xref: /linux/mm/hugetlb_vmemmap.c (revision 6fea5fabd3323cd27b2ab5143263f37ff29550cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)	"HugeTLB: " fmt
12 
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <linux/mmdebug.h>
17 #include <linux/pagewalk.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlbflush.h>
20 #include "hugetlb_vmemmap.h"
21 
22 /**
23  * struct vmemmap_remap_walk - walk vmemmap page table
24  *
25  * @remap_pte:		called for each lowest-level entry (PTE).
26  * @nr_walked:		the number of walked pte.
27  * @reuse_page:		the page which is reused for the tail vmemmap pages.
28  * @reuse_addr:		the virtual address of the @reuse_page page.
29  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
30  *			or is mapped from.
31  * @flags:		used to modify behavior in vmemmap page table walking
32  *			operations.
33  */
34 struct vmemmap_remap_walk {
35 	void			(*remap_pte)(pte_t *pte, unsigned long addr,
36 					     struct vmemmap_remap_walk *walk);
37 	unsigned long		nr_walked;
38 	struct page		*reuse_page;
39 	unsigned long		reuse_addr;
40 	struct list_head	*vmemmap_pages;
41 
42 /* Skip the TLB flush when we split the PMD */
43 #define VMEMMAP_SPLIT_NO_TLB_FLUSH	BIT(0)
44 /* Skip the TLB flush when we remap the PTE */
45 #define VMEMMAP_REMAP_NO_TLB_FLUSH	BIT(1)
46 /* synchronize_rcu() to avoid writes from page_ref_add_unless() */
47 #define VMEMMAP_SYNCHRONIZE_RCU		BIT(2)
48 	unsigned long		flags;
49 };
50 
vmemmap_split_pmd(pmd_t * pmd,struct page * head,unsigned long start,struct vmemmap_remap_walk * walk)51 static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
52 			     struct vmemmap_remap_walk *walk)
53 {
54 	pmd_t __pmd;
55 	int i;
56 	unsigned long addr = start;
57 	pte_t *pgtable;
58 
59 	pgtable = pte_alloc_one_kernel(&init_mm);
60 	if (!pgtable)
61 		return -ENOMEM;
62 
63 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
64 
65 	for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
66 		pte_t entry, *pte;
67 		pgprot_t pgprot = PAGE_KERNEL;
68 
69 		entry = mk_pte(head + i, pgprot);
70 		pte = pte_offset_kernel(&__pmd, addr);
71 		set_pte_at(&init_mm, addr, pte, entry);
72 	}
73 
74 	spin_lock(&init_mm.page_table_lock);
75 	if (likely(pmd_leaf(*pmd))) {
76 		/*
77 		 * Higher order allocations from buddy allocator must be able to
78 		 * be treated as indepdenent small pages (as they can be freed
79 		 * individually).
80 		 */
81 		if (!PageReserved(head))
82 			split_page(head, get_order(PMD_SIZE));
83 
84 		/* Make pte visible before pmd. See comment in pmd_install(). */
85 		smp_wmb();
86 		pmd_populate_kernel(&init_mm, pmd, pgtable);
87 		if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
88 			flush_tlb_kernel_range(start, start + PMD_SIZE);
89 	} else {
90 		pte_free_kernel(&init_mm, pgtable);
91 	}
92 	spin_unlock(&init_mm.page_table_lock);
93 
94 	return 0;
95 }
96 
vmemmap_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)97 static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
98 			     unsigned long next, struct mm_walk *walk)
99 {
100 	int ret = 0;
101 	struct page *head;
102 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
103 
104 	/* Only splitting, not remapping the vmemmap pages. */
105 	if (!vmemmap_walk->remap_pte)
106 		walk->action = ACTION_CONTINUE;
107 
108 	spin_lock(&init_mm.page_table_lock);
109 	head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
110 	/*
111 	 * Due to HugeTLB alignment requirements and the vmemmap
112 	 * pages being at the start of the hotplugged memory
113 	 * region in memory_hotplug.memmap_on_memory case. Checking
114 	 * the vmemmap page associated with the first vmemmap page
115 	 * if it is self-hosted is sufficient.
116 	 *
117 	 * [                  hotplugged memory                  ]
118 	 * [        section        ][...][        section        ]
119 	 * [ vmemmap ][              usable memory               ]
120 	 *   ^  | ^                        |
121 	 *   +--+ |                        |
122 	 *        +------------------------+
123 	 */
124 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
125 		struct page *page = head ? head + pte_index(addr) :
126 				    pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
127 
128 		if (PageVmemmapSelfHosted(page))
129 			ret = -ENOTSUPP;
130 	}
131 	spin_unlock(&init_mm.page_table_lock);
132 	if (!head || ret)
133 		return ret;
134 
135 	return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
136 }
137 
vmemmap_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)138 static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
139 			     unsigned long next, struct mm_walk *walk)
140 {
141 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
142 
143 	/*
144 	 * The reuse_page is found 'first' in page table walking before
145 	 * starting remapping.
146 	 */
147 	if (!vmemmap_walk->reuse_page)
148 		vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
149 	else
150 		vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
151 	vmemmap_walk->nr_walked++;
152 
153 	return 0;
154 }
155 
156 static const struct mm_walk_ops vmemmap_remap_ops = {
157 	.pmd_entry	= vmemmap_pmd_entry,
158 	.pte_entry	= vmemmap_pte_entry,
159 };
160 
vmemmap_remap_range(unsigned long start,unsigned long end,struct vmemmap_remap_walk * walk)161 static int vmemmap_remap_range(unsigned long start, unsigned long end,
162 			       struct vmemmap_remap_walk *walk)
163 {
164 	int ret;
165 
166 	VM_BUG_ON(!PAGE_ALIGNED(start | end));
167 
168 	mmap_read_lock(&init_mm);
169 	ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
170 				    NULL, walk);
171 	mmap_read_unlock(&init_mm);
172 	if (ret)
173 		return ret;
174 
175 	if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
176 		flush_tlb_kernel_range(start, end);
177 
178 	return 0;
179 }
180 
181 /*
182  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
183  * allocator or buddy allocator. If the PG_reserved flag is set, it means
184  * that it allocated from the memblock allocator, just free it via the
185  * free_bootmem_page(). Otherwise, use __free_page().
186  */
free_vmemmap_page(struct page * page)187 static inline void free_vmemmap_page(struct page *page)
188 {
189 	if (PageReserved(page)) {
190 		memmap_boot_pages_add(-1);
191 		free_bootmem_page(page);
192 	} else {
193 		memmap_pages_add(-1);
194 		__free_page(page);
195 	}
196 }
197 
198 /* Free a list of the vmemmap pages */
free_vmemmap_page_list(struct list_head * list)199 static void free_vmemmap_page_list(struct list_head *list)
200 {
201 	struct page *page, *next;
202 
203 	list_for_each_entry_safe(page, next, list, lru)
204 		free_vmemmap_page(page);
205 }
206 
vmemmap_remap_pte(pte_t * pte,unsigned long addr,struct vmemmap_remap_walk * walk)207 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
208 			      struct vmemmap_remap_walk *walk)
209 {
210 	/*
211 	 * Remap the tail pages as read-only to catch illegal write operation
212 	 * to the tail pages.
213 	 */
214 	pgprot_t pgprot = PAGE_KERNEL_RO;
215 	struct page *page = pte_page(ptep_get(pte));
216 	pte_t entry;
217 
218 	/* Remapping the head page requires r/w */
219 	if (unlikely(addr == walk->reuse_addr)) {
220 		pgprot = PAGE_KERNEL;
221 		list_del(&walk->reuse_page->lru);
222 
223 		/*
224 		 * Makes sure that preceding stores to the page contents from
225 		 * vmemmap_remap_free() become visible before the set_pte_at()
226 		 * write.
227 		 */
228 		smp_wmb();
229 	}
230 
231 	entry = mk_pte(walk->reuse_page, pgprot);
232 	list_add(&page->lru, walk->vmemmap_pages);
233 	set_pte_at(&init_mm, addr, pte, entry);
234 }
235 
236 /*
237  * How many struct page structs need to be reset. When we reuse the head
238  * struct page, the special metadata (e.g. page->flags or page->mapping)
239  * cannot copy to the tail struct page structs. The invalid value will be
240  * checked in the free_tail_page_prepare(). In order to avoid the message
241  * of "corrupted mapping in tail page". We need to reset at least 4 (one
242  * head struct page struct and three tail struct page structs) struct page
243  * structs.
244  */
245 #define NR_RESET_STRUCT_PAGE		4
246 
reset_struct_pages(struct page * start)247 static inline void reset_struct_pages(struct page *start)
248 {
249 	struct page *from = start + NR_RESET_STRUCT_PAGE;
250 
251 	BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
252 	memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
253 }
254 
vmemmap_restore_pte(pte_t * pte,unsigned long addr,struct vmemmap_remap_walk * walk)255 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
256 				struct vmemmap_remap_walk *walk)
257 {
258 	pgprot_t pgprot = PAGE_KERNEL;
259 	struct page *page;
260 	void *to;
261 
262 	BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
263 
264 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
265 	list_del(&page->lru);
266 	to = page_to_virt(page);
267 	copy_page(to, (void *)walk->reuse_addr);
268 	reset_struct_pages(to);
269 
270 	/*
271 	 * Makes sure that preceding stores to the page contents become visible
272 	 * before the set_pte_at() write.
273 	 */
274 	smp_wmb();
275 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
276 }
277 
278 /**
279  * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
280  *                      backing PMDs of the directmap into PTEs
281  * @start:     start address of the vmemmap virtual address range that we want
282  *             to remap.
283  * @end:       end address of the vmemmap virtual address range that we want to
284  *             remap.
285  * @reuse:     reuse address.
286  *
287  * Return: %0 on success, negative error code otherwise.
288  */
vmemmap_remap_split(unsigned long start,unsigned long end,unsigned long reuse)289 static int vmemmap_remap_split(unsigned long start, unsigned long end,
290 			       unsigned long reuse)
291 {
292 	struct vmemmap_remap_walk walk = {
293 		.remap_pte	= NULL,
294 		.flags		= VMEMMAP_SPLIT_NO_TLB_FLUSH,
295 	};
296 
297 	/* See the comment in the vmemmap_remap_free(). */
298 	BUG_ON(start - reuse != PAGE_SIZE);
299 
300 	return vmemmap_remap_range(reuse, end, &walk);
301 }
302 
303 /**
304  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
305  *			to the page which @reuse is mapped to, then free vmemmap
306  *			which the range are mapped to.
307  * @start:	start address of the vmemmap virtual address range that we want
308  *		to remap.
309  * @end:	end address of the vmemmap virtual address range that we want to
310  *		remap.
311  * @reuse:	reuse address.
312  * @vmemmap_pages: list to deposit vmemmap pages to be freed.  It is callers
313  *		responsibility to free pages.
314  * @flags:	modifications to vmemmap_remap_walk flags
315  *
316  * Return: %0 on success, negative error code otherwise.
317  */
vmemmap_remap_free(unsigned long start,unsigned long end,unsigned long reuse,struct list_head * vmemmap_pages,unsigned long flags)318 static int vmemmap_remap_free(unsigned long start, unsigned long end,
319 			      unsigned long reuse,
320 			      struct list_head *vmemmap_pages,
321 			      unsigned long flags)
322 {
323 	int ret;
324 	struct vmemmap_remap_walk walk = {
325 		.remap_pte	= vmemmap_remap_pte,
326 		.reuse_addr	= reuse,
327 		.vmemmap_pages	= vmemmap_pages,
328 		.flags		= flags,
329 	};
330 	int nid = page_to_nid((struct page *)reuse);
331 	gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
332 
333 	/*
334 	 * Allocate a new head vmemmap page to avoid breaking a contiguous
335 	 * block of struct page memory when freeing it back to page allocator
336 	 * in free_vmemmap_page_list(). This will allow the likely contiguous
337 	 * struct page backing memory to be kept contiguous and allowing for
338 	 * more allocations of hugepages. Fallback to the currently
339 	 * mapped head page in case should it fail to allocate.
340 	 */
341 	walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
342 	if (walk.reuse_page) {
343 		copy_page(page_to_virt(walk.reuse_page),
344 			  (void *)walk.reuse_addr);
345 		list_add(&walk.reuse_page->lru, vmemmap_pages);
346 		memmap_pages_add(1);
347 	}
348 
349 	/*
350 	 * In order to make remapping routine most efficient for the huge pages,
351 	 * the routine of vmemmap page table walking has the following rules
352 	 * (see more details from the vmemmap_pte_range()):
353 	 *
354 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
355 	 *   should be continuous.
356 	 * - The @reuse address is part of the range [@reuse, @end) that we are
357 	 *   walking which is passed to vmemmap_remap_range().
358 	 * - The @reuse address is the first in the complete range.
359 	 *
360 	 * So we need to make sure that @start and @reuse meet the above rules.
361 	 */
362 	BUG_ON(start - reuse != PAGE_SIZE);
363 
364 	ret = vmemmap_remap_range(reuse, end, &walk);
365 	if (ret && walk.nr_walked) {
366 		end = reuse + walk.nr_walked * PAGE_SIZE;
367 		/*
368 		 * vmemmap_pages contains pages from the previous
369 		 * vmemmap_remap_range call which failed.  These
370 		 * are pages which were removed from the vmemmap.
371 		 * They will be restored in the following call.
372 		 */
373 		walk = (struct vmemmap_remap_walk) {
374 			.remap_pte	= vmemmap_restore_pte,
375 			.reuse_addr	= reuse,
376 			.vmemmap_pages	= vmemmap_pages,
377 			.flags		= 0,
378 		};
379 
380 		vmemmap_remap_range(reuse, end, &walk);
381 	}
382 
383 	return ret;
384 }
385 
alloc_vmemmap_page_list(unsigned long start,unsigned long end,struct list_head * list)386 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
387 				   struct list_head *list)
388 {
389 	gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
390 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
391 	int nid = page_to_nid((struct page *)start);
392 	struct page *page, *next;
393 	int i;
394 
395 	for (i = 0; i < nr_pages; i++) {
396 		page = alloc_pages_node(nid, gfp_mask, 0);
397 		if (!page)
398 			goto out;
399 		list_add(&page->lru, list);
400 	}
401 	memmap_pages_add(nr_pages);
402 
403 	return 0;
404 out:
405 	list_for_each_entry_safe(page, next, list, lru)
406 		__free_page(page);
407 	return -ENOMEM;
408 }
409 
410 /**
411  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
412  *			 to the page which is from the @vmemmap_pages
413  *			 respectively.
414  * @start:	start address of the vmemmap virtual address range that we want
415  *		to remap.
416  * @end:	end address of the vmemmap virtual address range that we want to
417  *		remap.
418  * @reuse:	reuse address.
419  * @flags:	modifications to vmemmap_remap_walk flags
420  *
421  * Return: %0 on success, negative error code otherwise.
422  */
vmemmap_remap_alloc(unsigned long start,unsigned long end,unsigned long reuse,unsigned long flags)423 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
424 			       unsigned long reuse, unsigned long flags)
425 {
426 	LIST_HEAD(vmemmap_pages);
427 	struct vmemmap_remap_walk walk = {
428 		.remap_pte	= vmemmap_restore_pte,
429 		.reuse_addr	= reuse,
430 		.vmemmap_pages	= &vmemmap_pages,
431 		.flags		= flags,
432 	};
433 
434 	/* See the comment in the vmemmap_remap_free(). */
435 	BUG_ON(start - reuse != PAGE_SIZE);
436 
437 	if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
438 		return -ENOMEM;
439 
440 	return vmemmap_remap_range(reuse, end, &walk);
441 }
442 
443 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
444 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
445 
446 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
hugetlb_vmemmap_optimize_param(char * buf)447 static int __init hugetlb_vmemmap_optimize_param(char *buf)
448 {
449 	return kstrtobool(buf, &vmemmap_optimize_enabled);
450 }
451 early_param("hugetlb_free_vmemmap", hugetlb_vmemmap_optimize_param);
452 
__hugetlb_vmemmap_restore_folio(const struct hstate * h,struct folio * folio,unsigned long flags)453 static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
454 					   struct folio *folio, unsigned long flags)
455 {
456 	int ret;
457 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
458 	unsigned long vmemmap_reuse;
459 
460 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
461 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
462 
463 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
464 		return 0;
465 
466 	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
467 		synchronize_rcu();
468 
469 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
470 	vmemmap_reuse	= vmemmap_start;
471 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
472 
473 	/*
474 	 * The pages which the vmemmap virtual address range [@vmemmap_start,
475 	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
476 	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
477 	 * When a HugeTLB page is freed to the buddy allocator, previously
478 	 * discarded vmemmap pages must be allocated and remapping.
479 	 */
480 	ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
481 	if (!ret) {
482 		folio_clear_hugetlb_vmemmap_optimized(folio);
483 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
484 	}
485 
486 	return ret;
487 }
488 
489 /**
490  * hugetlb_vmemmap_restore_folio - restore previously optimized (by
491  *				hugetlb_vmemmap_optimize_folio()) vmemmap pages which
492  *				will be reallocated and remapped.
493  * @h:		struct hstate.
494  * @folio:     the folio whose vmemmap pages will be restored.
495  *
496  * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
497  * negative error code otherwise.
498  */
hugetlb_vmemmap_restore_folio(const struct hstate * h,struct folio * folio)499 int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
500 {
501 	return __hugetlb_vmemmap_restore_folio(h, folio, VMEMMAP_SYNCHRONIZE_RCU);
502 }
503 
504 /**
505  * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
506  * @h:			hstate.
507  * @folio_list:		list of folios.
508  * @non_hvo_folios:	Output list of folios for which vmemmap exists.
509  *
510  * Return: number of folios for which vmemmap was restored, or an error code
511  *		if an error was encountered restoring vmemmap for a folio.
512  *		Folios that have vmemmap are moved to the non_hvo_folios
513  *		list.  Processing of entries stops when the first error is
514  *		encountered. The folio that experienced the error and all
515  *		non-processed folios will remain on folio_list.
516  */
hugetlb_vmemmap_restore_folios(const struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)517 long hugetlb_vmemmap_restore_folios(const struct hstate *h,
518 					struct list_head *folio_list,
519 					struct list_head *non_hvo_folios)
520 {
521 	struct folio *folio, *t_folio;
522 	long restored = 0;
523 	long ret = 0;
524 	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
525 
526 	list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
527 		if (folio_test_hugetlb_vmemmap_optimized(folio)) {
528 			ret = __hugetlb_vmemmap_restore_folio(h, folio, flags);
529 			/* only need to synchronize_rcu() once for each batch */
530 			flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
531 
532 			if (ret)
533 				break;
534 			restored++;
535 		}
536 
537 		/* Add non-optimized folios to output list */
538 		list_move(&folio->lru, non_hvo_folios);
539 	}
540 
541 	if (restored)
542 		flush_tlb_all();
543 	if (!ret)
544 		ret = restored;
545 	return ret;
546 }
547 
548 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
vmemmap_should_optimize_folio(const struct hstate * h,struct folio * folio)549 static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
550 {
551 	if (folio_test_hugetlb_vmemmap_optimized(folio))
552 		return false;
553 
554 	if (!READ_ONCE(vmemmap_optimize_enabled))
555 		return false;
556 
557 	if (!hugetlb_vmemmap_optimizable(h))
558 		return false;
559 
560 	return true;
561 }
562 
__hugetlb_vmemmap_optimize_folio(const struct hstate * h,struct folio * folio,struct list_head * vmemmap_pages,unsigned long flags)563 static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
564 					    struct folio *folio,
565 					    struct list_head *vmemmap_pages,
566 					    unsigned long flags)
567 {
568 	int ret = 0;
569 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
570 	unsigned long vmemmap_reuse;
571 
572 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
573 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
574 
575 	if (!vmemmap_should_optimize_folio(h, folio))
576 		return ret;
577 
578 	static_branch_inc(&hugetlb_optimize_vmemmap_key);
579 
580 	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
581 		synchronize_rcu();
582 	/*
583 	 * Very Subtle
584 	 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
585 	 * immediately after remapping.  As a result, subsequent accesses
586 	 * and modifications to struct pages associated with the hugetlb
587 	 * page could be to the OLD struct pages.  Set the vmemmap optimized
588 	 * flag here so that it is copied to the new head page.  This keeps
589 	 * the old and new struct pages in sync.
590 	 * If there is an error during optimization, we will immediately FLUSH
591 	 * the TLB and clear the flag below.
592 	 */
593 	folio_set_hugetlb_vmemmap_optimized(folio);
594 
595 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
596 	vmemmap_reuse	= vmemmap_start;
597 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
598 
599 	/*
600 	 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
601 	 * to the page which @vmemmap_reuse is mapped to.  Add pages previously
602 	 * mapping the range to vmemmap_pages list so that they can be freed by
603 	 * the caller.
604 	 */
605 	ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
606 				 vmemmap_pages, flags);
607 	if (ret) {
608 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
609 		folio_clear_hugetlb_vmemmap_optimized(folio);
610 	}
611 
612 	return ret;
613 }
614 
615 /**
616  * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
617  * @h:		struct hstate.
618  * @folio:     the folio whose vmemmap pages will be optimized.
619  *
620  * This function only tries to optimize @folio's vmemmap pages and does not
621  * guarantee that the optimization will succeed after it returns. The caller
622  * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
623  * vmemmap pages have been optimized.
624  */
hugetlb_vmemmap_optimize_folio(const struct hstate * h,struct folio * folio)625 void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
626 {
627 	LIST_HEAD(vmemmap_pages);
628 
629 	__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, VMEMMAP_SYNCHRONIZE_RCU);
630 	free_vmemmap_page_list(&vmemmap_pages);
631 }
632 
hugetlb_vmemmap_split_folio(const struct hstate * h,struct folio * folio)633 static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
634 {
635 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
636 	unsigned long vmemmap_reuse;
637 
638 	if (!vmemmap_should_optimize_folio(h, folio))
639 		return 0;
640 
641 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
642 	vmemmap_reuse	= vmemmap_start;
643 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
644 
645 	/*
646 	 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
647 	 * @vmemmap_end]
648 	 */
649 	return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
650 }
651 
__hugetlb_vmemmap_optimize_folios(struct hstate * h,struct list_head * folio_list,bool boot)652 static void __hugetlb_vmemmap_optimize_folios(struct hstate *h,
653 					      struct list_head *folio_list,
654 					      bool boot)
655 {
656 	struct folio *folio;
657 	int nr_to_optimize;
658 	LIST_HEAD(vmemmap_pages);
659 	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
660 
661 	nr_to_optimize = 0;
662 	list_for_each_entry(folio, folio_list, lru) {
663 		int ret;
664 		unsigned long spfn, epfn;
665 
666 		if (boot && folio_test_hugetlb_vmemmap_optimized(folio)) {
667 			/*
668 			 * Already optimized by pre-HVO, just map the
669 			 * mirrored tail page structs RO.
670 			 */
671 			spfn = (unsigned long)&folio->page;
672 			epfn = spfn + pages_per_huge_page(h);
673 			vmemmap_wrprotect_hvo(spfn, epfn, folio_nid(folio),
674 					HUGETLB_VMEMMAP_RESERVE_SIZE);
675 			register_page_bootmem_memmap(pfn_to_section_nr(spfn),
676 					&folio->page,
677 					HUGETLB_VMEMMAP_RESERVE_SIZE);
678 			static_branch_inc(&hugetlb_optimize_vmemmap_key);
679 			continue;
680 		}
681 
682 		nr_to_optimize++;
683 
684 		ret = hugetlb_vmemmap_split_folio(h, folio);
685 
686 		/*
687 		 * Spliting the PMD requires allocating a page, thus lets fail
688 		 * early once we encounter the first OOM. No point in retrying
689 		 * as it can be dynamically done on remap with the memory
690 		 * we get back from the vmemmap deduplication.
691 		 */
692 		if (ret == -ENOMEM)
693 			break;
694 	}
695 
696 	if (!nr_to_optimize)
697 		/*
698 		 * All pre-HVO folios, nothing left to do. It's ok if
699 		 * there is a mix of pre-HVO and not yet HVO-ed folios
700 		 * here, as __hugetlb_vmemmap_optimize_folio() will
701 		 * skip any folios that already have the optimized flag
702 		 * set, see vmemmap_should_optimize_folio().
703 		 */
704 		goto out;
705 
706 	flush_tlb_all();
707 
708 	list_for_each_entry(folio, folio_list, lru) {
709 		int ret;
710 
711 		ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
712 		/* only need to synchronize_rcu() once for each batch */
713 		flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
714 
715 		/*
716 		 * Pages to be freed may have been accumulated.  If we
717 		 * encounter an ENOMEM,  free what we have and try again.
718 		 * This can occur in the case that both spliting fails
719 		 * halfway and head page allocation also failed. In this
720 		 * case __hugetlb_vmemmap_optimize_folio() would free memory
721 		 * allowing more vmemmap remaps to occur.
722 		 */
723 		if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
724 			flush_tlb_all();
725 			free_vmemmap_page_list(&vmemmap_pages);
726 			INIT_LIST_HEAD(&vmemmap_pages);
727 			__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
728 		}
729 	}
730 
731 out:
732 	flush_tlb_all();
733 	free_vmemmap_page_list(&vmemmap_pages);
734 }
735 
hugetlb_vmemmap_optimize_folios(struct hstate * h,struct list_head * folio_list)736 void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
737 {
738 	__hugetlb_vmemmap_optimize_folios(h, folio_list, false);
739 }
740 
hugetlb_vmemmap_optimize_bootmem_folios(struct hstate * h,struct list_head * folio_list)741 void hugetlb_vmemmap_optimize_bootmem_folios(struct hstate *h, struct list_head *folio_list)
742 {
743 	__hugetlb_vmemmap_optimize_folios(h, folio_list, true);
744 }
745 
746 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
747 
748 /* Return true of a bootmem allocated HugeTLB page should be pre-HVO-ed */
vmemmap_should_optimize_bootmem_page(struct huge_bootmem_page * m)749 static bool vmemmap_should_optimize_bootmem_page(struct huge_bootmem_page *m)
750 {
751 	unsigned long section_size, psize, pmd_vmemmap_size;
752 	phys_addr_t paddr;
753 
754 	if (!READ_ONCE(vmemmap_optimize_enabled))
755 		return false;
756 
757 	if (!hugetlb_vmemmap_optimizable(m->hstate))
758 		return false;
759 
760 	psize = huge_page_size(m->hstate);
761 	paddr = virt_to_phys(m);
762 
763 	/*
764 	 * Pre-HVO only works if the bootmem huge page
765 	 * is aligned to the section size.
766 	 */
767 	section_size = (1UL << PA_SECTION_SHIFT);
768 	if (!IS_ALIGNED(paddr, section_size) ||
769 	    !IS_ALIGNED(psize, section_size))
770 		return false;
771 
772 	/*
773 	 * The pre-HVO code does not deal with splitting PMDS,
774 	 * so the bootmem page must be aligned to the number
775 	 * of base pages that can be mapped with one vmemmap PMD.
776 	 */
777 	pmd_vmemmap_size = (PMD_SIZE / (sizeof(struct page))) << PAGE_SHIFT;
778 	if (!IS_ALIGNED(paddr, pmd_vmemmap_size) ||
779 	    !IS_ALIGNED(psize, pmd_vmemmap_size))
780 		return false;
781 
782 	return true;
783 }
784 
785 /*
786  * Initialize memmap section for a gigantic page, HVO-style.
787  */
hugetlb_vmemmap_init_early(int nid)788 void __init hugetlb_vmemmap_init_early(int nid)
789 {
790 	unsigned long psize, paddr, section_size;
791 	unsigned long ns, i, pnum, pfn, nr_pages;
792 	unsigned long start, end;
793 	struct huge_bootmem_page *m = NULL;
794 	void *map;
795 
796 	/*
797 	 * Noting to do if bootmem pages were not allocated
798 	 * early in boot, or if HVO wasn't enabled in the
799 	 * first place.
800 	 */
801 	if (!hugetlb_bootmem_allocated())
802 		return;
803 
804 	if (!READ_ONCE(vmemmap_optimize_enabled))
805 		return;
806 
807 	section_size = (1UL << PA_SECTION_SHIFT);
808 
809 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
810 		if (!vmemmap_should_optimize_bootmem_page(m))
811 			continue;
812 
813 		nr_pages = pages_per_huge_page(m->hstate);
814 		psize = nr_pages << PAGE_SHIFT;
815 		paddr = virt_to_phys(m);
816 		pfn = PHYS_PFN(paddr);
817 		map = pfn_to_page(pfn);
818 		start = (unsigned long)map;
819 		end = start + nr_pages * sizeof(struct page);
820 
821 		if (vmemmap_populate_hvo(start, end, nid,
822 					HUGETLB_VMEMMAP_RESERVE_SIZE) < 0)
823 			continue;
824 
825 		memmap_boot_pages_add(HUGETLB_VMEMMAP_RESERVE_SIZE / PAGE_SIZE);
826 
827 		pnum = pfn_to_section_nr(pfn);
828 		ns = psize / section_size;
829 
830 		for (i = 0; i < ns; i++) {
831 			sparse_init_early_section(nid, map, pnum,
832 					SECTION_IS_VMEMMAP_PREINIT);
833 			map += section_map_size();
834 			pnum++;
835 		}
836 
837 		m->flags |= HUGE_BOOTMEM_HVO;
838 	}
839 }
840 
hugetlb_vmemmap_init_late(int nid)841 void __init hugetlb_vmemmap_init_late(int nid)
842 {
843 	struct huge_bootmem_page *m, *tm;
844 	unsigned long phys, nr_pages, start, end;
845 	unsigned long pfn, nr_mmap;
846 	struct hstate *h;
847 	void *map;
848 
849 	if (!hugetlb_bootmem_allocated())
850 		return;
851 
852 	if (!READ_ONCE(vmemmap_optimize_enabled))
853 		return;
854 
855 	list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
856 		if (!(m->flags & HUGE_BOOTMEM_HVO))
857 			continue;
858 
859 		phys = virt_to_phys(m);
860 		h = m->hstate;
861 		pfn = PHYS_PFN(phys);
862 		nr_pages = pages_per_huge_page(h);
863 
864 		if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
865 			/*
866 			 * Oops, the hugetlb page spans multiple zones.
867 			 * Remove it from the list, and undo HVO.
868 			 */
869 			list_del(&m->list);
870 
871 			map = pfn_to_page(pfn);
872 
873 			start = (unsigned long)map;
874 			end = start + nr_pages * sizeof(struct page);
875 
876 			vmemmap_undo_hvo(start, end, nid,
877 					 HUGETLB_VMEMMAP_RESERVE_SIZE);
878 			nr_mmap = end - start - HUGETLB_VMEMMAP_RESERVE_SIZE;
879 			memmap_boot_pages_add(DIV_ROUND_UP(nr_mmap, PAGE_SIZE));
880 
881 			memblock_phys_free(phys, huge_page_size(h));
882 			continue;
883 		} else
884 			m->flags |= HUGE_BOOTMEM_ZONES_VALID;
885 	}
886 }
887 #endif
888 
889 static const struct ctl_table hugetlb_vmemmap_sysctls[] = {
890 	{
891 		.procname	= "hugetlb_optimize_vmemmap",
892 		.data		= &vmemmap_optimize_enabled,
893 		.maxlen		= sizeof(vmemmap_optimize_enabled),
894 		.mode		= 0644,
895 		.proc_handler	= proc_dobool,
896 	},
897 };
898 
hugetlb_vmemmap_init(void)899 static int __init hugetlb_vmemmap_init(void)
900 {
901 	const struct hstate *h;
902 
903 	/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
904 	BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
905 
906 	for_each_hstate(h) {
907 		if (hugetlb_vmemmap_optimizable(h)) {
908 			register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
909 			break;
910 		}
911 	}
912 	return 0;
913 }
914 late_initcall(hugetlb_vmemmap_init);
915