1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51
52 struct hugetlbfs_fs_context {
53 struct hstate *hstate;
54 unsigned long long max_size_opt;
55 unsigned long long min_size_opt;
56 long max_hpages;
57 long nr_inodes;
58 long min_hpages;
59 enum hugetlbfs_size_type max_val_type;
60 enum hugetlbfs_size_type min_val_type;
61 kuid_t uid;
62 kgid_t gid;
63 umode_t mode;
64 };
65
66 int sysctl_hugetlb_shm_group;
67
68 enum hugetlb_param {
69 Opt_gid,
70 Opt_min_size,
71 Opt_mode,
72 Opt_nr_inodes,
73 Opt_pagesize,
74 Opt_size,
75 Opt_uid,
76 };
77
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 fsparam_gid ("gid", Opt_gid),
80 fsparam_string("min_size", Opt_min_size),
81 fsparam_u32oct("mode", Opt_mode),
82 fsparam_string("nr_inodes", Opt_nr_inodes),
83 fsparam_string("pagesize", Opt_pagesize),
84 fsparam_string("size", Opt_size),
85 fsparam_uid ("uid", Opt_uid),
86 {}
87 };
88
89 /*
90 * Mask used when checking the page offset value passed in via system
91 * calls. This value will be converted to a loff_t which is signed.
92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93 * value. The extra bit (- 1 in the shift value) is to take the sign
94 * bit into account.
95 */
96 #define PGOFF_LOFFT_MAX \
97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
100 {
101 struct inode *inode = file_inode(file);
102 loff_t len, vma_len;
103 int ret;
104 struct hstate *h = hstate_file(file);
105 vm_flags_t vm_flags;
106
107 /*
108 * vma address alignment (but not the pgoff alignment) has
109 * already been checked by prepare_hugepage_range. If you add
110 * any error returns here, do so after setting VM_HUGETLB, so
111 * is_vm_hugetlb_page tests below unmap_region go the right
112 * way when do_mmap unwinds (may be important on powerpc
113 * and ia64).
114 */
115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
116 vma->vm_ops = &hugetlb_vm_ops;
117
118 /*
119 * page based offset in vm_pgoff could be sufficiently large to
120 * overflow a loff_t when converted to byte offset. This can
121 * only happen on architectures where sizeof(loff_t) ==
122 * sizeof(unsigned long). So, only check in those instances.
123 */
124 if (sizeof(unsigned long) == sizeof(loff_t)) {
125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
126 return -EINVAL;
127 }
128
129 /* must be huge page aligned */
130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
131 return -EINVAL;
132
133 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
135 /* check for overflow */
136 if (len < vma_len)
137 return -EINVAL;
138
139 inode_lock(inode);
140 file_accessed(file);
141
142 ret = -ENOMEM;
143
144 vm_flags = vma->vm_flags;
145 /*
146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
147 * reserving here. Note: only for SHM hugetlbfs file, the inode
148 * flag S_PRIVATE is set.
149 */
150 if (inode->i_flags & S_PRIVATE)
151 vm_flags |= VM_NORESERVE;
152
153 if (hugetlb_reserve_pages(inode,
154 vma->vm_pgoff >> huge_page_order(h),
155 len >> huge_page_shift(h), vma,
156 vm_flags) < 0)
157 goto out;
158
159 ret = 0;
160 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
161 i_size_write(inode, len);
162 out:
163 inode_unlock(inode);
164
165 return ret;
166 }
167
168 /*
169 * Called under mmap_write_lock(mm).
170 */
171
172 unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
174 unsigned long len, unsigned long pgoff,
175 unsigned long flags)
176 {
177 unsigned long addr0 = 0;
178 struct hstate *h = hstate_file(file);
179
180 if (len & ~huge_page_mask(h))
181 return -EINVAL;
182 if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h)))
183 return -EINVAL;
184 if (addr)
185 addr0 = ALIGN(addr, huge_page_size(h));
186
187 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
188 flags, 0);
189 }
190
191 /*
192 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
193 * Returns the maximum number of bytes one can read without touching the 1st raw
194 * HWPOISON page.
195 */
adjust_range_hwpoison(struct folio * folio,size_t offset,size_t bytes)196 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
197 size_t bytes)
198 {
199 struct page *page = folio_page(folio, offset / PAGE_SIZE);
200 size_t safe_bytes;
201
202 if (is_raw_hwpoison_page_in_hugepage(page))
203 return 0;
204 /* Safe to read the remaining bytes in this page. */
205 safe_bytes = PAGE_SIZE - (offset % PAGE_SIZE);
206 page++;
207
208 /* Check each remaining page as long as we are not done yet. */
209 for (; safe_bytes < bytes; safe_bytes += PAGE_SIZE, page++)
210 if (is_raw_hwpoison_page_in_hugepage(page))
211 break;
212
213 return min(safe_bytes, bytes);
214 }
215
216 /*
217 * Support for read() - Find the page attached to f_mapping and copy out the
218 * data. This provides functionality similar to filemap_read().
219 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)220 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
221 {
222 struct file *file = iocb->ki_filp;
223 struct hstate *h = hstate_file(file);
224 struct address_space *mapping = file->f_mapping;
225 struct inode *inode = mapping->host;
226 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
227 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
228 unsigned long end_index;
229 loff_t isize;
230 ssize_t retval = 0;
231
232 while (iov_iter_count(to)) {
233 struct folio *folio;
234 size_t nr, copied, want;
235
236 /* nr is the maximum number of bytes to copy from this page */
237 nr = huge_page_size(h);
238 isize = i_size_read(inode);
239 if (!isize)
240 break;
241 end_index = (isize - 1) >> huge_page_shift(h);
242 if (index > end_index)
243 break;
244 if (index == end_index) {
245 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
246 if (nr <= offset)
247 break;
248 }
249 nr = nr - offset;
250
251 /* Find the folio */
252 folio = filemap_lock_hugetlb_folio(h, mapping, index);
253 if (IS_ERR(folio)) {
254 /*
255 * We have a HOLE, zero out the user-buffer for the
256 * length of the hole or request.
257 */
258 copied = iov_iter_zero(nr, to);
259 } else {
260 folio_unlock(folio);
261
262 if (!folio_test_hwpoison(folio))
263 want = nr;
264 else {
265 /*
266 * Adjust how many bytes safe to read without
267 * touching the 1st raw HWPOISON page after
268 * offset.
269 */
270 want = adjust_range_hwpoison(folio, offset, nr);
271 if (want == 0) {
272 folio_put(folio);
273 retval = -EIO;
274 break;
275 }
276 }
277
278 /*
279 * We have the folio, copy it to user space buffer.
280 */
281 copied = copy_folio_to_iter(folio, offset, want, to);
282 folio_put(folio);
283 }
284 offset += copied;
285 retval += copied;
286 if (copied != nr && iov_iter_count(to)) {
287 if (!retval)
288 retval = -EFAULT;
289 break;
290 }
291 index += offset >> huge_page_shift(h);
292 offset &= ~huge_page_mask(h);
293 }
294 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
295 return retval;
296 }
297
hugetlbfs_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)298 static int hugetlbfs_write_begin(const struct kiocb *iocb,
299 struct address_space *mapping,
300 loff_t pos, unsigned len,
301 struct folio **foliop, void **fsdata)
302 {
303 return -EINVAL;
304 }
305
hugetlbfs_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)306 static int hugetlbfs_write_end(const struct kiocb *iocb,
307 struct address_space *mapping,
308 loff_t pos, unsigned len, unsigned copied,
309 struct folio *folio, void *fsdata)
310 {
311 BUG();
312 return -EINVAL;
313 }
314
hugetlb_delete_from_page_cache(struct folio * folio)315 static void hugetlb_delete_from_page_cache(struct folio *folio)
316 {
317 folio_clear_dirty(folio);
318 folio_clear_uptodate(folio);
319 filemap_remove_folio(folio);
320 }
321
322 /*
323 * Called with i_mmap_rwsem held for inode based vma maps. This makes
324 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
325 * mutex for the page in the mapping. So, we can not race with page being
326 * faulted into the vma.
327 */
hugetlb_vma_maps_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)328 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
329 unsigned long addr, unsigned long pfn)
330 {
331 pte_t *ptep, pte;
332
333 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
334 if (!ptep)
335 return false;
336
337 pte = huge_ptep_get(vma->vm_mm, addr, ptep);
338 if (huge_pte_none(pte) || !pte_present(pte))
339 return false;
340
341 if (pte_pfn(pte) == pfn)
342 return true;
343
344 return false;
345 }
346
347 /*
348 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
349 * No, because the interval tree returns us only those vmas
350 * which overlap the truncated area starting at pgoff,
351 * and no vma on a 32-bit arch can span beyond the 4GB.
352 */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)353 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
354 {
355 unsigned long offset = 0;
356
357 if (vma->vm_pgoff < start)
358 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
359
360 return vma->vm_start + offset;
361 }
362
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)363 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
364 {
365 unsigned long t_end;
366
367 if (!end)
368 return vma->vm_end;
369
370 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
371 if (t_end > vma->vm_end)
372 t_end = vma->vm_end;
373 return t_end;
374 }
375
376 /*
377 * Called with hugetlb fault mutex held. Therefore, no more mappings to
378 * this folio can be created while executing the routine.
379 */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)380 static void hugetlb_unmap_file_folio(struct hstate *h,
381 struct address_space *mapping,
382 struct folio *folio, pgoff_t index)
383 {
384 struct rb_root_cached *root = &mapping->i_mmap;
385 struct hugetlb_vma_lock *vma_lock;
386 unsigned long pfn = folio_pfn(folio);
387 struct vm_area_struct *vma;
388 unsigned long v_start;
389 unsigned long v_end;
390 pgoff_t start, end;
391
392 start = index * pages_per_huge_page(h);
393 end = (index + 1) * pages_per_huge_page(h);
394
395 i_mmap_lock_write(mapping);
396 retry:
397 vma_lock = NULL;
398 vma_interval_tree_foreach(vma, root, start, end - 1) {
399 v_start = vma_offset_start(vma, start);
400 v_end = vma_offset_end(vma, end);
401
402 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
403 continue;
404
405 if (!hugetlb_vma_trylock_write(vma)) {
406 vma_lock = vma->vm_private_data;
407 /*
408 * If we can not get vma lock, we need to drop
409 * immap_sema and take locks in order. First,
410 * take a ref on the vma_lock structure so that
411 * we can be guaranteed it will not go away when
412 * dropping immap_sema.
413 */
414 kref_get(&vma_lock->refs);
415 break;
416 }
417
418 unmap_hugepage_range(vma, v_start, v_end, NULL,
419 ZAP_FLAG_DROP_MARKER);
420 hugetlb_vma_unlock_write(vma);
421 }
422
423 i_mmap_unlock_write(mapping);
424
425 if (vma_lock) {
426 /*
427 * Wait on vma_lock. We know it is still valid as we have
428 * a reference. We must 'open code' vma locking as we do
429 * not know if vma_lock is still attached to vma.
430 */
431 down_write(&vma_lock->rw_sema);
432 i_mmap_lock_write(mapping);
433
434 vma = vma_lock->vma;
435 if (!vma) {
436 /*
437 * If lock is no longer attached to vma, then just
438 * unlock, drop our reference and retry looking for
439 * other vmas.
440 */
441 up_write(&vma_lock->rw_sema);
442 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
443 goto retry;
444 }
445
446 /*
447 * vma_lock is still attached to vma. Check to see if vma
448 * still maps page and if so, unmap.
449 */
450 v_start = vma_offset_start(vma, start);
451 v_end = vma_offset_end(vma, end);
452 if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
453 unmap_hugepage_range(vma, v_start, v_end, NULL,
454 ZAP_FLAG_DROP_MARKER);
455
456 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
457 hugetlb_vma_unlock_write(vma);
458
459 goto retry;
460 }
461 }
462
463 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)464 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
465 zap_flags_t zap_flags)
466 {
467 struct vm_area_struct *vma;
468
469 /*
470 * end == 0 indicates that the entire range after start should be
471 * unmapped. Note, end is exclusive, whereas the interval tree takes
472 * an inclusive "last".
473 */
474 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
475 unsigned long v_start;
476 unsigned long v_end;
477
478 if (!hugetlb_vma_trylock_write(vma))
479 continue;
480
481 /*
482 * Skip VMAs without shareable locks. Per the design in commit
483 * 40549ba8f8e0, these will be handled by remove_inode_hugepages()
484 * called after this function with proper locking.
485 */
486 if (!__vma_shareable_lock(vma))
487 goto skip;
488
489 v_start = vma_offset_start(vma, start);
490 v_end = vma_offset_end(vma, end);
491
492 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
493
494 /*
495 * Note that vma lock only exists for shared/non-private
496 * vmas. Therefore, lock is not held when calling
497 * unmap_hugepage_range for private vmas.
498 */
499 skip:
500 hugetlb_vma_unlock_write(vma);
501 }
502 }
503
504 /*
505 * Called with hugetlb fault mutex held.
506 * Returns true if page was actually removed, false otherwise.
507 */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)508 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
509 struct address_space *mapping,
510 struct folio *folio, pgoff_t index,
511 bool truncate_op)
512 {
513 bool ret = false;
514
515 /*
516 * If folio is mapped, it was faulted in after being
517 * unmapped in caller or hugetlb_vmdelete_list() skips
518 * unmapping it due to fail to grab lock. Unmap (again)
519 * while holding the fault mutex. The mutex will prevent
520 * faults until we finish removing the folio. Hold folio
521 * lock to guarantee no concurrent migration.
522 */
523 folio_lock(folio);
524 if (unlikely(folio_mapped(folio)))
525 hugetlb_unmap_file_folio(h, mapping, folio, index);
526
527 /*
528 * We must remove the folio from page cache before removing
529 * the region/ reserve map (hugetlb_unreserve_pages). In
530 * rare out of memory conditions, removal of the region/reserve
531 * map could fail. Correspondingly, the subpool and global
532 * reserve usage count can need to be adjusted.
533 */
534 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
535 hugetlb_delete_from_page_cache(folio);
536 ret = true;
537 if (!truncate_op) {
538 if (unlikely(hugetlb_unreserve_pages(inode, index,
539 index + 1, 1)))
540 hugetlb_fix_reserve_counts(inode);
541 }
542
543 folio_unlock(folio);
544 return ret;
545 }
546
547 /*
548 * remove_inode_hugepages handles two distinct cases: truncation and hole
549 * punch. There are subtle differences in operation for each case.
550 *
551 * truncation is indicated by end of range being LLONG_MAX
552 * In this case, we first scan the range and release found pages.
553 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
554 * maps and global counts. Page faults can race with truncation.
555 * During faults, hugetlb_no_page() checks i_size before page allocation,
556 * and again after obtaining page table lock. It will 'back out'
557 * allocations in the truncated range.
558 * hole punch is indicated if end is not LLONG_MAX
559 * In the hole punch case we scan the range and release found pages.
560 * Only when releasing a page is the associated region/reserve map
561 * deleted. The region/reserve map for ranges without associated
562 * pages are not modified. Page faults can race with hole punch.
563 * This is indicated if we find a mapped page.
564 * Note: If the passed end of range value is beyond the end of file, but
565 * not LLONG_MAX this routine still performs a hole punch operation.
566 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)567 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
568 loff_t lend)
569 {
570 struct hstate *h = hstate_inode(inode);
571 struct address_space *mapping = &inode->i_data;
572 const pgoff_t end = lend >> PAGE_SHIFT;
573 struct folio_batch fbatch;
574 pgoff_t next, index;
575 int i, freed = 0;
576 bool truncate_op = (lend == LLONG_MAX);
577
578 folio_batch_init(&fbatch);
579 next = lstart >> PAGE_SHIFT;
580 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
581 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
582 struct folio *folio = fbatch.folios[i];
583 u32 hash = 0;
584
585 index = folio->index >> huge_page_order(h);
586 hash = hugetlb_fault_mutex_hash(mapping, index);
587 mutex_lock(&hugetlb_fault_mutex_table[hash]);
588
589 /*
590 * Remove folio that was part of folio_batch.
591 */
592 if (remove_inode_single_folio(h, inode, mapping, folio,
593 index, truncate_op))
594 freed++;
595
596 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
597 }
598 folio_batch_release(&fbatch);
599 cond_resched();
600 }
601
602 if (truncate_op)
603 (void)hugetlb_unreserve_pages(inode,
604 lstart >> huge_page_shift(h),
605 LONG_MAX, freed);
606 }
607
hugetlbfs_evict_inode(struct inode * inode)608 static void hugetlbfs_evict_inode(struct inode *inode)
609 {
610 struct resv_map *resv_map;
611
612 trace_hugetlbfs_evict_inode(inode);
613 remove_inode_hugepages(inode, 0, LLONG_MAX);
614
615 /*
616 * Get the resv_map from the address space embedded in the inode.
617 * This is the address space which points to any resv_map allocated
618 * at inode creation time. If this is a device special inode,
619 * i_mapping may not point to the original address space.
620 */
621 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
622 /* Only regular and link inodes have associated reserve maps */
623 if (resv_map)
624 resv_map_release(&resv_map->refs);
625 clear_inode(inode);
626 }
627
hugetlb_vmtruncate(struct inode * inode,loff_t offset)628 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
629 {
630 pgoff_t pgoff;
631 struct address_space *mapping = inode->i_mapping;
632 struct hstate *h = hstate_inode(inode);
633
634 BUG_ON(offset & ~huge_page_mask(h));
635 pgoff = offset >> PAGE_SHIFT;
636
637 i_size_write(inode, offset);
638 i_mmap_lock_write(mapping);
639 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
640 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
641 ZAP_FLAG_DROP_MARKER);
642 i_mmap_unlock_write(mapping);
643 remove_inode_hugepages(inode, offset, LLONG_MAX);
644 }
645
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)646 static void hugetlbfs_zero_partial_page(struct hstate *h,
647 struct address_space *mapping,
648 loff_t start,
649 loff_t end)
650 {
651 pgoff_t idx = start >> huge_page_shift(h);
652 struct folio *folio;
653
654 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
655 if (IS_ERR(folio))
656 return;
657
658 start = start & ~huge_page_mask(h);
659 end = end & ~huge_page_mask(h);
660 if (!end)
661 end = huge_page_size(h);
662
663 folio_zero_segment(folio, (size_t)start, (size_t)end);
664
665 folio_unlock(folio);
666 folio_put(folio);
667 }
668
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)669 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
670 {
671 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
672 struct address_space *mapping = inode->i_mapping;
673 struct hstate *h = hstate_inode(inode);
674 loff_t hpage_size = huge_page_size(h);
675 loff_t hole_start, hole_end;
676
677 /*
678 * hole_start and hole_end indicate the full pages within the hole.
679 */
680 hole_start = round_up(offset, hpage_size);
681 hole_end = round_down(offset + len, hpage_size);
682
683 inode_lock(inode);
684
685 /* protected by i_rwsem */
686 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
687 inode_unlock(inode);
688 return -EPERM;
689 }
690
691 i_mmap_lock_write(mapping);
692
693 /* If range starts before first full page, zero partial page. */
694 if (offset < hole_start)
695 hugetlbfs_zero_partial_page(h, mapping,
696 offset, min(offset + len, hole_start));
697
698 /* Unmap users of full pages in the hole. */
699 if (hole_end > hole_start) {
700 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
701 hugetlb_vmdelete_list(&mapping->i_mmap,
702 hole_start >> PAGE_SHIFT,
703 hole_end >> PAGE_SHIFT, 0);
704 }
705
706 /* If range extends beyond last full page, zero partial page. */
707 if ((offset + len) > hole_end && (offset + len) > hole_start)
708 hugetlbfs_zero_partial_page(h, mapping,
709 hole_end, offset + len);
710
711 i_mmap_unlock_write(mapping);
712
713 /* Remove full pages from the file. */
714 if (hole_end > hole_start)
715 remove_inode_hugepages(inode, hole_start, hole_end);
716
717 inode_unlock(inode);
718
719 return 0;
720 }
721
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)722 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
723 loff_t len)
724 {
725 struct inode *inode = file_inode(file);
726 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
727 struct address_space *mapping = inode->i_mapping;
728 struct hstate *h = hstate_inode(inode);
729 struct vm_area_struct pseudo_vma;
730 struct mm_struct *mm = current->mm;
731 loff_t hpage_size = huge_page_size(h);
732 unsigned long hpage_shift = huge_page_shift(h);
733 pgoff_t start, index, end;
734 int error;
735 u32 hash;
736
737 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
738 return -EOPNOTSUPP;
739
740 if (mode & FALLOC_FL_PUNCH_HOLE) {
741 error = hugetlbfs_punch_hole(inode, offset, len);
742 goto out_nolock;
743 }
744
745 /*
746 * Default preallocate case.
747 * For this range, start is rounded down and end is rounded up
748 * as well as being converted to page offsets.
749 */
750 start = offset >> hpage_shift;
751 end = (offset + len + hpage_size - 1) >> hpage_shift;
752
753 inode_lock(inode);
754
755 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
756 error = inode_newsize_ok(inode, offset + len);
757 if (error)
758 goto out;
759
760 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
761 error = -EPERM;
762 goto out;
763 }
764
765 /*
766 * Initialize a pseudo vma as this is required by the huge page
767 * allocation routines.
768 */
769 vma_init(&pseudo_vma, mm);
770 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
771 pseudo_vma.vm_file = file;
772
773 for (index = start; index < end; index++) {
774 /*
775 * This is supposed to be the vaddr where the page is being
776 * faulted in, but we have no vaddr here.
777 */
778 struct folio *folio;
779 unsigned long addr;
780
781 cond_resched();
782
783 /*
784 * fallocate(2) manpage permits EINTR; we may have been
785 * interrupted because we are using up too much memory.
786 */
787 if (signal_pending(current)) {
788 error = -EINTR;
789 break;
790 }
791
792 /* addr is the offset within the file (zero based) */
793 addr = index * hpage_size;
794
795 /* mutex taken here, fault path and hole punch */
796 hash = hugetlb_fault_mutex_hash(mapping, index);
797 mutex_lock(&hugetlb_fault_mutex_table[hash]);
798
799 /* See if already present in mapping to avoid alloc/free */
800 folio = filemap_get_folio(mapping, index << huge_page_order(h));
801 if (!IS_ERR(folio)) {
802 folio_put(folio);
803 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
804 continue;
805 }
806
807 /*
808 * Allocate folio without setting the avoid_reserve argument.
809 * There certainly are no reserves associated with the
810 * pseudo_vma. However, there could be shared mappings with
811 * reserves for the file at the inode level. If we fallocate
812 * folios in these areas, we need to consume the reserves
813 * to keep reservation accounting consistent.
814 */
815 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
816 if (IS_ERR(folio)) {
817 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
818 error = PTR_ERR(folio);
819 goto out;
820 }
821 folio_zero_user(folio, addr);
822 __folio_mark_uptodate(folio);
823 error = hugetlb_add_to_page_cache(folio, mapping, index);
824 if (unlikely(error)) {
825 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
826 folio_put(folio);
827 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
828 goto out;
829 }
830
831 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
832
833 folio_set_hugetlb_migratable(folio);
834 /*
835 * folio_unlock because locked by hugetlb_add_to_page_cache()
836 * folio_put() due to reference from alloc_hugetlb_folio()
837 */
838 folio_unlock(folio);
839 folio_put(folio);
840 }
841
842 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
843 i_size_write(inode, offset + len);
844 inode_set_ctime_current(inode);
845 out:
846 inode_unlock(inode);
847
848 out_nolock:
849 trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
850 return error;
851 }
852
hugetlbfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)853 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
854 struct dentry *dentry, struct iattr *attr)
855 {
856 struct inode *inode = d_inode(dentry);
857 struct hstate *h = hstate_inode(inode);
858 int error;
859 unsigned int ia_valid = attr->ia_valid;
860 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
861
862 error = setattr_prepare(idmap, dentry, attr);
863 if (error)
864 return error;
865
866 trace_hugetlbfs_setattr(inode, dentry, attr);
867
868 if (ia_valid & ATTR_SIZE) {
869 loff_t oldsize = inode->i_size;
870 loff_t newsize = attr->ia_size;
871
872 if (newsize & ~huge_page_mask(h))
873 return -EINVAL;
874 /* protected by i_rwsem */
875 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
876 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
877 return -EPERM;
878 hugetlb_vmtruncate(inode, newsize);
879 }
880
881 setattr_copy(idmap, inode, attr);
882 mark_inode_dirty(inode);
883 return 0;
884 }
885
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)886 static struct inode *hugetlbfs_get_root(struct super_block *sb,
887 struct hugetlbfs_fs_context *ctx)
888 {
889 struct inode *inode;
890
891 inode = new_inode(sb);
892 if (inode) {
893 inode->i_ino = get_next_ino();
894 inode->i_mode = S_IFDIR | ctx->mode;
895 inode->i_uid = ctx->uid;
896 inode->i_gid = ctx->gid;
897 simple_inode_init_ts(inode);
898 inode->i_op = &hugetlbfs_dir_inode_operations;
899 inode->i_fop = &simple_dir_operations;
900 /* directory inodes start off with i_nlink == 2 (for "." entry) */
901 inc_nlink(inode);
902 lockdep_annotate_inode_mutex_key(inode);
903 }
904 return inode;
905 }
906
907 /*
908 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
909 * be taken from reclaim -- unlike regular filesystems. This needs an
910 * annotation because huge_pmd_share() does an allocation under hugetlb's
911 * i_mmap_rwsem.
912 */
913 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
914
hugetlbfs_get_inode(struct super_block * sb,struct mnt_idmap * idmap,struct inode * dir,umode_t mode,dev_t dev)915 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
916 struct mnt_idmap *idmap,
917 struct inode *dir,
918 umode_t mode, dev_t dev)
919 {
920 struct inode *inode;
921 struct resv_map *resv_map = NULL;
922
923 /*
924 * Reserve maps are only needed for inodes that can have associated
925 * page allocations.
926 */
927 if (S_ISREG(mode) || S_ISLNK(mode)) {
928 resv_map = resv_map_alloc();
929 if (!resv_map)
930 return NULL;
931 }
932
933 inode = new_inode(sb);
934 if (inode) {
935 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
936
937 inode->i_ino = get_next_ino();
938 inode_init_owner(idmap, inode, dir, mode);
939 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
940 &hugetlbfs_i_mmap_rwsem_key);
941 inode->i_mapping->a_ops = &hugetlbfs_aops;
942 simple_inode_init_ts(inode);
943 inode->i_mapping->i_private_data = resv_map;
944 info->seals = F_SEAL_SEAL;
945 switch (mode & S_IFMT) {
946 default:
947 init_special_inode(inode, mode, dev);
948 break;
949 case S_IFREG:
950 inode->i_op = &hugetlbfs_inode_operations;
951 inode->i_fop = &hugetlbfs_file_operations;
952 break;
953 case S_IFDIR:
954 inode->i_op = &hugetlbfs_dir_inode_operations;
955 inode->i_fop = &simple_dir_operations;
956
957 /* directory inodes start off with i_nlink == 2 (for "." entry) */
958 inc_nlink(inode);
959 break;
960 case S_IFLNK:
961 inode->i_op = &page_symlink_inode_operations;
962 inode_nohighmem(inode);
963 break;
964 }
965 lockdep_annotate_inode_mutex_key(inode);
966 trace_hugetlbfs_alloc_inode(inode, dir, mode);
967 } else {
968 if (resv_map)
969 kref_put(&resv_map->refs, resv_map_release);
970 }
971
972 return inode;
973 }
974
975 /*
976 * File creation. Allocate an inode, and we're done..
977 */
hugetlbfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)978 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
979 struct dentry *dentry, umode_t mode, dev_t dev)
980 {
981 struct inode *inode;
982
983 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
984 if (!inode)
985 return -ENOSPC;
986 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
987 d_instantiate(dentry, inode);
988 dget(dentry);/* Extra count - pin the dentry in core */
989 return 0;
990 }
991
hugetlbfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)992 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
993 struct dentry *dentry, umode_t mode)
994 {
995 int retval = hugetlbfs_mknod(idmap, dir, dentry,
996 mode | S_IFDIR, 0);
997 if (!retval)
998 inc_nlink(dir);
999 return ERR_PTR(retval);
1000 }
1001
hugetlbfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1002 static int hugetlbfs_create(struct mnt_idmap *idmap,
1003 struct inode *dir, struct dentry *dentry,
1004 umode_t mode, bool excl)
1005 {
1006 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1007 }
1008
hugetlbfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1009 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1010 struct inode *dir, struct file *file,
1011 umode_t mode)
1012 {
1013 struct inode *inode;
1014
1015 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1016 if (!inode)
1017 return -ENOSPC;
1018 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1019 d_tmpfile(file, inode);
1020 return finish_open_simple(file, 0);
1021 }
1022
hugetlbfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)1023 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1024 struct inode *dir, struct dentry *dentry,
1025 const char *symname)
1026 {
1027 const umode_t mode = S_IFLNK|S_IRWXUGO;
1028 struct inode *inode;
1029 int error = -ENOSPC;
1030
1031 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1032 if (inode) {
1033 int l = strlen(symname)+1;
1034 error = page_symlink(inode, symname, l);
1035 if (!error) {
1036 d_instantiate(dentry, inode);
1037 dget(dentry);
1038 } else
1039 iput(inode);
1040 }
1041 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1042
1043 return error;
1044 }
1045
1046 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1047 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1048 struct folio *dst, struct folio *src,
1049 enum migrate_mode mode)
1050 {
1051 int rc;
1052
1053 rc = migrate_huge_page_move_mapping(mapping, dst, src);
1054 if (rc)
1055 return rc;
1056
1057 if (hugetlb_folio_subpool(src)) {
1058 hugetlb_set_folio_subpool(dst,
1059 hugetlb_folio_subpool(src));
1060 hugetlb_set_folio_subpool(src, NULL);
1061 }
1062
1063 folio_migrate_flags(dst, src);
1064
1065 return 0;
1066 }
1067 #else
1068 #define hugetlbfs_migrate_folio NULL
1069 #endif
1070
hugetlbfs_error_remove_folio(struct address_space * mapping,struct folio * folio)1071 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1072 struct folio *folio)
1073 {
1074 return 0;
1075 }
1076
1077 /*
1078 * Display the mount options in /proc/mounts.
1079 */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1080 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1081 {
1082 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1083 struct hugepage_subpool *spool = sbinfo->spool;
1084 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1085 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1086 char mod;
1087
1088 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1089 seq_printf(m, ",uid=%u",
1090 from_kuid_munged(&init_user_ns, sbinfo->uid));
1091 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1092 seq_printf(m, ",gid=%u",
1093 from_kgid_munged(&init_user_ns, sbinfo->gid));
1094 if (sbinfo->mode != 0755)
1095 seq_printf(m, ",mode=%o", sbinfo->mode);
1096 if (sbinfo->max_inodes != -1)
1097 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1098
1099 hpage_size /= 1024;
1100 mod = 'K';
1101 if (hpage_size >= 1024) {
1102 hpage_size /= 1024;
1103 mod = 'M';
1104 }
1105 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1106 if (spool) {
1107 if (spool->max_hpages != -1)
1108 seq_printf(m, ",size=%llu",
1109 (unsigned long long)spool->max_hpages << hpage_shift);
1110 if (spool->min_hpages != -1)
1111 seq_printf(m, ",min_size=%llu",
1112 (unsigned long long)spool->min_hpages << hpage_shift);
1113 }
1114 return 0;
1115 }
1116
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1117 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1118 {
1119 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1120 struct hstate *h = hstate_inode(d_inode(dentry));
1121 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1122
1123 buf->f_fsid = u64_to_fsid(id);
1124 buf->f_type = HUGETLBFS_MAGIC;
1125 buf->f_bsize = huge_page_size(h);
1126 if (sbinfo) {
1127 spin_lock(&sbinfo->stat_lock);
1128 /* If no limits set, just report 0 or -1 for max/free/used
1129 * blocks, like simple_statfs() */
1130 if (sbinfo->spool) {
1131 long free_pages;
1132
1133 spin_lock_irq(&sbinfo->spool->lock);
1134 buf->f_blocks = sbinfo->spool->max_hpages;
1135 free_pages = sbinfo->spool->max_hpages
1136 - sbinfo->spool->used_hpages;
1137 buf->f_bavail = buf->f_bfree = free_pages;
1138 spin_unlock_irq(&sbinfo->spool->lock);
1139 buf->f_files = sbinfo->max_inodes;
1140 buf->f_ffree = sbinfo->free_inodes;
1141 }
1142 spin_unlock(&sbinfo->stat_lock);
1143 }
1144 buf->f_namelen = NAME_MAX;
1145 return 0;
1146 }
1147
hugetlbfs_put_super(struct super_block * sb)1148 static void hugetlbfs_put_super(struct super_block *sb)
1149 {
1150 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1151
1152 if (sbi) {
1153 sb->s_fs_info = NULL;
1154
1155 if (sbi->spool)
1156 hugepage_put_subpool(sbi->spool);
1157
1158 kfree(sbi);
1159 }
1160 }
1161
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1162 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1163 {
1164 if (sbinfo->free_inodes >= 0) {
1165 spin_lock(&sbinfo->stat_lock);
1166 if (unlikely(!sbinfo->free_inodes)) {
1167 spin_unlock(&sbinfo->stat_lock);
1168 return 0;
1169 }
1170 sbinfo->free_inodes--;
1171 spin_unlock(&sbinfo->stat_lock);
1172 }
1173
1174 return 1;
1175 }
1176
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1177 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1178 {
1179 if (sbinfo->free_inodes >= 0) {
1180 spin_lock(&sbinfo->stat_lock);
1181 sbinfo->free_inodes++;
1182 spin_unlock(&sbinfo->stat_lock);
1183 }
1184 }
1185
1186
1187 static struct kmem_cache *hugetlbfs_inode_cachep;
1188
hugetlbfs_alloc_inode(struct super_block * sb)1189 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1190 {
1191 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1192 struct hugetlbfs_inode_info *p;
1193
1194 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1195 return NULL;
1196 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1197 if (unlikely(!p)) {
1198 hugetlbfs_inc_free_inodes(sbinfo);
1199 return NULL;
1200 }
1201 return &p->vfs_inode;
1202 }
1203
hugetlbfs_free_inode(struct inode * inode)1204 static void hugetlbfs_free_inode(struct inode *inode)
1205 {
1206 trace_hugetlbfs_free_inode(inode);
1207 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1208 }
1209
hugetlbfs_destroy_inode(struct inode * inode)1210 static void hugetlbfs_destroy_inode(struct inode *inode)
1211 {
1212 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1213 }
1214
1215 static const struct address_space_operations hugetlbfs_aops = {
1216 .write_begin = hugetlbfs_write_begin,
1217 .write_end = hugetlbfs_write_end,
1218 .dirty_folio = noop_dirty_folio,
1219 .migrate_folio = hugetlbfs_migrate_folio,
1220 .error_remove_folio = hugetlbfs_error_remove_folio,
1221 };
1222
1223
init_once(void * foo)1224 static void init_once(void *foo)
1225 {
1226 struct hugetlbfs_inode_info *ei = foo;
1227
1228 inode_init_once(&ei->vfs_inode);
1229 }
1230
1231 static const struct file_operations hugetlbfs_file_operations = {
1232 .read_iter = hugetlbfs_read_iter,
1233 .mmap = hugetlbfs_file_mmap,
1234 .fsync = noop_fsync,
1235 .get_unmapped_area = hugetlb_get_unmapped_area,
1236 .llseek = default_llseek,
1237 .fallocate = hugetlbfs_fallocate,
1238 .fop_flags = FOP_HUGE_PAGES,
1239 };
1240
1241 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1242 .create = hugetlbfs_create,
1243 .lookup = simple_lookup,
1244 .link = simple_link,
1245 .unlink = simple_unlink,
1246 .symlink = hugetlbfs_symlink,
1247 .mkdir = hugetlbfs_mkdir,
1248 .rmdir = simple_rmdir,
1249 .mknod = hugetlbfs_mknod,
1250 .rename = simple_rename,
1251 .setattr = hugetlbfs_setattr,
1252 .tmpfile = hugetlbfs_tmpfile,
1253 };
1254
1255 static const struct inode_operations hugetlbfs_inode_operations = {
1256 .setattr = hugetlbfs_setattr,
1257 };
1258
1259 static const struct super_operations hugetlbfs_ops = {
1260 .alloc_inode = hugetlbfs_alloc_inode,
1261 .free_inode = hugetlbfs_free_inode,
1262 .destroy_inode = hugetlbfs_destroy_inode,
1263 .evict_inode = hugetlbfs_evict_inode,
1264 .statfs = hugetlbfs_statfs,
1265 .put_super = hugetlbfs_put_super,
1266 .show_options = hugetlbfs_show_options,
1267 };
1268
1269 /*
1270 * Convert size option passed from command line to number of huge pages
1271 * in the pool specified by hstate. Size option could be in bytes
1272 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1273 */
1274 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1275 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1276 enum hugetlbfs_size_type val_type)
1277 {
1278 if (val_type == NO_SIZE)
1279 return -1;
1280
1281 if (val_type == SIZE_PERCENT) {
1282 size_opt <<= huge_page_shift(h);
1283 size_opt *= h->max_huge_pages;
1284 do_div(size_opt, 100);
1285 }
1286
1287 size_opt >>= huge_page_shift(h);
1288 return size_opt;
1289 }
1290
1291 /*
1292 * Parse one mount parameter.
1293 */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1294 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1295 {
1296 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1297 struct fs_parse_result result;
1298 struct hstate *h;
1299 char *rest;
1300 unsigned long ps;
1301 int opt;
1302
1303 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1304 if (opt < 0)
1305 return opt;
1306
1307 switch (opt) {
1308 case Opt_uid:
1309 ctx->uid = result.uid;
1310 return 0;
1311
1312 case Opt_gid:
1313 ctx->gid = result.gid;
1314 return 0;
1315
1316 case Opt_mode:
1317 ctx->mode = result.uint_32 & 01777U;
1318 return 0;
1319
1320 case Opt_size:
1321 /* memparse() will accept a K/M/G without a digit */
1322 if (!param->string || !isdigit(param->string[0]))
1323 goto bad_val;
1324 ctx->max_size_opt = memparse(param->string, &rest);
1325 ctx->max_val_type = SIZE_STD;
1326 if (*rest == '%')
1327 ctx->max_val_type = SIZE_PERCENT;
1328 return 0;
1329
1330 case Opt_nr_inodes:
1331 /* memparse() will accept a K/M/G without a digit */
1332 if (!param->string || !isdigit(param->string[0]))
1333 goto bad_val;
1334 ctx->nr_inodes = memparse(param->string, &rest);
1335 return 0;
1336
1337 case Opt_pagesize:
1338 ps = memparse(param->string, &rest);
1339 h = size_to_hstate(ps);
1340 if (!h) {
1341 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1342 return -EINVAL;
1343 }
1344 ctx->hstate = h;
1345 return 0;
1346
1347 case Opt_min_size:
1348 /* memparse() will accept a K/M/G without a digit */
1349 if (!param->string || !isdigit(param->string[0]))
1350 goto bad_val;
1351 ctx->min_size_opt = memparse(param->string, &rest);
1352 ctx->min_val_type = SIZE_STD;
1353 if (*rest == '%')
1354 ctx->min_val_type = SIZE_PERCENT;
1355 return 0;
1356
1357 default:
1358 return -EINVAL;
1359 }
1360
1361 bad_val:
1362 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1363 param->string, param->key);
1364 }
1365
1366 /*
1367 * Validate the parsed options.
1368 */
hugetlbfs_validate(struct fs_context * fc)1369 static int hugetlbfs_validate(struct fs_context *fc)
1370 {
1371 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1372
1373 /*
1374 * Use huge page pool size (in hstate) to convert the size
1375 * options to number of huge pages. If NO_SIZE, -1 is returned.
1376 */
1377 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1378 ctx->max_size_opt,
1379 ctx->max_val_type);
1380 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1381 ctx->min_size_opt,
1382 ctx->min_val_type);
1383
1384 /*
1385 * If max_size was specified, then min_size must be smaller
1386 */
1387 if (ctx->max_val_type > NO_SIZE &&
1388 ctx->min_hpages > ctx->max_hpages) {
1389 pr_err("Minimum size can not be greater than maximum size\n");
1390 return -EINVAL;
1391 }
1392
1393 return 0;
1394 }
1395
1396 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1397 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1398 {
1399 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1400 struct hugetlbfs_sb_info *sbinfo;
1401
1402 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1403 if (!sbinfo)
1404 return -ENOMEM;
1405 sb->s_fs_info = sbinfo;
1406 spin_lock_init(&sbinfo->stat_lock);
1407 sbinfo->hstate = ctx->hstate;
1408 sbinfo->max_inodes = ctx->nr_inodes;
1409 sbinfo->free_inodes = ctx->nr_inodes;
1410 sbinfo->spool = NULL;
1411 sbinfo->uid = ctx->uid;
1412 sbinfo->gid = ctx->gid;
1413 sbinfo->mode = ctx->mode;
1414
1415 /*
1416 * Allocate and initialize subpool if maximum or minimum size is
1417 * specified. Any needed reservations (for minimum size) are taken
1418 * when the subpool is created.
1419 */
1420 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1421 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1422 ctx->max_hpages,
1423 ctx->min_hpages);
1424 if (!sbinfo->spool)
1425 goto out_free;
1426 }
1427 sb->s_maxbytes = MAX_LFS_FILESIZE;
1428 sb->s_blocksize = huge_page_size(ctx->hstate);
1429 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1430 sb->s_magic = HUGETLBFS_MAGIC;
1431 sb->s_op = &hugetlbfs_ops;
1432 sb->s_d_flags = DCACHE_DONTCACHE;
1433 sb->s_time_gran = 1;
1434
1435 /*
1436 * Due to the special and limited functionality of hugetlbfs, it does
1437 * not work well as a stacking filesystem.
1438 */
1439 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1440 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1441 if (!sb->s_root)
1442 goto out_free;
1443 return 0;
1444 out_free:
1445 kfree(sbinfo->spool);
1446 kfree(sbinfo);
1447 return -ENOMEM;
1448 }
1449
hugetlbfs_get_tree(struct fs_context * fc)1450 static int hugetlbfs_get_tree(struct fs_context *fc)
1451 {
1452 int err = hugetlbfs_validate(fc);
1453 if (err)
1454 return err;
1455 return get_tree_nodev(fc, hugetlbfs_fill_super);
1456 }
1457
hugetlbfs_fs_context_free(struct fs_context * fc)1458 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1459 {
1460 kfree(fc->fs_private);
1461 }
1462
1463 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1464 .free = hugetlbfs_fs_context_free,
1465 .parse_param = hugetlbfs_parse_param,
1466 .get_tree = hugetlbfs_get_tree,
1467 };
1468
hugetlbfs_init_fs_context(struct fs_context * fc)1469 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1470 {
1471 struct hugetlbfs_fs_context *ctx;
1472
1473 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1474 if (!ctx)
1475 return -ENOMEM;
1476
1477 ctx->max_hpages = -1; /* No limit on size by default */
1478 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1479 ctx->uid = current_fsuid();
1480 ctx->gid = current_fsgid();
1481 ctx->mode = 0755;
1482 ctx->hstate = &default_hstate;
1483 ctx->min_hpages = -1; /* No default minimum size */
1484 ctx->max_val_type = NO_SIZE;
1485 ctx->min_val_type = NO_SIZE;
1486 fc->fs_private = ctx;
1487 fc->ops = &hugetlbfs_fs_context_ops;
1488 return 0;
1489 }
1490
1491 static struct file_system_type hugetlbfs_fs_type = {
1492 .name = "hugetlbfs",
1493 .init_fs_context = hugetlbfs_init_fs_context,
1494 .parameters = hugetlb_fs_parameters,
1495 .kill_sb = kill_litter_super,
1496 .fs_flags = FS_ALLOW_IDMAP,
1497 };
1498
1499 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1500
can_do_hugetlb_shm(void)1501 static int can_do_hugetlb_shm(void)
1502 {
1503 kgid_t shm_group;
1504 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1505 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1506 }
1507
get_hstate_idx(int page_size_log)1508 static int get_hstate_idx(int page_size_log)
1509 {
1510 struct hstate *h = hstate_sizelog(page_size_log);
1511
1512 if (!h)
1513 return -1;
1514 return hstate_index(h);
1515 }
1516
1517 /*
1518 * Note that size should be aligned to proper hugepage size in caller side,
1519 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1520 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1521 struct file *hugetlb_file_setup(const char *name, size_t size,
1522 vm_flags_t acctflag, int creat_flags,
1523 int page_size_log)
1524 {
1525 struct inode *inode;
1526 struct vfsmount *mnt;
1527 int hstate_idx;
1528 struct file *file;
1529
1530 hstate_idx = get_hstate_idx(page_size_log);
1531 if (hstate_idx < 0)
1532 return ERR_PTR(-ENODEV);
1533
1534 mnt = hugetlbfs_vfsmount[hstate_idx];
1535 if (!mnt)
1536 return ERR_PTR(-ENOENT);
1537
1538 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1539 struct ucounts *ucounts = current_ucounts();
1540
1541 if (user_shm_lock(size, ucounts)) {
1542 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1543 current->comm, current->pid);
1544 user_shm_unlock(size, ucounts);
1545 }
1546 return ERR_PTR(-EPERM);
1547 }
1548
1549 file = ERR_PTR(-ENOSPC);
1550 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */
1551 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1552 S_IFREG | S_IRWXUGO, 0);
1553 if (!inode)
1554 goto out;
1555 if (creat_flags == HUGETLB_SHMFS_INODE)
1556 inode->i_flags |= S_PRIVATE;
1557
1558 inode->i_size = size;
1559 clear_nlink(inode);
1560
1561 if (hugetlb_reserve_pages(inode, 0,
1562 size >> huge_page_shift(hstate_inode(inode)), NULL,
1563 acctflag) < 0)
1564 file = ERR_PTR(-ENOMEM);
1565 else
1566 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1567 &hugetlbfs_file_operations);
1568 if (!IS_ERR(file))
1569 return file;
1570
1571 iput(inode);
1572 out:
1573 return file;
1574 }
1575
mount_one_hugetlbfs(struct hstate * h)1576 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1577 {
1578 struct fs_context *fc;
1579 struct vfsmount *mnt;
1580
1581 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1582 if (IS_ERR(fc)) {
1583 mnt = ERR_CAST(fc);
1584 } else {
1585 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1586 ctx->hstate = h;
1587 mnt = fc_mount_longterm(fc);
1588 put_fs_context(fc);
1589 }
1590 if (IS_ERR(mnt))
1591 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1592 huge_page_size(h) / SZ_1K);
1593 return mnt;
1594 }
1595
init_hugetlbfs_fs(void)1596 static int __init init_hugetlbfs_fs(void)
1597 {
1598 struct vfsmount *mnt;
1599 struct hstate *h;
1600 int error;
1601 int i;
1602
1603 if (!hugepages_supported()) {
1604 pr_info("disabling because there are no supported hugepage sizes\n");
1605 return -ENOTSUPP;
1606 }
1607
1608 error = -ENOMEM;
1609 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1610 sizeof(struct hugetlbfs_inode_info),
1611 0, SLAB_ACCOUNT, init_once);
1612 if (hugetlbfs_inode_cachep == NULL)
1613 goto out;
1614
1615 error = register_filesystem(&hugetlbfs_fs_type);
1616 if (error)
1617 goto out_free;
1618
1619 /* default hstate mount is required */
1620 mnt = mount_one_hugetlbfs(&default_hstate);
1621 if (IS_ERR(mnt)) {
1622 error = PTR_ERR(mnt);
1623 goto out_unreg;
1624 }
1625 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1626
1627 /* other hstates are optional */
1628 i = 0;
1629 for_each_hstate(h) {
1630 if (i == default_hstate_idx) {
1631 i++;
1632 continue;
1633 }
1634
1635 mnt = mount_one_hugetlbfs(h);
1636 if (IS_ERR(mnt))
1637 hugetlbfs_vfsmount[i] = NULL;
1638 else
1639 hugetlbfs_vfsmount[i] = mnt;
1640 i++;
1641 }
1642
1643 return 0;
1644
1645 out_unreg:
1646 (void)unregister_filesystem(&hugetlbfs_fs_type);
1647 out_free:
1648 kmem_cache_destroy(hugetlbfs_inode_cachep);
1649 out:
1650 return error;
1651 }
1652 fs_initcall(init_hugetlbfs_fs)
1653