1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51
52 struct hugetlbfs_fs_context {
53 struct hstate *hstate;
54 unsigned long long max_size_opt;
55 unsigned long long min_size_opt;
56 long max_hpages;
57 long nr_inodes;
58 long min_hpages;
59 enum hugetlbfs_size_type max_val_type;
60 enum hugetlbfs_size_type min_val_type;
61 kuid_t uid;
62 kgid_t gid;
63 umode_t mode;
64 };
65
66 int sysctl_hugetlb_shm_group;
67
68 enum hugetlb_param {
69 Opt_gid,
70 Opt_min_size,
71 Opt_mode,
72 Opt_nr_inodes,
73 Opt_pagesize,
74 Opt_size,
75 Opt_uid,
76 };
77
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 fsparam_gid ("gid", Opt_gid),
80 fsparam_string("min_size", Opt_min_size),
81 fsparam_u32oct("mode", Opt_mode),
82 fsparam_string("nr_inodes", Opt_nr_inodes),
83 fsparam_string("pagesize", Opt_pagesize),
84 fsparam_string("size", Opt_size),
85 fsparam_uid ("uid", Opt_uid),
86 {}
87 };
88
89 /*
90 * Mask used when checking the page offset value passed in via system
91 * calls. This value will be converted to a loff_t which is signed.
92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93 * value. The extra bit (- 1 in the shift value) is to take the sign
94 * bit into account.
95 */
96 #define PGOFF_LOFFT_MAX \
97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
100 {
101 struct inode *inode = file_inode(file);
102 loff_t len, vma_len;
103 int ret;
104 struct hstate *h = hstate_file(file);
105 vm_flags_t vm_flags;
106
107 /*
108 * vma address alignment (but not the pgoff alignment) has
109 * already been checked by prepare_hugepage_range. If you add
110 * any error returns here, do so after setting VM_HUGETLB, so
111 * is_vm_hugetlb_page tests below unmap_region go the right
112 * way when do_mmap unwinds (may be important on powerpc
113 * and ia64).
114 */
115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
116 vma->vm_ops = &hugetlb_vm_ops;
117
118 /*
119 * page based offset in vm_pgoff could be sufficiently large to
120 * overflow a loff_t when converted to byte offset. This can
121 * only happen on architectures where sizeof(loff_t) ==
122 * sizeof(unsigned long). So, only check in those instances.
123 */
124 if (sizeof(unsigned long) == sizeof(loff_t)) {
125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
126 return -EINVAL;
127 }
128
129 /* must be huge page aligned */
130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
131 return -EINVAL;
132
133 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
135 /* check for overflow */
136 if (len < vma_len)
137 return -EINVAL;
138
139 inode_lock(inode);
140 file_accessed(file);
141
142 ret = -ENOMEM;
143
144 vm_flags = vma->vm_flags;
145 /*
146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
147 * reserving here. Note: only for SHM hugetlbfs file, the inode
148 * flag S_PRIVATE is set.
149 */
150 if (inode->i_flags & S_PRIVATE)
151 vm_flags |= VM_NORESERVE;
152
153 if (hugetlb_reserve_pages(inode,
154 vma->vm_pgoff >> huge_page_order(h),
155 len >> huge_page_shift(h), vma,
156 vm_flags) < 0)
157 goto out;
158
159 ret = 0;
160 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
161 i_size_write(inode, len);
162 out:
163 inode_unlock(inode);
164
165 return ret;
166 }
167
168 /*
169 * Called under mmap_write_lock(mm).
170 */
171
172 unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
174 unsigned long len, unsigned long pgoff,
175 unsigned long flags)
176 {
177 unsigned long addr0 = 0;
178 struct hstate *h = hstate_file(file);
179
180 if (len & ~huge_page_mask(h))
181 return -EINVAL;
182 if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h)))
183 return -EINVAL;
184 if (addr)
185 addr0 = ALIGN(addr, huge_page_size(h));
186
187 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
188 flags, 0);
189 }
190
191 /*
192 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
193 * Returns the maximum number of bytes one can read without touching the 1st raw
194 * HWPOISON page.
195 */
adjust_range_hwpoison(struct folio * folio,size_t offset,size_t bytes)196 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
197 size_t bytes)
198 {
199 struct page *page = folio_page(folio, offset / PAGE_SIZE);
200 size_t safe_bytes;
201
202 if (is_raw_hwpoison_page_in_hugepage(page))
203 return 0;
204 /* Safe to read the remaining bytes in this page. */
205 safe_bytes = PAGE_SIZE - (offset % PAGE_SIZE);
206 page++;
207
208 /* Check each remaining page as long as we are not done yet. */
209 for (; safe_bytes < bytes; safe_bytes += PAGE_SIZE, page++)
210 if (is_raw_hwpoison_page_in_hugepage(page))
211 break;
212
213 return min(safe_bytes, bytes);
214 }
215
216 /*
217 * Support for read() - Find the page attached to f_mapping and copy out the
218 * data. This provides functionality similar to filemap_read().
219 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)220 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
221 {
222 struct file *file = iocb->ki_filp;
223 struct hstate *h = hstate_file(file);
224 struct address_space *mapping = file->f_mapping;
225 struct inode *inode = mapping->host;
226 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
227 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
228 unsigned long end_index;
229 loff_t isize;
230 ssize_t retval = 0;
231
232 while (iov_iter_count(to)) {
233 struct folio *folio;
234 size_t nr, copied, want;
235
236 /* nr is the maximum number of bytes to copy from this page */
237 nr = huge_page_size(h);
238 isize = i_size_read(inode);
239 if (!isize)
240 break;
241 end_index = (isize - 1) >> huge_page_shift(h);
242 if (index > end_index)
243 break;
244 if (index == end_index) {
245 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
246 if (nr <= offset)
247 break;
248 }
249 nr = nr - offset;
250
251 /* Find the folio */
252 folio = filemap_lock_hugetlb_folio(h, mapping, index);
253 if (IS_ERR(folio)) {
254 /*
255 * We have a HOLE, zero out the user-buffer for the
256 * length of the hole or request.
257 */
258 copied = iov_iter_zero(nr, to);
259 } else {
260 folio_unlock(folio);
261
262 if (!folio_test_hwpoison(folio))
263 want = nr;
264 else {
265 /*
266 * Adjust how many bytes safe to read without
267 * touching the 1st raw HWPOISON page after
268 * offset.
269 */
270 want = adjust_range_hwpoison(folio, offset, nr);
271 if (want == 0) {
272 folio_put(folio);
273 retval = -EIO;
274 break;
275 }
276 }
277
278 /*
279 * We have the folio, copy it to user space buffer.
280 */
281 copied = copy_folio_to_iter(folio, offset, want, to);
282 folio_put(folio);
283 }
284 offset += copied;
285 retval += copied;
286 if (copied != nr && iov_iter_count(to)) {
287 if (!retval)
288 retval = -EFAULT;
289 break;
290 }
291 index += offset >> huge_page_shift(h);
292 offset &= ~huge_page_mask(h);
293 }
294 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
295 return retval;
296 }
297
hugetlbfs_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)298 static int hugetlbfs_write_begin(const struct kiocb *iocb,
299 struct address_space *mapping,
300 loff_t pos, unsigned len,
301 struct folio **foliop, void **fsdata)
302 {
303 return -EINVAL;
304 }
305
hugetlbfs_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)306 static int hugetlbfs_write_end(const struct kiocb *iocb,
307 struct address_space *mapping,
308 loff_t pos, unsigned len, unsigned copied,
309 struct folio *folio, void *fsdata)
310 {
311 BUG();
312 return -EINVAL;
313 }
314
hugetlb_delete_from_page_cache(struct folio * folio)315 static void hugetlb_delete_from_page_cache(struct folio *folio)
316 {
317 folio_clear_dirty(folio);
318 folio_clear_uptodate(folio);
319 filemap_remove_folio(folio);
320 }
321
322 /*
323 * Called with i_mmap_rwsem held for inode based vma maps. This makes
324 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
325 * mutex for the page in the mapping. So, we can not race with page being
326 * faulted into the vma.
327 */
hugetlb_vma_maps_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)328 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
329 unsigned long addr, unsigned long pfn)
330 {
331 pte_t *ptep, pte;
332
333 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
334 if (!ptep)
335 return false;
336
337 pte = huge_ptep_get(vma->vm_mm, addr, ptep);
338 if (huge_pte_none(pte) || !pte_present(pte))
339 return false;
340
341 if (pte_pfn(pte) == pfn)
342 return true;
343
344 return false;
345 }
346
347 /*
348 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
349 * No, because the interval tree returns us only those vmas
350 * which overlap the truncated area starting at pgoff,
351 * and no vma on a 32-bit arch can span beyond the 4GB.
352 */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)353 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
354 {
355 unsigned long offset = 0;
356
357 if (vma->vm_pgoff < start)
358 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
359
360 return vma->vm_start + offset;
361 }
362
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)363 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
364 {
365 unsigned long t_end;
366
367 if (!end)
368 return vma->vm_end;
369
370 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
371 if (t_end > vma->vm_end)
372 t_end = vma->vm_end;
373 return t_end;
374 }
375
376 /*
377 * Called with hugetlb fault mutex held. Therefore, no more mappings to
378 * this folio can be created while executing the routine.
379 */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)380 static void hugetlb_unmap_file_folio(struct hstate *h,
381 struct address_space *mapping,
382 struct folio *folio, pgoff_t index)
383 {
384 struct rb_root_cached *root = &mapping->i_mmap;
385 struct hugetlb_vma_lock *vma_lock;
386 unsigned long pfn = folio_pfn(folio);
387 struct vm_area_struct *vma;
388 unsigned long v_start;
389 unsigned long v_end;
390 pgoff_t start, end;
391
392 start = index * pages_per_huge_page(h);
393 end = (index + 1) * pages_per_huge_page(h);
394
395 i_mmap_lock_write(mapping);
396 retry:
397 vma_lock = NULL;
398 vma_interval_tree_foreach(vma, root, start, end - 1) {
399 v_start = vma_offset_start(vma, start);
400 v_end = vma_offset_end(vma, end);
401
402 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
403 continue;
404
405 if (!hugetlb_vma_trylock_write(vma)) {
406 vma_lock = vma->vm_private_data;
407 /*
408 * If we can not get vma lock, we need to drop
409 * immap_sema and take locks in order. First,
410 * take a ref on the vma_lock structure so that
411 * we can be guaranteed it will not go away when
412 * dropping immap_sema.
413 */
414 kref_get(&vma_lock->refs);
415 break;
416 }
417
418 unmap_hugepage_range(vma, v_start, v_end, NULL,
419 ZAP_FLAG_DROP_MARKER);
420 hugetlb_vma_unlock_write(vma);
421 }
422
423 i_mmap_unlock_write(mapping);
424
425 if (vma_lock) {
426 /*
427 * Wait on vma_lock. We know it is still valid as we have
428 * a reference. We must 'open code' vma locking as we do
429 * not know if vma_lock is still attached to vma.
430 */
431 down_write(&vma_lock->rw_sema);
432 i_mmap_lock_write(mapping);
433
434 vma = vma_lock->vma;
435 if (!vma) {
436 /*
437 * If lock is no longer attached to vma, then just
438 * unlock, drop our reference and retry looking for
439 * other vmas.
440 */
441 up_write(&vma_lock->rw_sema);
442 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
443 goto retry;
444 }
445
446 /*
447 * vma_lock is still attached to vma. Check to see if vma
448 * still maps page and if so, unmap.
449 */
450 v_start = vma_offset_start(vma, start);
451 v_end = vma_offset_end(vma, end);
452 if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
453 unmap_hugepage_range(vma, v_start, v_end, NULL,
454 ZAP_FLAG_DROP_MARKER);
455
456 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
457 hugetlb_vma_unlock_write(vma);
458
459 goto retry;
460 }
461 }
462
463 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)464 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
465 zap_flags_t zap_flags)
466 {
467 struct vm_area_struct *vma;
468
469 /*
470 * end == 0 indicates that the entire range after start should be
471 * unmapped. Note, end is exclusive, whereas the interval tree takes
472 * an inclusive "last".
473 */
474 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
475 unsigned long v_start;
476 unsigned long v_end;
477
478 if (!hugetlb_vma_trylock_write(vma))
479 continue;
480
481 v_start = vma_offset_start(vma, start);
482 v_end = vma_offset_end(vma, end);
483
484 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
485
486 /*
487 * Note that vma lock only exists for shared/non-private
488 * vmas. Therefore, lock is not held when calling
489 * unmap_hugepage_range for private vmas.
490 */
491 hugetlb_vma_unlock_write(vma);
492 }
493 }
494
495 /*
496 * Called with hugetlb fault mutex held.
497 * Returns true if page was actually removed, false otherwise.
498 */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)499 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
500 struct address_space *mapping,
501 struct folio *folio, pgoff_t index,
502 bool truncate_op)
503 {
504 bool ret = false;
505
506 /*
507 * If folio is mapped, it was faulted in after being
508 * unmapped in caller or hugetlb_vmdelete_list() skips
509 * unmapping it due to fail to grab lock. Unmap (again)
510 * while holding the fault mutex. The mutex will prevent
511 * faults until we finish removing the folio. Hold folio
512 * lock to guarantee no concurrent migration.
513 */
514 folio_lock(folio);
515 if (unlikely(folio_mapped(folio)))
516 hugetlb_unmap_file_folio(h, mapping, folio, index);
517
518 /*
519 * We must remove the folio from page cache before removing
520 * the region/ reserve map (hugetlb_unreserve_pages). In
521 * rare out of memory conditions, removal of the region/reserve
522 * map could fail. Correspondingly, the subpool and global
523 * reserve usage count can need to be adjusted.
524 */
525 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
526 hugetlb_delete_from_page_cache(folio);
527 ret = true;
528 if (!truncate_op) {
529 if (unlikely(hugetlb_unreserve_pages(inode, index,
530 index + 1, 1)))
531 hugetlb_fix_reserve_counts(inode);
532 }
533
534 folio_unlock(folio);
535 return ret;
536 }
537
538 /*
539 * remove_inode_hugepages handles two distinct cases: truncation and hole
540 * punch. There are subtle differences in operation for each case.
541 *
542 * truncation is indicated by end of range being LLONG_MAX
543 * In this case, we first scan the range and release found pages.
544 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
545 * maps and global counts. Page faults can race with truncation.
546 * During faults, hugetlb_no_page() checks i_size before page allocation,
547 * and again after obtaining page table lock. It will 'back out'
548 * allocations in the truncated range.
549 * hole punch is indicated if end is not LLONG_MAX
550 * In the hole punch case we scan the range and release found pages.
551 * Only when releasing a page is the associated region/reserve map
552 * deleted. The region/reserve map for ranges without associated
553 * pages are not modified. Page faults can race with hole punch.
554 * This is indicated if we find a mapped page.
555 * Note: If the passed end of range value is beyond the end of file, but
556 * not LLONG_MAX this routine still performs a hole punch operation.
557 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)558 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
559 loff_t lend)
560 {
561 struct hstate *h = hstate_inode(inode);
562 struct address_space *mapping = &inode->i_data;
563 const pgoff_t end = lend >> PAGE_SHIFT;
564 struct folio_batch fbatch;
565 pgoff_t next, index;
566 int i, freed = 0;
567 bool truncate_op = (lend == LLONG_MAX);
568
569 folio_batch_init(&fbatch);
570 next = lstart >> PAGE_SHIFT;
571 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
572 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
573 struct folio *folio = fbatch.folios[i];
574 u32 hash = 0;
575
576 index = folio->index >> huge_page_order(h);
577 hash = hugetlb_fault_mutex_hash(mapping, index);
578 mutex_lock(&hugetlb_fault_mutex_table[hash]);
579
580 /*
581 * Remove folio that was part of folio_batch.
582 */
583 if (remove_inode_single_folio(h, inode, mapping, folio,
584 index, truncate_op))
585 freed++;
586
587 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
588 }
589 folio_batch_release(&fbatch);
590 cond_resched();
591 }
592
593 if (truncate_op)
594 (void)hugetlb_unreserve_pages(inode,
595 lstart >> huge_page_shift(h),
596 LONG_MAX, freed);
597 }
598
hugetlbfs_evict_inode(struct inode * inode)599 static void hugetlbfs_evict_inode(struct inode *inode)
600 {
601 struct resv_map *resv_map;
602
603 trace_hugetlbfs_evict_inode(inode);
604 remove_inode_hugepages(inode, 0, LLONG_MAX);
605
606 /*
607 * Get the resv_map from the address space embedded in the inode.
608 * This is the address space which points to any resv_map allocated
609 * at inode creation time. If this is a device special inode,
610 * i_mapping may not point to the original address space.
611 */
612 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
613 /* Only regular and link inodes have associated reserve maps */
614 if (resv_map)
615 resv_map_release(&resv_map->refs);
616 clear_inode(inode);
617 }
618
hugetlb_vmtruncate(struct inode * inode,loff_t offset)619 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
620 {
621 pgoff_t pgoff;
622 struct address_space *mapping = inode->i_mapping;
623 struct hstate *h = hstate_inode(inode);
624
625 BUG_ON(offset & ~huge_page_mask(h));
626 pgoff = offset >> PAGE_SHIFT;
627
628 i_size_write(inode, offset);
629 i_mmap_lock_write(mapping);
630 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
631 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
632 ZAP_FLAG_DROP_MARKER);
633 i_mmap_unlock_write(mapping);
634 remove_inode_hugepages(inode, offset, LLONG_MAX);
635 }
636
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)637 static void hugetlbfs_zero_partial_page(struct hstate *h,
638 struct address_space *mapping,
639 loff_t start,
640 loff_t end)
641 {
642 pgoff_t idx = start >> huge_page_shift(h);
643 struct folio *folio;
644
645 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
646 if (IS_ERR(folio))
647 return;
648
649 start = start & ~huge_page_mask(h);
650 end = end & ~huge_page_mask(h);
651 if (!end)
652 end = huge_page_size(h);
653
654 folio_zero_segment(folio, (size_t)start, (size_t)end);
655
656 folio_unlock(folio);
657 folio_put(folio);
658 }
659
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)660 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
661 {
662 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
663 struct address_space *mapping = inode->i_mapping;
664 struct hstate *h = hstate_inode(inode);
665 loff_t hpage_size = huge_page_size(h);
666 loff_t hole_start, hole_end;
667
668 /*
669 * hole_start and hole_end indicate the full pages within the hole.
670 */
671 hole_start = round_up(offset, hpage_size);
672 hole_end = round_down(offset + len, hpage_size);
673
674 inode_lock(inode);
675
676 /* protected by i_rwsem */
677 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
678 inode_unlock(inode);
679 return -EPERM;
680 }
681
682 i_mmap_lock_write(mapping);
683
684 /* If range starts before first full page, zero partial page. */
685 if (offset < hole_start)
686 hugetlbfs_zero_partial_page(h, mapping,
687 offset, min(offset + len, hole_start));
688
689 /* Unmap users of full pages in the hole. */
690 if (hole_end > hole_start) {
691 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
692 hugetlb_vmdelete_list(&mapping->i_mmap,
693 hole_start >> PAGE_SHIFT,
694 hole_end >> PAGE_SHIFT, 0);
695 }
696
697 /* If range extends beyond last full page, zero partial page. */
698 if ((offset + len) > hole_end && (offset + len) > hole_start)
699 hugetlbfs_zero_partial_page(h, mapping,
700 hole_end, offset + len);
701
702 i_mmap_unlock_write(mapping);
703
704 /* Remove full pages from the file. */
705 if (hole_end > hole_start)
706 remove_inode_hugepages(inode, hole_start, hole_end);
707
708 inode_unlock(inode);
709
710 return 0;
711 }
712
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)713 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
714 loff_t len)
715 {
716 struct inode *inode = file_inode(file);
717 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
718 struct address_space *mapping = inode->i_mapping;
719 struct hstate *h = hstate_inode(inode);
720 struct vm_area_struct pseudo_vma;
721 struct mm_struct *mm = current->mm;
722 loff_t hpage_size = huge_page_size(h);
723 unsigned long hpage_shift = huge_page_shift(h);
724 pgoff_t start, index, end;
725 int error;
726 u32 hash;
727
728 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
729 return -EOPNOTSUPP;
730
731 if (mode & FALLOC_FL_PUNCH_HOLE) {
732 error = hugetlbfs_punch_hole(inode, offset, len);
733 goto out_nolock;
734 }
735
736 /*
737 * Default preallocate case.
738 * For this range, start is rounded down and end is rounded up
739 * as well as being converted to page offsets.
740 */
741 start = offset >> hpage_shift;
742 end = (offset + len + hpage_size - 1) >> hpage_shift;
743
744 inode_lock(inode);
745
746 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
747 error = inode_newsize_ok(inode, offset + len);
748 if (error)
749 goto out;
750
751 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
752 error = -EPERM;
753 goto out;
754 }
755
756 /*
757 * Initialize a pseudo vma as this is required by the huge page
758 * allocation routines.
759 */
760 vma_init(&pseudo_vma, mm);
761 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
762 pseudo_vma.vm_file = file;
763
764 for (index = start; index < end; index++) {
765 /*
766 * This is supposed to be the vaddr where the page is being
767 * faulted in, but we have no vaddr here.
768 */
769 struct folio *folio;
770 unsigned long addr;
771
772 cond_resched();
773
774 /*
775 * fallocate(2) manpage permits EINTR; we may have been
776 * interrupted because we are using up too much memory.
777 */
778 if (signal_pending(current)) {
779 error = -EINTR;
780 break;
781 }
782
783 /* addr is the offset within the file (zero based) */
784 addr = index * hpage_size;
785
786 /* mutex taken here, fault path and hole punch */
787 hash = hugetlb_fault_mutex_hash(mapping, index);
788 mutex_lock(&hugetlb_fault_mutex_table[hash]);
789
790 /* See if already present in mapping to avoid alloc/free */
791 folio = filemap_get_folio(mapping, index << huge_page_order(h));
792 if (!IS_ERR(folio)) {
793 folio_put(folio);
794 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
795 continue;
796 }
797
798 /*
799 * Allocate folio without setting the avoid_reserve argument.
800 * There certainly are no reserves associated with the
801 * pseudo_vma. However, there could be shared mappings with
802 * reserves for the file at the inode level. If we fallocate
803 * folios in these areas, we need to consume the reserves
804 * to keep reservation accounting consistent.
805 */
806 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
807 if (IS_ERR(folio)) {
808 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
809 error = PTR_ERR(folio);
810 goto out;
811 }
812 folio_zero_user(folio, addr);
813 __folio_mark_uptodate(folio);
814 error = hugetlb_add_to_page_cache(folio, mapping, index);
815 if (unlikely(error)) {
816 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
817 folio_put(folio);
818 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
819 goto out;
820 }
821
822 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
823
824 folio_set_hugetlb_migratable(folio);
825 /*
826 * folio_unlock because locked by hugetlb_add_to_page_cache()
827 * folio_put() due to reference from alloc_hugetlb_folio()
828 */
829 folio_unlock(folio);
830 folio_put(folio);
831 }
832
833 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
834 i_size_write(inode, offset + len);
835 inode_set_ctime_current(inode);
836 out:
837 inode_unlock(inode);
838
839 out_nolock:
840 trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
841 return error;
842 }
843
hugetlbfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)844 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
845 struct dentry *dentry, struct iattr *attr)
846 {
847 struct inode *inode = d_inode(dentry);
848 struct hstate *h = hstate_inode(inode);
849 int error;
850 unsigned int ia_valid = attr->ia_valid;
851 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
852
853 error = setattr_prepare(idmap, dentry, attr);
854 if (error)
855 return error;
856
857 trace_hugetlbfs_setattr(inode, dentry, attr);
858
859 if (ia_valid & ATTR_SIZE) {
860 loff_t oldsize = inode->i_size;
861 loff_t newsize = attr->ia_size;
862
863 if (newsize & ~huge_page_mask(h))
864 return -EINVAL;
865 /* protected by i_rwsem */
866 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
867 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
868 return -EPERM;
869 hugetlb_vmtruncate(inode, newsize);
870 }
871
872 setattr_copy(idmap, inode, attr);
873 mark_inode_dirty(inode);
874 return 0;
875 }
876
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)877 static struct inode *hugetlbfs_get_root(struct super_block *sb,
878 struct hugetlbfs_fs_context *ctx)
879 {
880 struct inode *inode;
881
882 inode = new_inode(sb);
883 if (inode) {
884 inode->i_ino = get_next_ino();
885 inode->i_mode = S_IFDIR | ctx->mode;
886 inode->i_uid = ctx->uid;
887 inode->i_gid = ctx->gid;
888 simple_inode_init_ts(inode);
889 inode->i_op = &hugetlbfs_dir_inode_operations;
890 inode->i_fop = &simple_dir_operations;
891 /* directory inodes start off with i_nlink == 2 (for "." entry) */
892 inc_nlink(inode);
893 lockdep_annotate_inode_mutex_key(inode);
894 }
895 return inode;
896 }
897
898 /*
899 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
900 * be taken from reclaim -- unlike regular filesystems. This needs an
901 * annotation because huge_pmd_share() does an allocation under hugetlb's
902 * i_mmap_rwsem.
903 */
904 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
905
hugetlbfs_get_inode(struct super_block * sb,struct mnt_idmap * idmap,struct inode * dir,umode_t mode,dev_t dev)906 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
907 struct mnt_idmap *idmap,
908 struct inode *dir,
909 umode_t mode, dev_t dev)
910 {
911 struct inode *inode;
912 struct resv_map *resv_map = NULL;
913
914 /*
915 * Reserve maps are only needed for inodes that can have associated
916 * page allocations.
917 */
918 if (S_ISREG(mode) || S_ISLNK(mode)) {
919 resv_map = resv_map_alloc();
920 if (!resv_map)
921 return NULL;
922 }
923
924 inode = new_inode(sb);
925 if (inode) {
926 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
927
928 inode->i_ino = get_next_ino();
929 inode_init_owner(idmap, inode, dir, mode);
930 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
931 &hugetlbfs_i_mmap_rwsem_key);
932 inode->i_mapping->a_ops = &hugetlbfs_aops;
933 simple_inode_init_ts(inode);
934 inode->i_mapping->i_private_data = resv_map;
935 info->seals = F_SEAL_SEAL;
936 switch (mode & S_IFMT) {
937 default:
938 init_special_inode(inode, mode, dev);
939 break;
940 case S_IFREG:
941 inode->i_op = &hugetlbfs_inode_operations;
942 inode->i_fop = &hugetlbfs_file_operations;
943 break;
944 case S_IFDIR:
945 inode->i_op = &hugetlbfs_dir_inode_operations;
946 inode->i_fop = &simple_dir_operations;
947
948 /* directory inodes start off with i_nlink == 2 (for "." entry) */
949 inc_nlink(inode);
950 break;
951 case S_IFLNK:
952 inode->i_op = &page_symlink_inode_operations;
953 inode_nohighmem(inode);
954 break;
955 }
956 lockdep_annotate_inode_mutex_key(inode);
957 trace_hugetlbfs_alloc_inode(inode, dir, mode);
958 } else {
959 if (resv_map)
960 kref_put(&resv_map->refs, resv_map_release);
961 }
962
963 return inode;
964 }
965
966 /*
967 * File creation. Allocate an inode, and we're done..
968 */
hugetlbfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)969 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
970 struct dentry *dentry, umode_t mode, dev_t dev)
971 {
972 struct inode *inode;
973
974 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
975 if (!inode)
976 return -ENOSPC;
977 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
978 d_instantiate(dentry, inode);
979 dget(dentry);/* Extra count - pin the dentry in core */
980 return 0;
981 }
982
hugetlbfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)983 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
984 struct dentry *dentry, umode_t mode)
985 {
986 int retval = hugetlbfs_mknod(idmap, dir, dentry,
987 mode | S_IFDIR, 0);
988 if (!retval)
989 inc_nlink(dir);
990 return ERR_PTR(retval);
991 }
992
hugetlbfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)993 static int hugetlbfs_create(struct mnt_idmap *idmap,
994 struct inode *dir, struct dentry *dentry,
995 umode_t mode, bool excl)
996 {
997 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
998 }
999
hugetlbfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1000 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1001 struct inode *dir, struct file *file,
1002 umode_t mode)
1003 {
1004 struct inode *inode;
1005
1006 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1007 if (!inode)
1008 return -ENOSPC;
1009 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1010 d_tmpfile(file, inode);
1011 return finish_open_simple(file, 0);
1012 }
1013
hugetlbfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)1014 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1015 struct inode *dir, struct dentry *dentry,
1016 const char *symname)
1017 {
1018 const umode_t mode = S_IFLNK|S_IRWXUGO;
1019 struct inode *inode;
1020 int error = -ENOSPC;
1021
1022 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1023 if (inode) {
1024 int l = strlen(symname)+1;
1025 error = page_symlink(inode, symname, l);
1026 if (!error) {
1027 d_instantiate(dentry, inode);
1028 dget(dentry);
1029 } else
1030 iput(inode);
1031 }
1032 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1033
1034 return error;
1035 }
1036
1037 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1038 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1039 struct folio *dst, struct folio *src,
1040 enum migrate_mode mode)
1041 {
1042 int rc;
1043
1044 rc = migrate_huge_page_move_mapping(mapping, dst, src);
1045 if (rc)
1046 return rc;
1047
1048 if (hugetlb_folio_subpool(src)) {
1049 hugetlb_set_folio_subpool(dst,
1050 hugetlb_folio_subpool(src));
1051 hugetlb_set_folio_subpool(src, NULL);
1052 }
1053
1054 folio_migrate_flags(dst, src);
1055
1056 return 0;
1057 }
1058 #else
1059 #define hugetlbfs_migrate_folio NULL
1060 #endif
1061
hugetlbfs_error_remove_folio(struct address_space * mapping,struct folio * folio)1062 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1063 struct folio *folio)
1064 {
1065 return 0;
1066 }
1067
1068 /*
1069 * Display the mount options in /proc/mounts.
1070 */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1071 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1072 {
1073 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1074 struct hugepage_subpool *spool = sbinfo->spool;
1075 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1076 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1077 char mod;
1078
1079 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1080 seq_printf(m, ",uid=%u",
1081 from_kuid_munged(&init_user_ns, sbinfo->uid));
1082 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1083 seq_printf(m, ",gid=%u",
1084 from_kgid_munged(&init_user_ns, sbinfo->gid));
1085 if (sbinfo->mode != 0755)
1086 seq_printf(m, ",mode=%o", sbinfo->mode);
1087 if (sbinfo->max_inodes != -1)
1088 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1089
1090 hpage_size /= 1024;
1091 mod = 'K';
1092 if (hpage_size >= 1024) {
1093 hpage_size /= 1024;
1094 mod = 'M';
1095 }
1096 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1097 if (spool) {
1098 if (spool->max_hpages != -1)
1099 seq_printf(m, ",size=%llu",
1100 (unsigned long long)spool->max_hpages << hpage_shift);
1101 if (spool->min_hpages != -1)
1102 seq_printf(m, ",min_size=%llu",
1103 (unsigned long long)spool->min_hpages << hpage_shift);
1104 }
1105 return 0;
1106 }
1107
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1108 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1109 {
1110 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1111 struct hstate *h = hstate_inode(d_inode(dentry));
1112 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1113
1114 buf->f_fsid = u64_to_fsid(id);
1115 buf->f_type = HUGETLBFS_MAGIC;
1116 buf->f_bsize = huge_page_size(h);
1117 if (sbinfo) {
1118 spin_lock(&sbinfo->stat_lock);
1119 /* If no limits set, just report 0 or -1 for max/free/used
1120 * blocks, like simple_statfs() */
1121 if (sbinfo->spool) {
1122 long free_pages;
1123
1124 spin_lock_irq(&sbinfo->spool->lock);
1125 buf->f_blocks = sbinfo->spool->max_hpages;
1126 free_pages = sbinfo->spool->max_hpages
1127 - sbinfo->spool->used_hpages;
1128 buf->f_bavail = buf->f_bfree = free_pages;
1129 spin_unlock_irq(&sbinfo->spool->lock);
1130 buf->f_files = sbinfo->max_inodes;
1131 buf->f_ffree = sbinfo->free_inodes;
1132 }
1133 spin_unlock(&sbinfo->stat_lock);
1134 }
1135 buf->f_namelen = NAME_MAX;
1136 return 0;
1137 }
1138
hugetlbfs_put_super(struct super_block * sb)1139 static void hugetlbfs_put_super(struct super_block *sb)
1140 {
1141 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1142
1143 if (sbi) {
1144 sb->s_fs_info = NULL;
1145
1146 if (sbi->spool)
1147 hugepage_put_subpool(sbi->spool);
1148
1149 kfree(sbi);
1150 }
1151 }
1152
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1153 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1154 {
1155 if (sbinfo->free_inodes >= 0) {
1156 spin_lock(&sbinfo->stat_lock);
1157 if (unlikely(!sbinfo->free_inodes)) {
1158 spin_unlock(&sbinfo->stat_lock);
1159 return 0;
1160 }
1161 sbinfo->free_inodes--;
1162 spin_unlock(&sbinfo->stat_lock);
1163 }
1164
1165 return 1;
1166 }
1167
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1168 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1169 {
1170 if (sbinfo->free_inodes >= 0) {
1171 spin_lock(&sbinfo->stat_lock);
1172 sbinfo->free_inodes++;
1173 spin_unlock(&sbinfo->stat_lock);
1174 }
1175 }
1176
1177
1178 static struct kmem_cache *hugetlbfs_inode_cachep;
1179
hugetlbfs_alloc_inode(struct super_block * sb)1180 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1181 {
1182 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1183 struct hugetlbfs_inode_info *p;
1184
1185 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1186 return NULL;
1187 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1188 if (unlikely(!p)) {
1189 hugetlbfs_inc_free_inodes(sbinfo);
1190 return NULL;
1191 }
1192 return &p->vfs_inode;
1193 }
1194
hugetlbfs_free_inode(struct inode * inode)1195 static void hugetlbfs_free_inode(struct inode *inode)
1196 {
1197 trace_hugetlbfs_free_inode(inode);
1198 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1199 }
1200
hugetlbfs_destroy_inode(struct inode * inode)1201 static void hugetlbfs_destroy_inode(struct inode *inode)
1202 {
1203 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1204 }
1205
1206 static const struct address_space_operations hugetlbfs_aops = {
1207 .write_begin = hugetlbfs_write_begin,
1208 .write_end = hugetlbfs_write_end,
1209 .dirty_folio = noop_dirty_folio,
1210 .migrate_folio = hugetlbfs_migrate_folio,
1211 .error_remove_folio = hugetlbfs_error_remove_folio,
1212 };
1213
1214
init_once(void * foo)1215 static void init_once(void *foo)
1216 {
1217 struct hugetlbfs_inode_info *ei = foo;
1218
1219 inode_init_once(&ei->vfs_inode);
1220 }
1221
1222 static const struct file_operations hugetlbfs_file_operations = {
1223 .read_iter = hugetlbfs_read_iter,
1224 .mmap = hugetlbfs_file_mmap,
1225 .fsync = noop_fsync,
1226 .get_unmapped_area = hugetlb_get_unmapped_area,
1227 .llseek = default_llseek,
1228 .fallocate = hugetlbfs_fallocate,
1229 .fop_flags = FOP_HUGE_PAGES,
1230 };
1231
1232 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1233 .create = hugetlbfs_create,
1234 .lookup = simple_lookup,
1235 .link = simple_link,
1236 .unlink = simple_unlink,
1237 .symlink = hugetlbfs_symlink,
1238 .mkdir = hugetlbfs_mkdir,
1239 .rmdir = simple_rmdir,
1240 .mknod = hugetlbfs_mknod,
1241 .rename = simple_rename,
1242 .setattr = hugetlbfs_setattr,
1243 .tmpfile = hugetlbfs_tmpfile,
1244 };
1245
1246 static const struct inode_operations hugetlbfs_inode_operations = {
1247 .setattr = hugetlbfs_setattr,
1248 };
1249
1250 static const struct super_operations hugetlbfs_ops = {
1251 .alloc_inode = hugetlbfs_alloc_inode,
1252 .free_inode = hugetlbfs_free_inode,
1253 .destroy_inode = hugetlbfs_destroy_inode,
1254 .evict_inode = hugetlbfs_evict_inode,
1255 .statfs = hugetlbfs_statfs,
1256 .put_super = hugetlbfs_put_super,
1257 .show_options = hugetlbfs_show_options,
1258 };
1259
1260 /*
1261 * Convert size option passed from command line to number of huge pages
1262 * in the pool specified by hstate. Size option could be in bytes
1263 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1264 */
1265 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1266 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1267 enum hugetlbfs_size_type val_type)
1268 {
1269 if (val_type == NO_SIZE)
1270 return -1;
1271
1272 if (val_type == SIZE_PERCENT) {
1273 size_opt <<= huge_page_shift(h);
1274 size_opt *= h->max_huge_pages;
1275 do_div(size_opt, 100);
1276 }
1277
1278 size_opt >>= huge_page_shift(h);
1279 return size_opt;
1280 }
1281
1282 /*
1283 * Parse one mount parameter.
1284 */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1285 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1286 {
1287 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1288 struct fs_parse_result result;
1289 struct hstate *h;
1290 char *rest;
1291 unsigned long ps;
1292 int opt;
1293
1294 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1295 if (opt < 0)
1296 return opt;
1297
1298 switch (opt) {
1299 case Opt_uid:
1300 ctx->uid = result.uid;
1301 return 0;
1302
1303 case Opt_gid:
1304 ctx->gid = result.gid;
1305 return 0;
1306
1307 case Opt_mode:
1308 ctx->mode = result.uint_32 & 01777U;
1309 return 0;
1310
1311 case Opt_size:
1312 /* memparse() will accept a K/M/G without a digit */
1313 if (!param->string || !isdigit(param->string[0]))
1314 goto bad_val;
1315 ctx->max_size_opt = memparse(param->string, &rest);
1316 ctx->max_val_type = SIZE_STD;
1317 if (*rest == '%')
1318 ctx->max_val_type = SIZE_PERCENT;
1319 return 0;
1320
1321 case Opt_nr_inodes:
1322 /* memparse() will accept a K/M/G without a digit */
1323 if (!param->string || !isdigit(param->string[0]))
1324 goto bad_val;
1325 ctx->nr_inodes = memparse(param->string, &rest);
1326 return 0;
1327
1328 case Opt_pagesize:
1329 ps = memparse(param->string, &rest);
1330 h = size_to_hstate(ps);
1331 if (!h) {
1332 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1333 return -EINVAL;
1334 }
1335 ctx->hstate = h;
1336 return 0;
1337
1338 case Opt_min_size:
1339 /* memparse() will accept a K/M/G without a digit */
1340 if (!param->string || !isdigit(param->string[0]))
1341 goto bad_val;
1342 ctx->min_size_opt = memparse(param->string, &rest);
1343 ctx->min_val_type = SIZE_STD;
1344 if (*rest == '%')
1345 ctx->min_val_type = SIZE_PERCENT;
1346 return 0;
1347
1348 default:
1349 return -EINVAL;
1350 }
1351
1352 bad_val:
1353 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1354 param->string, param->key);
1355 }
1356
1357 /*
1358 * Validate the parsed options.
1359 */
hugetlbfs_validate(struct fs_context * fc)1360 static int hugetlbfs_validate(struct fs_context *fc)
1361 {
1362 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1363
1364 /*
1365 * Use huge page pool size (in hstate) to convert the size
1366 * options to number of huge pages. If NO_SIZE, -1 is returned.
1367 */
1368 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1369 ctx->max_size_opt,
1370 ctx->max_val_type);
1371 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1372 ctx->min_size_opt,
1373 ctx->min_val_type);
1374
1375 /*
1376 * If max_size was specified, then min_size must be smaller
1377 */
1378 if (ctx->max_val_type > NO_SIZE &&
1379 ctx->min_hpages > ctx->max_hpages) {
1380 pr_err("Minimum size can not be greater than maximum size\n");
1381 return -EINVAL;
1382 }
1383
1384 return 0;
1385 }
1386
1387 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1388 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1389 {
1390 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1391 struct hugetlbfs_sb_info *sbinfo;
1392
1393 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1394 if (!sbinfo)
1395 return -ENOMEM;
1396 sb->s_fs_info = sbinfo;
1397 spin_lock_init(&sbinfo->stat_lock);
1398 sbinfo->hstate = ctx->hstate;
1399 sbinfo->max_inodes = ctx->nr_inodes;
1400 sbinfo->free_inodes = ctx->nr_inodes;
1401 sbinfo->spool = NULL;
1402 sbinfo->uid = ctx->uid;
1403 sbinfo->gid = ctx->gid;
1404 sbinfo->mode = ctx->mode;
1405
1406 /*
1407 * Allocate and initialize subpool if maximum or minimum size is
1408 * specified. Any needed reservations (for minimum size) are taken
1409 * when the subpool is created.
1410 */
1411 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1412 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1413 ctx->max_hpages,
1414 ctx->min_hpages);
1415 if (!sbinfo->spool)
1416 goto out_free;
1417 }
1418 sb->s_maxbytes = MAX_LFS_FILESIZE;
1419 sb->s_blocksize = huge_page_size(ctx->hstate);
1420 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1421 sb->s_magic = HUGETLBFS_MAGIC;
1422 sb->s_op = &hugetlbfs_ops;
1423 sb->s_d_flags = DCACHE_DONTCACHE;
1424 sb->s_time_gran = 1;
1425
1426 /*
1427 * Due to the special and limited functionality of hugetlbfs, it does
1428 * not work well as a stacking filesystem.
1429 */
1430 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1431 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1432 if (!sb->s_root)
1433 goto out_free;
1434 return 0;
1435 out_free:
1436 kfree(sbinfo->spool);
1437 kfree(sbinfo);
1438 return -ENOMEM;
1439 }
1440
hugetlbfs_get_tree(struct fs_context * fc)1441 static int hugetlbfs_get_tree(struct fs_context *fc)
1442 {
1443 int err = hugetlbfs_validate(fc);
1444 if (err)
1445 return err;
1446 return get_tree_nodev(fc, hugetlbfs_fill_super);
1447 }
1448
hugetlbfs_fs_context_free(struct fs_context * fc)1449 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1450 {
1451 kfree(fc->fs_private);
1452 }
1453
1454 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1455 .free = hugetlbfs_fs_context_free,
1456 .parse_param = hugetlbfs_parse_param,
1457 .get_tree = hugetlbfs_get_tree,
1458 };
1459
hugetlbfs_init_fs_context(struct fs_context * fc)1460 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1461 {
1462 struct hugetlbfs_fs_context *ctx;
1463
1464 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1465 if (!ctx)
1466 return -ENOMEM;
1467
1468 ctx->max_hpages = -1; /* No limit on size by default */
1469 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1470 ctx->uid = current_fsuid();
1471 ctx->gid = current_fsgid();
1472 ctx->mode = 0755;
1473 ctx->hstate = &default_hstate;
1474 ctx->min_hpages = -1; /* No default minimum size */
1475 ctx->max_val_type = NO_SIZE;
1476 ctx->min_val_type = NO_SIZE;
1477 fc->fs_private = ctx;
1478 fc->ops = &hugetlbfs_fs_context_ops;
1479 return 0;
1480 }
1481
1482 static struct file_system_type hugetlbfs_fs_type = {
1483 .name = "hugetlbfs",
1484 .init_fs_context = hugetlbfs_init_fs_context,
1485 .parameters = hugetlb_fs_parameters,
1486 .kill_sb = kill_litter_super,
1487 .fs_flags = FS_ALLOW_IDMAP,
1488 };
1489
1490 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1491
can_do_hugetlb_shm(void)1492 static int can_do_hugetlb_shm(void)
1493 {
1494 kgid_t shm_group;
1495 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1496 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1497 }
1498
get_hstate_idx(int page_size_log)1499 static int get_hstate_idx(int page_size_log)
1500 {
1501 struct hstate *h = hstate_sizelog(page_size_log);
1502
1503 if (!h)
1504 return -1;
1505 return hstate_index(h);
1506 }
1507
1508 /*
1509 * Note that size should be aligned to proper hugepage size in caller side,
1510 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1511 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1512 struct file *hugetlb_file_setup(const char *name, size_t size,
1513 vm_flags_t acctflag, int creat_flags,
1514 int page_size_log)
1515 {
1516 struct inode *inode;
1517 struct vfsmount *mnt;
1518 int hstate_idx;
1519 struct file *file;
1520
1521 hstate_idx = get_hstate_idx(page_size_log);
1522 if (hstate_idx < 0)
1523 return ERR_PTR(-ENODEV);
1524
1525 mnt = hugetlbfs_vfsmount[hstate_idx];
1526 if (!mnt)
1527 return ERR_PTR(-ENOENT);
1528
1529 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1530 struct ucounts *ucounts = current_ucounts();
1531
1532 if (user_shm_lock(size, ucounts)) {
1533 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1534 current->comm, current->pid);
1535 user_shm_unlock(size, ucounts);
1536 }
1537 return ERR_PTR(-EPERM);
1538 }
1539
1540 file = ERR_PTR(-ENOSPC);
1541 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */
1542 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1543 S_IFREG | S_IRWXUGO, 0);
1544 if (!inode)
1545 goto out;
1546 if (creat_flags == HUGETLB_SHMFS_INODE)
1547 inode->i_flags |= S_PRIVATE;
1548
1549 inode->i_size = size;
1550 clear_nlink(inode);
1551
1552 if (hugetlb_reserve_pages(inode, 0,
1553 size >> huge_page_shift(hstate_inode(inode)), NULL,
1554 acctflag) < 0)
1555 file = ERR_PTR(-ENOMEM);
1556 else
1557 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1558 &hugetlbfs_file_operations);
1559 if (!IS_ERR(file))
1560 return file;
1561
1562 iput(inode);
1563 out:
1564 return file;
1565 }
1566
mount_one_hugetlbfs(struct hstate * h)1567 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1568 {
1569 struct fs_context *fc;
1570 struct vfsmount *mnt;
1571
1572 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1573 if (IS_ERR(fc)) {
1574 mnt = ERR_CAST(fc);
1575 } else {
1576 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1577 ctx->hstate = h;
1578 mnt = fc_mount_longterm(fc);
1579 put_fs_context(fc);
1580 }
1581 if (IS_ERR(mnt))
1582 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1583 huge_page_size(h) / SZ_1K);
1584 return mnt;
1585 }
1586
init_hugetlbfs_fs(void)1587 static int __init init_hugetlbfs_fs(void)
1588 {
1589 struct vfsmount *mnt;
1590 struct hstate *h;
1591 int error;
1592 int i;
1593
1594 if (!hugepages_supported()) {
1595 pr_info("disabling because there are no supported hugepage sizes\n");
1596 return -ENOTSUPP;
1597 }
1598
1599 error = -ENOMEM;
1600 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1601 sizeof(struct hugetlbfs_inode_info),
1602 0, SLAB_ACCOUNT, init_once);
1603 if (hugetlbfs_inode_cachep == NULL)
1604 goto out;
1605
1606 error = register_filesystem(&hugetlbfs_fs_type);
1607 if (error)
1608 goto out_free;
1609
1610 /* default hstate mount is required */
1611 mnt = mount_one_hugetlbfs(&default_hstate);
1612 if (IS_ERR(mnt)) {
1613 error = PTR_ERR(mnt);
1614 goto out_unreg;
1615 }
1616 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1617
1618 /* other hstates are optional */
1619 i = 0;
1620 for_each_hstate(h) {
1621 if (i == default_hstate_idx) {
1622 i++;
1623 continue;
1624 }
1625
1626 mnt = mount_one_hugetlbfs(h);
1627 if (IS_ERR(mnt))
1628 hugetlbfs_vfsmount[i] = NULL;
1629 else
1630 hugetlbfs_vfsmount[i] = mnt;
1631 i++;
1632 }
1633
1634 return 0;
1635
1636 out_unreg:
1637 (void)unregister_filesystem(&hugetlbfs_fs_type);
1638 out_free:
1639 kmem_cache_destroy(hugetlbfs_inode_cachep);
1640 out:
1641 return error;
1642 }
1643 fs_initcall(init_hugetlbfs_fs)
1644