1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/nodemask.h>
18
19 struct ctl_table;
20 struct user_struct;
21 struct mmu_gather;
22 struct node;
23
24 void free_huge_folio(struct folio *folio);
25
26 #ifdef CONFIG_HUGETLB_PAGE
27
28 #include <linux/pagemap.h>
29 #include <linux/shm.h>
30 #include <asm/tlbflush.h>
31
32 /*
33 * For HugeTLB page, there are more metadata to save in the struct page. But
34 * the head struct page cannot meet our needs, so we have to abuse other tail
35 * struct page to store the metadata.
36 */
37 #define __NR_USED_SUBPAGE 3
38
39 struct hugepage_subpool {
40 spinlock_t lock;
41 long count;
42 long max_hpages; /* Maximum huge pages or -1 if no maximum. */
43 long used_hpages; /* Used count against maximum, includes */
44 /* both allocated and reserved pages. */
45 struct hstate *hstate;
46 long min_hpages; /* Minimum huge pages or -1 if no minimum. */
47 long rsv_hpages; /* Pages reserved against global pool to */
48 /* satisfy minimum size. */
49 };
50
51 struct resv_map {
52 struct kref refs;
53 spinlock_t lock;
54 struct list_head regions;
55 long adds_in_progress;
56 struct list_head region_cache;
57 long region_cache_count;
58 struct rw_semaphore rw_sema;
59 #ifdef CONFIG_CGROUP_HUGETLB
60 /*
61 * On private mappings, the counter to uncharge reservations is stored
62 * here. If these fields are 0, then either the mapping is shared, or
63 * cgroup accounting is disabled for this resv_map.
64 */
65 struct page_counter *reservation_counter;
66 unsigned long pages_per_hpage;
67 struct cgroup_subsys_state *css;
68 #endif
69 };
70
71 /*
72 * Region tracking -- allows tracking of reservations and instantiated pages
73 * across the pages in a mapping.
74 *
75 * The region data structures are embedded into a resv_map and protected
76 * by a resv_map's lock. The set of regions within the resv_map represent
77 * reservations for huge pages, or huge pages that have already been
78 * instantiated within the map. The from and to elements are huge page
79 * indices into the associated mapping. from indicates the starting index
80 * of the region. to represents the first index past the end of the region.
81 *
82 * For example, a file region structure with from == 0 and to == 4 represents
83 * four huge pages in a mapping. It is important to note that the to element
84 * represents the first element past the end of the region. This is used in
85 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
86 *
87 * Interval notation of the form [from, to) will be used to indicate that
88 * the endpoint from is inclusive and to is exclusive.
89 */
90 struct file_region {
91 struct list_head link;
92 long from;
93 long to;
94 #ifdef CONFIG_CGROUP_HUGETLB
95 /*
96 * On shared mappings, each reserved region appears as a struct
97 * file_region in resv_map. These fields hold the info needed to
98 * uncharge each reservation.
99 */
100 struct page_counter *reservation_counter;
101 struct cgroup_subsys_state *css;
102 #endif
103 };
104
105 struct hugetlb_vma_lock {
106 struct kref refs;
107 struct rw_semaphore rw_sema;
108 struct vm_area_struct *vma;
109 };
110
111 extern struct resv_map *resv_map_alloc(void);
112 void resv_map_release(struct kref *ref);
113
114 extern spinlock_t hugetlb_lock;
115 extern int hugetlb_max_hstate __read_mostly;
116 #define for_each_hstate(h) \
117 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
118
119 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
120 long min_hpages);
121 void hugepage_put_subpool(struct hugepage_subpool *spool);
122
123 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
124 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
125 int move_hugetlb_page_tables(struct vm_area_struct *vma,
126 struct vm_area_struct *new_vma,
127 unsigned long old_addr, unsigned long new_addr,
128 unsigned long len);
129 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
130 struct vm_area_struct *, struct vm_area_struct *);
131 void unmap_hugepage_range(struct vm_area_struct *,
132 unsigned long start, unsigned long end,
133 struct folio *, zap_flags_t);
134 void __unmap_hugepage_range(struct mmu_gather *tlb,
135 struct vm_area_struct *vma,
136 unsigned long start, unsigned long end,
137 struct folio *, zap_flags_t zap_flags);
138 void hugetlb_report_meminfo(struct seq_file *);
139 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
140 void hugetlb_show_meminfo_node(int nid);
141 unsigned long hugetlb_total_pages(void);
142 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
143 unsigned long address, unsigned int flags);
144 #ifdef CONFIG_USERFAULTFD
145 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
146 struct vm_area_struct *dst_vma,
147 unsigned long dst_addr,
148 unsigned long src_addr,
149 uffd_flags_t flags,
150 struct folio **foliop);
151 #endif /* CONFIG_USERFAULTFD */
152 long hugetlb_reserve_pages(struct inode *inode, long from, long to,
153 struct vm_area_desc *desc, vm_flags_t vm_flags);
154 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
155 long freed);
156 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list);
157 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
158 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
159 bool *migratable_cleared);
160 void folio_putback_hugetlb(struct folio *folio);
161 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
162 void hugetlb_fix_reserve_counts(struct inode *inode);
163 extern struct mutex *hugetlb_fault_mutex_table;
164 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
165
166 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
167 unsigned long addr, pud_t *pud);
168 bool hugetlbfs_pagecache_present(struct hstate *h,
169 struct vm_area_struct *vma,
170 unsigned long address);
171
172 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
173
174 extern int sysctl_hugetlb_shm_group __read_mostly;
175 extern struct list_head huge_boot_pages[MAX_NUMNODES];
176
177 void hugetlb_bootmem_alloc(void);
178 bool hugetlb_bootmem_allocated(void);
179 extern nodemask_t hugetlb_bootmem_nodes;
180 void hugetlb_bootmem_set_nodes(void);
181
182 /* arch callbacks */
183
184 #ifndef CONFIG_HIGHPTE
185 /*
186 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
187 * which may go down to the lowest PTE level in their huge_pte_offset() and
188 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
189 */
pte_offset_huge(pmd_t * pmd,unsigned long address)190 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
191 {
192 return pte_offset_kernel(pmd, address);
193 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)194 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
195 unsigned long address)
196 {
197 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
198 }
199 #endif
200
201 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
202 unsigned long addr, unsigned long sz);
203 /*
204 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
205 * Returns the pte_t* if found, or NULL if the address is not mapped.
206 *
207 * IMPORTANT: we should normally not directly call this function, instead
208 * this is only a common interface to implement arch-specific
209 * walker. Please use hugetlb_walk() instead, because that will attempt to
210 * verify the locking for you.
211 *
212 * Since this function will walk all the pgtable pages (including not only
213 * high-level pgtable page, but also PUD entry that can be unshared
214 * concurrently for VM_SHARED), the caller of this function should be
215 * responsible of its thread safety. One can follow this rule:
216 *
217 * (1) For private mappings: pmd unsharing is not possible, so holding the
218 * mmap_lock for either read or write is sufficient. Most callers
219 * already hold the mmap_lock, so normally, no special action is
220 * required.
221 *
222 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
223 * pgtable page can go away from under us! It can be done by a pmd
224 * unshare with a follow up munmap() on the other process), then we
225 * need either:
226 *
227 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
228 * won't happen upon the range (it also makes sure the pte_t we
229 * read is the right and stable one), or,
230 *
231 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
232 * sure even if unshare happened the racy unmap() will wait until
233 * i_mmap_rwsem is released.
234 *
235 * Option (2.1) is the safest, which guarantees pte stability from pmd
236 * sharing pov, until the vma lock released. Option (2.2) doesn't protect
237 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
238 * access.
239 */
240 pte_t *huge_pte_offset(struct mm_struct *mm,
241 unsigned long addr, unsigned long sz);
242 unsigned long hugetlb_mask_last_page(struct hstate *h);
243 int huge_pmd_unshare(struct mmu_gather *tlb, struct vm_area_struct *vma,
244 unsigned long addr, pte_t *ptep);
245 void huge_pmd_unshare_flush(struct mmu_gather *tlb, struct vm_area_struct *vma);
246 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 unsigned long *start, unsigned long *end);
248
249 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 unsigned long *begin, unsigned long *end);
251 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 struct zap_details *details);
253
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)254 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 unsigned long *start, unsigned long *end)
256 {
257 if (is_vm_hugetlb_page(vma))
258 __hugetlb_zap_begin(vma, start, end);
259 }
260
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)261 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 struct zap_details *details)
263 {
264 if (is_vm_hugetlb_page(vma))
265 __hugetlb_zap_end(vma, details);
266 }
267
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274 void hugetlb_vma_lock_release(struct kref *kref);
275 long hugetlb_change_protection(struct vm_area_struct *vma,
276 unsigned long address, unsigned long end, pgprot_t newprot,
277 unsigned long cp_flags);
278 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
279 void fixup_hugetlb_reservations(struct vm_area_struct *vma);
280 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr);
281 int hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
282
283 #else /* !CONFIG_HUGETLB_PAGE */
284
hugetlb_dup_vma_private(struct vm_area_struct * vma)285 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
286 {
287 }
288
clear_vma_resv_huge_pages(struct vm_area_struct * vma)289 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
290 {
291 }
292
hugetlb_total_pages(void)293 static inline unsigned long hugetlb_total_pages(void)
294 {
295 return 0;
296 }
297
hugetlb_folio_mapping_lock_write(struct folio * folio)298 static inline struct address_space *hugetlb_folio_mapping_lock_write(
299 struct folio *folio)
300 {
301 return NULL;
302 }
303
huge_pmd_unshare(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)304 static inline int huge_pmd_unshare(struct mmu_gather *tlb,
305 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
306 {
307 return 0;
308 }
309
huge_pmd_unshare_flush(struct mmu_gather * tlb,struct vm_area_struct * vma)310 static inline void huge_pmd_unshare_flush(struct mmu_gather *tlb,
311 struct vm_area_struct *vma)
312 {
313 }
314
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)315 static inline void adjust_range_if_pmd_sharing_possible(
316 struct vm_area_struct *vma,
317 unsigned long *start, unsigned long *end)
318 {
319 }
320
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)321 static inline void hugetlb_zap_begin(
322 struct vm_area_struct *vma,
323 unsigned long *start, unsigned long *end)
324 {
325 }
326
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)327 static inline void hugetlb_zap_end(
328 struct vm_area_struct *vma,
329 struct zap_details *details)
330 {
331 }
332
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)333 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
334 struct mm_struct *src,
335 struct vm_area_struct *dst_vma,
336 struct vm_area_struct *src_vma)
337 {
338 BUG();
339 return 0;
340 }
341
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)342 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
343 struct vm_area_struct *new_vma,
344 unsigned long old_addr,
345 unsigned long new_addr,
346 unsigned long len)
347 {
348 BUG();
349 return 0;
350 }
351
hugetlb_report_meminfo(struct seq_file * m)352 static inline void hugetlb_report_meminfo(struct seq_file *m)
353 {
354 }
355
hugetlb_report_node_meminfo(char * buf,int len,int nid)356 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
357 {
358 return 0;
359 }
360
hugetlb_show_meminfo_node(int nid)361 static inline void hugetlb_show_meminfo_node(int nid)
362 {
363 }
364
hugetlb_vma_lock_read(struct vm_area_struct * vma)365 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
366 {
367 }
368
hugetlb_vma_unlock_read(struct vm_area_struct * vma)369 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
370 {
371 }
372
hugetlb_vma_lock_write(struct vm_area_struct * vma)373 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
374 {
375 }
376
hugetlb_vma_unlock_write(struct vm_area_struct * vma)377 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
378 {
379 }
380
hugetlb_vma_trylock_write(struct vm_area_struct * vma)381 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
382 {
383 return 1;
384 }
385
hugetlb_vma_assert_locked(struct vm_area_struct * vma)386 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
387 {
388 }
389
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)390 static inline int is_hugepage_only_range(struct mm_struct *mm,
391 unsigned long addr, unsigned long len)
392 {
393 return 0;
394 }
395
396 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)397 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
398 struct vm_area_struct *dst_vma,
399 unsigned long dst_addr,
400 unsigned long src_addr,
401 uffd_flags_t flags,
402 struct folio **foliop)
403 {
404 BUG();
405 return 0;
406 }
407 #endif /* CONFIG_USERFAULTFD */
408
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)409 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
410 unsigned long sz)
411 {
412 return NULL;
413 }
414
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)415 static inline bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
416 {
417 return false;
418 }
419
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)420 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
421 {
422 return 0;
423 }
424
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)425 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
426 bool *migratable_cleared)
427 {
428 return 0;
429 }
430
folio_putback_hugetlb(struct folio * folio)431 static inline void folio_putback_hugetlb(struct folio *folio)
432 {
433 }
434
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)435 static inline void move_hugetlb_state(struct folio *old_folio,
436 struct folio *new_folio, int reason)
437 {
438 }
439
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)440 static inline long hugetlb_change_protection(
441 struct vm_area_struct *vma, unsigned long address,
442 unsigned long end, pgprot_t newprot,
443 unsigned long cp_flags)
444 {
445 return 0;
446 }
447
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)448 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
449 struct vm_area_struct *vma, unsigned long start,
450 unsigned long end, struct folio *folio,
451 zap_flags_t zap_flags)
452 {
453 BUG();
454 }
455
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)456 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
457 struct vm_area_struct *vma, unsigned long address,
458 unsigned int flags)
459 {
460 BUG();
461 return 0;
462 }
463
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)464 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
465
fixup_hugetlb_reservations(struct vm_area_struct * vma)466 static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma)
467 {
468 }
469
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)470 static inline void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) {}
471
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)472 static inline int hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
473 {
474 return 0;
475 }
476
477 #endif /* !CONFIG_HUGETLB_PAGE */
478
479 #ifndef pgd_write
pgd_write(pgd_t pgd)480 static inline int pgd_write(pgd_t pgd)
481 {
482 BUG();
483 return 0;
484 }
485 #endif
486
487 #define HUGETLB_ANON_FILE "anon_hugepage"
488
489 enum {
490 /*
491 * The file will be used as an shm file so shmfs accounting rules
492 * apply
493 */
494 HUGETLB_SHMFS_INODE = 1,
495 /*
496 * The file is being created on the internal vfs mount and shmfs
497 * accounting rules do not apply
498 */
499 HUGETLB_ANONHUGE_INODE = 2,
500 };
501
502 #ifdef CONFIG_HUGETLBFS
503 struct hugetlbfs_sb_info {
504 long max_inodes; /* inodes allowed */
505 long free_inodes; /* inodes free */
506 spinlock_t stat_lock;
507 struct hstate *hstate;
508 struct hugepage_subpool *spool;
509 kuid_t uid;
510 kgid_t gid;
511 umode_t mode;
512 };
513
HUGETLBFS_SB(struct super_block * sb)514 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
515 {
516 return sb->s_fs_info;
517 }
518
519 struct hugetlbfs_inode_info {
520 struct inode vfs_inode;
521 unsigned int seals;
522 };
523
HUGETLBFS_I(struct inode * inode)524 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
525 {
526 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
527 }
528
529 extern const struct vm_operations_struct hugetlb_vm_ops;
530 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
531 int creat_flags, int page_size_log);
532
is_file_hugepages(const struct file * file)533 static inline bool is_file_hugepages(const struct file *file)
534 {
535 return file->f_op->fop_flags & FOP_HUGE_PAGES;
536 }
537
hstate_inode(struct inode * i)538 static inline struct hstate *hstate_inode(struct inode *i)
539 {
540 return HUGETLBFS_SB(i->i_sb)->hstate;
541 }
542 #else /* !CONFIG_HUGETLBFS */
543
544 #define is_file_hugepages(file) false
545 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)546 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
547 int creat_flags, int page_size_log)
548 {
549 return ERR_PTR(-ENOSYS);
550 }
551
hstate_inode(struct inode * i)552 static inline struct hstate *hstate_inode(struct inode *i)
553 {
554 return NULL;
555 }
556 #endif /* !CONFIG_HUGETLBFS */
557
558 unsigned long
559 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
560 unsigned long len, unsigned long pgoff,
561 unsigned long flags);
562
563 /*
564 * huegtlb page specific state flags. These flags are located in page.private
565 * of the hugetlb head page. Functions created via the below macros should be
566 * used to manipulate these flags.
567 *
568 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
569 * allocation time. Cleared when page is fully instantiated. Free
570 * routine checks flag to restore a reservation on error paths.
571 * Synchronization: Examined or modified by code that knows it has
572 * the only reference to page. i.e. After allocation but before use
573 * or when the page is being freed.
574 * HPG_migratable - Set after a newly allocated page is added to the page
575 * cache and/or page tables. Indicates the page is a candidate for
576 * migration.
577 * Synchronization: Initially set after new page allocation with no
578 * locking. When examined and modified during migration processing
579 * (isolate, migrate, putback) the hugetlb_lock is held.
580 * HPG_temporary - Set on a page that is temporarily allocated from the buddy
581 * allocator. Typically used for migration target pages when no pages
582 * are available in the pool. The hugetlb free page path will
583 * immediately free pages with this flag set to the buddy allocator.
584 * Synchronization: Can be set after huge page allocation from buddy when
585 * code knows it has only reference. All other examinations and
586 * modifications require hugetlb_lock.
587 * HPG_freed - Set when page is on the free lists.
588 * Synchronization: hugetlb_lock held for examination and modification.
589 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
590 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
591 * that is not tracked by raw_hwp_page list.
592 */
593 enum hugetlb_page_flags {
594 HPG_restore_reserve = 0,
595 HPG_migratable,
596 HPG_temporary,
597 HPG_freed,
598 HPG_vmemmap_optimized,
599 HPG_raw_hwp_unreliable,
600 HPG_cma,
601 __NR_HPAGEFLAGS,
602 };
603
604 /*
605 * Macros to create test, set and clear function definitions for
606 * hugetlb specific page flags.
607 */
608 #ifdef CONFIG_HUGETLB_PAGE
609 #define TESTHPAGEFLAG(uname, flname) \
610 static __always_inline \
611 bool folio_test_hugetlb_##flname(struct folio *folio) \
612 { void *private = &folio->private; \
613 return test_bit(HPG_##flname, private); \
614 }
615
616 #define SETHPAGEFLAG(uname, flname) \
617 static __always_inline \
618 void folio_set_hugetlb_##flname(struct folio *folio) \
619 { void *private = &folio->private; \
620 set_bit(HPG_##flname, private); \
621 }
622
623 #define CLEARHPAGEFLAG(uname, flname) \
624 static __always_inline \
625 void folio_clear_hugetlb_##flname(struct folio *folio) \
626 { void *private = &folio->private; \
627 clear_bit(HPG_##flname, private); \
628 }
629 #else
630 #define TESTHPAGEFLAG(uname, flname) \
631 static inline bool \
632 folio_test_hugetlb_##flname(struct folio *folio) \
633 { return 0; }
634
635 #define SETHPAGEFLAG(uname, flname) \
636 static inline void \
637 folio_set_hugetlb_##flname(struct folio *folio) \
638 { }
639
640 #define CLEARHPAGEFLAG(uname, flname) \
641 static inline void \
642 folio_clear_hugetlb_##flname(struct folio *folio) \
643 { }
644 #endif
645
646 #define HPAGEFLAG(uname, flname) \
647 TESTHPAGEFLAG(uname, flname) \
648 SETHPAGEFLAG(uname, flname) \
649 CLEARHPAGEFLAG(uname, flname) \
650
651 /*
652 * Create functions associated with hugetlb page flags
653 */
654 HPAGEFLAG(RestoreReserve, restore_reserve)
655 HPAGEFLAG(Migratable, migratable)
656 HPAGEFLAG(Temporary, temporary)
657 HPAGEFLAG(Freed, freed)
658 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
659 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
660 HPAGEFLAG(Cma, cma)
661
662 #ifdef CONFIG_HUGETLB_PAGE
663
664 #define HSTATE_NAME_LEN 32
665 /* Defines one hugetlb page size */
666 struct hstate {
667 struct mutex resize_lock;
668 struct lock_class_key resize_key;
669 int next_nid_to_alloc;
670 int next_nid_to_free;
671 unsigned int order;
672 unsigned int demote_order;
673 unsigned long mask;
674 unsigned long max_huge_pages;
675 unsigned long nr_huge_pages;
676 unsigned long free_huge_pages;
677 unsigned long resv_huge_pages;
678 unsigned long surplus_huge_pages;
679 unsigned long nr_overcommit_huge_pages;
680 struct list_head hugepage_activelist;
681 struct list_head hugepage_freelists[MAX_NUMNODES];
682 unsigned int max_huge_pages_node[MAX_NUMNODES];
683 unsigned int nr_huge_pages_node[MAX_NUMNODES];
684 unsigned int free_huge_pages_node[MAX_NUMNODES];
685 unsigned int surplus_huge_pages_node[MAX_NUMNODES];
686 char name[HSTATE_NAME_LEN];
687 };
688
689 struct cma;
690
691 struct huge_bootmem_page {
692 struct list_head list;
693 struct hstate *hstate;
694 unsigned long flags;
695 struct cma *cma;
696 };
697
698 #define HUGE_BOOTMEM_HVO 0x0001
699 #define HUGE_BOOTMEM_ZONES_VALID 0x0002
700 #define HUGE_BOOTMEM_CMA 0x0004
701
702 bool hugetlb_bootmem_page_zones_valid(int nid, struct huge_bootmem_page *m);
703
704 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list);
705 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn);
706 void wait_for_freed_hugetlb_folios(void);
707 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
708 unsigned long addr, bool cow_from_owner);
709 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
710 nodemask_t *nmask, gfp_t gfp_mask,
711 bool allow_alloc_fallback);
712 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
713 nodemask_t *nmask, gfp_t gfp_mask);
714
715 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
716 pgoff_t idx);
717 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
718 unsigned long address, struct folio *folio);
719
720 /* arch callback */
721 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
722 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
723 bool __init hugetlb_node_alloc_supported(void);
724
725 void __init hugetlb_add_hstate(unsigned order);
726 bool __init arch_hugetlb_valid_size(unsigned long size);
727 struct hstate *size_to_hstate(unsigned long size);
728
729 #ifndef HUGE_MAX_HSTATE
730 #define HUGE_MAX_HSTATE 1
731 #endif
732
733 extern struct hstate hstates[HUGE_MAX_HSTATE];
734 extern unsigned int default_hstate_idx;
735
736 #define default_hstate (hstates[default_hstate_idx])
737
subpool_inode(struct inode * inode)738 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
739 {
740 return HUGETLBFS_SB(inode->i_sb)->spool;
741 }
742
hugetlb_folio_subpool(struct folio * folio)743 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
744 {
745 return folio->_hugetlb_subpool;
746 }
747
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)748 static inline void hugetlb_set_folio_subpool(struct folio *folio,
749 struct hugepage_subpool *subpool)
750 {
751 folio->_hugetlb_subpool = subpool;
752 }
753
hstate_file(struct file * f)754 static inline struct hstate *hstate_file(struct file *f)
755 {
756 return hstate_inode(file_inode(f));
757 }
758
hstate_sizelog(int page_size_log)759 static inline struct hstate *hstate_sizelog(int page_size_log)
760 {
761 if (!page_size_log)
762 return &default_hstate;
763
764 if (page_size_log < BITS_PER_LONG)
765 return size_to_hstate(1UL << page_size_log);
766
767 return NULL;
768 }
769
hstate_vma(struct vm_area_struct * vma)770 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
771 {
772 return hstate_file(vma->vm_file);
773 }
774
huge_page_size(const struct hstate * h)775 static inline unsigned long huge_page_size(const struct hstate *h)
776 {
777 return (unsigned long)PAGE_SIZE << h->order;
778 }
779
780 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
781
782 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
783
huge_page_mask(struct hstate * h)784 static inline unsigned long huge_page_mask(struct hstate *h)
785 {
786 return h->mask;
787 }
788
huge_page_order(struct hstate * h)789 static inline unsigned int huge_page_order(struct hstate *h)
790 {
791 return h->order;
792 }
793
huge_page_shift(struct hstate * h)794 static inline unsigned huge_page_shift(struct hstate *h)
795 {
796 return h->order + PAGE_SHIFT;
797 }
798
order_is_gigantic(unsigned int order)799 static inline bool order_is_gigantic(unsigned int order)
800 {
801 return order > MAX_PAGE_ORDER;
802 }
803
hstate_is_gigantic(struct hstate * h)804 static inline bool hstate_is_gigantic(struct hstate *h)
805 {
806 return order_is_gigantic(huge_page_order(h));
807 }
808
pages_per_huge_page(const struct hstate * h)809 static inline unsigned int pages_per_huge_page(const struct hstate *h)
810 {
811 return 1 << h->order;
812 }
813
blocks_per_huge_page(struct hstate * h)814 static inline unsigned int blocks_per_huge_page(struct hstate *h)
815 {
816 return huge_page_size(h) / 512;
817 }
818
filemap_lock_hugetlb_folio(struct hstate * h,struct address_space * mapping,pgoff_t idx)819 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
820 struct address_space *mapping, pgoff_t idx)
821 {
822 return filemap_lock_folio(mapping, idx << huge_page_order(h));
823 }
824
825 #include <asm/hugetlb.h>
826
827 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)828 static inline int is_hugepage_only_range(struct mm_struct *mm,
829 unsigned long addr, unsigned long len)
830 {
831 return 0;
832 }
833 #define is_hugepage_only_range is_hugepage_only_range
834 #endif
835
836 #ifndef arch_clear_hugetlb_flags
arch_clear_hugetlb_flags(struct folio * folio)837 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
838 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
839 #endif
840
841 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)842 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
843 vm_flags_t flags)
844 {
845 return pte_mkhuge(entry);
846 }
847 #endif
848
849 #ifndef arch_has_huge_bootmem_alloc
850 /*
851 * Some architectures do their own bootmem allocation, so they can't use
852 * early CMA allocation.
853 */
arch_has_huge_bootmem_alloc(void)854 static inline bool arch_has_huge_bootmem_alloc(void)
855 {
856 return false;
857 }
858 #endif
859
folio_hstate(struct folio * folio)860 static inline struct hstate *folio_hstate(struct folio *folio)
861 {
862 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
863 return size_to_hstate(folio_size(folio));
864 }
865
hstate_index_to_shift(unsigned index)866 static inline unsigned hstate_index_to_shift(unsigned index)
867 {
868 return hstates[index].order + PAGE_SHIFT;
869 }
870
hstate_index(struct hstate * h)871 static inline int hstate_index(struct hstate *h)
872 {
873 return h - hstates;
874 }
875
876 int dissolve_free_hugetlb_folio(struct folio *folio);
877 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
878 unsigned long end_pfn);
879
880 #ifdef CONFIG_MEMORY_FAILURE
881 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
882 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)883 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
884 {
885 }
886 #endif
887
888 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
889 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)890 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
891 {
892 if ((huge_page_shift(h) == PMD_SHIFT) ||
893 (huge_page_shift(h) == PUD_SHIFT) ||
894 (huge_page_shift(h) == PGDIR_SHIFT))
895 return true;
896 else
897 return false;
898 }
899 #endif
900 #else
arch_hugetlb_migration_supported(struct hstate * h)901 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
902 {
903 return false;
904 }
905 #endif
906
hugepage_migration_supported(struct hstate * h)907 static inline bool hugepage_migration_supported(struct hstate *h)
908 {
909 return arch_hugetlb_migration_supported(h);
910 }
911
912 /*
913 * Movability check is different as compared to migration check.
914 * It determines whether or not a huge page should be placed on
915 * movable zone or not. Movability of any huge page should be
916 * required only if huge page size is supported for migration.
917 * There won't be any reason for the huge page to be movable if
918 * it is not migratable to start with. Also the size of the huge
919 * page should be large enough to be placed under a movable zone
920 * and still feasible enough to be migratable. Just the presence
921 * in movable zone does not make the migration feasible.
922 *
923 * So even though large huge page sizes like the gigantic ones
924 * are migratable they should not be movable because its not
925 * feasible to migrate them from movable zone.
926 */
hugepage_movable_supported(struct hstate * h)927 static inline bool hugepage_movable_supported(struct hstate *h)
928 {
929 if (!hugepage_migration_supported(h))
930 return false;
931
932 if (hstate_is_gigantic(h))
933 return false;
934 return true;
935 }
936
937 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)938 static inline gfp_t htlb_alloc_mask(struct hstate *h)
939 {
940 gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
941
942 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
943
944 return gfp;
945 }
946
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)947 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
948 {
949 gfp_t modified_mask = htlb_alloc_mask(h);
950
951 /* Some callers might want to enforce node */
952 modified_mask |= (gfp_mask & __GFP_THISNODE);
953
954 modified_mask |= (gfp_mask & __GFP_NOWARN);
955
956 return modified_mask;
957 }
958
htlb_allow_alloc_fallback(int reason)959 static inline bool htlb_allow_alloc_fallback(int reason)
960 {
961 bool allowed_fallback = false;
962
963 /*
964 * Note: the memory offline, memory failure and migration syscalls will
965 * be allowed to fallback to other nodes due to lack of a better chioce,
966 * that might break the per-node hugetlb pool. While other cases will
967 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
968 */
969 switch (reason) {
970 case MR_MEMORY_HOTPLUG:
971 case MR_MEMORY_FAILURE:
972 case MR_SYSCALL:
973 case MR_MEMPOLICY_MBIND:
974 allowed_fallback = true;
975 break;
976 default:
977 break;
978 }
979
980 return allowed_fallback;
981 }
982
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)983 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
984 struct mm_struct *mm, pte_t *pte)
985 {
986 const unsigned long size = huge_page_size(h);
987
988 VM_WARN_ON(size == PAGE_SIZE);
989
990 /*
991 * hugetlb must use the exact same PT locks as core-mm page table
992 * walkers would. When modifying a PTE table, hugetlb must take the
993 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
994 * PT lock etc.
995 *
996 * The expectation is that any hugetlb folio smaller than a PMD is
997 * always mapped into a single PTE table and that any hugetlb folio
998 * smaller than a PUD (but at least as big as a PMD) is always mapped
999 * into a single PMD table.
1000 *
1001 * If that does not hold for an architecture, then that architecture
1002 * must disable split PT locks such that all *_lockptr() functions
1003 * will give us the same result: the per-MM PT lock.
1004 *
1005 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
1006 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
1007 * and core-mm would use pmd_lockptr(). However, in such configurations
1008 * split PMD locks are disabled -- they don't make sense on a single
1009 * PGDIR page table -- and the end result is the same.
1010 */
1011 if (size >= PUD_SIZE)
1012 return pud_lockptr(mm, (pud_t *) pte);
1013 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
1014 return pmd_lockptr(mm, (pmd_t *) pte);
1015 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
1016 return ptep_lockptr(mm, pte);
1017 }
1018
1019 #ifndef hugepages_supported
1020 /*
1021 * Some platform decide whether they support huge pages at boot
1022 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
1023 * when there is no such support
1024 */
1025 #define hugepages_supported() (HPAGE_SHIFT != 0)
1026 #endif
1027
1028 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
1029
hugetlb_count_init(struct mm_struct * mm)1030 static inline void hugetlb_count_init(struct mm_struct *mm)
1031 {
1032 atomic_long_set(&mm->hugetlb_usage, 0);
1033 }
1034
hugetlb_count_add(long l,struct mm_struct * mm)1035 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
1036 {
1037 atomic_long_add(l, &mm->hugetlb_usage);
1038 }
1039
hugetlb_count_sub(long l,struct mm_struct * mm)1040 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1041 {
1042 atomic_long_sub(l, &mm->hugetlb_usage);
1043 }
1044
1045 #ifndef huge_ptep_modify_prot_start
1046 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1047 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1048 unsigned long addr, pte_t *ptep)
1049 {
1050 unsigned long psize = huge_page_size(hstate_vma(vma));
1051
1052 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
1053 }
1054 #endif
1055
1056 #ifndef huge_ptep_modify_prot_commit
1057 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1058 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1059 unsigned long addr, pte_t *ptep,
1060 pte_t old_pte, pte_t pte)
1061 {
1062 unsigned long psize = huge_page_size(hstate_vma(vma));
1063
1064 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1065 }
1066 #endif
1067
1068 #ifdef CONFIG_NUMA
1069 void hugetlb_register_node(struct node *node);
1070 void hugetlb_unregister_node(struct node *node);
1071 #endif
1072
1073 /*
1074 * Check if a given raw @page in a hugepage is HWPOISON.
1075 */
1076 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1077
huge_page_mask_align(struct file * file)1078 static inline unsigned long huge_page_mask_align(struct file *file)
1079 {
1080 return PAGE_MASK & ~huge_page_mask(hstate_file(file));
1081 }
1082
1083 #else /* CONFIG_HUGETLB_PAGE */
1084 struct hstate {};
1085
1086 static inline unsigned long huge_page_mask_align(struct file *file)
1087 {
1088 return 0;
1089 }
1090
1091 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1092 {
1093 return NULL;
1094 }
1095
1096 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1097 struct address_space *mapping, pgoff_t idx)
1098 {
1099 return NULL;
1100 }
1101
1102 static inline int isolate_or_dissolve_huge_folio(struct folio *folio,
1103 struct list_head *list)
1104 {
1105 return -ENOMEM;
1106 }
1107
1108 static inline int replace_free_hugepage_folios(unsigned long start_pfn,
1109 unsigned long end_pfn)
1110 {
1111 return 0;
1112 }
1113
1114 static inline void wait_for_freed_hugetlb_folios(void)
1115 {
1116 }
1117
1118 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1119 unsigned long addr,
1120 bool cow_from_owner)
1121 {
1122 return NULL;
1123 }
1124
1125 static inline struct folio *
1126 alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1127 nodemask_t *nmask, gfp_t gfp_mask)
1128 {
1129 return NULL;
1130 }
1131
1132 static inline struct folio *
1133 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1134 nodemask_t *nmask, gfp_t gfp_mask,
1135 bool allow_alloc_fallback)
1136 {
1137 return NULL;
1138 }
1139
1140 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1141 {
1142 return 0;
1143 }
1144
1145 static inline struct hstate *hstate_file(struct file *f)
1146 {
1147 return NULL;
1148 }
1149
1150 static inline struct hstate *hstate_sizelog(int page_size_log)
1151 {
1152 return NULL;
1153 }
1154
1155 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1156 {
1157 return NULL;
1158 }
1159
1160 static inline struct hstate *folio_hstate(struct folio *folio)
1161 {
1162 return NULL;
1163 }
1164
1165 static inline struct hstate *size_to_hstate(unsigned long size)
1166 {
1167 return NULL;
1168 }
1169
1170 static inline unsigned long huge_page_size(struct hstate *h)
1171 {
1172 return PAGE_SIZE;
1173 }
1174
1175 static inline unsigned long huge_page_mask(struct hstate *h)
1176 {
1177 return PAGE_MASK;
1178 }
1179
1180 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1181 {
1182 return PAGE_SIZE;
1183 }
1184
1185 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1186 {
1187 return PAGE_SIZE;
1188 }
1189
1190 static inline unsigned int huge_page_order(struct hstate *h)
1191 {
1192 return 0;
1193 }
1194
1195 static inline unsigned int huge_page_shift(struct hstate *h)
1196 {
1197 return PAGE_SHIFT;
1198 }
1199
1200 static inline bool hstate_is_gigantic(struct hstate *h)
1201 {
1202 return false;
1203 }
1204
1205 static inline unsigned int pages_per_huge_page(struct hstate *h)
1206 {
1207 return 1;
1208 }
1209
1210 static inline unsigned hstate_index_to_shift(unsigned index)
1211 {
1212 return 0;
1213 }
1214
1215 static inline int hstate_index(struct hstate *h)
1216 {
1217 return 0;
1218 }
1219
1220 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1221 {
1222 return 0;
1223 }
1224
1225 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1226 unsigned long end_pfn)
1227 {
1228 return 0;
1229 }
1230
1231 static inline bool hugepage_migration_supported(struct hstate *h)
1232 {
1233 return false;
1234 }
1235
1236 static inline bool hugepage_movable_supported(struct hstate *h)
1237 {
1238 return false;
1239 }
1240
1241 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1242 {
1243 return 0;
1244 }
1245
1246 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1247 {
1248 return 0;
1249 }
1250
1251 static inline bool htlb_allow_alloc_fallback(int reason)
1252 {
1253 return false;
1254 }
1255
1256 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1257 struct mm_struct *mm, pte_t *pte)
1258 {
1259 return &mm->page_table_lock;
1260 }
1261
1262 static inline void hugetlb_count_init(struct mm_struct *mm)
1263 {
1264 }
1265
1266 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1267 {
1268 }
1269
1270 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1271 {
1272 }
1273
1274 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1275 unsigned long addr, pte_t *ptep)
1276 {
1277 #ifdef CONFIG_MMU
1278 return ptep_get(ptep);
1279 #else
1280 return *ptep;
1281 #endif
1282 }
1283
1284 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1285 pte_t *ptep, pte_t pte, unsigned long sz)
1286 {
1287 }
1288
1289 static inline void hugetlb_register_node(struct node *node)
1290 {
1291 }
1292
1293 static inline void hugetlb_unregister_node(struct node *node)
1294 {
1295 }
1296
1297 static inline bool hugetlbfs_pagecache_present(
1298 struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1299 {
1300 return false;
1301 }
1302
1303 static inline void hugetlb_bootmem_alloc(void)
1304 {
1305 }
1306
1307 static inline bool hugetlb_bootmem_allocated(void)
1308 {
1309 return false;
1310 }
1311 #endif /* CONFIG_HUGETLB_PAGE */
1312
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1313 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1314 struct mm_struct *mm, pte_t *pte)
1315 {
1316 spinlock_t *ptl;
1317
1318 ptl = huge_pte_lockptr(h, mm, pte);
1319 spin_lock(ptl);
1320 return ptl;
1321 }
1322
1323 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1324 extern void __init hugetlb_cma_reserve(int order);
1325 #else
hugetlb_cma_reserve(int order)1326 static inline __init void hugetlb_cma_reserve(int order)
1327 {
1328 }
1329 #endif
1330
1331 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
hugetlb_pmd_shared(pte_t * pte)1332 static inline bool hugetlb_pmd_shared(pte_t *pte)
1333 {
1334 return ptdesc_pmd_is_shared(virt_to_ptdesc(pte));
1335 }
1336 #else
hugetlb_pmd_shared(pte_t * pte)1337 static inline bool hugetlb_pmd_shared(pte_t *pte)
1338 {
1339 return false;
1340 }
1341 #endif
1342
1343 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1344
1345 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1346 /*
1347 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1348 * implement this.
1349 */
1350 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1351 #endif
1352
__vma_shareable_lock(struct vm_area_struct * vma)1353 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1354 {
1355 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1356 }
1357
1358 bool __vma_private_lock(struct vm_area_struct *vma);
1359
1360 /*
1361 * Safe version of huge_pte_offset() to check the locks. See comments
1362 * above huge_pte_offset().
1363 */
1364 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1365 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1366 {
1367 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1368 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1369
1370 /*
1371 * If pmd sharing possible, locking needed to safely walk the
1372 * hugetlb pgtables. More information can be found at the comment
1373 * above huge_pte_offset() in the same file.
1374 *
1375 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1376 */
1377 if (__vma_shareable_lock(vma))
1378 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1379 !lockdep_is_held(
1380 &vma->vm_file->f_mapping->i_mmap_rwsem));
1381 #endif
1382 return huge_pte_offset(vma->vm_mm, addr, sz);
1383 }
1384
1385 #endif /* _LINUX_HUGETLB_H */
1386