xref: /linux/mm/khugepaged.c (revision ec8c17e5ecb4a5a74069687ccb6d2cfe1851302e)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/mmu_notifier.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/mm_inline.h>
11 #include <linux/kthread.h>
12 #include <linux/khugepaged.h>
13 #include <linux/freezer.h>
14 #include <linux/mman.h>
15 #include <linux/hashtable.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/page_idle.h>
18 #include <linux/page_table_check.h>
19 #include <linux/rcupdate_wait.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/ksm.h>
23 
24 #include <asm/tlb.h>
25 #include <asm/pgalloc.h>
26 #include "internal.h"
27 #include "mm_slot.h"
28 
29 enum scan_result {
30 	SCAN_FAIL,
31 	SCAN_SUCCEED,
32 	SCAN_PMD_NULL,
33 	SCAN_PMD_NONE,
34 	SCAN_PMD_MAPPED,
35 	SCAN_EXCEED_NONE_PTE,
36 	SCAN_EXCEED_SWAP_PTE,
37 	SCAN_EXCEED_SHARED_PTE,
38 	SCAN_PTE_NON_PRESENT,
39 	SCAN_PTE_UFFD_WP,
40 	SCAN_PTE_MAPPED_HUGEPAGE,
41 	SCAN_PAGE_RO,
42 	SCAN_LACK_REFERENCED_PAGE,
43 	SCAN_PAGE_NULL,
44 	SCAN_SCAN_ABORT,
45 	SCAN_PAGE_COUNT,
46 	SCAN_PAGE_LRU,
47 	SCAN_PAGE_LOCK,
48 	SCAN_PAGE_ANON,
49 	SCAN_PAGE_COMPOUND,
50 	SCAN_ANY_PROCESS,
51 	SCAN_VMA_NULL,
52 	SCAN_VMA_CHECK,
53 	SCAN_ADDRESS_RANGE,
54 	SCAN_DEL_PAGE_LRU,
55 	SCAN_ALLOC_HUGE_PAGE_FAIL,
56 	SCAN_CGROUP_CHARGE_FAIL,
57 	SCAN_TRUNCATED,
58 	SCAN_PAGE_HAS_PRIVATE,
59 	SCAN_STORE_FAILED,
60 	SCAN_COPY_MC,
61 	SCAN_PAGE_FILLED,
62 };
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66 
67 static struct task_struct *khugepaged_thread __read_mostly;
68 static DEFINE_MUTEX(khugepaged_mutex);
69 
70 /* default scan 8*512 pte (or vmas) every 30 second */
71 static unsigned int khugepaged_pages_to_scan __read_mostly;
72 static unsigned int khugepaged_pages_collapsed;
73 static unsigned int khugepaged_full_scans;
74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
75 /* during fragmentation poll the hugepage allocator once every minute */
76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
77 static unsigned long khugepaged_sleep_expire;
78 static DEFINE_SPINLOCK(khugepaged_mm_lock);
79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
80 /*
81  * default collapse hugepages if there is at least one pte mapped like
82  * it would have happened if the vma was large enough during page
83  * fault.
84  *
85  * Note that these are only respected if collapse was initiated by khugepaged.
86  */
87 unsigned int khugepaged_max_ptes_none __read_mostly;
88 static unsigned int khugepaged_max_ptes_swap __read_mostly;
89 static unsigned int khugepaged_max_ptes_shared __read_mostly;
90 
91 #define MM_SLOTS_HASH_BITS 10
92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
93 
94 static struct kmem_cache *mm_slot_cache __ro_after_init;
95 
96 struct collapse_control {
97 	bool is_khugepaged;
98 
99 	/* Num pages scanned per node */
100 	u32 node_load[MAX_NUMNODES];
101 
102 	/* nodemask for allocation fallback */
103 	nodemask_t alloc_nmask;
104 };
105 
106 /**
107  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
108  * @slot: hash lookup from mm to mm_slot
109  */
110 struct khugepaged_mm_slot {
111 	struct mm_slot slot;
112 };
113 
114 /**
115  * struct khugepaged_scan - cursor for scanning
116  * @mm_head: the head of the mm list to scan
117  * @mm_slot: the current mm_slot we are scanning
118  * @address: the next address inside that to be scanned
119  *
120  * There is only the one khugepaged_scan instance of this cursor structure.
121  */
122 struct khugepaged_scan {
123 	struct list_head mm_head;
124 	struct khugepaged_mm_slot *mm_slot;
125 	unsigned long address;
126 };
127 
128 static struct khugepaged_scan khugepaged_scan = {
129 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
130 };
131 
132 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)133 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
134 					 struct kobj_attribute *attr,
135 					 char *buf)
136 {
137 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
138 }
139 
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)140 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
141 					  struct kobj_attribute *attr,
142 					  const char *buf, size_t count)
143 {
144 	unsigned int msecs;
145 	int err;
146 
147 	err = kstrtouint(buf, 10, &msecs);
148 	if (err)
149 		return -EINVAL;
150 
151 	khugepaged_scan_sleep_millisecs = msecs;
152 	khugepaged_sleep_expire = 0;
153 	wake_up_interruptible(&khugepaged_wait);
154 
155 	return count;
156 }
157 static struct kobj_attribute scan_sleep_millisecs_attr =
158 	__ATTR_RW(scan_sleep_millisecs);
159 
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)160 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
161 					  struct kobj_attribute *attr,
162 					  char *buf)
163 {
164 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
165 }
166 
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)167 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
168 					   struct kobj_attribute *attr,
169 					   const char *buf, size_t count)
170 {
171 	unsigned int msecs;
172 	int err;
173 
174 	err = kstrtouint(buf, 10, &msecs);
175 	if (err)
176 		return -EINVAL;
177 
178 	khugepaged_alloc_sleep_millisecs = msecs;
179 	khugepaged_sleep_expire = 0;
180 	wake_up_interruptible(&khugepaged_wait);
181 
182 	return count;
183 }
184 static struct kobj_attribute alloc_sleep_millisecs_attr =
185 	__ATTR_RW(alloc_sleep_millisecs);
186 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)187 static ssize_t pages_to_scan_show(struct kobject *kobj,
188 				  struct kobj_attribute *attr,
189 				  char *buf)
190 {
191 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
192 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)193 static ssize_t pages_to_scan_store(struct kobject *kobj,
194 				   struct kobj_attribute *attr,
195 				   const char *buf, size_t count)
196 {
197 	unsigned int pages;
198 	int err;
199 
200 	err = kstrtouint(buf, 10, &pages);
201 	if (err || !pages)
202 		return -EINVAL;
203 
204 	khugepaged_pages_to_scan = pages;
205 
206 	return count;
207 }
208 static struct kobj_attribute pages_to_scan_attr =
209 	__ATTR_RW(pages_to_scan);
210 
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)211 static ssize_t pages_collapsed_show(struct kobject *kobj,
212 				    struct kobj_attribute *attr,
213 				    char *buf)
214 {
215 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
216 }
217 static struct kobj_attribute pages_collapsed_attr =
218 	__ATTR_RO(pages_collapsed);
219 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)220 static ssize_t full_scans_show(struct kobject *kobj,
221 			       struct kobj_attribute *attr,
222 			       char *buf)
223 {
224 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
225 }
226 static struct kobj_attribute full_scans_attr =
227 	__ATTR_RO(full_scans);
228 
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)229 static ssize_t defrag_show(struct kobject *kobj,
230 			   struct kobj_attribute *attr, char *buf)
231 {
232 	return single_hugepage_flag_show(kobj, attr, buf,
233 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
234 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)235 static ssize_t defrag_store(struct kobject *kobj,
236 			    struct kobj_attribute *attr,
237 			    const char *buf, size_t count)
238 {
239 	return single_hugepage_flag_store(kobj, attr, buf, count,
240 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
241 }
242 static struct kobj_attribute khugepaged_defrag_attr =
243 	__ATTR_RW(defrag);
244 
245 /*
246  * max_ptes_none controls if khugepaged should collapse hugepages over
247  * any unmapped ptes in turn potentially increasing the memory
248  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
249  * reduce the available free memory in the system as it
250  * runs. Increasing max_ptes_none will instead potentially reduce the
251  * free memory in the system during the khugepaged scan.
252  */
max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)253 static ssize_t max_ptes_none_show(struct kobject *kobj,
254 				  struct kobj_attribute *attr,
255 				  char *buf)
256 {
257 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
258 }
max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)259 static ssize_t max_ptes_none_store(struct kobject *kobj,
260 				   struct kobj_attribute *attr,
261 				   const char *buf, size_t count)
262 {
263 	int err;
264 	unsigned long max_ptes_none;
265 
266 	err = kstrtoul(buf, 10, &max_ptes_none);
267 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
268 		return -EINVAL;
269 
270 	khugepaged_max_ptes_none = max_ptes_none;
271 
272 	return count;
273 }
274 static struct kobj_attribute khugepaged_max_ptes_none_attr =
275 	__ATTR_RW(max_ptes_none);
276 
max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)277 static ssize_t max_ptes_swap_show(struct kobject *kobj,
278 				  struct kobj_attribute *attr,
279 				  char *buf)
280 {
281 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
282 }
283 
max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)284 static ssize_t max_ptes_swap_store(struct kobject *kobj,
285 				   struct kobj_attribute *attr,
286 				   const char *buf, size_t count)
287 {
288 	int err;
289 	unsigned long max_ptes_swap;
290 
291 	err  = kstrtoul(buf, 10, &max_ptes_swap);
292 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
293 		return -EINVAL;
294 
295 	khugepaged_max_ptes_swap = max_ptes_swap;
296 
297 	return count;
298 }
299 
300 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
301 	__ATTR_RW(max_ptes_swap);
302 
max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)303 static ssize_t max_ptes_shared_show(struct kobject *kobj,
304 				    struct kobj_attribute *attr,
305 				    char *buf)
306 {
307 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
308 }
309 
max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)310 static ssize_t max_ptes_shared_store(struct kobject *kobj,
311 				     struct kobj_attribute *attr,
312 				     const char *buf, size_t count)
313 {
314 	int err;
315 	unsigned long max_ptes_shared;
316 
317 	err  = kstrtoul(buf, 10, &max_ptes_shared);
318 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
319 		return -EINVAL;
320 
321 	khugepaged_max_ptes_shared = max_ptes_shared;
322 
323 	return count;
324 }
325 
326 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
327 	__ATTR_RW(max_ptes_shared);
328 
329 static struct attribute *khugepaged_attr[] = {
330 	&khugepaged_defrag_attr.attr,
331 	&khugepaged_max_ptes_none_attr.attr,
332 	&khugepaged_max_ptes_swap_attr.attr,
333 	&khugepaged_max_ptes_shared_attr.attr,
334 	&pages_to_scan_attr.attr,
335 	&pages_collapsed_attr.attr,
336 	&full_scans_attr.attr,
337 	&scan_sleep_millisecs_attr.attr,
338 	&alloc_sleep_millisecs_attr.attr,
339 	NULL,
340 };
341 
342 struct attribute_group khugepaged_attr_group = {
343 	.attrs = khugepaged_attr,
344 	.name = "khugepaged",
345 };
346 #endif /* CONFIG_SYSFS */
347 
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)348 int hugepage_madvise(struct vm_area_struct *vma,
349 		     unsigned long *vm_flags, int advice)
350 {
351 	switch (advice) {
352 	case MADV_HUGEPAGE:
353 #ifdef CONFIG_S390
354 		/*
355 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
356 		 * can't handle this properly after s390_enable_sie, so we simply
357 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
358 		 */
359 		if (mm_has_pgste(vma->vm_mm))
360 			return 0;
361 #endif
362 		*vm_flags &= ~VM_NOHUGEPAGE;
363 		*vm_flags |= VM_HUGEPAGE;
364 		/*
365 		 * If the vma become good for khugepaged to scan,
366 		 * register it here without waiting a page fault that
367 		 * may not happen any time soon.
368 		 */
369 		khugepaged_enter_vma(vma, *vm_flags);
370 		break;
371 	case MADV_NOHUGEPAGE:
372 		*vm_flags &= ~VM_HUGEPAGE;
373 		*vm_flags |= VM_NOHUGEPAGE;
374 		/*
375 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
376 		 * this vma even if we leave the mm registered in khugepaged if
377 		 * it got registered before VM_NOHUGEPAGE was set.
378 		 */
379 		break;
380 	}
381 
382 	return 0;
383 }
384 
khugepaged_init(void)385 int __init khugepaged_init(void)
386 {
387 	mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0);
388 	if (!mm_slot_cache)
389 		return -ENOMEM;
390 
391 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
392 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
393 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
394 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
395 
396 	return 0;
397 }
398 
khugepaged_destroy(void)399 void __init khugepaged_destroy(void)
400 {
401 	kmem_cache_destroy(mm_slot_cache);
402 }
403 
hpage_collapse_test_exit(struct mm_struct * mm)404 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
405 {
406 	return atomic_read(&mm->mm_users) == 0;
407 }
408 
hpage_collapse_test_exit_or_disable(struct mm_struct * mm)409 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
410 {
411 	return hpage_collapse_test_exit(mm) ||
412 	       test_bit(MMF_DISABLE_THP, &mm->flags);
413 }
414 
hugepage_pmd_enabled(void)415 static bool hugepage_pmd_enabled(void)
416 {
417 	/*
418 	 * We cover the anon, shmem and the file-backed case here; file-backed
419 	 * hugepages, when configured in, are determined by the global control.
420 	 * Anon pmd-sized hugepages are determined by the pmd-size control.
421 	 * Shmem pmd-sized hugepages are also determined by its pmd-size control,
422 	 * except when the global shmem_huge is set to SHMEM_HUGE_DENY.
423 	 */
424 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
425 	    hugepage_global_enabled())
426 		return true;
427 	if (test_bit(PMD_ORDER, &huge_anon_orders_always))
428 		return true;
429 	if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
430 		return true;
431 	if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
432 	    hugepage_global_enabled())
433 		return true;
434 	if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled())
435 		return true;
436 	return false;
437 }
438 
__khugepaged_enter(struct mm_struct * mm)439 void __khugepaged_enter(struct mm_struct *mm)
440 {
441 	struct khugepaged_mm_slot *mm_slot;
442 	struct mm_slot *slot;
443 	int wakeup;
444 
445 	/* __khugepaged_exit() must not run from under us */
446 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
447 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
448 		return;
449 
450 	mm_slot = mm_slot_alloc(mm_slot_cache);
451 	if (!mm_slot)
452 		return;
453 
454 	slot = &mm_slot->slot;
455 
456 	spin_lock(&khugepaged_mm_lock);
457 	mm_slot_insert(mm_slots_hash, mm, slot);
458 	/*
459 	 * Insert just behind the scanning cursor, to let the area settle
460 	 * down a little.
461 	 */
462 	wakeup = list_empty(&khugepaged_scan.mm_head);
463 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
464 	spin_unlock(&khugepaged_mm_lock);
465 
466 	mmgrab(mm);
467 	if (wakeup)
468 		wake_up_interruptible(&khugepaged_wait);
469 }
470 
khugepaged_enter_vma(struct vm_area_struct * vma,unsigned long vm_flags)471 void khugepaged_enter_vma(struct vm_area_struct *vma,
472 			  unsigned long vm_flags)
473 {
474 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
475 	    hugepage_pmd_enabled()) {
476 		if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS,
477 					    PMD_ORDER))
478 			__khugepaged_enter(vma->vm_mm);
479 	}
480 }
481 
__khugepaged_exit(struct mm_struct * mm)482 void __khugepaged_exit(struct mm_struct *mm)
483 {
484 	struct khugepaged_mm_slot *mm_slot;
485 	struct mm_slot *slot;
486 	int free = 0;
487 
488 	spin_lock(&khugepaged_mm_lock);
489 	slot = mm_slot_lookup(mm_slots_hash, mm);
490 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
491 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
492 		hash_del(&slot->hash);
493 		list_del(&slot->mm_node);
494 		free = 1;
495 	}
496 	spin_unlock(&khugepaged_mm_lock);
497 
498 	if (free) {
499 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
500 		mm_slot_free(mm_slot_cache, mm_slot);
501 		mmdrop(mm);
502 	} else if (mm_slot) {
503 		/*
504 		 * This is required to serialize against
505 		 * hpage_collapse_test_exit() (which is guaranteed to run
506 		 * under mmap sem read mode). Stop here (after we return all
507 		 * pagetables will be destroyed) until khugepaged has finished
508 		 * working on the pagetables under the mmap_lock.
509 		 */
510 		mmap_write_lock(mm);
511 		mmap_write_unlock(mm);
512 	}
513 }
514 
release_pte_folio(struct folio * folio)515 static void release_pte_folio(struct folio *folio)
516 {
517 	node_stat_mod_folio(folio,
518 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
519 			-folio_nr_pages(folio));
520 	folio_unlock(folio);
521 	folio_putback_lru(folio);
522 }
523 
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)524 static void release_pte_pages(pte_t *pte, pte_t *_pte,
525 		struct list_head *compound_pagelist)
526 {
527 	struct folio *folio, *tmp;
528 
529 	while (--_pte >= pte) {
530 		pte_t pteval = ptep_get(_pte);
531 		unsigned long pfn;
532 
533 		if (pte_none(pteval))
534 			continue;
535 		pfn = pte_pfn(pteval);
536 		if (is_zero_pfn(pfn))
537 			continue;
538 		folio = pfn_folio(pfn);
539 		if (folio_test_large(folio))
540 			continue;
541 		release_pte_folio(folio);
542 	}
543 
544 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
545 		list_del(&folio->lru);
546 		release_pte_folio(folio);
547 	}
548 }
549 
is_refcount_suitable(struct folio * folio)550 static bool is_refcount_suitable(struct folio *folio)
551 {
552 	int expected_refcount = folio_mapcount(folio);
553 
554 	if (!folio_test_anon(folio) || folio_test_swapcache(folio))
555 		expected_refcount += folio_nr_pages(folio);
556 
557 	if (folio_test_private(folio))
558 		expected_refcount++;
559 
560 	return folio_ref_count(folio) == expected_refcount;
561 }
562 
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte,struct collapse_control * cc,struct list_head * compound_pagelist)563 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
564 					unsigned long address,
565 					pte_t *pte,
566 					struct collapse_control *cc,
567 					struct list_head *compound_pagelist)
568 {
569 	struct page *page = NULL;
570 	struct folio *folio = NULL;
571 	pte_t *_pte;
572 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
573 	bool writable = false;
574 
575 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
576 	     _pte++, address += PAGE_SIZE) {
577 		pte_t pteval = ptep_get(_pte);
578 		if (pte_none(pteval) || (pte_present(pteval) &&
579 				is_zero_pfn(pte_pfn(pteval)))) {
580 			++none_or_zero;
581 			if (!userfaultfd_armed(vma) &&
582 			    (!cc->is_khugepaged ||
583 			     none_or_zero <= khugepaged_max_ptes_none)) {
584 				continue;
585 			} else {
586 				result = SCAN_EXCEED_NONE_PTE;
587 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
588 				goto out;
589 			}
590 		}
591 		if (!pte_present(pteval)) {
592 			result = SCAN_PTE_NON_PRESENT;
593 			goto out;
594 		}
595 		if (pte_uffd_wp(pteval)) {
596 			result = SCAN_PTE_UFFD_WP;
597 			goto out;
598 		}
599 		page = vm_normal_page(vma, address, pteval);
600 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
601 			result = SCAN_PAGE_NULL;
602 			goto out;
603 		}
604 
605 		folio = page_folio(page);
606 		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
607 
608 		/* See hpage_collapse_scan_pmd(). */
609 		if (folio_likely_mapped_shared(folio)) {
610 			++shared;
611 			if (cc->is_khugepaged &&
612 			    shared > khugepaged_max_ptes_shared) {
613 				result = SCAN_EXCEED_SHARED_PTE;
614 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
615 				goto out;
616 			}
617 		}
618 
619 		if (folio_test_large(folio)) {
620 			struct folio *f;
621 
622 			/*
623 			 * Check if we have dealt with the compound page
624 			 * already
625 			 */
626 			list_for_each_entry(f, compound_pagelist, lru) {
627 				if (folio == f)
628 					goto next;
629 			}
630 		}
631 
632 		/*
633 		 * We can do it before folio_isolate_lru because the
634 		 * folio can't be freed from under us. NOTE: PG_lock
635 		 * is needed to serialize against split_huge_page
636 		 * when invoked from the VM.
637 		 */
638 		if (!folio_trylock(folio)) {
639 			result = SCAN_PAGE_LOCK;
640 			goto out;
641 		}
642 
643 		/*
644 		 * Check if the page has any GUP (or other external) pins.
645 		 *
646 		 * The page table that maps the page has been already unlinked
647 		 * from the page table tree and this process cannot get
648 		 * an additional pin on the page.
649 		 *
650 		 * New pins can come later if the page is shared across fork,
651 		 * but not from this process. The other process cannot write to
652 		 * the page, only trigger CoW.
653 		 */
654 		if (!is_refcount_suitable(folio)) {
655 			folio_unlock(folio);
656 			result = SCAN_PAGE_COUNT;
657 			goto out;
658 		}
659 
660 		/*
661 		 * Isolate the page to avoid collapsing an hugepage
662 		 * currently in use by the VM.
663 		 */
664 		if (!folio_isolate_lru(folio)) {
665 			folio_unlock(folio);
666 			result = SCAN_DEL_PAGE_LRU;
667 			goto out;
668 		}
669 		node_stat_mod_folio(folio,
670 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
671 				folio_nr_pages(folio));
672 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
673 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
674 
675 		if (folio_test_large(folio))
676 			list_add_tail(&folio->lru, compound_pagelist);
677 next:
678 		/*
679 		 * If collapse was initiated by khugepaged, check that there is
680 		 * enough young pte to justify collapsing the page
681 		 */
682 		if (cc->is_khugepaged &&
683 		    (pte_young(pteval) || folio_test_young(folio) ||
684 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
685 								     address)))
686 			referenced++;
687 
688 		if (pte_write(pteval))
689 			writable = true;
690 	}
691 
692 	if (unlikely(!writable)) {
693 		result = SCAN_PAGE_RO;
694 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
695 		result = SCAN_LACK_REFERENCED_PAGE;
696 	} else {
697 		result = SCAN_SUCCEED;
698 		trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
699 						    referenced, writable, result);
700 		return result;
701 	}
702 out:
703 	release_pte_pages(pte, _pte, compound_pagelist);
704 	trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
705 					    referenced, writable, result);
706 	return result;
707 }
708 
__collapse_huge_page_copy_succeeded(pte_t * pte,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)709 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
710 						struct vm_area_struct *vma,
711 						unsigned long address,
712 						spinlock_t *ptl,
713 						struct list_head *compound_pagelist)
714 {
715 	struct folio *src, *tmp;
716 	pte_t *_pte;
717 	pte_t pteval;
718 
719 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
720 	     _pte++, address += PAGE_SIZE) {
721 		pteval = ptep_get(_pte);
722 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
723 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
724 			if (is_zero_pfn(pte_pfn(pteval))) {
725 				/*
726 				 * ptl mostly unnecessary.
727 				 */
728 				spin_lock(ptl);
729 				ptep_clear(vma->vm_mm, address, _pte);
730 				spin_unlock(ptl);
731 				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
732 			}
733 		} else {
734 			struct page *src_page = pte_page(pteval);
735 
736 			src = page_folio(src_page);
737 			if (!folio_test_large(src))
738 				release_pte_folio(src);
739 			/*
740 			 * ptl mostly unnecessary, but preempt has to
741 			 * be disabled to update the per-cpu stats
742 			 * inside folio_remove_rmap_pte().
743 			 */
744 			spin_lock(ptl);
745 			ptep_clear(vma->vm_mm, address, _pte);
746 			folio_remove_rmap_pte(src, src_page, vma);
747 			spin_unlock(ptl);
748 			free_page_and_swap_cache(src_page);
749 		}
750 	}
751 
752 	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
753 		list_del(&src->lru);
754 		node_stat_sub_folio(src, NR_ISOLATED_ANON +
755 				folio_is_file_lru(src));
756 		folio_unlock(src);
757 		free_swap_cache(src);
758 		folio_putback_lru(src);
759 	}
760 }
761 
__collapse_huge_page_copy_failed(pte_t * pte,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,struct list_head * compound_pagelist)762 static void __collapse_huge_page_copy_failed(pte_t *pte,
763 					     pmd_t *pmd,
764 					     pmd_t orig_pmd,
765 					     struct vm_area_struct *vma,
766 					     struct list_head *compound_pagelist)
767 {
768 	spinlock_t *pmd_ptl;
769 
770 	/*
771 	 * Re-establish the PMD to point to the original page table
772 	 * entry. Restoring PMD needs to be done prior to releasing
773 	 * pages. Since pages are still isolated and locked here,
774 	 * acquiring anon_vma_lock_write is unnecessary.
775 	 */
776 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
777 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
778 	spin_unlock(pmd_ptl);
779 	/*
780 	 * Release both raw and compound pages isolated
781 	 * in __collapse_huge_page_isolate.
782 	 */
783 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
784 }
785 
786 /*
787  * __collapse_huge_page_copy - attempts to copy memory contents from raw
788  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
789  * otherwise restores the original page table and releases isolated raw pages.
790  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
791  *
792  * @pte: starting of the PTEs to copy from
793  * @folio: the new hugepage to copy contents to
794  * @pmd: pointer to the new hugepage's PMD
795  * @orig_pmd: the original raw pages' PMD
796  * @vma: the original raw pages' virtual memory area
797  * @address: starting address to copy
798  * @ptl: lock on raw pages' PTEs
799  * @compound_pagelist: list that stores compound pages
800  */
__collapse_huge_page_copy(pte_t * pte,struct folio * folio,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)801 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
802 		pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
803 		unsigned long address, spinlock_t *ptl,
804 		struct list_head *compound_pagelist)
805 {
806 	unsigned int i;
807 	int result = SCAN_SUCCEED;
808 
809 	/*
810 	 * Copying pages' contents is subject to memory poison at any iteration.
811 	 */
812 	for (i = 0; i < HPAGE_PMD_NR; i++) {
813 		pte_t pteval = ptep_get(pte + i);
814 		struct page *page = folio_page(folio, i);
815 		unsigned long src_addr = address + i * PAGE_SIZE;
816 		struct page *src_page;
817 
818 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
819 			clear_user_highpage(page, src_addr);
820 			continue;
821 		}
822 		src_page = pte_page(pteval);
823 		if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
824 			result = SCAN_COPY_MC;
825 			break;
826 		}
827 	}
828 
829 	if (likely(result == SCAN_SUCCEED))
830 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
831 						    compound_pagelist);
832 	else
833 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
834 						 compound_pagelist);
835 
836 	return result;
837 }
838 
khugepaged_alloc_sleep(void)839 static void khugepaged_alloc_sleep(void)
840 {
841 	DEFINE_WAIT(wait);
842 
843 	add_wait_queue(&khugepaged_wait, &wait);
844 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
845 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
846 	remove_wait_queue(&khugepaged_wait, &wait);
847 }
848 
849 struct collapse_control khugepaged_collapse_control = {
850 	.is_khugepaged = true,
851 };
852 
hpage_collapse_scan_abort(int nid,struct collapse_control * cc)853 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
854 {
855 	int i;
856 
857 	/*
858 	 * If node_reclaim_mode is disabled, then no extra effort is made to
859 	 * allocate memory locally.
860 	 */
861 	if (!node_reclaim_enabled())
862 		return false;
863 
864 	/* If there is a count for this node already, it must be acceptable */
865 	if (cc->node_load[nid])
866 		return false;
867 
868 	for (i = 0; i < MAX_NUMNODES; i++) {
869 		if (!cc->node_load[i])
870 			continue;
871 		if (node_distance(nid, i) > node_reclaim_distance)
872 			return true;
873 	}
874 	return false;
875 }
876 
877 #define khugepaged_defrag()					\
878 	(transparent_hugepage_flags &				\
879 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
880 
881 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)882 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
883 {
884 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
885 }
886 
887 #ifdef CONFIG_NUMA
hpage_collapse_find_target_node(struct collapse_control * cc)888 static int hpage_collapse_find_target_node(struct collapse_control *cc)
889 {
890 	int nid, target_node = 0, max_value = 0;
891 
892 	/* find first node with max normal pages hit */
893 	for (nid = 0; nid < MAX_NUMNODES; nid++)
894 		if (cc->node_load[nid] > max_value) {
895 			max_value = cc->node_load[nid];
896 			target_node = nid;
897 		}
898 
899 	for_each_online_node(nid) {
900 		if (max_value == cc->node_load[nid])
901 			node_set(nid, cc->alloc_nmask);
902 	}
903 
904 	return target_node;
905 }
906 #else
hpage_collapse_find_target_node(struct collapse_control * cc)907 static int hpage_collapse_find_target_node(struct collapse_control *cc)
908 {
909 	return 0;
910 }
911 #endif
912 
913 /*
914  * If mmap_lock temporarily dropped, revalidate vma
915  * before taking mmap_lock.
916  * Returns enum scan_result value.
917  */
918 
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,bool expect_anon,struct vm_area_struct ** vmap,struct collapse_control * cc)919 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
920 				   bool expect_anon,
921 				   struct vm_area_struct **vmap,
922 				   struct collapse_control *cc)
923 {
924 	struct vm_area_struct *vma;
925 	unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0;
926 
927 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
928 		return SCAN_ANY_PROCESS;
929 
930 	*vmap = vma = find_vma(mm, address);
931 	if (!vma)
932 		return SCAN_VMA_NULL;
933 
934 	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
935 		return SCAN_ADDRESS_RANGE;
936 	if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER))
937 		return SCAN_VMA_CHECK;
938 	/*
939 	 * Anon VMA expected, the address may be unmapped then
940 	 * remapped to file after khugepaged reaquired the mmap_lock.
941 	 *
942 	 * thp_vma_allowable_order may return true for qualified file
943 	 * vmas.
944 	 */
945 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
946 		return SCAN_PAGE_ANON;
947 	return SCAN_SUCCEED;
948 }
949 
find_pmd_or_thp_or_none(struct mm_struct * mm,unsigned long address,pmd_t ** pmd)950 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
951 				   unsigned long address,
952 				   pmd_t **pmd)
953 {
954 	pmd_t pmde;
955 
956 	*pmd = mm_find_pmd(mm, address);
957 	if (!*pmd)
958 		return SCAN_PMD_NULL;
959 
960 	pmde = pmdp_get_lockless(*pmd);
961 	if (pmd_none(pmde))
962 		return SCAN_PMD_NONE;
963 	if (!pmd_present(pmde))
964 		return SCAN_PMD_NULL;
965 	if (pmd_trans_huge(pmde))
966 		return SCAN_PMD_MAPPED;
967 	if (pmd_devmap(pmde))
968 		return SCAN_PMD_NULL;
969 	if (pmd_bad(pmde))
970 		return SCAN_PMD_NULL;
971 	return SCAN_SUCCEED;
972 }
973 
check_pmd_still_valid(struct mm_struct * mm,unsigned long address,pmd_t * pmd)974 static int check_pmd_still_valid(struct mm_struct *mm,
975 				 unsigned long address,
976 				 pmd_t *pmd)
977 {
978 	pmd_t *new_pmd;
979 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
980 
981 	if (result != SCAN_SUCCEED)
982 		return result;
983 	if (new_pmd != pmd)
984 		return SCAN_FAIL;
985 	return SCAN_SUCCEED;
986 }
987 
988 /*
989  * Bring missing pages in from swap, to complete THP collapse.
990  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
991  *
992  * Called and returns without pte mapped or spinlocks held.
993  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
994  */
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,int referenced)995 static int __collapse_huge_page_swapin(struct mm_struct *mm,
996 				       struct vm_area_struct *vma,
997 				       unsigned long haddr, pmd_t *pmd,
998 				       int referenced)
999 {
1000 	int swapped_in = 0;
1001 	vm_fault_t ret = 0;
1002 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1003 	int result;
1004 	pte_t *pte = NULL;
1005 	spinlock_t *ptl;
1006 
1007 	for (address = haddr; address < end; address += PAGE_SIZE) {
1008 		struct vm_fault vmf = {
1009 			.vma = vma,
1010 			.address = address,
1011 			.pgoff = linear_page_index(vma, address),
1012 			.flags = FAULT_FLAG_ALLOW_RETRY,
1013 			.pmd = pmd,
1014 		};
1015 
1016 		if (!pte++) {
1017 			/*
1018 			 * Here the ptl is only used to check pte_same() in
1019 			 * do_swap_page(), so readonly version is enough.
1020 			 */
1021 			pte = pte_offset_map_ro_nolock(mm, pmd, address, &ptl);
1022 			if (!pte) {
1023 				mmap_read_unlock(mm);
1024 				result = SCAN_PMD_NULL;
1025 				goto out;
1026 			}
1027 		}
1028 
1029 		vmf.orig_pte = ptep_get_lockless(pte);
1030 		if (!is_swap_pte(vmf.orig_pte))
1031 			continue;
1032 
1033 		vmf.pte = pte;
1034 		vmf.ptl = ptl;
1035 		ret = do_swap_page(&vmf);
1036 		/* Which unmaps pte (after perhaps re-checking the entry) */
1037 		pte = NULL;
1038 
1039 		/*
1040 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1041 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1042 		 * we do not retry here and swap entry will remain in pagetable
1043 		 * resulting in later failure.
1044 		 */
1045 		if (ret & VM_FAULT_RETRY) {
1046 			/* Likely, but not guaranteed, that page lock failed */
1047 			result = SCAN_PAGE_LOCK;
1048 			goto out;
1049 		}
1050 		if (ret & VM_FAULT_ERROR) {
1051 			mmap_read_unlock(mm);
1052 			result = SCAN_FAIL;
1053 			goto out;
1054 		}
1055 		swapped_in++;
1056 	}
1057 
1058 	if (pte)
1059 		pte_unmap(pte);
1060 
1061 	/* Drain LRU cache to remove extra pin on the swapped in pages */
1062 	if (swapped_in)
1063 		lru_add_drain();
1064 
1065 	result = SCAN_SUCCEED;
1066 out:
1067 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1068 	return result;
1069 }
1070 
alloc_charge_folio(struct folio ** foliop,struct mm_struct * mm,struct collapse_control * cc)1071 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1072 			      struct collapse_control *cc)
1073 {
1074 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1075 		     GFP_TRANSHUGE);
1076 	int node = hpage_collapse_find_target_node(cc);
1077 	struct folio *folio;
1078 
1079 	folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1080 	if (!folio) {
1081 		*foliop = NULL;
1082 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1083 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1084 	}
1085 
1086 	count_vm_event(THP_COLLAPSE_ALLOC);
1087 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1088 		folio_put(folio);
1089 		*foliop = NULL;
1090 		return SCAN_CGROUP_CHARGE_FAIL;
1091 	}
1092 
1093 	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1094 
1095 	*foliop = folio;
1096 	return SCAN_SUCCEED;
1097 }
1098 
collapse_huge_page(struct mm_struct * mm,unsigned long address,int referenced,int unmapped,struct collapse_control * cc)1099 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1100 			      int referenced, int unmapped,
1101 			      struct collapse_control *cc)
1102 {
1103 	LIST_HEAD(compound_pagelist);
1104 	pmd_t *pmd, _pmd;
1105 	pte_t *pte;
1106 	pgtable_t pgtable;
1107 	struct folio *folio;
1108 	spinlock_t *pmd_ptl, *pte_ptl;
1109 	int result = SCAN_FAIL;
1110 	struct vm_area_struct *vma;
1111 	struct mmu_notifier_range range;
1112 
1113 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1114 
1115 	/*
1116 	 * Before allocating the hugepage, release the mmap_lock read lock.
1117 	 * The allocation can take potentially a long time if it involves
1118 	 * sync compaction, and we do not need to hold the mmap_lock during
1119 	 * that. We will recheck the vma after taking it again in write mode.
1120 	 */
1121 	mmap_read_unlock(mm);
1122 
1123 	result = alloc_charge_folio(&folio, mm, cc);
1124 	if (result != SCAN_SUCCEED)
1125 		goto out_nolock;
1126 
1127 	mmap_read_lock(mm);
1128 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1129 	if (result != SCAN_SUCCEED) {
1130 		mmap_read_unlock(mm);
1131 		goto out_nolock;
1132 	}
1133 
1134 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1135 	if (result != SCAN_SUCCEED) {
1136 		mmap_read_unlock(mm);
1137 		goto out_nolock;
1138 	}
1139 
1140 	if (unmapped) {
1141 		/*
1142 		 * __collapse_huge_page_swapin will return with mmap_lock
1143 		 * released when it fails. So we jump out_nolock directly in
1144 		 * that case.  Continuing to collapse causes inconsistency.
1145 		 */
1146 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1147 						     referenced);
1148 		if (result != SCAN_SUCCEED)
1149 			goto out_nolock;
1150 	}
1151 
1152 	mmap_read_unlock(mm);
1153 	/*
1154 	 * Prevent all access to pagetables with the exception of
1155 	 * gup_fast later handled by the ptep_clear_flush and the VM
1156 	 * handled by the anon_vma lock + PG_lock.
1157 	 *
1158 	 * UFFDIO_MOVE is prevented to race as well thanks to the
1159 	 * mmap_lock.
1160 	 */
1161 	mmap_write_lock(mm);
1162 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1163 	if (result != SCAN_SUCCEED)
1164 		goto out_up_write;
1165 	/* check if the pmd is still valid */
1166 	result = check_pmd_still_valid(mm, address, pmd);
1167 	if (result != SCAN_SUCCEED)
1168 		goto out_up_write;
1169 
1170 	vma_start_write(vma);
1171 	anon_vma_lock_write(vma->anon_vma);
1172 
1173 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1174 				address + HPAGE_PMD_SIZE);
1175 	mmu_notifier_invalidate_range_start(&range);
1176 
1177 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1178 	/*
1179 	 * This removes any huge TLB entry from the CPU so we won't allow
1180 	 * huge and small TLB entries for the same virtual address to
1181 	 * avoid the risk of CPU bugs in that area.
1182 	 *
1183 	 * Parallel GUP-fast is fine since GUP-fast will back off when
1184 	 * it detects PMD is changed.
1185 	 */
1186 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1187 	spin_unlock(pmd_ptl);
1188 	mmu_notifier_invalidate_range_end(&range);
1189 	tlb_remove_table_sync_one();
1190 
1191 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1192 	if (pte) {
1193 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1194 						      &compound_pagelist);
1195 		spin_unlock(pte_ptl);
1196 	} else {
1197 		result = SCAN_PMD_NULL;
1198 	}
1199 
1200 	if (unlikely(result != SCAN_SUCCEED)) {
1201 		if (pte)
1202 			pte_unmap(pte);
1203 		spin_lock(pmd_ptl);
1204 		BUG_ON(!pmd_none(*pmd));
1205 		/*
1206 		 * We can only use set_pmd_at when establishing
1207 		 * hugepmds and never for establishing regular pmds that
1208 		 * points to regular pagetables. Use pmd_populate for that
1209 		 */
1210 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1211 		spin_unlock(pmd_ptl);
1212 		anon_vma_unlock_write(vma->anon_vma);
1213 		goto out_up_write;
1214 	}
1215 
1216 	/*
1217 	 * All pages are isolated and locked so anon_vma rmap
1218 	 * can't run anymore.
1219 	 */
1220 	anon_vma_unlock_write(vma->anon_vma);
1221 
1222 	result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1223 					   vma, address, pte_ptl,
1224 					   &compound_pagelist);
1225 	pte_unmap(pte);
1226 	if (unlikely(result != SCAN_SUCCEED))
1227 		goto out_up_write;
1228 
1229 	/*
1230 	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1231 	 * copy_huge_page writes become visible before the set_pmd_at()
1232 	 * write.
1233 	 */
1234 	__folio_mark_uptodate(folio);
1235 	pgtable = pmd_pgtable(_pmd);
1236 
1237 	_pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1238 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1239 
1240 	spin_lock(pmd_ptl);
1241 	BUG_ON(!pmd_none(*pmd));
1242 	folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
1243 	folio_add_lru_vma(folio, vma);
1244 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1245 	set_pmd_at(mm, address, pmd, _pmd);
1246 	update_mmu_cache_pmd(vma, address, pmd);
1247 	deferred_split_folio(folio, false);
1248 	spin_unlock(pmd_ptl);
1249 
1250 	folio = NULL;
1251 
1252 	result = SCAN_SUCCEED;
1253 out_up_write:
1254 	mmap_write_unlock(mm);
1255 out_nolock:
1256 	if (folio)
1257 		folio_put(folio);
1258 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1259 	return result;
1260 }
1261 
hpage_collapse_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,bool * mmap_locked,struct collapse_control * cc)1262 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1263 				   struct vm_area_struct *vma,
1264 				   unsigned long address, bool *mmap_locked,
1265 				   struct collapse_control *cc)
1266 {
1267 	pmd_t *pmd;
1268 	pte_t *pte, *_pte;
1269 	int result = SCAN_FAIL, referenced = 0;
1270 	int none_or_zero = 0, shared = 0;
1271 	struct page *page = NULL;
1272 	struct folio *folio = NULL;
1273 	unsigned long _address;
1274 	spinlock_t *ptl;
1275 	int node = NUMA_NO_NODE, unmapped = 0;
1276 	bool writable = false;
1277 
1278 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1279 
1280 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1281 	if (result != SCAN_SUCCEED)
1282 		goto out;
1283 
1284 	memset(cc->node_load, 0, sizeof(cc->node_load));
1285 	nodes_clear(cc->alloc_nmask);
1286 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1287 	if (!pte) {
1288 		result = SCAN_PMD_NULL;
1289 		goto out;
1290 	}
1291 
1292 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1293 	     _pte++, _address += PAGE_SIZE) {
1294 		pte_t pteval = ptep_get(_pte);
1295 		if (is_swap_pte(pteval)) {
1296 			++unmapped;
1297 			if (!cc->is_khugepaged ||
1298 			    unmapped <= khugepaged_max_ptes_swap) {
1299 				/*
1300 				 * Always be strict with uffd-wp
1301 				 * enabled swap entries.  Please see
1302 				 * comment below for pte_uffd_wp().
1303 				 */
1304 				if (pte_swp_uffd_wp_any(pteval)) {
1305 					result = SCAN_PTE_UFFD_WP;
1306 					goto out_unmap;
1307 				}
1308 				continue;
1309 			} else {
1310 				result = SCAN_EXCEED_SWAP_PTE;
1311 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1312 				goto out_unmap;
1313 			}
1314 		}
1315 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1316 			++none_or_zero;
1317 			if (!userfaultfd_armed(vma) &&
1318 			    (!cc->is_khugepaged ||
1319 			     none_or_zero <= khugepaged_max_ptes_none)) {
1320 				continue;
1321 			} else {
1322 				result = SCAN_EXCEED_NONE_PTE;
1323 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1324 				goto out_unmap;
1325 			}
1326 		}
1327 		if (pte_uffd_wp(pteval)) {
1328 			/*
1329 			 * Don't collapse the page if any of the small
1330 			 * PTEs are armed with uffd write protection.
1331 			 * Here we can also mark the new huge pmd as
1332 			 * write protected if any of the small ones is
1333 			 * marked but that could bring unknown
1334 			 * userfault messages that falls outside of
1335 			 * the registered range.  So, just be simple.
1336 			 */
1337 			result = SCAN_PTE_UFFD_WP;
1338 			goto out_unmap;
1339 		}
1340 		if (pte_write(pteval))
1341 			writable = true;
1342 
1343 		page = vm_normal_page(vma, _address, pteval);
1344 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1345 			result = SCAN_PAGE_NULL;
1346 			goto out_unmap;
1347 		}
1348 		folio = page_folio(page);
1349 
1350 		if (!folio_test_anon(folio)) {
1351 			result = SCAN_PAGE_ANON;
1352 			goto out_unmap;
1353 		}
1354 
1355 		/*
1356 		 * We treat a single page as shared if any part of the THP
1357 		 * is shared. "False negatives" from
1358 		 * folio_likely_mapped_shared() are not expected to matter
1359 		 * much in practice.
1360 		 */
1361 		if (folio_likely_mapped_shared(folio)) {
1362 			++shared;
1363 			if (cc->is_khugepaged &&
1364 			    shared > khugepaged_max_ptes_shared) {
1365 				result = SCAN_EXCEED_SHARED_PTE;
1366 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1367 				goto out_unmap;
1368 			}
1369 		}
1370 
1371 		/*
1372 		 * Record which node the original page is from and save this
1373 		 * information to cc->node_load[].
1374 		 * Khugepaged will allocate hugepage from the node has the max
1375 		 * hit record.
1376 		 */
1377 		node = folio_nid(folio);
1378 		if (hpage_collapse_scan_abort(node, cc)) {
1379 			result = SCAN_SCAN_ABORT;
1380 			goto out_unmap;
1381 		}
1382 		cc->node_load[node]++;
1383 		if (!folio_test_lru(folio)) {
1384 			result = SCAN_PAGE_LRU;
1385 			goto out_unmap;
1386 		}
1387 		if (folio_test_locked(folio)) {
1388 			result = SCAN_PAGE_LOCK;
1389 			goto out_unmap;
1390 		}
1391 
1392 		/*
1393 		 * Check if the page has any GUP (or other external) pins.
1394 		 *
1395 		 * Here the check may be racy:
1396 		 * it may see folio_mapcount() > folio_ref_count().
1397 		 * But such case is ephemeral we could always retry collapse
1398 		 * later.  However it may report false positive if the page
1399 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1400 		 * will be done again later the risk seems low.
1401 		 */
1402 		if (!is_refcount_suitable(folio)) {
1403 			result = SCAN_PAGE_COUNT;
1404 			goto out_unmap;
1405 		}
1406 
1407 		/*
1408 		 * If collapse was initiated by khugepaged, check that there is
1409 		 * enough young pte to justify collapsing the page
1410 		 */
1411 		if (cc->is_khugepaged &&
1412 		    (pte_young(pteval) || folio_test_young(folio) ||
1413 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
1414 								     address)))
1415 			referenced++;
1416 	}
1417 	if (!writable) {
1418 		result = SCAN_PAGE_RO;
1419 	} else if (cc->is_khugepaged &&
1420 		   (!referenced ||
1421 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1422 		result = SCAN_LACK_REFERENCED_PAGE;
1423 	} else {
1424 		result = SCAN_SUCCEED;
1425 	}
1426 out_unmap:
1427 	pte_unmap_unlock(pte, ptl);
1428 	if (result == SCAN_SUCCEED) {
1429 		result = collapse_huge_page(mm, address, referenced,
1430 					    unmapped, cc);
1431 		/* collapse_huge_page will return with the mmap_lock released */
1432 		*mmap_locked = false;
1433 	}
1434 out:
1435 	trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
1436 				     none_or_zero, result, unmapped);
1437 	return result;
1438 }
1439 
collect_mm_slot(struct khugepaged_mm_slot * mm_slot)1440 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1441 {
1442 	struct mm_slot *slot = &mm_slot->slot;
1443 	struct mm_struct *mm = slot->mm;
1444 
1445 	lockdep_assert_held(&khugepaged_mm_lock);
1446 
1447 	if (hpage_collapse_test_exit(mm)) {
1448 		/* free mm_slot */
1449 		hash_del(&slot->hash);
1450 		list_del(&slot->mm_node);
1451 
1452 		/*
1453 		 * Not strictly needed because the mm exited already.
1454 		 *
1455 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1456 		 */
1457 
1458 		/* khugepaged_mm_lock actually not necessary for the below */
1459 		mm_slot_free(mm_slot_cache, mm_slot);
1460 		mmdrop(mm);
1461 	}
1462 }
1463 
1464 #ifdef CONFIG_SHMEM
1465 /* hpage must be locked, and mmap_lock must be held */
set_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct page * hpage)1466 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1467 			pmd_t *pmdp, struct page *hpage)
1468 {
1469 	struct vm_fault vmf = {
1470 		.vma = vma,
1471 		.address = addr,
1472 		.flags = 0,
1473 		.pmd = pmdp,
1474 	};
1475 
1476 	VM_BUG_ON(!PageTransHuge(hpage));
1477 	mmap_assert_locked(vma->vm_mm);
1478 
1479 	if (do_set_pmd(&vmf, hpage))
1480 		return SCAN_FAIL;
1481 
1482 	get_page(hpage);
1483 	return SCAN_SUCCEED;
1484 }
1485 
1486 /**
1487  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1488  * address haddr.
1489  *
1490  * @mm: process address space where collapse happens
1491  * @addr: THP collapse address
1492  * @install_pmd: If a huge PMD should be installed
1493  *
1494  * This function checks whether all the PTEs in the PMD are pointing to the
1495  * right THP. If so, retract the page table so the THP can refault in with
1496  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1497  */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr,bool install_pmd)1498 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1499 			    bool install_pmd)
1500 {
1501 	struct mmu_notifier_range range;
1502 	bool notified = false;
1503 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1504 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1505 	struct folio *folio;
1506 	pte_t *start_pte, *pte;
1507 	pmd_t *pmd, pgt_pmd;
1508 	spinlock_t *pml = NULL, *ptl;
1509 	int nr_ptes = 0, result = SCAN_FAIL;
1510 	int i;
1511 
1512 	mmap_assert_locked(mm);
1513 
1514 	/* First check VMA found, in case page tables are being torn down */
1515 	if (!vma || !vma->vm_file ||
1516 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1517 		return SCAN_VMA_CHECK;
1518 
1519 	/* Fast check before locking page if already PMD-mapped */
1520 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1521 	if (result == SCAN_PMD_MAPPED)
1522 		return result;
1523 
1524 	/*
1525 	 * If we are here, we've succeeded in replacing all the native pages
1526 	 * in the page cache with a single hugepage. If a mm were to fault-in
1527 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1528 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1529 	 * analogously elide sysfs THP settings here.
1530 	 */
1531 	if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
1532 		return SCAN_VMA_CHECK;
1533 
1534 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1535 	if (userfaultfd_wp(vma))
1536 		return SCAN_PTE_UFFD_WP;
1537 
1538 	folio = filemap_lock_folio(vma->vm_file->f_mapping,
1539 			       linear_page_index(vma, haddr));
1540 	if (IS_ERR(folio))
1541 		return SCAN_PAGE_NULL;
1542 
1543 	if (folio_order(folio) != HPAGE_PMD_ORDER) {
1544 		result = SCAN_PAGE_COMPOUND;
1545 		goto drop_folio;
1546 	}
1547 
1548 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1549 	switch (result) {
1550 	case SCAN_SUCCEED:
1551 		break;
1552 	case SCAN_PMD_NONE:
1553 		/*
1554 		 * All pte entries have been removed and pmd cleared.
1555 		 * Skip all the pte checks and just update the pmd mapping.
1556 		 */
1557 		goto maybe_install_pmd;
1558 	default:
1559 		goto drop_folio;
1560 	}
1561 
1562 	result = SCAN_FAIL;
1563 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1564 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1565 		goto drop_folio;
1566 
1567 	/* step 1: check all mapped PTEs are to the right huge page */
1568 	for (i = 0, addr = haddr, pte = start_pte;
1569 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1570 		struct page *page;
1571 		pte_t ptent = ptep_get(pte);
1572 
1573 		/* empty pte, skip */
1574 		if (pte_none(ptent))
1575 			continue;
1576 
1577 		/* page swapped out, abort */
1578 		if (!pte_present(ptent)) {
1579 			result = SCAN_PTE_NON_PRESENT;
1580 			goto abort;
1581 		}
1582 
1583 		page = vm_normal_page(vma, addr, ptent);
1584 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1585 			page = NULL;
1586 		/*
1587 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1588 		 * page table, but the new page will not be a subpage of hpage.
1589 		 */
1590 		if (folio_page(folio, i) != page)
1591 			goto abort;
1592 	}
1593 
1594 	pte_unmap_unlock(start_pte, ptl);
1595 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1596 				haddr, haddr + HPAGE_PMD_SIZE);
1597 	mmu_notifier_invalidate_range_start(&range);
1598 	notified = true;
1599 
1600 	/*
1601 	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1602 	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1603 	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1604 	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1605 	 * So page lock of folio does not protect from it, so we must not drop
1606 	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1607 	 */
1608 	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1609 		pml = pmd_lock(mm, pmd);
1610 
1611 	start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl);
1612 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1613 		goto abort;
1614 	if (!pml)
1615 		spin_lock(ptl);
1616 	else if (ptl != pml)
1617 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1618 
1619 	if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd))))
1620 		goto abort;
1621 
1622 	/* step 2: clear page table and adjust rmap */
1623 	for (i = 0, addr = haddr, pte = start_pte;
1624 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1625 		struct page *page;
1626 		pte_t ptent = ptep_get(pte);
1627 
1628 		if (pte_none(ptent))
1629 			continue;
1630 		/*
1631 		 * We dropped ptl after the first scan, to do the mmu_notifier:
1632 		 * page lock stops more PTEs of the folio being faulted in, but
1633 		 * does not stop write faults COWing anon copies from existing
1634 		 * PTEs; and does not stop those being swapped out or migrated.
1635 		 */
1636 		if (!pte_present(ptent)) {
1637 			result = SCAN_PTE_NON_PRESENT;
1638 			goto abort;
1639 		}
1640 		page = vm_normal_page(vma, addr, ptent);
1641 		if (folio_page(folio, i) != page)
1642 			goto abort;
1643 
1644 		/*
1645 		 * Must clear entry, or a racing truncate may re-remove it.
1646 		 * TLB flush can be left until pmdp_collapse_flush() does it.
1647 		 * PTE dirty? Shmem page is already dirty; file is read-only.
1648 		 */
1649 		ptep_clear(mm, addr, pte);
1650 		folio_remove_rmap_pte(folio, page, vma);
1651 		nr_ptes++;
1652 	}
1653 
1654 	if (!pml)
1655 		spin_unlock(ptl);
1656 
1657 	/* step 3: set proper refcount and mm_counters. */
1658 	if (nr_ptes) {
1659 		folio_ref_sub(folio, nr_ptes);
1660 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1661 	}
1662 
1663 	/* step 4: remove empty page table */
1664 	if (!pml) {
1665 		pml = pmd_lock(mm, pmd);
1666 		if (ptl != pml) {
1667 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1668 			if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) {
1669 				flush_tlb_mm(mm);
1670 				goto unlock;
1671 			}
1672 		}
1673 	}
1674 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1675 	pmdp_get_lockless_sync();
1676 	pte_unmap_unlock(start_pte, ptl);
1677 	if (ptl != pml)
1678 		spin_unlock(pml);
1679 
1680 	mmu_notifier_invalidate_range_end(&range);
1681 
1682 	mm_dec_nr_ptes(mm);
1683 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1684 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1685 
1686 maybe_install_pmd:
1687 	/* step 5: install pmd entry */
1688 	result = install_pmd
1689 			? set_huge_pmd(vma, haddr, pmd, &folio->page)
1690 			: SCAN_SUCCEED;
1691 	goto drop_folio;
1692 abort:
1693 	if (nr_ptes) {
1694 		flush_tlb_mm(mm);
1695 		folio_ref_sub(folio, nr_ptes);
1696 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1697 	}
1698 unlock:
1699 	if (start_pte)
1700 		pte_unmap_unlock(start_pte, ptl);
1701 	if (pml && pml != ptl)
1702 		spin_unlock(pml);
1703 	if (notified)
1704 		mmu_notifier_invalidate_range_end(&range);
1705 drop_folio:
1706 	folio_unlock(folio);
1707 	folio_put(folio);
1708 	return result;
1709 }
1710 
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1711 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1712 {
1713 	struct vm_area_struct *vma;
1714 
1715 	i_mmap_lock_read(mapping);
1716 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1717 		struct mmu_notifier_range range;
1718 		struct mm_struct *mm;
1719 		unsigned long addr;
1720 		pmd_t *pmd, pgt_pmd;
1721 		spinlock_t *pml;
1722 		spinlock_t *ptl;
1723 		bool skipped_uffd = false;
1724 
1725 		/*
1726 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1727 		 * got written to. These VMAs are likely not worth removing
1728 		 * page tables from, as PMD-mapping is likely to be split later.
1729 		 */
1730 		if (READ_ONCE(vma->anon_vma))
1731 			continue;
1732 
1733 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1734 		if (addr & ~HPAGE_PMD_MASK ||
1735 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1736 			continue;
1737 
1738 		mm = vma->vm_mm;
1739 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1740 			continue;
1741 
1742 		if (hpage_collapse_test_exit(mm))
1743 			continue;
1744 		/*
1745 		 * When a vma is registered with uffd-wp, we cannot recycle
1746 		 * the page table because there may be pte markers installed.
1747 		 * Other vmas can still have the same file mapped hugely, but
1748 		 * skip this one: it will always be mapped in small page size
1749 		 * for uffd-wp registered ranges.
1750 		 */
1751 		if (userfaultfd_wp(vma))
1752 			continue;
1753 
1754 		/* PTEs were notified when unmapped; but now for the PMD? */
1755 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1756 					addr, addr + HPAGE_PMD_SIZE);
1757 		mmu_notifier_invalidate_range_start(&range);
1758 
1759 		pml = pmd_lock(mm, pmd);
1760 		ptl = pte_lockptr(mm, pmd);
1761 		if (ptl != pml)
1762 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1763 
1764 		/*
1765 		 * Huge page lock is still held, so normally the page table
1766 		 * must remain empty; and we have already skipped anon_vma
1767 		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1768 		 * held, it is still possible for a racing userfaultfd_ioctl()
1769 		 * to have inserted ptes or markers.  Now that we hold ptlock,
1770 		 * repeating the anon_vma check protects from one category,
1771 		 * and repeating the userfaultfd_wp() check from another.
1772 		 */
1773 		if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1774 			skipped_uffd = true;
1775 		} else {
1776 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1777 			pmdp_get_lockless_sync();
1778 		}
1779 
1780 		if (ptl != pml)
1781 			spin_unlock(ptl);
1782 		spin_unlock(pml);
1783 
1784 		mmu_notifier_invalidate_range_end(&range);
1785 
1786 		if (!skipped_uffd) {
1787 			mm_dec_nr_ptes(mm);
1788 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1789 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1790 		}
1791 	}
1792 	i_mmap_unlock_read(mapping);
1793 }
1794 
1795 /**
1796  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1797  *
1798  * @mm: process address space where collapse happens
1799  * @addr: virtual collapse start address
1800  * @file: file that collapse on
1801  * @start: collapse start address
1802  * @cc: collapse context and scratchpad
1803  *
1804  * Basic scheme is simple, details are more complex:
1805  *  - allocate and lock a new huge page;
1806  *  - scan page cache, locking old pages
1807  *    + swap/gup in pages if necessary;
1808  *  - copy data to new page
1809  *  - handle shmem holes
1810  *    + re-validate that holes weren't filled by someone else
1811  *    + check for userfaultfd
1812  *  - finalize updates to the page cache;
1813  *  - if replacing succeeds:
1814  *    + unlock huge page;
1815  *    + free old pages;
1816  *  - if replacing failed;
1817  *    + unlock old pages
1818  *    + unlock and free huge page;
1819  */
collapse_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)1820 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1821 			 struct file *file, pgoff_t start,
1822 			 struct collapse_control *cc)
1823 {
1824 	struct address_space *mapping = file->f_mapping;
1825 	struct page *dst;
1826 	struct folio *folio, *tmp, *new_folio;
1827 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1828 	LIST_HEAD(pagelist);
1829 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1830 	int nr_none = 0, result = SCAN_SUCCEED;
1831 	bool is_shmem = shmem_file(file);
1832 
1833 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1834 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1835 
1836 	result = alloc_charge_folio(&new_folio, mm, cc);
1837 	if (result != SCAN_SUCCEED)
1838 		goto out;
1839 
1840 	__folio_set_locked(new_folio);
1841 	if (is_shmem)
1842 		__folio_set_swapbacked(new_folio);
1843 	new_folio->index = start;
1844 	new_folio->mapping = mapping;
1845 
1846 	/*
1847 	 * Ensure we have slots for all the pages in the range.  This is
1848 	 * almost certainly a no-op because most of the pages must be present
1849 	 */
1850 	do {
1851 		xas_lock_irq(&xas);
1852 		xas_create_range(&xas);
1853 		if (!xas_error(&xas))
1854 			break;
1855 		xas_unlock_irq(&xas);
1856 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1857 			result = SCAN_FAIL;
1858 			goto rollback;
1859 		}
1860 	} while (1);
1861 
1862 	for (index = start; index < end;) {
1863 		xas_set(&xas, index);
1864 		folio = xas_load(&xas);
1865 
1866 		VM_BUG_ON(index != xas.xa_index);
1867 		if (is_shmem) {
1868 			if (!folio) {
1869 				/*
1870 				 * Stop if extent has been truncated or
1871 				 * hole-punched, and is now completely
1872 				 * empty.
1873 				 */
1874 				if (index == start) {
1875 					if (!xas_next_entry(&xas, end - 1)) {
1876 						result = SCAN_TRUNCATED;
1877 						goto xa_locked;
1878 					}
1879 				}
1880 				nr_none++;
1881 				index++;
1882 				continue;
1883 			}
1884 
1885 			if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1886 				xas_unlock_irq(&xas);
1887 				/* swap in or instantiate fallocated page */
1888 				if (shmem_get_folio(mapping->host, index, 0,
1889 						&folio, SGP_NOALLOC)) {
1890 					result = SCAN_FAIL;
1891 					goto xa_unlocked;
1892 				}
1893 				/* drain lru cache to help folio_isolate_lru() */
1894 				lru_add_drain();
1895 			} else if (folio_trylock(folio)) {
1896 				folio_get(folio);
1897 				xas_unlock_irq(&xas);
1898 			} else {
1899 				result = SCAN_PAGE_LOCK;
1900 				goto xa_locked;
1901 			}
1902 		} else {	/* !is_shmem */
1903 			if (!folio || xa_is_value(folio)) {
1904 				xas_unlock_irq(&xas);
1905 				page_cache_sync_readahead(mapping, &file->f_ra,
1906 							  file, index,
1907 							  end - index);
1908 				/* drain lru cache to help folio_isolate_lru() */
1909 				lru_add_drain();
1910 				folio = filemap_lock_folio(mapping, index);
1911 				if (IS_ERR(folio)) {
1912 					result = SCAN_FAIL;
1913 					goto xa_unlocked;
1914 				}
1915 			} else if (folio_test_dirty(folio)) {
1916 				/*
1917 				 * khugepaged only works on read-only fd,
1918 				 * so this page is dirty because it hasn't
1919 				 * been flushed since first write. There
1920 				 * won't be new dirty pages.
1921 				 *
1922 				 * Trigger async flush here and hope the
1923 				 * writeback is done when khugepaged
1924 				 * revisits this page.
1925 				 *
1926 				 * This is a one-off situation. We are not
1927 				 * forcing writeback in loop.
1928 				 */
1929 				xas_unlock_irq(&xas);
1930 				filemap_flush(mapping);
1931 				result = SCAN_FAIL;
1932 				goto xa_unlocked;
1933 			} else if (folio_test_writeback(folio)) {
1934 				xas_unlock_irq(&xas);
1935 				result = SCAN_FAIL;
1936 				goto xa_unlocked;
1937 			} else if (folio_trylock(folio)) {
1938 				folio_get(folio);
1939 				xas_unlock_irq(&xas);
1940 			} else {
1941 				result = SCAN_PAGE_LOCK;
1942 				goto xa_locked;
1943 			}
1944 		}
1945 
1946 		/*
1947 		 * The folio must be locked, so we can drop the i_pages lock
1948 		 * without racing with truncate.
1949 		 */
1950 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1951 
1952 		/* make sure the folio is up to date */
1953 		if (unlikely(!folio_test_uptodate(folio))) {
1954 			result = SCAN_FAIL;
1955 			goto out_unlock;
1956 		}
1957 
1958 		/*
1959 		 * If file was truncated then extended, or hole-punched, before
1960 		 * we locked the first folio, then a THP might be there already.
1961 		 * This will be discovered on the first iteration.
1962 		 */
1963 		if (folio_order(folio) == HPAGE_PMD_ORDER &&
1964 		    folio->index == start) {
1965 			/* Maybe PMD-mapped */
1966 			result = SCAN_PTE_MAPPED_HUGEPAGE;
1967 			goto out_unlock;
1968 		}
1969 
1970 		if (folio_mapping(folio) != mapping) {
1971 			result = SCAN_TRUNCATED;
1972 			goto out_unlock;
1973 		}
1974 
1975 		if (!is_shmem && (folio_test_dirty(folio) ||
1976 				  folio_test_writeback(folio))) {
1977 			/*
1978 			 * khugepaged only works on read-only fd, so this
1979 			 * folio is dirty because it hasn't been flushed
1980 			 * since first write.
1981 			 */
1982 			result = SCAN_FAIL;
1983 			goto out_unlock;
1984 		}
1985 
1986 		if (!folio_isolate_lru(folio)) {
1987 			result = SCAN_DEL_PAGE_LRU;
1988 			goto out_unlock;
1989 		}
1990 
1991 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
1992 			result = SCAN_PAGE_HAS_PRIVATE;
1993 			folio_putback_lru(folio);
1994 			goto out_unlock;
1995 		}
1996 
1997 		if (folio_mapped(folio))
1998 			try_to_unmap(folio,
1999 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
2000 
2001 		xas_lock_irq(&xas);
2002 
2003 		VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
2004 
2005 		/*
2006 		 * We control 2 + nr_pages references to the folio:
2007 		 *  - we hold a pin on it;
2008 		 *  - nr_pages reference from page cache;
2009 		 *  - one from lru_isolate_folio;
2010 		 * If those are the only references, then any new usage
2011 		 * of the folio will have to fetch it from the page
2012 		 * cache. That requires locking the folio to handle
2013 		 * truncate, so any new usage will be blocked until we
2014 		 * unlock folio after collapse/during rollback.
2015 		 */
2016 		if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2017 			result = SCAN_PAGE_COUNT;
2018 			xas_unlock_irq(&xas);
2019 			folio_putback_lru(folio);
2020 			goto out_unlock;
2021 		}
2022 
2023 		/*
2024 		 * Accumulate the folios that are being collapsed.
2025 		 */
2026 		list_add_tail(&folio->lru, &pagelist);
2027 		index += folio_nr_pages(folio);
2028 		continue;
2029 out_unlock:
2030 		folio_unlock(folio);
2031 		folio_put(folio);
2032 		goto xa_unlocked;
2033 	}
2034 
2035 	if (!is_shmem) {
2036 		filemap_nr_thps_inc(mapping);
2037 		/*
2038 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2039 		 * to ensure i_writecount is up to date and the update to nr_thps
2040 		 * is visible. Ensures the page cache will be truncated if the
2041 		 * file is opened writable.
2042 		 */
2043 		smp_mb();
2044 		if (inode_is_open_for_write(mapping->host)) {
2045 			result = SCAN_FAIL;
2046 			filemap_nr_thps_dec(mapping);
2047 		}
2048 	}
2049 
2050 xa_locked:
2051 	xas_unlock_irq(&xas);
2052 xa_unlocked:
2053 
2054 	/*
2055 	 * If collapse is successful, flush must be done now before copying.
2056 	 * If collapse is unsuccessful, does flush actually need to be done?
2057 	 * Do it anyway, to clear the state.
2058 	 */
2059 	try_to_unmap_flush();
2060 
2061 	if (result == SCAN_SUCCEED && nr_none &&
2062 	    !shmem_charge(mapping->host, nr_none))
2063 		result = SCAN_FAIL;
2064 	if (result != SCAN_SUCCEED) {
2065 		nr_none = 0;
2066 		goto rollback;
2067 	}
2068 
2069 	/*
2070 	 * The old folios are locked, so they won't change anymore.
2071 	 */
2072 	index = start;
2073 	dst = folio_page(new_folio, 0);
2074 	list_for_each_entry(folio, &pagelist, lru) {
2075 		int i, nr_pages = folio_nr_pages(folio);
2076 
2077 		while (index < folio->index) {
2078 			clear_highpage(dst);
2079 			index++;
2080 			dst++;
2081 		}
2082 
2083 		for (i = 0; i < nr_pages; i++) {
2084 			if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2085 				result = SCAN_COPY_MC;
2086 				goto rollback;
2087 			}
2088 			index++;
2089 			dst++;
2090 		}
2091 	}
2092 	while (index < end) {
2093 		clear_highpage(dst);
2094 		index++;
2095 		dst++;
2096 	}
2097 
2098 	if (nr_none) {
2099 		struct vm_area_struct *vma;
2100 		int nr_none_check = 0;
2101 
2102 		i_mmap_lock_read(mapping);
2103 		xas_lock_irq(&xas);
2104 
2105 		xas_set(&xas, start);
2106 		for (index = start; index < end; index++) {
2107 			if (!xas_next(&xas)) {
2108 				xas_store(&xas, XA_RETRY_ENTRY);
2109 				if (xas_error(&xas)) {
2110 					result = SCAN_STORE_FAILED;
2111 					goto immap_locked;
2112 				}
2113 				nr_none_check++;
2114 			}
2115 		}
2116 
2117 		if (nr_none != nr_none_check) {
2118 			result = SCAN_PAGE_FILLED;
2119 			goto immap_locked;
2120 		}
2121 
2122 		/*
2123 		 * If userspace observed a missing page in a VMA with
2124 		 * a MODE_MISSING userfaultfd, then it might expect a
2125 		 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2126 		 * roll back to avoid suppressing such an event. Since
2127 		 * wp/minor userfaultfds don't give userspace any
2128 		 * guarantees that the kernel doesn't fill a missing
2129 		 * page with a zero page, so they don't matter here.
2130 		 *
2131 		 * Any userfaultfds registered after this point will
2132 		 * not be able to observe any missing pages due to the
2133 		 * previously inserted retry entries.
2134 		 */
2135 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2136 			if (userfaultfd_missing(vma)) {
2137 				result = SCAN_EXCEED_NONE_PTE;
2138 				goto immap_locked;
2139 			}
2140 		}
2141 
2142 immap_locked:
2143 		i_mmap_unlock_read(mapping);
2144 		if (result != SCAN_SUCCEED) {
2145 			xas_set(&xas, start);
2146 			for (index = start; index < end; index++) {
2147 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2148 					xas_store(&xas, NULL);
2149 			}
2150 
2151 			xas_unlock_irq(&xas);
2152 			goto rollback;
2153 		}
2154 	} else {
2155 		xas_lock_irq(&xas);
2156 	}
2157 
2158 	if (is_shmem)
2159 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2160 	else
2161 		__lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2162 
2163 	if (nr_none) {
2164 		__lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2165 		/* nr_none is always 0 for non-shmem. */
2166 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2167 	}
2168 
2169 	/*
2170 	 * Mark new_folio as uptodate before inserting it into the
2171 	 * page cache so that it isn't mistaken for an fallocated but
2172 	 * unwritten page.
2173 	 */
2174 	folio_mark_uptodate(new_folio);
2175 	folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2176 
2177 	if (is_shmem)
2178 		folio_mark_dirty(new_folio);
2179 	folio_add_lru(new_folio);
2180 
2181 	/* Join all the small entries into a single multi-index entry. */
2182 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2183 	xas_store(&xas, new_folio);
2184 	WARN_ON_ONCE(xas_error(&xas));
2185 	xas_unlock_irq(&xas);
2186 
2187 	/*
2188 	 * Remove pte page tables, so we can re-fault the page as huge.
2189 	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2190 	 */
2191 	retract_page_tables(mapping, start);
2192 	if (cc && !cc->is_khugepaged)
2193 		result = SCAN_PTE_MAPPED_HUGEPAGE;
2194 	folio_unlock(new_folio);
2195 
2196 	/*
2197 	 * The collapse has succeeded, so free the old folios.
2198 	 */
2199 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2200 		list_del(&folio->lru);
2201 		folio->mapping = NULL;
2202 		folio_clear_active(folio);
2203 		folio_clear_unevictable(folio);
2204 		folio_unlock(folio);
2205 		folio_put_refs(folio, 2 + folio_nr_pages(folio));
2206 	}
2207 
2208 	goto out;
2209 
2210 rollback:
2211 	/* Something went wrong: roll back page cache changes */
2212 	if (nr_none) {
2213 		xas_lock_irq(&xas);
2214 		mapping->nrpages -= nr_none;
2215 		xas_unlock_irq(&xas);
2216 		shmem_uncharge(mapping->host, nr_none);
2217 	}
2218 
2219 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2220 		list_del(&folio->lru);
2221 		folio_unlock(folio);
2222 		folio_putback_lru(folio);
2223 		folio_put(folio);
2224 	}
2225 	/*
2226 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2227 	 * file only. This undo is not needed unless failure is
2228 	 * due to SCAN_COPY_MC.
2229 	 */
2230 	if (!is_shmem && result == SCAN_COPY_MC) {
2231 		filemap_nr_thps_dec(mapping);
2232 		/*
2233 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2234 		 * to ensure the update to nr_thps is visible.
2235 		 */
2236 		smp_mb();
2237 	}
2238 
2239 	new_folio->mapping = NULL;
2240 
2241 	folio_unlock(new_folio);
2242 	folio_put(new_folio);
2243 out:
2244 	VM_BUG_ON(!list_empty(&pagelist));
2245 	trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2246 	return result;
2247 }
2248 
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2249 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2250 				    struct file *file, pgoff_t start,
2251 				    struct collapse_control *cc)
2252 {
2253 	struct folio *folio = NULL;
2254 	struct address_space *mapping = file->f_mapping;
2255 	XA_STATE(xas, &mapping->i_pages, start);
2256 	int present, swap;
2257 	int node = NUMA_NO_NODE;
2258 	int result = SCAN_SUCCEED;
2259 
2260 	present = 0;
2261 	swap = 0;
2262 	memset(cc->node_load, 0, sizeof(cc->node_load));
2263 	nodes_clear(cc->alloc_nmask);
2264 	rcu_read_lock();
2265 	xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2266 		if (xas_retry(&xas, folio))
2267 			continue;
2268 
2269 		if (xa_is_value(folio)) {
2270 			swap += 1 << xas_get_order(&xas);
2271 			if (cc->is_khugepaged &&
2272 			    swap > khugepaged_max_ptes_swap) {
2273 				result = SCAN_EXCEED_SWAP_PTE;
2274 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2275 				break;
2276 			}
2277 			continue;
2278 		}
2279 
2280 		if (folio_order(folio) == HPAGE_PMD_ORDER &&
2281 		    folio->index == start) {
2282 			/* Maybe PMD-mapped */
2283 			result = SCAN_PTE_MAPPED_HUGEPAGE;
2284 			/*
2285 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2286 			 * by the caller won't touch the page cache, and so
2287 			 * it's safe to skip LRU and refcount checks before
2288 			 * returning.
2289 			 */
2290 			break;
2291 		}
2292 
2293 		node = folio_nid(folio);
2294 		if (hpage_collapse_scan_abort(node, cc)) {
2295 			result = SCAN_SCAN_ABORT;
2296 			break;
2297 		}
2298 		cc->node_load[node]++;
2299 
2300 		if (!folio_test_lru(folio)) {
2301 			result = SCAN_PAGE_LRU;
2302 			break;
2303 		}
2304 
2305 		if (!is_refcount_suitable(folio)) {
2306 			result = SCAN_PAGE_COUNT;
2307 			break;
2308 		}
2309 
2310 		/*
2311 		 * We probably should check if the folio is referenced
2312 		 * here, but nobody would transfer pte_young() to
2313 		 * folio_test_referenced() for us.  And rmap walk here
2314 		 * is just too costly...
2315 		 */
2316 
2317 		present += folio_nr_pages(folio);
2318 
2319 		if (need_resched()) {
2320 			xas_pause(&xas);
2321 			cond_resched_rcu();
2322 		}
2323 	}
2324 	rcu_read_unlock();
2325 
2326 	if (result == SCAN_SUCCEED) {
2327 		if (cc->is_khugepaged &&
2328 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2329 			result = SCAN_EXCEED_NONE_PTE;
2330 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2331 		} else {
2332 			result = collapse_file(mm, addr, file, start, cc);
2333 		}
2334 	}
2335 
2336 	trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2337 	return result;
2338 }
2339 #else
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2340 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2341 				    struct file *file, pgoff_t start,
2342 				    struct collapse_control *cc)
2343 {
2344 	BUILD_BUG();
2345 }
2346 #endif
2347 
khugepaged_scan_mm_slot(unsigned int pages,int * result,struct collapse_control * cc)2348 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2349 					    struct collapse_control *cc)
2350 	__releases(&khugepaged_mm_lock)
2351 	__acquires(&khugepaged_mm_lock)
2352 {
2353 	struct vma_iterator vmi;
2354 	struct khugepaged_mm_slot *mm_slot;
2355 	struct mm_slot *slot;
2356 	struct mm_struct *mm;
2357 	struct vm_area_struct *vma;
2358 	int progress = 0;
2359 
2360 	VM_BUG_ON(!pages);
2361 	lockdep_assert_held(&khugepaged_mm_lock);
2362 	*result = SCAN_FAIL;
2363 
2364 	if (khugepaged_scan.mm_slot) {
2365 		mm_slot = khugepaged_scan.mm_slot;
2366 		slot = &mm_slot->slot;
2367 	} else {
2368 		slot = list_entry(khugepaged_scan.mm_head.next,
2369 				     struct mm_slot, mm_node);
2370 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2371 		khugepaged_scan.address = 0;
2372 		khugepaged_scan.mm_slot = mm_slot;
2373 	}
2374 	spin_unlock(&khugepaged_mm_lock);
2375 
2376 	mm = slot->mm;
2377 	/*
2378 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2379 	 * the next mm on the list.
2380 	 */
2381 	vma = NULL;
2382 	if (unlikely(!mmap_read_trylock(mm)))
2383 		goto breakouterloop_mmap_lock;
2384 
2385 	progress++;
2386 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2387 		goto breakouterloop;
2388 
2389 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2390 	for_each_vma(vmi, vma) {
2391 		unsigned long hstart, hend;
2392 
2393 		cond_resched();
2394 		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2395 			progress++;
2396 			break;
2397 		}
2398 		if (!thp_vma_allowable_order(vma, vma->vm_flags,
2399 					TVA_ENFORCE_SYSFS, PMD_ORDER)) {
2400 skip:
2401 			progress++;
2402 			continue;
2403 		}
2404 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2405 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2406 		if (khugepaged_scan.address > hend)
2407 			goto skip;
2408 		if (khugepaged_scan.address < hstart)
2409 			khugepaged_scan.address = hstart;
2410 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2411 
2412 		while (khugepaged_scan.address < hend) {
2413 			bool mmap_locked = true;
2414 
2415 			cond_resched();
2416 			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2417 				goto breakouterloop;
2418 
2419 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2420 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2421 				  hend);
2422 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2423 				struct file *file = get_file(vma->vm_file);
2424 				pgoff_t pgoff = linear_page_index(vma,
2425 						khugepaged_scan.address);
2426 
2427 				mmap_read_unlock(mm);
2428 				mmap_locked = false;
2429 				*result = hpage_collapse_scan_file(mm,
2430 					khugepaged_scan.address, file, pgoff, cc);
2431 				fput(file);
2432 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2433 					mmap_read_lock(mm);
2434 					if (hpage_collapse_test_exit_or_disable(mm))
2435 						goto breakouterloop;
2436 					*result = collapse_pte_mapped_thp(mm,
2437 						khugepaged_scan.address, false);
2438 					if (*result == SCAN_PMD_MAPPED)
2439 						*result = SCAN_SUCCEED;
2440 					mmap_read_unlock(mm);
2441 				}
2442 			} else {
2443 				*result = hpage_collapse_scan_pmd(mm, vma,
2444 					khugepaged_scan.address, &mmap_locked, cc);
2445 			}
2446 
2447 			if (*result == SCAN_SUCCEED)
2448 				++khugepaged_pages_collapsed;
2449 
2450 			/* move to next address */
2451 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2452 			progress += HPAGE_PMD_NR;
2453 			if (!mmap_locked)
2454 				/*
2455 				 * We released mmap_lock so break loop.  Note
2456 				 * that we drop mmap_lock before all hugepage
2457 				 * allocations, so if allocation fails, we are
2458 				 * guaranteed to break here and report the
2459 				 * correct result back to caller.
2460 				 */
2461 				goto breakouterloop_mmap_lock;
2462 			if (progress >= pages)
2463 				goto breakouterloop;
2464 		}
2465 	}
2466 breakouterloop:
2467 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2468 breakouterloop_mmap_lock:
2469 
2470 	spin_lock(&khugepaged_mm_lock);
2471 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2472 	/*
2473 	 * Release the current mm_slot if this mm is about to die, or
2474 	 * if we scanned all vmas of this mm.
2475 	 */
2476 	if (hpage_collapse_test_exit(mm) || !vma) {
2477 		/*
2478 		 * Make sure that if mm_users is reaching zero while
2479 		 * khugepaged runs here, khugepaged_exit will find
2480 		 * mm_slot not pointing to the exiting mm.
2481 		 */
2482 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2483 			slot = list_entry(slot->mm_node.next,
2484 					  struct mm_slot, mm_node);
2485 			khugepaged_scan.mm_slot =
2486 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2487 			khugepaged_scan.address = 0;
2488 		} else {
2489 			khugepaged_scan.mm_slot = NULL;
2490 			khugepaged_full_scans++;
2491 		}
2492 
2493 		collect_mm_slot(mm_slot);
2494 	}
2495 
2496 	return progress;
2497 }
2498 
khugepaged_has_work(void)2499 static int khugepaged_has_work(void)
2500 {
2501 	return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2502 }
2503 
khugepaged_wait_event(void)2504 static int khugepaged_wait_event(void)
2505 {
2506 	return !list_empty(&khugepaged_scan.mm_head) ||
2507 		kthread_should_stop();
2508 }
2509 
khugepaged_do_scan(struct collapse_control * cc)2510 static void khugepaged_do_scan(struct collapse_control *cc)
2511 {
2512 	unsigned int progress = 0, pass_through_head = 0;
2513 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2514 	bool wait = true;
2515 	int result = SCAN_SUCCEED;
2516 
2517 	lru_add_drain_all();
2518 
2519 	while (true) {
2520 		cond_resched();
2521 
2522 		if (unlikely(kthread_should_stop()))
2523 			break;
2524 
2525 		spin_lock(&khugepaged_mm_lock);
2526 		if (!khugepaged_scan.mm_slot)
2527 			pass_through_head++;
2528 		if (khugepaged_has_work() &&
2529 		    pass_through_head < 2)
2530 			progress += khugepaged_scan_mm_slot(pages - progress,
2531 							    &result, cc);
2532 		else
2533 			progress = pages;
2534 		spin_unlock(&khugepaged_mm_lock);
2535 
2536 		if (progress >= pages)
2537 			break;
2538 
2539 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2540 			/*
2541 			 * If fail to allocate the first time, try to sleep for
2542 			 * a while.  When hit again, cancel the scan.
2543 			 */
2544 			if (!wait)
2545 				break;
2546 			wait = false;
2547 			khugepaged_alloc_sleep();
2548 		}
2549 	}
2550 }
2551 
khugepaged_should_wakeup(void)2552 static bool khugepaged_should_wakeup(void)
2553 {
2554 	return kthread_should_stop() ||
2555 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2556 }
2557 
khugepaged_wait_work(void)2558 static void khugepaged_wait_work(void)
2559 {
2560 	if (khugepaged_has_work()) {
2561 		const unsigned long scan_sleep_jiffies =
2562 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2563 
2564 		if (!scan_sleep_jiffies)
2565 			return;
2566 
2567 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2568 		wait_event_freezable_timeout(khugepaged_wait,
2569 					     khugepaged_should_wakeup(),
2570 					     scan_sleep_jiffies);
2571 		return;
2572 	}
2573 
2574 	if (hugepage_pmd_enabled())
2575 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2576 }
2577 
khugepaged(void * none)2578 static int khugepaged(void *none)
2579 {
2580 	struct khugepaged_mm_slot *mm_slot;
2581 
2582 	set_freezable();
2583 	set_user_nice(current, MAX_NICE);
2584 
2585 	while (!kthread_should_stop()) {
2586 		khugepaged_do_scan(&khugepaged_collapse_control);
2587 		khugepaged_wait_work();
2588 	}
2589 
2590 	spin_lock(&khugepaged_mm_lock);
2591 	mm_slot = khugepaged_scan.mm_slot;
2592 	khugepaged_scan.mm_slot = NULL;
2593 	if (mm_slot)
2594 		collect_mm_slot(mm_slot);
2595 	spin_unlock(&khugepaged_mm_lock);
2596 	return 0;
2597 }
2598 
set_recommended_min_free_kbytes(void)2599 static void set_recommended_min_free_kbytes(void)
2600 {
2601 	struct zone *zone;
2602 	int nr_zones = 0;
2603 	unsigned long recommended_min;
2604 
2605 	if (!hugepage_pmd_enabled()) {
2606 		calculate_min_free_kbytes();
2607 		goto update_wmarks;
2608 	}
2609 
2610 	for_each_populated_zone(zone) {
2611 		/*
2612 		 * We don't need to worry about fragmentation of
2613 		 * ZONE_MOVABLE since it only has movable pages.
2614 		 */
2615 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2616 			continue;
2617 
2618 		nr_zones++;
2619 	}
2620 
2621 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2622 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2623 
2624 	/*
2625 	 * Make sure that on average at least two pageblocks are almost free
2626 	 * of another type, one for a migratetype to fall back to and a
2627 	 * second to avoid subsequent fallbacks of other types There are 3
2628 	 * MIGRATE_TYPES we care about.
2629 	 */
2630 	recommended_min += pageblock_nr_pages * nr_zones *
2631 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2632 
2633 	/* don't ever allow to reserve more than 5% of the lowmem */
2634 	recommended_min = min(recommended_min,
2635 			      (unsigned long) nr_free_buffer_pages() / 20);
2636 	recommended_min <<= (PAGE_SHIFT-10);
2637 
2638 	if (recommended_min > min_free_kbytes) {
2639 		if (user_min_free_kbytes >= 0)
2640 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2641 				min_free_kbytes, recommended_min);
2642 
2643 		min_free_kbytes = recommended_min;
2644 	}
2645 
2646 update_wmarks:
2647 	setup_per_zone_wmarks();
2648 }
2649 
start_stop_khugepaged(void)2650 int start_stop_khugepaged(void)
2651 {
2652 	int err = 0;
2653 
2654 	mutex_lock(&khugepaged_mutex);
2655 	if (hugepage_pmd_enabled()) {
2656 		if (!khugepaged_thread)
2657 			khugepaged_thread = kthread_run(khugepaged, NULL,
2658 							"khugepaged");
2659 		if (IS_ERR(khugepaged_thread)) {
2660 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2661 			err = PTR_ERR(khugepaged_thread);
2662 			khugepaged_thread = NULL;
2663 			goto fail;
2664 		}
2665 
2666 		if (!list_empty(&khugepaged_scan.mm_head))
2667 			wake_up_interruptible(&khugepaged_wait);
2668 	} else if (khugepaged_thread) {
2669 		kthread_stop(khugepaged_thread);
2670 		khugepaged_thread = NULL;
2671 	}
2672 	set_recommended_min_free_kbytes();
2673 fail:
2674 	mutex_unlock(&khugepaged_mutex);
2675 	return err;
2676 }
2677 
khugepaged_min_free_kbytes_update(void)2678 void khugepaged_min_free_kbytes_update(void)
2679 {
2680 	mutex_lock(&khugepaged_mutex);
2681 	if (hugepage_pmd_enabled() && khugepaged_thread)
2682 		set_recommended_min_free_kbytes();
2683 	mutex_unlock(&khugepaged_mutex);
2684 }
2685 
current_is_khugepaged(void)2686 bool current_is_khugepaged(void)
2687 {
2688 	return kthread_func(current) == khugepaged;
2689 }
2690 
madvise_collapse_errno(enum scan_result r)2691 static int madvise_collapse_errno(enum scan_result r)
2692 {
2693 	/*
2694 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2695 	 * actionable feedback to caller, so they may take an appropriate
2696 	 * fallback measure depending on the nature of the failure.
2697 	 */
2698 	switch (r) {
2699 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2700 		return -ENOMEM;
2701 	case SCAN_CGROUP_CHARGE_FAIL:
2702 	case SCAN_EXCEED_NONE_PTE:
2703 		return -EBUSY;
2704 	/* Resource temporary unavailable - trying again might succeed */
2705 	case SCAN_PAGE_COUNT:
2706 	case SCAN_PAGE_LOCK:
2707 	case SCAN_PAGE_LRU:
2708 	case SCAN_DEL_PAGE_LRU:
2709 	case SCAN_PAGE_FILLED:
2710 		return -EAGAIN;
2711 	/*
2712 	 * Other: Trying again likely not to succeed / error intrinsic to
2713 	 * specified memory range. khugepaged likely won't be able to collapse
2714 	 * either.
2715 	 */
2716 	default:
2717 		return -EINVAL;
2718 	}
2719 }
2720 
madvise_collapse(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)2721 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2722 		     unsigned long start, unsigned long end)
2723 {
2724 	struct collapse_control *cc;
2725 	struct mm_struct *mm = vma->vm_mm;
2726 	unsigned long hstart, hend, addr;
2727 	int thps = 0, last_fail = SCAN_FAIL;
2728 	bool mmap_locked = true;
2729 
2730 	BUG_ON(vma->vm_start > start);
2731 	BUG_ON(vma->vm_end < end);
2732 
2733 	*prev = vma;
2734 
2735 	if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
2736 		return -EINVAL;
2737 
2738 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2739 	if (!cc)
2740 		return -ENOMEM;
2741 	cc->is_khugepaged = false;
2742 
2743 	mmgrab(mm);
2744 	lru_add_drain_all();
2745 
2746 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2747 	hend = end & HPAGE_PMD_MASK;
2748 
2749 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2750 		int result = SCAN_FAIL;
2751 
2752 		if (!mmap_locked) {
2753 			cond_resched();
2754 			mmap_read_lock(mm);
2755 			mmap_locked = true;
2756 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2757 							 cc);
2758 			if (result  != SCAN_SUCCEED) {
2759 				last_fail = result;
2760 				goto out_nolock;
2761 			}
2762 
2763 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2764 		}
2765 		mmap_assert_locked(mm);
2766 		memset(cc->node_load, 0, sizeof(cc->node_load));
2767 		nodes_clear(cc->alloc_nmask);
2768 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2769 			struct file *file = get_file(vma->vm_file);
2770 			pgoff_t pgoff = linear_page_index(vma, addr);
2771 
2772 			mmap_read_unlock(mm);
2773 			mmap_locked = false;
2774 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2775 							  cc);
2776 			fput(file);
2777 		} else {
2778 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2779 							 &mmap_locked, cc);
2780 		}
2781 		if (!mmap_locked)
2782 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2783 
2784 handle_result:
2785 		switch (result) {
2786 		case SCAN_SUCCEED:
2787 		case SCAN_PMD_MAPPED:
2788 			++thps;
2789 			break;
2790 		case SCAN_PTE_MAPPED_HUGEPAGE:
2791 			BUG_ON(mmap_locked);
2792 			BUG_ON(*prev);
2793 			mmap_read_lock(mm);
2794 			result = collapse_pte_mapped_thp(mm, addr, true);
2795 			mmap_read_unlock(mm);
2796 			goto handle_result;
2797 		/* Whitelisted set of results where continuing OK */
2798 		case SCAN_PMD_NULL:
2799 		case SCAN_PTE_NON_PRESENT:
2800 		case SCAN_PTE_UFFD_WP:
2801 		case SCAN_PAGE_RO:
2802 		case SCAN_LACK_REFERENCED_PAGE:
2803 		case SCAN_PAGE_NULL:
2804 		case SCAN_PAGE_COUNT:
2805 		case SCAN_PAGE_LOCK:
2806 		case SCAN_PAGE_COMPOUND:
2807 		case SCAN_PAGE_LRU:
2808 		case SCAN_DEL_PAGE_LRU:
2809 			last_fail = result;
2810 			break;
2811 		default:
2812 			last_fail = result;
2813 			/* Other error, exit */
2814 			goto out_maybelock;
2815 		}
2816 	}
2817 
2818 out_maybelock:
2819 	/* Caller expects us to hold mmap_lock on return */
2820 	if (!mmap_locked)
2821 		mmap_read_lock(mm);
2822 out_nolock:
2823 	mmap_assert_locked(mm);
2824 	mmdrop(mm);
2825 	kfree(cc);
2826 
2827 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2828 			: madvise_collapse_errno(last_fail);
2829 }
2830