228 	return hv_vp_index[cpu_number];
229 }
230 
__cpumask_to_vpset(struct hv_vpset * vpset,const struct cpumask * cpus,bool (* func)(int cpu))231 static inline int __cpumask_to_vpset(struct hv_vpset *vpset,
232 				    const struct cpumask *cpus,
233 				    bool (*func)(int cpu))
234 {
235 	int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
236 	int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK;
237 
238 	/* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */
239 	if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS)
240 		return 0;
241 
242 	/*
243 	 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
244 	 * structs are not cleared between calls, we risk flushing unneeded
245 	 * vCPUs otherwise.
246 	 */
247 	for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++)
248 		vpset->bank_contents[vcpu_bank] = 0;
249 
250 	/*
251 	 * Some banks may end up being empty but this is acceptable.
252 	 */
253 	for_each_cpu(cpu, cpus) {
254 		if (func && func(cpu))
255 			continue;
256 		vcpu = hv_cpu_number_to_vp_number(cpu);
257 		if (vcpu == VP_INVAL)
258 			return -1;
259 		vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK;
260 		vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK;
261 		__set_bit(vcpu_offset, (unsigned long *)
262 			  &vpset->bank_contents[vcpu_bank]);
263 		if (vcpu_bank >= nr_bank)
264 			nr_bank = vcpu_bank + 1;
265 	}
266 	vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
267 	return nr_bank;
268 }
269 
270 /*
271  * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant,
272  * 'func' is called for each CPU present in cpumask.  If 'func' returns
273  * true, that CPU is skipped -- i.e., that CPU from cpumask is *not*
274  * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are
275  * skipped.
276  */
cpumask_to_vpset(struct hv_vpset * vpset,const struct cpumask * cpus)277 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
278 				    const struct cpumask *cpus)
279 {
280 	return __cpumask_to_vpset(vpset, cpus, NULL);
281 }
282 
cpumask_to_vpset_skip(struct hv_vpset * vpset,const struct cpumask * cpus,bool (* func)(int cpu))283 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset,
284 				    const struct cpumask *cpus,
285 				    bool (*func)(int cpu))
286 {
287 	return __cpumask_to_vpset(vpset, cpus, func);
288 }
289 
290 #define _hv_status_fmt(fmt) "%s: Hyper-V status: %#x = %s: " fmt
291 #define hv_status_printk(level, status, fmt, ...) \
292 do { \
293 	u64 __status = (status); \
294 	pr_##level(_hv_status_fmt(fmt), __func__, hv_result(__status), \
295 		   hv_result_to_string(__status), ##__VA_ARGS__); \
296 } while (0)
297 #define hv_status_err(status, fmt, ...) \
298 	hv_status_printk(err, status, fmt, ##__VA_ARGS__)
299 #define hv_status_debug(status, fmt, ...) \
300 	hv_status_printk(debug, status, fmt, ##__VA_ARGS__)
301 
302 const char *hv_result_to_string(u64 hv_status);
303 int hv_result_to_errno(u64 status);
304 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
305 bool hv_is_hyperv_initialized(void);
306 bool hv_is_hibernation_supported(void);
307 enum hv_isolation_type hv_get_isolation_type(void);
308 bool hv_is_isolation_supported(void);
309 bool hv_isolation_type_snp(void);
310 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size);
311 u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2);
312 void hv_enable_coco_interrupt(unsigned int cpu, unsigned int vector, bool set);
313 void hv_para_set_sint_proxy(bool enable);
314 u64 hv_para_get_synic_register(unsigned int reg);
315 void hv_para_set_synic_register(unsigned int reg, u64 val);
316 void hyperv_cleanup(void);
317 bool hv_query_ext_cap(u64 cap_query);
318 void hv_setup_dma_ops(struct device *dev, bool coherent);
319 #else /* CONFIG_HYPERV */
hv_identify_partition_type(void)320 static inline void hv_identify_partition_type(void) {}
hv_is_hyperv_initialized(void)321 static inline bool hv_is_hyperv_initialized(void) { return false; }
hv_is_hibernation_supported(void)322 static inline bool hv_is_hibernation_supported(void) { return false; }
hyperv_cleanup(void)323 static inline void hyperv_cleanup(void) {}
ms_hyperv_late_init(void)324 static inline void ms_hyperv_late_init(void) {}
hv_is_isolation_supported(void)325 static inline bool hv_is_isolation_supported(void) { return false; }
hv_get_isolation_type(void)326 static inline enum hv_isolation_type hv_get_isolation_type(void)
327 {
328 	return HV_ISOLATION_TYPE_NONE;
329 }
330 #endif /* CONFIG_HYPERV */
331 
332 #if IS_ENABLED(CONFIG_MSHV_ROOT)
hv_root_partition(void)333 static inline bool hv_root_partition(void)
334 {
335 	return hv_curr_partition_type == HV_PARTITION_TYPE_ROOT;
336 }
hv_l1vh_partition(void)337 static inline bool hv_l1vh_partition(void)
338 {
339 	return hv_curr_partition_type == HV_PARTITION_TYPE_L1VH;
340 }
hv_parent_partition(void)341 static inline bool hv_parent_partition(void)
342 {
343 	return hv_root_partition() || hv_l1vh_partition();
344 }
345 int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages);
346 int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id);
347 int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags);
348 
349 #else /* CONFIG_MSHV_ROOT */
hv_root_partition(void)350 static inline bool hv_root_partition(void) { return false; }
hv_l1vh_partition(void)351 static inline bool hv_l1vh_partition(void) { return false; }
hv_parent_partition(void)352 static inline bool hv_parent_partition(void) { return false; }
hv_call_deposit_pages(int node,u64 partition_id,u32 num_pages)353 static inline int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages)
354 {
355 	return -EOPNOTSUPP;
356 }
hv_call_add_logical_proc(int node,u32 lp_index,u32 acpi_id)357 static inline int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id)
358 {
359 	return -EOPNOTSUPP;
360 }
hv_call_create_vp(int node,u64 partition_id,u32 vp_index,u32 flags)361 static inline int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags)
362 {
363 	return -EOPNOTSUPP;
364 }
365 #endif /* CONFIG_MSHV_ROOT */
366 
367 #if IS_ENABLED(CONFIG_HYPERV_VTL_MODE)
368 u8 __init get_vtl(void);
369 #else
get_vtl(void)370 static inline u8 get_vtl(void) { return 0; }
371 #endif
372 
373 #endif
374