xref: /linux/include/linux/hugetlb.h (revision c25f2fb1f469deaed2df8db524d91f3321a0f816)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/nodemask.h>
18 
19 struct ctl_table;
20 struct user_struct;
21 struct mmu_gather;
22 struct node;
23 
24 void free_huge_folio(struct folio *folio);
25 
26 #ifdef CONFIG_HUGETLB_PAGE
27 
28 #include <linux/pagemap.h>
29 #include <linux/shm.h>
30 #include <asm/tlbflush.h>
31 
32 /*
33  * For HugeTLB page, there are more metadata to save in the struct page. But
34  * the head struct page cannot meet our needs, so we have to abuse other tail
35  * struct page to store the metadata.
36  */
37 #define __NR_USED_SUBPAGE 3
38 
39 struct hugepage_subpool {
40 	spinlock_t lock;
41 	long count;
42 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
43 	long used_hpages;	/* Used count against maximum, includes */
44 				/* both allocated and reserved pages. */
45 	struct hstate *hstate;
46 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
47 	long rsv_hpages;	/* Pages reserved against global pool to */
48 				/* satisfy minimum size. */
49 };
50 
51 struct resv_map {
52 	struct kref refs;
53 	spinlock_t lock;
54 	struct list_head regions;
55 	long adds_in_progress;
56 	struct list_head region_cache;
57 	long region_cache_count;
58 	struct rw_semaphore rw_sema;
59 #ifdef CONFIG_CGROUP_HUGETLB
60 	/*
61 	 * On private mappings, the counter to uncharge reservations is stored
62 	 * here. If these fields are 0, then either the mapping is shared, or
63 	 * cgroup accounting is disabled for this resv_map.
64 	 */
65 	struct page_counter *reservation_counter;
66 	unsigned long pages_per_hpage;
67 	struct cgroup_subsys_state *css;
68 #endif
69 };
70 
71 /*
72  * Region tracking -- allows tracking of reservations and instantiated pages
73  *                    across the pages in a mapping.
74  *
75  * The region data structures are embedded into a resv_map and protected
76  * by a resv_map's lock.  The set of regions within the resv_map represent
77  * reservations for huge pages, or huge pages that have already been
78  * instantiated within the map.  The from and to elements are huge page
79  * indices into the associated mapping.  from indicates the starting index
80  * of the region.  to represents the first index past the end of  the region.
81  *
82  * For example, a file region structure with from == 0 and to == 4 represents
83  * four huge pages in a mapping.  It is important to note that the to element
84  * represents the first element past the end of the region. This is used in
85  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
86  *
87  * Interval notation of the form [from, to) will be used to indicate that
88  * the endpoint from is inclusive and to is exclusive.
89  */
90 struct file_region {
91 	struct list_head link;
92 	long from;
93 	long to;
94 #ifdef CONFIG_CGROUP_HUGETLB
95 	/*
96 	 * On shared mappings, each reserved region appears as a struct
97 	 * file_region in resv_map. These fields hold the info needed to
98 	 * uncharge each reservation.
99 	 */
100 	struct page_counter *reservation_counter;
101 	struct cgroup_subsys_state *css;
102 #endif
103 };
104 
105 struct hugetlb_vma_lock {
106 	struct kref refs;
107 	struct rw_semaphore rw_sema;
108 	struct vm_area_struct *vma;
109 };
110 
111 extern struct resv_map *resv_map_alloc(void);
112 void resv_map_release(struct kref *ref);
113 
114 extern spinlock_t hugetlb_lock;
115 extern int hugetlb_max_hstate __read_mostly;
116 #define for_each_hstate(h) \
117 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
118 
119 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
120 						long min_hpages);
121 void hugepage_put_subpool(struct hugepage_subpool *spool);
122 
123 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
124 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
125 int move_hugetlb_page_tables(struct vm_area_struct *vma,
126 			     struct vm_area_struct *new_vma,
127 			     unsigned long old_addr, unsigned long new_addr,
128 			     unsigned long len);
129 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
130 			    struct vm_area_struct *, struct vm_area_struct *);
131 void unmap_hugepage_range(struct vm_area_struct *,
132 			  unsigned long start, unsigned long end,
133 			  struct folio *, zap_flags_t);
134 void __unmap_hugepage_range(struct mmu_gather *tlb,
135 			  struct vm_area_struct *vma,
136 			  unsigned long start, unsigned long end,
137 			  struct folio *, zap_flags_t zap_flags);
138 void hugetlb_report_meminfo(struct seq_file *);
139 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
140 void hugetlb_show_meminfo_node(int nid);
141 unsigned long hugetlb_total_pages(void);
142 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
143 			unsigned long address, unsigned int flags);
144 #ifdef CONFIG_USERFAULTFD
145 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
146 			     struct vm_area_struct *dst_vma,
147 			     unsigned long dst_addr,
148 			     unsigned long src_addr,
149 			     uffd_flags_t flags,
150 			     struct folio **foliop);
151 #endif /* CONFIG_USERFAULTFD */
152 long hugetlb_reserve_pages(struct inode *inode, long from, long to,
153 			   struct vm_area_desc *desc, vm_flags_t vm_flags);
154 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
155 						long freed);
156 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list);
157 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
158 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
159 				bool *migratable_cleared);
160 void folio_putback_hugetlb(struct folio *folio);
161 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
162 void hugetlb_fix_reserve_counts(struct inode *inode);
163 extern struct mutex *hugetlb_fault_mutex_table;
164 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
165 
166 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
167 		      unsigned long addr, pud_t *pud);
168 bool hugetlbfs_pagecache_present(struct hstate *h,
169 				 struct vm_area_struct *vma,
170 				 unsigned long address);
171 
172 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
173 
174 extern int sysctl_hugetlb_shm_group __read_mostly;
175 extern struct list_head huge_boot_pages[MAX_NUMNODES];
176 
177 void hugetlb_bootmem_alloc(void);
178 bool hugetlb_bootmem_allocated(void);
179 extern nodemask_t hugetlb_bootmem_nodes;
180 void hugetlb_bootmem_set_nodes(void);
181 
182 /* arch callbacks */
183 
184 #ifndef CONFIG_HIGHPTE
185 /*
186  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
187  * which may go down to the lowest PTE level in their huge_pte_offset() and
188  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
189  */
pte_offset_huge(pmd_t * pmd,unsigned long address)190 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
191 {
192 	return pte_offset_kernel(pmd, address);
193 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)194 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
195 				    unsigned long address)
196 {
197 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
198 }
199 #endif
200 
201 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
202 			unsigned long addr, unsigned long sz);
203 /*
204  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
205  * Returns the pte_t* if found, or NULL if the address is not mapped.
206  *
207  * IMPORTANT: we should normally not directly call this function, instead
208  * this is only a common interface to implement arch-specific
209  * walker. Please use hugetlb_walk() instead, because that will attempt to
210  * verify the locking for you.
211  *
212  * Since this function will walk all the pgtable pages (including not only
213  * high-level pgtable page, but also PUD entry that can be unshared
214  * concurrently for VM_SHARED), the caller of this function should be
215  * responsible of its thread safety.  One can follow this rule:
216  *
217  *  (1) For private mappings: pmd unsharing is not possible, so holding the
218  *      mmap_lock for either read or write is sufficient. Most callers
219  *      already hold the mmap_lock, so normally, no special action is
220  *      required.
221  *
222  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
223  *      pgtable page can go away from under us!  It can be done by a pmd
224  *      unshare with a follow up munmap() on the other process), then we
225  *      need either:
226  *
227  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
228  *           won't happen upon the range (it also makes sure the pte_t we
229  *           read is the right and stable one), or,
230  *
231  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
232  *           sure even if unshare happened the racy unmap() will wait until
233  *           i_mmap_rwsem is released.
234  *
235  * Option (2.1) is the safest, which guarantees pte stability from pmd
236  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
237  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
238  * access.
239  */
240 pte_t *huge_pte_offset(struct mm_struct *mm,
241 		       unsigned long addr, unsigned long sz);
242 unsigned long hugetlb_mask_last_page(struct hstate *h);
243 int huge_pmd_unshare(struct mmu_gather *tlb, struct vm_area_struct *vma,
244 		unsigned long addr, pte_t *ptep);
245 void huge_pmd_unshare_flush(struct mmu_gather *tlb, struct vm_area_struct *vma);
246 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 				unsigned long *start, unsigned long *end);
248 
249 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 				unsigned long *begin, unsigned long *end);
251 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 			      struct zap_details *details);
253 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)254 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 				     unsigned long *start, unsigned long *end)
256 {
257 	if (is_vm_hugetlb_page(vma))
258 		__hugetlb_zap_begin(vma, start, end);
259 }
260 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)261 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 				   struct zap_details *details)
263 {
264 	if (is_vm_hugetlb_page(vma))
265 		__hugetlb_zap_end(vma, details);
266 }
267 
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274 void hugetlb_vma_lock_release(struct kref *kref);
275 long hugetlb_change_protection(struct vm_area_struct *vma,
276 		unsigned long address, unsigned long end, pgprot_t newprot,
277 		unsigned long cp_flags);
278 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
279 void fixup_hugetlb_reservations(struct vm_area_struct *vma);
280 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr);
281 int hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
282 
283 #else /* !CONFIG_HUGETLB_PAGE */
284 
hugetlb_dup_vma_private(struct vm_area_struct * vma)285 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
286 {
287 }
288 
clear_vma_resv_huge_pages(struct vm_area_struct * vma)289 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
290 {
291 }
292 
hugetlb_total_pages(void)293 static inline unsigned long hugetlb_total_pages(void)
294 {
295 	return 0;
296 }
297 
hugetlb_folio_mapping_lock_write(struct folio * folio)298 static inline struct address_space *hugetlb_folio_mapping_lock_write(
299 							struct folio *folio)
300 {
301 	return NULL;
302 }
303 
huge_pmd_unshare(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)304 static inline int huge_pmd_unshare(struct mmu_gather *tlb,
305 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
306 {
307 	return 0;
308 }
309 
huge_pmd_unshare_flush(struct mmu_gather * tlb,struct vm_area_struct * vma)310 static inline void huge_pmd_unshare_flush(struct mmu_gather *tlb,
311 		struct vm_area_struct *vma)
312 {
313 }
314 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)315 static inline void adjust_range_if_pmd_sharing_possible(
316 				struct vm_area_struct *vma,
317 				unsigned long *start, unsigned long *end)
318 {
319 }
320 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)321 static inline void hugetlb_zap_begin(
322 				struct vm_area_struct *vma,
323 				unsigned long *start, unsigned long *end)
324 {
325 }
326 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)327 static inline void hugetlb_zap_end(
328 				struct vm_area_struct *vma,
329 				struct zap_details *details)
330 {
331 }
332 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)333 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
334 					  struct mm_struct *src,
335 					  struct vm_area_struct *dst_vma,
336 					  struct vm_area_struct *src_vma)
337 {
338 	BUG();
339 	return 0;
340 }
341 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)342 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
343 					   struct vm_area_struct *new_vma,
344 					   unsigned long old_addr,
345 					   unsigned long new_addr,
346 					   unsigned long len)
347 {
348 	BUG();
349 	return 0;
350 }
351 
hugetlb_report_meminfo(struct seq_file * m)352 static inline void hugetlb_report_meminfo(struct seq_file *m)
353 {
354 }
355 
hugetlb_report_node_meminfo(char * buf,int len,int nid)356 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
357 {
358 	return 0;
359 }
360 
hugetlb_show_meminfo_node(int nid)361 static inline void hugetlb_show_meminfo_node(int nid)
362 {
363 }
364 
hugetlb_vma_lock_read(struct vm_area_struct * vma)365 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
366 {
367 }
368 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)369 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
370 {
371 }
372 
hugetlb_vma_lock_write(struct vm_area_struct * vma)373 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
374 {
375 }
376 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)377 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
378 {
379 }
380 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)381 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
382 {
383 	return 1;
384 }
385 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)386 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
387 {
388 }
389 
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)390 static inline int is_hugepage_only_range(struct mm_struct *mm,
391 					unsigned long addr, unsigned long len)
392 {
393 	return 0;
394 }
395 
396 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)397 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
398 					   struct vm_area_struct *dst_vma,
399 					   unsigned long dst_addr,
400 					   unsigned long src_addr,
401 					   uffd_flags_t flags,
402 					   struct folio **foliop)
403 {
404 	BUG();
405 	return 0;
406 }
407 #endif /* CONFIG_USERFAULTFD */
408 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)409 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
410 					unsigned long sz)
411 {
412 	return NULL;
413 }
414 
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)415 static inline bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
416 {
417 	return false;
418 }
419 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)420 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
421 {
422 	return 0;
423 }
424 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)425 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
426 					bool *migratable_cleared)
427 {
428 	return 0;
429 }
430 
folio_putback_hugetlb(struct folio * folio)431 static inline void folio_putback_hugetlb(struct folio *folio)
432 {
433 }
434 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)435 static inline void move_hugetlb_state(struct folio *old_folio,
436 					struct folio *new_folio, int reason)
437 {
438 }
439 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)440 static inline long hugetlb_change_protection(
441 			struct vm_area_struct *vma, unsigned long address,
442 			unsigned long end, pgprot_t newprot,
443 			unsigned long cp_flags)
444 {
445 	return 0;
446 }
447 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)448 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
449 			struct vm_area_struct *vma, unsigned long start,
450 			unsigned long end, struct folio *folio,
451 			zap_flags_t zap_flags)
452 {
453 	BUG();
454 }
455 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)456 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
457 			struct vm_area_struct *vma, unsigned long address,
458 			unsigned int flags)
459 {
460 	BUG();
461 	return 0;
462 }
463 
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)464 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
465 
fixup_hugetlb_reservations(struct vm_area_struct * vma)466 static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma)
467 {
468 }
469 
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)470 static inline void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) {}
471 
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)472 static inline int hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
473 {
474 	return 0;
475 }
476 
477 #endif /* !CONFIG_HUGETLB_PAGE */
478 
479 #ifndef pgd_write
pgd_write(pgd_t pgd)480 static inline int pgd_write(pgd_t pgd)
481 {
482 	BUG();
483 	return 0;
484 }
485 #endif
486 
487 #define HUGETLB_ANON_FILE "anon_hugepage"
488 
489 enum {
490 	/*
491 	 * The file will be used as an shm file so shmfs accounting rules
492 	 * apply
493 	 */
494 	HUGETLB_SHMFS_INODE     = 1,
495 	/*
496 	 * The file is being created on the internal vfs mount and shmfs
497 	 * accounting rules do not apply
498 	 */
499 	HUGETLB_ANONHUGE_INODE  = 2,
500 };
501 
502 #ifdef CONFIG_HUGETLBFS
503 struct hugetlbfs_sb_info {
504 	long	max_inodes;   /* inodes allowed */
505 	long	free_inodes;  /* inodes free */
506 	spinlock_t	stat_lock;
507 	struct hstate *hstate;
508 	struct hugepage_subpool *spool;
509 	kuid_t	uid;
510 	kgid_t	gid;
511 	umode_t mode;
512 };
513 
HUGETLBFS_SB(struct super_block * sb)514 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
515 {
516 	return sb->s_fs_info;
517 }
518 
519 struct hugetlbfs_inode_info {
520 	struct inode vfs_inode;
521 	unsigned int seals;
522 };
523 
HUGETLBFS_I(struct inode * inode)524 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
525 {
526 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
527 }
528 
529 extern const struct vm_operations_struct hugetlb_vm_ops;
530 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
531 				int creat_flags, int page_size_log);
532 
is_file_hugepages(const struct file * file)533 static inline bool is_file_hugepages(const struct file *file)
534 {
535 	return file->f_op->fop_flags & FOP_HUGE_PAGES;
536 }
537 
hstate_inode(struct inode * i)538 static inline struct hstate *hstate_inode(struct inode *i)
539 {
540 	return HUGETLBFS_SB(i->i_sb)->hstate;
541 }
542 #else /* !CONFIG_HUGETLBFS */
543 
544 #define is_file_hugepages(file)			false
545 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)546 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
547 		int creat_flags, int page_size_log)
548 {
549 	return ERR_PTR(-ENOSYS);
550 }
551 
hstate_inode(struct inode * i)552 static inline struct hstate *hstate_inode(struct inode *i)
553 {
554 	return NULL;
555 }
556 #endif /* !CONFIG_HUGETLBFS */
557 
558 unsigned long
559 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
560 				    unsigned long len, unsigned long pgoff,
561 				    unsigned long flags);
562 
563 /*
564  * huegtlb page specific state flags.  These flags are located in page.private
565  * of the hugetlb head page.  Functions created via the below macros should be
566  * used to manipulate these flags.
567  *
568  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
569  *	allocation time.  Cleared when page is fully instantiated.  Free
570  *	routine checks flag to restore a reservation on error paths.
571  *	Synchronization:  Examined or modified by code that knows it has
572  *	the only reference to page.  i.e. After allocation but before use
573  *	or when the page is being freed.
574  * HPG_migratable  - Set after a newly allocated page is added to the page
575  *	cache and/or page tables.  Indicates the page is a candidate for
576  *	migration.
577  *	Synchronization:  Initially set after new page allocation with no
578  *	locking.  When examined and modified during migration processing
579  *	(isolate, migrate, putback) the hugetlb_lock is held.
580  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
581  *	allocator.  Typically used for migration target pages when no pages
582  *	are available in the pool.  The hugetlb free page path will
583  *	immediately free pages with this flag set to the buddy allocator.
584  *	Synchronization: Can be set after huge page allocation from buddy when
585  *	code knows it has only reference.  All other examinations and
586  *	modifications require hugetlb_lock.
587  * HPG_freed - Set when page is on the free lists.
588  *	Synchronization: hugetlb_lock held for examination and modification.
589  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
590  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
591  *     that is not tracked by raw_hwp_page list.
592  */
593 enum hugetlb_page_flags {
594 	HPG_restore_reserve = 0,
595 	HPG_migratable,
596 	HPG_temporary,
597 	HPG_freed,
598 	HPG_vmemmap_optimized,
599 	HPG_raw_hwp_unreliable,
600 	HPG_cma,
601 	__NR_HPAGEFLAGS,
602 };
603 
604 /*
605  * Macros to create test, set and clear function definitions for
606  * hugetlb specific page flags.
607  */
608 #ifdef CONFIG_HUGETLB_PAGE
609 #define TESTHPAGEFLAG(uname, flname)				\
610 static __always_inline						\
611 bool folio_test_hugetlb_##flname(struct folio *folio)		\
612 	{	void *private = &folio->private;		\
613 		return test_bit(HPG_##flname, private);		\
614 	}
615 
616 #define SETHPAGEFLAG(uname, flname)				\
617 static __always_inline						\
618 void folio_set_hugetlb_##flname(struct folio *folio)		\
619 	{	void *private = &folio->private;		\
620 		set_bit(HPG_##flname, private);			\
621 	}
622 
623 #define CLEARHPAGEFLAG(uname, flname)				\
624 static __always_inline						\
625 void folio_clear_hugetlb_##flname(struct folio *folio)		\
626 	{	void *private = &folio->private;		\
627 		clear_bit(HPG_##flname, private);		\
628 	}
629 #else
630 #define TESTHPAGEFLAG(uname, flname)				\
631 static inline bool						\
632 folio_test_hugetlb_##flname(struct folio *folio)		\
633 	{ return 0; }
634 
635 #define SETHPAGEFLAG(uname, flname)				\
636 static inline void						\
637 folio_set_hugetlb_##flname(struct folio *folio) 		\
638 	{ }
639 
640 #define CLEARHPAGEFLAG(uname, flname)				\
641 static inline void						\
642 folio_clear_hugetlb_##flname(struct folio *folio)		\
643 	{ }
644 #endif
645 
646 #define HPAGEFLAG(uname, flname)				\
647 	TESTHPAGEFLAG(uname, flname)				\
648 	SETHPAGEFLAG(uname, flname)				\
649 	CLEARHPAGEFLAG(uname, flname)				\
650 
651 /*
652  * Create functions associated with hugetlb page flags
653  */
654 HPAGEFLAG(RestoreReserve, restore_reserve)
655 HPAGEFLAG(Migratable, migratable)
656 HPAGEFLAG(Temporary, temporary)
657 HPAGEFLAG(Freed, freed)
658 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
659 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
660 HPAGEFLAG(Cma, cma)
661 
662 #ifdef CONFIG_HUGETLB_PAGE
663 
664 #define HSTATE_NAME_LEN 32
665 /* Defines one hugetlb page size */
666 struct hstate {
667 	struct mutex resize_lock;
668 	struct lock_class_key resize_key;
669 	int next_nid_to_alloc;
670 	int next_nid_to_free;
671 	unsigned int order;
672 	unsigned int demote_order;
673 	unsigned long mask;
674 	unsigned long max_huge_pages;
675 	unsigned long nr_huge_pages;
676 	unsigned long free_huge_pages;
677 	unsigned long resv_huge_pages;
678 	unsigned long surplus_huge_pages;
679 	unsigned long nr_overcommit_huge_pages;
680 	struct list_head hugepage_activelist;
681 	struct list_head hugepage_freelists[MAX_NUMNODES];
682 	unsigned int max_huge_pages_node[MAX_NUMNODES];
683 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
684 	unsigned int free_huge_pages_node[MAX_NUMNODES];
685 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
686 	char name[HSTATE_NAME_LEN];
687 };
688 
689 struct cma;
690 
691 struct huge_bootmem_page {
692 	struct list_head list;
693 	struct hstate *hstate;
694 	unsigned long flags;
695 	struct cma *cma;
696 };
697 
698 #define HUGE_BOOTMEM_HVO		0x0001
699 #define HUGE_BOOTMEM_ZONES_VALID	0x0002
700 #define HUGE_BOOTMEM_CMA		0x0004
701 
702 bool hugetlb_bootmem_page_zones_valid(int nid, struct huge_bootmem_page *m);
703 
704 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list);
705 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn);
706 void wait_for_freed_hugetlb_folios(void);
707 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
708 				unsigned long addr, bool cow_from_owner);
709 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
710 				nodemask_t *nmask, gfp_t gfp_mask,
711 				bool allow_alloc_fallback);
712 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
713 					  nodemask_t *nmask, gfp_t gfp_mask);
714 
715 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
716 			pgoff_t idx);
717 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
718 				unsigned long address, struct folio *folio);
719 
720 /* arch callback */
721 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
722 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
723 bool __init hugetlb_node_alloc_supported(void);
724 
725 void __init hugetlb_add_hstate(unsigned order);
726 bool __init arch_hugetlb_valid_size(unsigned long size);
727 struct hstate *size_to_hstate(unsigned long size);
728 
729 #ifndef HUGE_MAX_HSTATE
730 #define HUGE_MAX_HSTATE 1
731 #endif
732 
733 extern struct hstate hstates[HUGE_MAX_HSTATE];
734 extern unsigned int default_hstate_idx;
735 
736 #define default_hstate (hstates[default_hstate_idx])
737 
subpool_inode(struct inode * inode)738 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
739 {
740 	return HUGETLBFS_SB(inode->i_sb)->spool;
741 }
742 
hugetlb_folio_subpool(struct folio * folio)743 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
744 {
745 	return folio->_hugetlb_subpool;
746 }
747 
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)748 static inline void hugetlb_set_folio_subpool(struct folio *folio,
749 					struct hugepage_subpool *subpool)
750 {
751 	folio->_hugetlb_subpool = subpool;
752 }
753 
hstate_file(struct file * f)754 static inline struct hstate *hstate_file(struct file *f)
755 {
756 	return hstate_inode(file_inode(f));
757 }
758 
hstate_sizelog(int page_size_log)759 static inline struct hstate *hstate_sizelog(int page_size_log)
760 {
761 	if (!page_size_log)
762 		return &default_hstate;
763 
764 	if (page_size_log < BITS_PER_LONG)
765 		return size_to_hstate(1UL << page_size_log);
766 
767 	return NULL;
768 }
769 
hstate_vma(struct vm_area_struct * vma)770 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
771 {
772 	return hstate_file(vma->vm_file);
773 }
774 
huge_page_size(const struct hstate * h)775 static inline unsigned long huge_page_size(const struct hstate *h)
776 {
777 	return (unsigned long)PAGE_SIZE << h->order;
778 }
779 
780 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
781 
782 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
783 
huge_page_mask(struct hstate * h)784 static inline unsigned long huge_page_mask(struct hstate *h)
785 {
786 	return h->mask;
787 }
788 
huge_page_order(struct hstate * h)789 static inline unsigned int huge_page_order(struct hstate *h)
790 {
791 	return h->order;
792 }
793 
huge_page_shift(struct hstate * h)794 static inline unsigned huge_page_shift(struct hstate *h)
795 {
796 	return h->order + PAGE_SHIFT;
797 }
798 
order_is_gigantic(unsigned int order)799 static inline bool order_is_gigantic(unsigned int order)
800 {
801 	return order > MAX_PAGE_ORDER;
802 }
803 
hstate_is_gigantic(struct hstate * h)804 static inline bool hstate_is_gigantic(struct hstate *h)
805 {
806 	return order_is_gigantic(huge_page_order(h));
807 }
808 
pages_per_huge_page(const struct hstate * h)809 static inline unsigned int pages_per_huge_page(const struct hstate *h)
810 {
811 	return 1 << h->order;
812 }
813 
blocks_per_huge_page(struct hstate * h)814 static inline unsigned int blocks_per_huge_page(struct hstate *h)
815 {
816 	return huge_page_size(h) / 512;
817 }
818 
filemap_lock_hugetlb_folio(struct hstate * h,struct address_space * mapping,pgoff_t idx)819 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
820 				struct address_space *mapping, pgoff_t idx)
821 {
822 	return filemap_lock_folio(mapping, idx << huge_page_order(h));
823 }
824 
825 #include <asm/hugetlb.h>
826 
827 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)828 static inline int is_hugepage_only_range(struct mm_struct *mm,
829 					unsigned long addr, unsigned long len)
830 {
831 	return 0;
832 }
833 #define is_hugepage_only_range is_hugepage_only_range
834 #endif
835 
836 #ifndef arch_clear_hugetlb_flags
arch_clear_hugetlb_flags(struct folio * folio)837 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
838 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
839 #endif
840 
841 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)842 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
843 				       vm_flags_t flags)
844 {
845 	return pte_mkhuge(entry);
846 }
847 #endif
848 
849 #ifndef arch_has_huge_bootmem_alloc
850 /*
851  * Some architectures do their own bootmem allocation, so they can't use
852  * early CMA allocation.
853  */
arch_has_huge_bootmem_alloc(void)854 static inline bool arch_has_huge_bootmem_alloc(void)
855 {
856 	return false;
857 }
858 #endif
859 
folio_hstate(struct folio * folio)860 static inline struct hstate *folio_hstate(struct folio *folio)
861 {
862 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
863 	return size_to_hstate(folio_size(folio));
864 }
865 
hstate_index_to_shift(unsigned index)866 static inline unsigned hstate_index_to_shift(unsigned index)
867 {
868 	return hstates[index].order + PAGE_SHIFT;
869 }
870 
hstate_index(struct hstate * h)871 static inline int hstate_index(struct hstate *h)
872 {
873 	return h - hstates;
874 }
875 
876 int dissolve_free_hugetlb_folio(struct folio *folio);
877 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
878 				    unsigned long end_pfn);
879 
880 #ifdef CONFIG_MEMORY_FAILURE
881 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
882 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)883 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
884 {
885 }
886 #endif
887 
888 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
889 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)890 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
891 {
892 	if ((huge_page_shift(h) == PMD_SHIFT) ||
893 		(huge_page_shift(h) == PUD_SHIFT) ||
894 			(huge_page_shift(h) == PGDIR_SHIFT))
895 		return true;
896 	else
897 		return false;
898 }
899 #endif
900 #else
arch_hugetlb_migration_supported(struct hstate * h)901 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
902 {
903 	return false;
904 }
905 #endif
906 
hugepage_migration_supported(struct hstate * h)907 static inline bool hugepage_migration_supported(struct hstate *h)
908 {
909 	return arch_hugetlb_migration_supported(h);
910 }
911 
912 /*
913  * Movability check is different as compared to migration check.
914  * It determines whether or not a huge page should be placed on
915  * movable zone or not. Movability of any huge page should be
916  * required only if huge page size is supported for migration.
917  * There won't be any reason for the huge page to be movable if
918  * it is not migratable to start with. Also the size of the huge
919  * page should be large enough to be placed under a movable zone
920  * and still feasible enough to be migratable. Just the presence
921  * in movable zone does not make the migration feasible.
922  *
923  * So even though large huge page sizes like the gigantic ones
924  * are migratable they should not be movable because its not
925  * feasible to migrate them from movable zone.
926  */
hugepage_movable_supported(struct hstate * h)927 static inline bool hugepage_movable_supported(struct hstate *h)
928 {
929 	if (!hugepage_migration_supported(h))
930 		return false;
931 
932 	if (hstate_is_gigantic(h))
933 		return false;
934 	return true;
935 }
936 
937 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)938 static inline gfp_t htlb_alloc_mask(struct hstate *h)
939 {
940 	gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
941 
942 	gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
943 
944 	return gfp;
945 }
946 
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)947 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
948 {
949 	gfp_t modified_mask = htlb_alloc_mask(h);
950 
951 	/* Some callers might want to enforce node */
952 	modified_mask |= (gfp_mask & __GFP_THISNODE);
953 
954 	modified_mask |= (gfp_mask & __GFP_NOWARN);
955 
956 	return modified_mask;
957 }
958 
htlb_allow_alloc_fallback(int reason)959 static inline bool htlb_allow_alloc_fallback(int reason)
960 {
961 	bool allowed_fallback = false;
962 
963 	/*
964 	 * Note: the memory offline, memory failure and migration syscalls will
965 	 * be allowed to fallback to other nodes due to lack of a better chioce,
966 	 * that might break the per-node hugetlb pool. While other cases will
967 	 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
968 	 */
969 	switch (reason) {
970 	case MR_MEMORY_HOTPLUG:
971 	case MR_MEMORY_FAILURE:
972 	case MR_SYSCALL:
973 	case MR_MEMPOLICY_MBIND:
974 		allowed_fallback = true;
975 		break;
976 	default:
977 		break;
978 	}
979 
980 	return allowed_fallback;
981 }
982 
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)983 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
984 					   struct mm_struct *mm, pte_t *pte)
985 {
986 	const unsigned long size = huge_page_size(h);
987 
988 	VM_WARN_ON(size == PAGE_SIZE);
989 
990 	/*
991 	 * hugetlb must use the exact same PT locks as core-mm page table
992 	 * walkers would. When modifying a PTE table, hugetlb must take the
993 	 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
994 	 * PT lock etc.
995 	 *
996 	 * The expectation is that any hugetlb folio smaller than a PMD is
997 	 * always mapped into a single PTE table and that any hugetlb folio
998 	 * smaller than a PUD (but at least as big as a PMD) is always mapped
999 	 * into a single PMD table.
1000 	 *
1001 	 * If that does not hold for an architecture, then that architecture
1002 	 * must disable split PT locks such that all *_lockptr() functions
1003 	 * will give us the same result: the per-MM PT lock.
1004 	 *
1005 	 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
1006 	 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
1007 	 * and core-mm would use pmd_lockptr(). However, in such configurations
1008 	 * split PMD locks are disabled -- they don't make sense on a single
1009 	 * PGDIR page table -- and the end result is the same.
1010 	 */
1011 	if (size >= PUD_SIZE)
1012 		return pud_lockptr(mm, (pud_t *) pte);
1013 	else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
1014 		return pmd_lockptr(mm, (pmd_t *) pte);
1015 	/* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
1016 	return ptep_lockptr(mm, pte);
1017 }
1018 
1019 #ifndef hugepages_supported
1020 /*
1021  * Some platform decide whether they support huge pages at boot
1022  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
1023  * when there is no such support
1024  */
1025 #define hugepages_supported() (HPAGE_SHIFT != 0)
1026 #endif
1027 
1028 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
1029 
hugetlb_count_init(struct mm_struct * mm)1030 static inline void hugetlb_count_init(struct mm_struct *mm)
1031 {
1032 	atomic_long_set(&mm->hugetlb_usage, 0);
1033 }
1034 
hugetlb_count_add(long l,struct mm_struct * mm)1035 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
1036 {
1037 	atomic_long_add(l, &mm->hugetlb_usage);
1038 }
1039 
hugetlb_count_sub(long l,struct mm_struct * mm)1040 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1041 {
1042 	atomic_long_sub(l, &mm->hugetlb_usage);
1043 }
1044 
1045 #ifndef huge_ptep_modify_prot_start
1046 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1047 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1048 						unsigned long addr, pte_t *ptep)
1049 {
1050 	unsigned long psize = huge_page_size(hstate_vma(vma));
1051 
1052 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
1053 }
1054 #endif
1055 
1056 #ifndef huge_ptep_modify_prot_commit
1057 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1058 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1059 						unsigned long addr, pte_t *ptep,
1060 						pte_t old_pte, pte_t pte)
1061 {
1062 	unsigned long psize = huge_page_size(hstate_vma(vma));
1063 
1064 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1065 }
1066 #endif
1067 
1068 #ifdef CONFIG_NUMA
1069 void hugetlb_register_node(struct node *node);
1070 void hugetlb_unregister_node(struct node *node);
1071 #endif
1072 
1073 /*
1074  * Check if a given raw @page in a hugepage is HWPOISON.
1075  */
1076 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1077 
huge_page_mask_align(struct file * file)1078 static inline unsigned long huge_page_mask_align(struct file *file)
1079 {
1080 	return PAGE_MASK & ~huge_page_mask(hstate_file(file));
1081 }
1082 
1083 #else	/* CONFIG_HUGETLB_PAGE */
1084 struct hstate {};
1085 
1086 static inline unsigned long huge_page_mask_align(struct file *file)
1087 {
1088 	return 0;
1089 }
1090 
1091 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1092 {
1093 	return NULL;
1094 }
1095 
1096 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1097 				struct address_space *mapping, pgoff_t idx)
1098 {
1099 	return NULL;
1100 }
1101 
1102 static inline int isolate_or_dissolve_huge_folio(struct folio *folio,
1103 						struct list_head *list)
1104 {
1105 	return -ENOMEM;
1106 }
1107 
1108 static inline int replace_free_hugepage_folios(unsigned long start_pfn,
1109 		unsigned long end_pfn)
1110 {
1111 	return 0;
1112 }
1113 
1114 static inline void wait_for_freed_hugetlb_folios(void)
1115 {
1116 }
1117 
1118 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1119 					   unsigned long addr,
1120 					   bool cow_from_owner)
1121 {
1122 	return NULL;
1123 }
1124 
1125 static inline struct folio *
1126 alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1127 			    nodemask_t *nmask, gfp_t gfp_mask)
1128 {
1129 	return NULL;
1130 }
1131 
1132 static inline struct folio *
1133 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1134 			nodemask_t *nmask, gfp_t gfp_mask,
1135 			bool allow_alloc_fallback)
1136 {
1137 	return NULL;
1138 }
1139 
1140 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1141 {
1142 	return 0;
1143 }
1144 
1145 static inline struct hstate *hstate_file(struct file *f)
1146 {
1147 	return NULL;
1148 }
1149 
1150 static inline struct hstate *hstate_sizelog(int page_size_log)
1151 {
1152 	return NULL;
1153 }
1154 
1155 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1156 {
1157 	return NULL;
1158 }
1159 
1160 static inline struct hstate *folio_hstate(struct folio *folio)
1161 {
1162 	return NULL;
1163 }
1164 
1165 static inline struct hstate *size_to_hstate(unsigned long size)
1166 {
1167 	return NULL;
1168 }
1169 
1170 static inline unsigned long huge_page_size(struct hstate *h)
1171 {
1172 	return PAGE_SIZE;
1173 }
1174 
1175 static inline unsigned long huge_page_mask(struct hstate *h)
1176 {
1177 	return PAGE_MASK;
1178 }
1179 
1180 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1181 {
1182 	return PAGE_SIZE;
1183 }
1184 
1185 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1186 {
1187 	return PAGE_SIZE;
1188 }
1189 
1190 static inline unsigned int huge_page_order(struct hstate *h)
1191 {
1192 	return 0;
1193 }
1194 
1195 static inline unsigned int huge_page_shift(struct hstate *h)
1196 {
1197 	return PAGE_SHIFT;
1198 }
1199 
1200 static inline bool hstate_is_gigantic(struct hstate *h)
1201 {
1202 	return false;
1203 }
1204 
1205 static inline unsigned int pages_per_huge_page(struct hstate *h)
1206 {
1207 	return 1;
1208 }
1209 
1210 static inline unsigned hstate_index_to_shift(unsigned index)
1211 {
1212 	return 0;
1213 }
1214 
1215 static inline int hstate_index(struct hstate *h)
1216 {
1217 	return 0;
1218 }
1219 
1220 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1221 {
1222 	return 0;
1223 }
1224 
1225 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1226 					   unsigned long end_pfn)
1227 {
1228 	return 0;
1229 }
1230 
1231 static inline bool hugepage_migration_supported(struct hstate *h)
1232 {
1233 	return false;
1234 }
1235 
1236 static inline bool hugepage_movable_supported(struct hstate *h)
1237 {
1238 	return false;
1239 }
1240 
1241 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1242 {
1243 	return 0;
1244 }
1245 
1246 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1247 {
1248 	return 0;
1249 }
1250 
1251 static inline bool htlb_allow_alloc_fallback(int reason)
1252 {
1253 	return false;
1254 }
1255 
1256 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1257 					   struct mm_struct *mm, pte_t *pte)
1258 {
1259 	return &mm->page_table_lock;
1260 }
1261 
1262 static inline void hugetlb_count_init(struct mm_struct *mm)
1263 {
1264 }
1265 
1266 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1267 {
1268 }
1269 
1270 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1271 {
1272 }
1273 
1274 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1275 					  unsigned long addr, pte_t *ptep)
1276 {
1277 #ifdef CONFIG_MMU
1278 	return ptep_get(ptep);
1279 #else
1280 	return *ptep;
1281 #endif
1282 }
1283 
1284 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1285 				   pte_t *ptep, pte_t pte, unsigned long sz)
1286 {
1287 }
1288 
1289 static inline void hugetlb_register_node(struct node *node)
1290 {
1291 }
1292 
1293 static inline void hugetlb_unregister_node(struct node *node)
1294 {
1295 }
1296 
1297 static inline bool hugetlbfs_pagecache_present(
1298     struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1299 {
1300 	return false;
1301 }
1302 
1303 static inline void hugetlb_bootmem_alloc(void)
1304 {
1305 }
1306 
1307 static inline bool hugetlb_bootmem_allocated(void)
1308 {
1309 	return false;
1310 }
1311 #endif	/* CONFIG_HUGETLB_PAGE */
1312 
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1313 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1314 					struct mm_struct *mm, pte_t *pte)
1315 {
1316 	spinlock_t *ptl;
1317 
1318 	ptl = huge_pte_lockptr(h, mm, pte);
1319 	spin_lock(ptl);
1320 	return ptl;
1321 }
1322 
1323 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1324 extern void __init hugetlb_cma_reserve(int order);
1325 #else
hugetlb_cma_reserve(int order)1326 static inline __init void hugetlb_cma_reserve(int order)
1327 {
1328 }
1329 #endif
1330 
1331 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
hugetlb_pmd_shared(pte_t * pte)1332 static inline bool hugetlb_pmd_shared(pte_t *pte)
1333 {
1334 	return ptdesc_pmd_is_shared(virt_to_ptdesc(pte));
1335 }
1336 #else
hugetlb_pmd_shared(pte_t * pte)1337 static inline bool hugetlb_pmd_shared(pte_t *pte)
1338 {
1339 	return false;
1340 }
1341 #endif
1342 
1343 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1344 
1345 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1346 /*
1347  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1348  * implement this.
1349  */
1350 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1351 #endif
1352 
__vma_shareable_lock(struct vm_area_struct * vma)1353 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1354 {
1355 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1356 }
1357 
1358 bool __vma_private_lock(struct vm_area_struct *vma);
1359 
1360 /*
1361  * Safe version of huge_pte_offset() to check the locks.  See comments
1362  * above huge_pte_offset().
1363  */
1364 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1365 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1366 {
1367 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1368 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1369 
1370 	/*
1371 	 * If pmd sharing possible, locking needed to safely walk the
1372 	 * hugetlb pgtables.  More information can be found at the comment
1373 	 * above huge_pte_offset() in the same file.
1374 	 *
1375 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1376 	 */
1377 	if (__vma_shareable_lock(vma))
1378 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1379 			     !lockdep_is_held(
1380 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1381 #endif
1382 	return huge_pte_offset(vma->vm_mm, addr, sz);
1383 }
1384 
1385 #endif /* _LINUX_HUGETLB_H */
1386