1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * HugeTLB Vmemmap Optimization (HVO)
4 *
5 * Copyright (c) 2020, ByteDance. All rights reserved.
6 *
7 * Author: Muchun Song <songmuchun@bytedance.com>
8 *
9 * See Documentation/mm/vmemmap_dedup.rst
10 */
11 #define pr_fmt(fmt) "HugeTLB: " fmt
12
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <linux/mmdebug.h>
17 #include <linux/pagewalk.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlbflush.h>
20 #include "hugetlb_vmemmap.h"
21
22 /**
23 * struct vmemmap_remap_walk - walk vmemmap page table
24 *
25 * @remap_pte: called for each lowest-level entry (PTE).
26 * @nr_walked: the number of walked pte.
27 * @reuse_page: the page which is reused for the tail vmemmap pages.
28 * @reuse_addr: the virtual address of the @reuse_page page.
29 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
30 * or is mapped from.
31 * @flags: used to modify behavior in vmemmap page table walking
32 * operations.
33 */
34 struct vmemmap_remap_walk {
35 void (*remap_pte)(pte_t *pte, unsigned long addr,
36 struct vmemmap_remap_walk *walk);
37 unsigned long nr_walked;
38 struct page *reuse_page;
39 unsigned long reuse_addr;
40 struct list_head *vmemmap_pages;
41
42 /* Skip the TLB flush when we split the PMD */
43 #define VMEMMAP_SPLIT_NO_TLB_FLUSH BIT(0)
44 /* Skip the TLB flush when we remap the PTE */
45 #define VMEMMAP_REMAP_NO_TLB_FLUSH BIT(1)
46 /* synchronize_rcu() to avoid writes from page_ref_add_unless() */
47 #define VMEMMAP_SYNCHRONIZE_RCU BIT(2)
48 unsigned long flags;
49 };
50
vmemmap_split_pmd(pmd_t * pmd,struct page * head,unsigned long start,struct vmemmap_remap_walk * walk)51 static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
52 struct vmemmap_remap_walk *walk)
53 {
54 pmd_t __pmd;
55 int i;
56 unsigned long addr = start;
57 pte_t *pgtable;
58
59 pgtable = pte_alloc_one_kernel(&init_mm);
60 if (!pgtable)
61 return -ENOMEM;
62
63 pmd_populate_kernel(&init_mm, &__pmd, pgtable);
64
65 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
66 pte_t entry, *pte;
67 pgprot_t pgprot = PAGE_KERNEL;
68
69 entry = mk_pte(head + i, pgprot);
70 pte = pte_offset_kernel(&__pmd, addr);
71 set_pte_at(&init_mm, addr, pte, entry);
72 }
73
74 spin_lock(&init_mm.page_table_lock);
75 if (likely(pmd_leaf(*pmd))) {
76 /*
77 * Higher order allocations from buddy allocator must be able to
78 * be treated as indepdenent small pages (as they can be freed
79 * individually).
80 */
81 if (!PageReserved(head))
82 split_page(head, get_order(PMD_SIZE));
83
84 /* Make pte visible before pmd. See comment in pmd_install(). */
85 smp_wmb();
86 pmd_populate_kernel(&init_mm, pmd, pgtable);
87 if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
88 flush_tlb_kernel_range(start, start + PMD_SIZE);
89 } else {
90 pte_free_kernel(&init_mm, pgtable);
91 }
92 spin_unlock(&init_mm.page_table_lock);
93
94 return 0;
95 }
96
vmemmap_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)97 static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
98 unsigned long next, struct mm_walk *walk)
99 {
100 int ret = 0;
101 struct page *head;
102 struct vmemmap_remap_walk *vmemmap_walk = walk->private;
103
104 /* Only splitting, not remapping the vmemmap pages. */
105 if (!vmemmap_walk->remap_pte)
106 walk->action = ACTION_CONTINUE;
107
108 spin_lock(&init_mm.page_table_lock);
109 head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
110 /*
111 * Due to HugeTLB alignment requirements and the vmemmap
112 * pages being at the start of the hotplugged memory
113 * region in memory_hotplug.memmap_on_memory case. Checking
114 * the vmemmap page associated with the first vmemmap page
115 * if it is self-hosted is sufficient.
116 *
117 * [ hotplugged memory ]
118 * [ section ][...][ section ]
119 * [ vmemmap ][ usable memory ]
120 * ^ | ^ |
121 * +--+ | |
122 * +------------------------+
123 */
124 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
125 struct page *page = head ? head + pte_index(addr) :
126 pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
127
128 if (PageVmemmapSelfHosted(page))
129 ret = -ENOTSUPP;
130 }
131 spin_unlock(&init_mm.page_table_lock);
132 if (!head || ret)
133 return ret;
134
135 return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
136 }
137
vmemmap_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)138 static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
139 unsigned long next, struct mm_walk *walk)
140 {
141 struct vmemmap_remap_walk *vmemmap_walk = walk->private;
142
143 /*
144 * The reuse_page is found 'first' in page table walking before
145 * starting remapping.
146 */
147 if (!vmemmap_walk->reuse_page)
148 vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
149 else
150 vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
151 vmemmap_walk->nr_walked++;
152
153 return 0;
154 }
155
156 static const struct mm_walk_ops vmemmap_remap_ops = {
157 .pmd_entry = vmemmap_pmd_entry,
158 .pte_entry = vmemmap_pte_entry,
159 };
160
vmemmap_remap_range(unsigned long start,unsigned long end,struct vmemmap_remap_walk * walk)161 static int vmemmap_remap_range(unsigned long start, unsigned long end,
162 struct vmemmap_remap_walk *walk)
163 {
164 int ret;
165
166 VM_BUG_ON(!PAGE_ALIGNED(start | end));
167
168 mmap_read_lock(&init_mm);
169 ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
170 NULL, walk);
171 mmap_read_unlock(&init_mm);
172 if (ret)
173 return ret;
174
175 if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
176 flush_tlb_kernel_range(start, end);
177
178 return 0;
179 }
180
181 /*
182 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
183 * allocator or buddy allocator. If the PG_reserved flag is set, it means
184 * that it allocated from the memblock allocator, just free it via the
185 * free_bootmem_page(). Otherwise, use __free_page().
186 */
free_vmemmap_page(struct page * page)187 static inline void free_vmemmap_page(struct page *page)
188 {
189 if (PageReserved(page)) {
190 memmap_boot_pages_add(-1);
191 free_bootmem_page(page);
192 } else {
193 memmap_pages_add(-1);
194 __free_page(page);
195 }
196 }
197
198 /* Free a list of the vmemmap pages */
free_vmemmap_page_list(struct list_head * list)199 static void free_vmemmap_page_list(struct list_head *list)
200 {
201 struct page *page, *next;
202
203 list_for_each_entry_safe(page, next, list, lru)
204 free_vmemmap_page(page);
205 }
206
vmemmap_remap_pte(pte_t * pte,unsigned long addr,struct vmemmap_remap_walk * walk)207 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
208 struct vmemmap_remap_walk *walk)
209 {
210 /*
211 * Remap the tail pages as read-only to catch illegal write operation
212 * to the tail pages.
213 */
214 pgprot_t pgprot = PAGE_KERNEL_RO;
215 struct page *page = pte_page(ptep_get(pte));
216 pte_t entry;
217
218 /* Remapping the head page requires r/w */
219 if (unlikely(addr == walk->reuse_addr)) {
220 pgprot = PAGE_KERNEL;
221 list_del(&walk->reuse_page->lru);
222
223 /*
224 * Makes sure that preceding stores to the page contents from
225 * vmemmap_remap_free() become visible before the set_pte_at()
226 * write.
227 */
228 smp_wmb();
229 }
230
231 entry = mk_pte(walk->reuse_page, pgprot);
232 list_add(&page->lru, walk->vmemmap_pages);
233 set_pte_at(&init_mm, addr, pte, entry);
234 }
235
236 /*
237 * How many struct page structs need to be reset. When we reuse the head
238 * struct page, the special metadata (e.g. page->flags or page->mapping)
239 * cannot copy to the tail struct page structs. The invalid value will be
240 * checked in the free_tail_page_prepare(). In order to avoid the message
241 * of "corrupted mapping in tail page". We need to reset at least 4 (one
242 * head struct page struct and three tail struct page structs) struct page
243 * structs.
244 */
245 #define NR_RESET_STRUCT_PAGE 4
246
reset_struct_pages(struct page * start)247 static inline void reset_struct_pages(struct page *start)
248 {
249 struct page *from = start + NR_RESET_STRUCT_PAGE;
250
251 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
252 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
253 }
254
vmemmap_restore_pte(pte_t * pte,unsigned long addr,struct vmemmap_remap_walk * walk)255 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
256 struct vmemmap_remap_walk *walk)
257 {
258 pgprot_t pgprot = PAGE_KERNEL;
259 struct page *page;
260 void *to;
261
262 BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
263
264 page = list_first_entry(walk->vmemmap_pages, struct page, lru);
265 list_del(&page->lru);
266 to = page_to_virt(page);
267 copy_page(to, (void *)walk->reuse_addr);
268 reset_struct_pages(to);
269
270 /*
271 * Makes sure that preceding stores to the page contents become visible
272 * before the set_pte_at() write.
273 */
274 smp_wmb();
275 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
276 }
277
278 /**
279 * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
280 * backing PMDs of the directmap into PTEs
281 * @start: start address of the vmemmap virtual address range that we want
282 * to remap.
283 * @end: end address of the vmemmap virtual address range that we want to
284 * remap.
285 * @reuse: reuse address.
286 *
287 * Return: %0 on success, negative error code otherwise.
288 */
vmemmap_remap_split(unsigned long start,unsigned long end,unsigned long reuse)289 static int vmemmap_remap_split(unsigned long start, unsigned long end,
290 unsigned long reuse)
291 {
292 struct vmemmap_remap_walk walk = {
293 .remap_pte = NULL,
294 .flags = VMEMMAP_SPLIT_NO_TLB_FLUSH,
295 };
296
297 /* See the comment in the vmemmap_remap_free(). */
298 BUG_ON(start - reuse != PAGE_SIZE);
299
300 return vmemmap_remap_range(reuse, end, &walk);
301 }
302
303 /**
304 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
305 * to the page which @reuse is mapped to, then free vmemmap
306 * which the range are mapped to.
307 * @start: start address of the vmemmap virtual address range that we want
308 * to remap.
309 * @end: end address of the vmemmap virtual address range that we want to
310 * remap.
311 * @reuse: reuse address.
312 * @vmemmap_pages: list to deposit vmemmap pages to be freed. It is callers
313 * responsibility to free pages.
314 * @flags: modifications to vmemmap_remap_walk flags
315 *
316 * Return: %0 on success, negative error code otherwise.
317 */
vmemmap_remap_free(unsigned long start,unsigned long end,unsigned long reuse,struct list_head * vmemmap_pages,unsigned long flags)318 static int vmemmap_remap_free(unsigned long start, unsigned long end,
319 unsigned long reuse,
320 struct list_head *vmemmap_pages,
321 unsigned long flags)
322 {
323 int ret;
324 struct vmemmap_remap_walk walk = {
325 .remap_pte = vmemmap_remap_pte,
326 .reuse_addr = reuse,
327 .vmemmap_pages = vmemmap_pages,
328 .flags = flags,
329 };
330 int nid = page_to_nid((struct page *)reuse);
331 gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
332
333 /*
334 * Allocate a new head vmemmap page to avoid breaking a contiguous
335 * block of struct page memory when freeing it back to page allocator
336 * in free_vmemmap_page_list(). This will allow the likely contiguous
337 * struct page backing memory to be kept contiguous and allowing for
338 * more allocations of hugepages. Fallback to the currently
339 * mapped head page in case should it fail to allocate.
340 */
341 walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
342 if (walk.reuse_page) {
343 copy_page(page_to_virt(walk.reuse_page),
344 (void *)walk.reuse_addr);
345 list_add(&walk.reuse_page->lru, vmemmap_pages);
346 memmap_pages_add(1);
347 }
348
349 /*
350 * In order to make remapping routine most efficient for the huge pages,
351 * the routine of vmemmap page table walking has the following rules
352 * (see more details from the vmemmap_pte_range()):
353 *
354 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
355 * should be continuous.
356 * - The @reuse address is part of the range [@reuse, @end) that we are
357 * walking which is passed to vmemmap_remap_range().
358 * - The @reuse address is the first in the complete range.
359 *
360 * So we need to make sure that @start and @reuse meet the above rules.
361 */
362 BUG_ON(start - reuse != PAGE_SIZE);
363
364 ret = vmemmap_remap_range(reuse, end, &walk);
365 if (ret && walk.nr_walked) {
366 end = reuse + walk.nr_walked * PAGE_SIZE;
367 /*
368 * vmemmap_pages contains pages from the previous
369 * vmemmap_remap_range call which failed. These
370 * are pages which were removed from the vmemmap.
371 * They will be restored in the following call.
372 */
373 walk = (struct vmemmap_remap_walk) {
374 .remap_pte = vmemmap_restore_pte,
375 .reuse_addr = reuse,
376 .vmemmap_pages = vmemmap_pages,
377 .flags = 0,
378 };
379
380 vmemmap_remap_range(reuse, end, &walk);
381 }
382
383 return ret;
384 }
385
alloc_vmemmap_page_list(unsigned long start,unsigned long end,struct list_head * list)386 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
387 struct list_head *list)
388 {
389 gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
390 unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
391 int nid = page_to_nid((struct page *)start);
392 struct page *page, *next;
393 int i;
394
395 for (i = 0; i < nr_pages; i++) {
396 page = alloc_pages_node(nid, gfp_mask, 0);
397 if (!page)
398 goto out;
399 list_add(&page->lru, list);
400 }
401 memmap_pages_add(nr_pages);
402
403 return 0;
404 out:
405 list_for_each_entry_safe(page, next, list, lru)
406 __free_page(page);
407 return -ENOMEM;
408 }
409
410 /**
411 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
412 * to the page which is from the @vmemmap_pages
413 * respectively.
414 * @start: start address of the vmemmap virtual address range that we want
415 * to remap.
416 * @end: end address of the vmemmap virtual address range that we want to
417 * remap.
418 * @reuse: reuse address.
419 * @flags: modifications to vmemmap_remap_walk flags
420 *
421 * Return: %0 on success, negative error code otherwise.
422 */
vmemmap_remap_alloc(unsigned long start,unsigned long end,unsigned long reuse,unsigned long flags)423 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
424 unsigned long reuse, unsigned long flags)
425 {
426 LIST_HEAD(vmemmap_pages);
427 struct vmemmap_remap_walk walk = {
428 .remap_pte = vmemmap_restore_pte,
429 .reuse_addr = reuse,
430 .vmemmap_pages = &vmemmap_pages,
431 .flags = flags,
432 };
433
434 /* See the comment in the vmemmap_remap_free(). */
435 BUG_ON(start - reuse != PAGE_SIZE);
436
437 if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
438 return -ENOMEM;
439
440 return vmemmap_remap_range(reuse, end, &walk);
441 }
442
443 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
444 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
445
446 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
hugetlb_vmemmap_optimize_param(char * buf)447 static int __init hugetlb_vmemmap_optimize_param(char *buf)
448 {
449 return kstrtobool(buf, &vmemmap_optimize_enabled);
450 }
451 early_param("hugetlb_free_vmemmap", hugetlb_vmemmap_optimize_param);
452
__hugetlb_vmemmap_restore_folio(const struct hstate * h,struct folio * folio,unsigned long flags)453 static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
454 struct folio *folio, unsigned long flags)
455 {
456 int ret;
457 unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
458 unsigned long vmemmap_reuse;
459
460 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
461 VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
462
463 if (!folio_test_hugetlb_vmemmap_optimized(folio))
464 return 0;
465
466 if (flags & VMEMMAP_SYNCHRONIZE_RCU)
467 synchronize_rcu();
468
469 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
470 vmemmap_reuse = vmemmap_start;
471 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
472
473 /*
474 * The pages which the vmemmap virtual address range [@vmemmap_start,
475 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
476 * the range is mapped to the page which @vmemmap_reuse is mapped to.
477 * When a HugeTLB page is freed to the buddy allocator, previously
478 * discarded vmemmap pages must be allocated and remapping.
479 */
480 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
481 if (!ret) {
482 folio_clear_hugetlb_vmemmap_optimized(folio);
483 static_branch_dec(&hugetlb_optimize_vmemmap_key);
484 }
485
486 return ret;
487 }
488
489 /**
490 * hugetlb_vmemmap_restore_folio - restore previously optimized (by
491 * hugetlb_vmemmap_optimize_folio()) vmemmap pages which
492 * will be reallocated and remapped.
493 * @h: struct hstate.
494 * @folio: the folio whose vmemmap pages will be restored.
495 *
496 * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
497 * negative error code otherwise.
498 */
hugetlb_vmemmap_restore_folio(const struct hstate * h,struct folio * folio)499 int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
500 {
501 return __hugetlb_vmemmap_restore_folio(h, folio, VMEMMAP_SYNCHRONIZE_RCU);
502 }
503
504 /**
505 * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
506 * @h: hstate.
507 * @folio_list: list of folios.
508 * @non_hvo_folios: Output list of folios for which vmemmap exists.
509 *
510 * Return: number of folios for which vmemmap was restored, or an error code
511 * if an error was encountered restoring vmemmap for a folio.
512 * Folios that have vmemmap are moved to the non_hvo_folios
513 * list. Processing of entries stops when the first error is
514 * encountered. The folio that experienced the error and all
515 * non-processed folios will remain on folio_list.
516 */
hugetlb_vmemmap_restore_folios(const struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)517 long hugetlb_vmemmap_restore_folios(const struct hstate *h,
518 struct list_head *folio_list,
519 struct list_head *non_hvo_folios)
520 {
521 struct folio *folio, *t_folio;
522 long restored = 0;
523 long ret = 0;
524 unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
525
526 list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
527 if (folio_test_hugetlb_vmemmap_optimized(folio)) {
528 ret = __hugetlb_vmemmap_restore_folio(h, folio, flags);
529 /* only need to synchronize_rcu() once for each batch */
530 flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
531
532 if (ret)
533 break;
534 restored++;
535 }
536
537 /* Add non-optimized folios to output list */
538 list_move(&folio->lru, non_hvo_folios);
539 }
540
541 if (restored)
542 flush_tlb_all();
543 if (!ret)
544 ret = restored;
545 return ret;
546 }
547
548 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
vmemmap_should_optimize_folio(const struct hstate * h,struct folio * folio)549 static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
550 {
551 if (folio_test_hugetlb_vmemmap_optimized(folio))
552 return false;
553
554 if (!READ_ONCE(vmemmap_optimize_enabled))
555 return false;
556
557 if (!hugetlb_vmemmap_optimizable(h))
558 return false;
559
560 return true;
561 }
562
__hugetlb_vmemmap_optimize_folio(const struct hstate * h,struct folio * folio,struct list_head * vmemmap_pages,unsigned long flags)563 static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
564 struct folio *folio,
565 struct list_head *vmemmap_pages,
566 unsigned long flags)
567 {
568 int ret = 0;
569 unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
570 unsigned long vmemmap_reuse;
571
572 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
573 VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
574
575 if (!vmemmap_should_optimize_folio(h, folio))
576 return ret;
577
578 static_branch_inc(&hugetlb_optimize_vmemmap_key);
579
580 if (flags & VMEMMAP_SYNCHRONIZE_RCU)
581 synchronize_rcu();
582 /*
583 * Very Subtle
584 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
585 * immediately after remapping. As a result, subsequent accesses
586 * and modifications to struct pages associated with the hugetlb
587 * page could be to the OLD struct pages. Set the vmemmap optimized
588 * flag here so that it is copied to the new head page. This keeps
589 * the old and new struct pages in sync.
590 * If there is an error during optimization, we will immediately FLUSH
591 * the TLB and clear the flag below.
592 */
593 folio_set_hugetlb_vmemmap_optimized(folio);
594
595 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
596 vmemmap_reuse = vmemmap_start;
597 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
598
599 /*
600 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
601 * to the page which @vmemmap_reuse is mapped to. Add pages previously
602 * mapping the range to vmemmap_pages list so that they can be freed by
603 * the caller.
604 */
605 ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
606 vmemmap_pages, flags);
607 if (ret) {
608 static_branch_dec(&hugetlb_optimize_vmemmap_key);
609 folio_clear_hugetlb_vmemmap_optimized(folio);
610 }
611
612 return ret;
613 }
614
615 /**
616 * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
617 * @h: struct hstate.
618 * @folio: the folio whose vmemmap pages will be optimized.
619 *
620 * This function only tries to optimize @folio's vmemmap pages and does not
621 * guarantee that the optimization will succeed after it returns. The caller
622 * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
623 * vmemmap pages have been optimized.
624 */
hugetlb_vmemmap_optimize_folio(const struct hstate * h,struct folio * folio)625 void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
626 {
627 LIST_HEAD(vmemmap_pages);
628
629 __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, VMEMMAP_SYNCHRONIZE_RCU);
630 free_vmemmap_page_list(&vmemmap_pages);
631 }
632
hugetlb_vmemmap_split_folio(const struct hstate * h,struct folio * folio)633 static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
634 {
635 unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
636 unsigned long vmemmap_reuse;
637
638 if (!vmemmap_should_optimize_folio(h, folio))
639 return 0;
640
641 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
642 vmemmap_reuse = vmemmap_start;
643 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
644
645 /*
646 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
647 * @vmemmap_end]
648 */
649 return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
650 }
651
__hugetlb_vmemmap_optimize_folios(struct hstate * h,struct list_head * folio_list,bool boot)652 static void __hugetlb_vmemmap_optimize_folios(struct hstate *h,
653 struct list_head *folio_list,
654 bool boot)
655 {
656 struct folio *folio;
657 int nr_to_optimize;
658 LIST_HEAD(vmemmap_pages);
659 unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
660
661 nr_to_optimize = 0;
662 list_for_each_entry(folio, folio_list, lru) {
663 int ret;
664 unsigned long spfn, epfn;
665
666 if (boot && folio_test_hugetlb_vmemmap_optimized(folio)) {
667 /*
668 * Already optimized by pre-HVO, just map the
669 * mirrored tail page structs RO.
670 */
671 spfn = (unsigned long)&folio->page;
672 epfn = spfn + pages_per_huge_page(h);
673 vmemmap_wrprotect_hvo(spfn, epfn, folio_nid(folio),
674 HUGETLB_VMEMMAP_RESERVE_SIZE);
675 register_page_bootmem_memmap(pfn_to_section_nr(spfn),
676 &folio->page,
677 HUGETLB_VMEMMAP_RESERVE_SIZE);
678 static_branch_inc(&hugetlb_optimize_vmemmap_key);
679 continue;
680 }
681
682 nr_to_optimize++;
683
684 ret = hugetlb_vmemmap_split_folio(h, folio);
685
686 /*
687 * Spliting the PMD requires allocating a page, thus lets fail
688 * early once we encounter the first OOM. No point in retrying
689 * as it can be dynamically done on remap with the memory
690 * we get back from the vmemmap deduplication.
691 */
692 if (ret == -ENOMEM)
693 break;
694 }
695
696 if (!nr_to_optimize)
697 /*
698 * All pre-HVO folios, nothing left to do. It's ok if
699 * there is a mix of pre-HVO and not yet HVO-ed folios
700 * here, as __hugetlb_vmemmap_optimize_folio() will
701 * skip any folios that already have the optimized flag
702 * set, see vmemmap_should_optimize_folio().
703 */
704 goto out;
705
706 flush_tlb_all();
707
708 list_for_each_entry(folio, folio_list, lru) {
709 int ret;
710
711 ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
712 /* only need to synchronize_rcu() once for each batch */
713 flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
714
715 /*
716 * Pages to be freed may have been accumulated. If we
717 * encounter an ENOMEM, free what we have and try again.
718 * This can occur in the case that both spliting fails
719 * halfway and head page allocation also failed. In this
720 * case __hugetlb_vmemmap_optimize_folio() would free memory
721 * allowing more vmemmap remaps to occur.
722 */
723 if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
724 flush_tlb_all();
725 free_vmemmap_page_list(&vmemmap_pages);
726 INIT_LIST_HEAD(&vmemmap_pages);
727 __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
728 }
729 }
730
731 out:
732 flush_tlb_all();
733 free_vmemmap_page_list(&vmemmap_pages);
734 }
735
hugetlb_vmemmap_optimize_folios(struct hstate * h,struct list_head * folio_list)736 void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
737 {
738 __hugetlb_vmemmap_optimize_folios(h, folio_list, false);
739 }
740
hugetlb_vmemmap_optimize_bootmem_folios(struct hstate * h,struct list_head * folio_list)741 void hugetlb_vmemmap_optimize_bootmem_folios(struct hstate *h, struct list_head *folio_list)
742 {
743 __hugetlb_vmemmap_optimize_folios(h, folio_list, true);
744 }
745
746 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
747
748 /* Return true of a bootmem allocated HugeTLB page should be pre-HVO-ed */
vmemmap_should_optimize_bootmem_page(struct huge_bootmem_page * m)749 static bool vmemmap_should_optimize_bootmem_page(struct huge_bootmem_page *m)
750 {
751 unsigned long section_size, psize, pmd_vmemmap_size;
752 phys_addr_t paddr;
753
754 if (!READ_ONCE(vmemmap_optimize_enabled))
755 return false;
756
757 if (!hugetlb_vmemmap_optimizable(m->hstate))
758 return false;
759
760 psize = huge_page_size(m->hstate);
761 paddr = virt_to_phys(m);
762
763 /*
764 * Pre-HVO only works if the bootmem huge page
765 * is aligned to the section size.
766 */
767 section_size = (1UL << PA_SECTION_SHIFT);
768 if (!IS_ALIGNED(paddr, section_size) ||
769 !IS_ALIGNED(psize, section_size))
770 return false;
771
772 /*
773 * The pre-HVO code does not deal with splitting PMDS,
774 * so the bootmem page must be aligned to the number
775 * of base pages that can be mapped with one vmemmap PMD.
776 */
777 pmd_vmemmap_size = (PMD_SIZE / (sizeof(struct page))) << PAGE_SHIFT;
778 if (!IS_ALIGNED(paddr, pmd_vmemmap_size) ||
779 !IS_ALIGNED(psize, pmd_vmemmap_size))
780 return false;
781
782 return true;
783 }
784
785 /*
786 * Initialize memmap section for a gigantic page, HVO-style.
787 */
hugetlb_vmemmap_init_early(int nid)788 void __init hugetlb_vmemmap_init_early(int nid)
789 {
790 unsigned long psize, paddr, section_size;
791 unsigned long ns, i, pnum, pfn, nr_pages;
792 unsigned long start, end;
793 struct huge_bootmem_page *m = NULL;
794 void *map;
795
796 /*
797 * Noting to do if bootmem pages were not allocated
798 * early in boot, or if HVO wasn't enabled in the
799 * first place.
800 */
801 if (!hugetlb_bootmem_allocated())
802 return;
803
804 if (!READ_ONCE(vmemmap_optimize_enabled))
805 return;
806
807 section_size = (1UL << PA_SECTION_SHIFT);
808
809 list_for_each_entry(m, &huge_boot_pages[nid], list) {
810 if (!vmemmap_should_optimize_bootmem_page(m))
811 continue;
812
813 nr_pages = pages_per_huge_page(m->hstate);
814 psize = nr_pages << PAGE_SHIFT;
815 paddr = virt_to_phys(m);
816 pfn = PHYS_PFN(paddr);
817 map = pfn_to_page(pfn);
818 start = (unsigned long)map;
819 end = start + nr_pages * sizeof(struct page);
820
821 if (vmemmap_populate_hvo(start, end, nid,
822 HUGETLB_VMEMMAP_RESERVE_SIZE) < 0)
823 continue;
824
825 memmap_boot_pages_add(HUGETLB_VMEMMAP_RESERVE_SIZE / PAGE_SIZE);
826
827 pnum = pfn_to_section_nr(pfn);
828 ns = psize / section_size;
829
830 for (i = 0; i < ns; i++) {
831 sparse_init_early_section(nid, map, pnum,
832 SECTION_IS_VMEMMAP_PREINIT);
833 map += section_map_size();
834 pnum++;
835 }
836
837 m->flags |= HUGE_BOOTMEM_HVO;
838 }
839 }
840
hugetlb_vmemmap_init_late(int nid)841 void __init hugetlb_vmemmap_init_late(int nid)
842 {
843 struct huge_bootmem_page *m, *tm;
844 unsigned long phys, nr_pages, start, end;
845 unsigned long pfn, nr_mmap;
846 struct hstate *h;
847 void *map;
848
849 if (!hugetlb_bootmem_allocated())
850 return;
851
852 if (!READ_ONCE(vmemmap_optimize_enabled))
853 return;
854
855 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
856 if (!(m->flags & HUGE_BOOTMEM_HVO))
857 continue;
858
859 phys = virt_to_phys(m);
860 h = m->hstate;
861 pfn = PHYS_PFN(phys);
862 nr_pages = pages_per_huge_page(h);
863
864 if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
865 /*
866 * Oops, the hugetlb page spans multiple zones.
867 * Remove it from the list, and undo HVO.
868 */
869 list_del(&m->list);
870
871 map = pfn_to_page(pfn);
872
873 start = (unsigned long)map;
874 end = start + nr_pages * sizeof(struct page);
875
876 vmemmap_undo_hvo(start, end, nid,
877 HUGETLB_VMEMMAP_RESERVE_SIZE);
878 nr_mmap = end - start - HUGETLB_VMEMMAP_RESERVE_SIZE;
879 memmap_boot_pages_add(DIV_ROUND_UP(nr_mmap, PAGE_SIZE));
880
881 memblock_phys_free(phys, huge_page_size(h));
882 continue;
883 } else
884 m->flags |= HUGE_BOOTMEM_ZONES_VALID;
885 }
886 }
887 #endif
888
889 static const struct ctl_table hugetlb_vmemmap_sysctls[] = {
890 {
891 .procname = "hugetlb_optimize_vmemmap",
892 .data = &vmemmap_optimize_enabled,
893 .maxlen = sizeof(vmemmap_optimize_enabled),
894 .mode = 0644,
895 .proc_handler = proc_dobool,
896 },
897 };
898
hugetlb_vmemmap_init(void)899 static int __init hugetlb_vmemmap_init(void)
900 {
901 const struct hstate *h;
902
903 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
904 BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
905
906 for_each_hstate(h) {
907 if (hugetlb_vmemmap_optimizable(h)) {
908 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
909 break;
910 }
911 }
912 return 0;
913 }
914 late_initcall(hugetlb_vmemmap_init);
915