xref: /linux/drivers/clocksource/hyperv_timer.c (revision 37cb0c76ac6c3bf3d82d25a7c95950f2dac3ca41)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Clocksource driver for the synthetic counter and timers
5  * provided by the Hyper-V hypervisor to guest VMs, as described
6  * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7  * is instruction set architecture independent.
8  *
9  * Copyright (C) 2019, Microsoft, Inc.
10  *
11  * Author:  Michael Kelley <mikelley@microsoft.com>
12  */
13 
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <clocksource/hyperv_timer.h>
26 #include <asm/hyperv-tlfs.h>
27 #include <asm/mshyperv.h>
28 
29 static struct clock_event_device __percpu *hv_clock_event;
30 /* Note: offset can hold negative values after hibernation. */
31 static u64 hv_sched_clock_offset __read_mostly;
32 
33 /*
34  * If false, we're using the old mechanism for stimer0 interrupts
35  * where it sends a VMbus message when it expires. The old
36  * mechanism is used when running on older versions of Hyper-V
37  * that don't support Direct Mode. While Hyper-V provides
38  * four stimer's per CPU, Linux uses only stimer0.
39  *
40  * Because Direct Mode does not require processing a VMbus
41  * message, stimer interrupts can be enabled earlier in the
42  * process of booting a CPU, and consistent with when timer
43  * interrupts are enabled for other clocksource drivers.
44  * However, for legacy versions of Hyper-V when Direct Mode
45  * is not enabled, setting up stimer interrupts must be
46  * delayed until VMbus is initialized and can process the
47  * interrupt message.
48  */
49 static bool direct_mode_enabled;
50 
51 static int stimer0_irq = -1;
52 static int stimer0_message_sint;
53 static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
54 
55 /*
56  * Common code for stimer0 interrupts coming via Direct Mode or
57  * as a VMbus message.
58  */
hv_stimer0_isr(void)59 void hv_stimer0_isr(void)
60 {
61 	struct clock_event_device *ce;
62 
63 	ce = this_cpu_ptr(hv_clock_event);
64 	ce->event_handler(ce);
65 }
66 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
67 
68 /*
69  * stimer0 interrupt handler for architectures that support
70  * per-cpu interrupts, which also implies Direct Mode.
71  */
hv_stimer0_percpu_isr(int irq,void * dev_id)72 static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
73 {
74 	hv_stimer0_isr();
75 	return IRQ_HANDLED;
76 }
77 
hv_ce_set_next_event(unsigned long delta,struct clock_event_device * evt)78 static int hv_ce_set_next_event(unsigned long delta,
79 				struct clock_event_device *evt)
80 {
81 	u64 current_tick;
82 
83 	current_tick = hv_read_reference_counter();
84 	current_tick += delta;
85 	hv_set_msr(HV_MSR_STIMER0_COUNT, current_tick);
86 	return 0;
87 }
88 
hv_ce_shutdown(struct clock_event_device * evt)89 static int hv_ce_shutdown(struct clock_event_device *evt)
90 {
91 	hv_set_msr(HV_MSR_STIMER0_COUNT, 0);
92 	hv_set_msr(HV_MSR_STIMER0_CONFIG, 0);
93 	if (direct_mode_enabled && stimer0_irq >= 0)
94 		disable_percpu_irq(stimer0_irq);
95 
96 	return 0;
97 }
98 
hv_ce_set_oneshot(struct clock_event_device * evt)99 static int hv_ce_set_oneshot(struct clock_event_device *evt)
100 {
101 	union hv_stimer_config timer_cfg;
102 
103 	timer_cfg.as_uint64 = 0;
104 	timer_cfg.enable = 1;
105 	timer_cfg.auto_enable = 1;
106 	if (direct_mode_enabled) {
107 		/*
108 		 * When it expires, the timer will directly interrupt
109 		 * on the specified hardware vector/IRQ.
110 		 */
111 		timer_cfg.direct_mode = 1;
112 		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
113 		if (stimer0_irq >= 0)
114 			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
115 	} else {
116 		/*
117 		 * When it expires, the timer will generate a VMbus message,
118 		 * to be handled by the normal VMbus interrupt handler.
119 		 */
120 		timer_cfg.direct_mode = 0;
121 		timer_cfg.sintx = stimer0_message_sint;
122 	}
123 	hv_set_msr(HV_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
124 	return 0;
125 }
126 
127 /*
128  * hv_stimer_init - Per-cpu initialization of the clockevent
129  */
hv_stimer_init(unsigned int cpu)130 static int hv_stimer_init(unsigned int cpu)
131 {
132 	struct clock_event_device *ce;
133 
134 	if (!hv_clock_event)
135 		return 0;
136 
137 	ce = per_cpu_ptr(hv_clock_event, cpu);
138 	ce->name = "Hyper-V clockevent";
139 	ce->features = CLOCK_EVT_FEAT_ONESHOT;
140 	ce->cpumask = cpumask_of(cpu);
141 
142 	/*
143 	 * Lower the rating of the Hyper-V timer in a TDX VM without paravisor,
144 	 * so the local APIC timer (lapic_clockevent) is the default timer in
145 	 * such a VM. The Hyper-V timer is not preferred in such a VM because
146 	 * it depends on the slow VM Reference Counter MSR (the Hyper-V TSC
147 	 * page is not enbled in such a VM because the VM uses Invariant TSC
148 	 * as a better clocksource and it's challenging to mark the Hyper-V
149 	 * TSC page shared in very early boot).
150 	 */
151 	if (!ms_hyperv.paravisor_present && hv_isolation_type_tdx())
152 		ce->rating = 90;
153 	else
154 		ce->rating = 1000;
155 
156 	ce->set_state_shutdown = hv_ce_shutdown;
157 	ce->set_state_oneshot = hv_ce_set_oneshot;
158 	ce->set_next_event = hv_ce_set_next_event;
159 
160 	clockevents_config_and_register(ce,
161 					HV_CLOCK_HZ,
162 					HV_MIN_DELTA_TICKS,
163 					HV_MAX_MAX_DELTA_TICKS);
164 	return 0;
165 }
166 
167 /*
168  * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
169  */
hv_stimer_cleanup(unsigned int cpu)170 int hv_stimer_cleanup(unsigned int cpu)
171 {
172 	struct clock_event_device *ce;
173 
174 	if (!hv_clock_event)
175 		return 0;
176 
177 	/*
178 	 * In the legacy case where Direct Mode is not enabled
179 	 * (which can only be on x86/64), stimer cleanup happens
180 	 * relatively early in the CPU offlining process. We
181 	 * must unbind the stimer-based clockevent device so
182 	 * that the LAPIC timer can take over until clockevents
183 	 * are no longer needed in the offlining process. Note
184 	 * that clockevents_unbind_device() eventually calls
185 	 * hv_ce_shutdown().
186 	 *
187 	 * The unbind should not be done when Direct Mode is
188 	 * enabled because we may be on an architecture where
189 	 * there are no other clockevent devices to fallback to.
190 	 */
191 	ce = per_cpu_ptr(hv_clock_event, cpu);
192 	if (direct_mode_enabled)
193 		hv_ce_shutdown(ce);
194 	else
195 		clockevents_unbind_device(ce, cpu);
196 
197 	return 0;
198 }
199 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
200 
201 /*
202  * These placeholders are overridden by arch specific code on
203  * architectures that need special setup of the stimer0 IRQ because
204  * they don't support per-cpu IRQs (such as x86/x64).
205  */
hv_setup_stimer0_handler(void (* handler)(void))206 void __weak hv_setup_stimer0_handler(void (*handler)(void))
207 {
208 };
209 
hv_remove_stimer0_handler(void)210 void __weak hv_remove_stimer0_handler(void)
211 {
212 };
213 
214 #ifdef CONFIG_ACPI
215 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
hv_setup_stimer0_irq(void)216 static int hv_setup_stimer0_irq(void)
217 {
218 	int ret;
219 
220 	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
221 			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
222 	if (ret < 0) {
223 		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
224 		return ret;
225 	}
226 	stimer0_irq = ret;
227 
228 	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
229 		"Hyper-V stimer0", &stimer0_evt);
230 	if (ret) {
231 		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
232 			stimer0_irq, ret);
233 		acpi_unregister_gsi(stimer0_irq);
234 		stimer0_irq = -1;
235 	}
236 	return ret;
237 }
238 
hv_remove_stimer0_irq(void)239 static void hv_remove_stimer0_irq(void)
240 {
241 	if (stimer0_irq == -1) {
242 		hv_remove_stimer0_handler();
243 	} else {
244 		free_percpu_irq(stimer0_irq, &stimer0_evt);
245 		acpi_unregister_gsi(stimer0_irq);
246 		stimer0_irq = -1;
247 	}
248 }
249 #else
hv_setup_stimer0_irq(void)250 static int hv_setup_stimer0_irq(void)
251 {
252 	return 0;
253 }
254 
hv_remove_stimer0_irq(void)255 static void hv_remove_stimer0_irq(void)
256 {
257 }
258 #endif
259 
260 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
hv_stimer_alloc(bool have_percpu_irqs)261 int hv_stimer_alloc(bool have_percpu_irqs)
262 {
263 	int ret;
264 
265 	/*
266 	 * Synthetic timers are always available except on old versions of
267 	 * Hyper-V on x86.  In that case, return as error as Linux will use a
268 	 * clockevent based on emulated LAPIC timer hardware.
269 	 */
270 	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
271 		return -EINVAL;
272 
273 	hv_clock_event = alloc_percpu(struct clock_event_device);
274 	if (!hv_clock_event)
275 		return -ENOMEM;
276 
277 	direct_mode_enabled = ms_hyperv.misc_features &
278 			HV_STIMER_DIRECT_MODE_AVAILABLE;
279 
280 	/*
281 	 * If Direct Mode isn't enabled, the remainder of the initialization
282 	 * is done later by hv_stimer_legacy_init()
283 	 */
284 	if (!direct_mode_enabled)
285 		return 0;
286 
287 	if (have_percpu_irqs) {
288 		ret = hv_setup_stimer0_irq();
289 		if (ret)
290 			goto free_clock_event;
291 	} else {
292 		hv_setup_stimer0_handler(hv_stimer0_isr);
293 	}
294 
295 	/*
296 	 * Since we are in Direct Mode, stimer initialization
297 	 * can be done now with a CPUHP value in the same range
298 	 * as other clockevent devices.
299 	 */
300 	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
301 			"clockevents/hyperv/stimer:starting",
302 			hv_stimer_init, hv_stimer_cleanup);
303 	if (ret < 0) {
304 		hv_remove_stimer0_irq();
305 		goto free_clock_event;
306 	}
307 	return ret;
308 
309 free_clock_event:
310 	free_percpu(hv_clock_event);
311 	hv_clock_event = NULL;
312 	return ret;
313 }
314 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
315 
316 /*
317  * hv_stimer_legacy_init -- Called from the VMbus driver to handle
318  * the case when Direct Mode is not enabled, and the stimer
319  * must be initialized late in the CPU onlining process.
320  *
321  */
hv_stimer_legacy_init(unsigned int cpu,int sint)322 void hv_stimer_legacy_init(unsigned int cpu, int sint)
323 {
324 	if (direct_mode_enabled)
325 		return;
326 
327 	/*
328 	 * This function gets called by each vCPU, so setting the
329 	 * global stimer_message_sint value each time is conceptually
330 	 * not ideal, but the value passed in is always the same and
331 	 * it avoids introducing yet another interface into this
332 	 * clocksource driver just to set the sint in the legacy case.
333 	 */
334 	stimer0_message_sint = sint;
335 	(void)hv_stimer_init(cpu);
336 }
337 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
338 
339 /*
340  * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
341  * handle the case when Direct Mode is not enabled, and the
342  * stimer must be cleaned up early in the CPU offlining
343  * process.
344  */
hv_stimer_legacy_cleanup(unsigned int cpu)345 void hv_stimer_legacy_cleanup(unsigned int cpu)
346 {
347 	if (direct_mode_enabled)
348 		return;
349 	(void)hv_stimer_cleanup(cpu);
350 }
351 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
352 
353 /*
354  * Do a global cleanup of clockevents for the cases of kexec and
355  * vmbus exit
356  */
hv_stimer_global_cleanup(void)357 void hv_stimer_global_cleanup(void)
358 {
359 	int	cpu;
360 
361 	/*
362 	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
363 	 * Mode is not enabled, and fallback to the LAPIC timer.
364 	 */
365 	for_each_present_cpu(cpu) {
366 		hv_stimer_legacy_cleanup(cpu);
367 	}
368 
369 	if (!hv_clock_event)
370 		return;
371 
372 	if (direct_mode_enabled) {
373 		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
374 		hv_remove_stimer0_irq();
375 		stimer0_irq = -1;
376 	}
377 	free_percpu(hv_clock_event);
378 	hv_clock_event = NULL;
379 
380 }
381 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
382 
read_hv_clock_msr(void)383 static __always_inline u64 read_hv_clock_msr(void)
384 {
385 	/*
386 	 * Read the partition counter to get the current tick count. This count
387 	 * is set to 0 when the partition is created and is incremented in 100
388 	 * nanosecond units.
389 	 *
390 	 * Use hv_raw_get_msr() because this function is used from
391 	 * noinstr. Notable; while HV_MSR_TIME_REF_COUNT is a synthetic
392 	 * register it doesn't need the GHCB path.
393 	 */
394 	return hv_raw_get_msr(HV_MSR_TIME_REF_COUNT);
395 }
396 
397 /*
398  * Code and definitions for the Hyper-V clocksources.  Two
399  * clocksources are defined: one that reads the Hyper-V defined MSR, and
400  * the other that uses the TSC reference page feature as defined in the
401  * TLFS.  The MSR version is for compatibility with old versions of
402  * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
403  */
404 
405 static union {
406 	struct ms_hyperv_tsc_page page;
407 	u8 reserved[PAGE_SIZE];
408 } tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
409 
410 static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
411 static unsigned long tsc_pfn;
412 
hv_get_tsc_pfn(void)413 unsigned long hv_get_tsc_pfn(void)
414 {
415 	return tsc_pfn;
416 }
417 EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
418 
hv_get_tsc_page(void)419 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
420 {
421 	return tsc_page;
422 }
423 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
424 
read_hv_clock_tsc(void)425 static __always_inline u64 read_hv_clock_tsc(void)
426 {
427 	u64 cur_tsc, time;
428 
429 	/*
430 	 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
431 	 * subsection Refererence Counter, guarantees that the TSC and MSR
432 	 * times are in sync and monotonic. Therefore we can fall back
433 	 * to the MSR in case the TSC page indicates unavailability.
434 	 */
435 	if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
436 		time = read_hv_clock_msr();
437 
438 	return time;
439 }
440 
read_hv_clock_tsc_cs(struct clocksource * arg)441 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
442 {
443 	return read_hv_clock_tsc();
444 }
445 
read_hv_sched_clock_tsc(void)446 static u64 noinstr read_hv_sched_clock_tsc(void)
447 {
448 	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
449 		(NSEC_PER_SEC / HV_CLOCK_HZ);
450 }
451 
suspend_hv_clock_tsc(struct clocksource * arg)452 static void suspend_hv_clock_tsc(struct clocksource *arg)
453 {
454 	union hv_reference_tsc_msr tsc_msr;
455 
456 	/* Disable the TSC page */
457 	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
458 	tsc_msr.enable = 0;
459 	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
460 }
461 
462 
resume_hv_clock_tsc(struct clocksource * arg)463 static void resume_hv_clock_tsc(struct clocksource *arg)
464 {
465 	union hv_reference_tsc_msr tsc_msr;
466 
467 	/* Re-enable the TSC page */
468 	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
469 	tsc_msr.enable = 1;
470 	tsc_msr.pfn = tsc_pfn;
471 	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
472 }
473 
474 /*
475  * Called during resume from hibernation, from overridden
476  * x86_platform.restore_sched_clock_state routine. This is to adjust offsets
477  * used to calculate time for hv tsc page based sched_clock, to account for
478  * time spent before hibernation.
479  */
hv_adj_sched_clock_offset(u64 offset)480 void hv_adj_sched_clock_offset(u64 offset)
481 {
482 	hv_sched_clock_offset -= offset;
483 }
484 
485 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
hv_cs_enable(struct clocksource * cs)486 static int hv_cs_enable(struct clocksource *cs)
487 {
488 	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
489 	return 0;
490 }
491 #endif
492 
493 static struct clocksource hyperv_cs_tsc = {
494 	.name	= "hyperv_clocksource_tsc_page",
495 	.rating	= 500,
496 	.read	= read_hv_clock_tsc_cs,
497 	.mask	= CLOCKSOURCE_MASK(64),
498 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
499 	.suspend= suspend_hv_clock_tsc,
500 	.resume	= resume_hv_clock_tsc,
501 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
502 	.enable = hv_cs_enable,
503 	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
504 #else
505 	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
506 #endif
507 };
508 
read_hv_clock_msr_cs(struct clocksource * arg)509 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
510 {
511 	return read_hv_clock_msr();
512 }
513 
514 static struct clocksource hyperv_cs_msr = {
515 	.name	= "hyperv_clocksource_msr",
516 	.rating	= 495,
517 	.read	= read_hv_clock_msr_cs,
518 	.mask	= CLOCKSOURCE_MASK(64),
519 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
520 };
521 
522 /*
523  * Reference to pv_ops must be inline so objtool
524  * detection of noinstr violations can work correctly.
525  */
526 #ifdef CONFIG_GENERIC_SCHED_CLOCK
hv_setup_sched_clock(void * sched_clock)527 static __always_inline void hv_setup_sched_clock(void *sched_clock)
528 {
529 	/*
530 	 * We're on an architecture with generic sched clock (not x86/x64).
531 	 * The Hyper-V sched clock read function returns nanoseconds, not
532 	 * the normal 100ns units of the Hyper-V synthetic clock.
533 	 */
534 	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
535 }
536 #elif defined CONFIG_PARAVIRT
hv_setup_sched_clock(void * sched_clock)537 static __always_inline void hv_setup_sched_clock(void *sched_clock)
538 {
539 	/* We're on x86/x64 *and* using PV ops */
540 	paravirt_set_sched_clock(sched_clock);
541 }
542 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
hv_setup_sched_clock(void * sched_clock)543 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
544 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
545 
hv_init_tsc_clocksource(void)546 static void __init hv_init_tsc_clocksource(void)
547 {
548 	union hv_reference_tsc_msr tsc_msr;
549 
550 	/*
551 	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
552 	 * handles frequency and offset changes due to live migration,
553 	 * pause/resume, and other VM management operations.  So lower the
554 	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
555 	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
556 	 * TSC will be preferred over the virtualized ARM64 arch counter.
557 	 */
558 	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
559 		hyperv_cs_tsc.rating = 250;
560 		hyperv_cs_msr.rating = 245;
561 	}
562 
563 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
564 		return;
565 
566 	hv_read_reference_counter = read_hv_clock_tsc;
567 
568 	/*
569 	 * TSC page mapping works differently in root compared to guest.
570 	 * - In guest partition the guest PFN has to be passed to the
571 	 *   hypervisor.
572 	 * - In root partition it's other way around: it has to map the PFN
573 	 *   provided by the hypervisor.
574 	 *   But it can't be mapped right here as it's too early and MMU isn't
575 	 *   ready yet. So, we only set the enable bit here and will remap the
576 	 *   page later in hv_remap_tsc_clocksource().
577 	 *
578 	 * It worth mentioning, that TSC clocksource read function
579 	 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
580 	 * TSC page is zeroed (which is the case until the PFN is remapped) and
581 	 * thus TSC clocksource will work even without the real TSC page
582 	 * mapped.
583 	 */
584 	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
585 	if (hv_root_partition)
586 		tsc_pfn = tsc_msr.pfn;
587 	else
588 		tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
589 	tsc_msr.enable = 1;
590 	tsc_msr.pfn = tsc_pfn;
591 	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
592 
593 	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
594 
595 	/*
596 	 * If TSC is invariant, then let it stay as the sched clock since it
597 	 * will be faster than reading the TSC page. But if not invariant, use
598 	 * the TSC page so that live migrations across hosts with different
599 	 * frequencies is handled correctly.
600 	 */
601 	if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
602 		hv_sched_clock_offset = hv_read_reference_counter();
603 		hv_setup_sched_clock(read_hv_sched_clock_tsc);
604 	}
605 }
606 
hv_init_clocksource(void)607 void __init hv_init_clocksource(void)
608 {
609 	/*
610 	 * Try to set up the TSC page clocksource, then the MSR clocksource.
611 	 * At least one of these will always be available except on very old
612 	 * versions of Hyper-V on x86.  In that case we won't have a Hyper-V
613 	 * clocksource, but Linux will still run with a clocksource based
614 	 * on the emulated PIT or LAPIC timer.
615 	 *
616 	 * Never use the MSR clocksource as sched clock.  It's too slow.
617 	 * Better to use the native sched clock as the fallback.
618 	 */
619 	hv_init_tsc_clocksource();
620 
621 	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
622 		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
623 }
624 
hv_remap_tsc_clocksource(void)625 void __init hv_remap_tsc_clocksource(void)
626 {
627 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
628 		return;
629 
630 	if (!hv_root_partition) {
631 		WARN(1, "%s: attempt to remap TSC page in guest partition\n",
632 		     __func__);
633 		return;
634 	}
635 
636 	tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
637 			    MEMREMAP_WB);
638 	if (!tsc_page)
639 		pr_err("Failed to remap Hyper-V TSC page.\n");
640 }
641