1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Per core/cpu state
4 *
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/debugreg.h>
21 #include <asm/hardirq.h>
22 #include <asm/intel-family.h>
23 #include <asm/intel_pt.h>
24 #include <asm/apic.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/msr.h>
27
28 #include "../perf_event.h"
29
30 /*
31 * Intel PerfMon, used on Core and later.
32 */
33 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
34 {
35 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
36 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
37 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
38 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
39 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
40 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
41 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
42 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
43 };
44
45 static struct event_constraint intel_core_event_constraints[] __read_mostly =
46 {
47 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
48 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
49 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
50 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
51 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
52 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
53 EVENT_CONSTRAINT_END
54 };
55
56 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
57 {
58 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
59 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
60 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
61 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
62 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
63 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
64 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
65 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
66 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
67 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
68 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
69 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
70 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
71 EVENT_CONSTRAINT_END
72 };
73
74 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
75 {
76 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
77 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
78 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
79 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
80 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
81 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
82 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
83 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
84 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
85 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
86 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
87 EVENT_CONSTRAINT_END
88 };
89
90 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
91 {
92 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
93 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
94 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
95 EVENT_EXTRA_END
96 };
97
98 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
99 {
100 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
101 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
102 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
103 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
104 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
105 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
106 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
107 EVENT_CONSTRAINT_END
108 };
109
110 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
111 {
112 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
113 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
114 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
119 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
120 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
121 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
122 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
123 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
124
125 /*
126 * When HT is off these events can only run on the bottom 4 counters
127 * When HT is on, they are impacted by the HT bug and require EXCL access
128 */
129 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
130 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
131 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
132 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
133
134 EVENT_CONSTRAINT_END
135 };
136
137 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
138 {
139 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
140 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
141 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
142 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
144 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
145 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
147 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
149 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
150 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
151 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
152
153 /*
154 * When HT is off these events can only run on the bottom 4 counters
155 * When HT is on, they are impacted by the HT bug and require EXCL access
156 */
157 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
158 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
159 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
160 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
161
162 EVENT_CONSTRAINT_END
163 };
164
165 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
166 {
167 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
168 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
169 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
170 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
171 EVENT_EXTRA_END
172 };
173
174 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
175 {
176 EVENT_CONSTRAINT_END
177 };
178
179 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
180 {
181 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
182 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
183 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184 EVENT_CONSTRAINT_END
185 };
186
187 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
188 {
189 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
190 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
191 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
192 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
193 FIXED_EVENT_CONSTRAINT(0x0500, 4),
194 FIXED_EVENT_CONSTRAINT(0x0600, 5),
195 FIXED_EVENT_CONSTRAINT(0x0700, 6),
196 FIXED_EVENT_CONSTRAINT(0x0800, 7),
197 FIXED_EVENT_CONSTRAINT(0x0900, 8),
198 FIXED_EVENT_CONSTRAINT(0x0a00, 9),
199 FIXED_EVENT_CONSTRAINT(0x0b00, 10),
200 FIXED_EVENT_CONSTRAINT(0x0c00, 11),
201 FIXED_EVENT_CONSTRAINT(0x0d00, 12),
202 FIXED_EVENT_CONSTRAINT(0x0e00, 13),
203 FIXED_EVENT_CONSTRAINT(0x0f00, 14),
204 FIXED_EVENT_CONSTRAINT(0x1000, 15),
205 EVENT_CONSTRAINT_END
206 };
207
208 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
209 {
210 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
211 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
212 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
213 EVENT_CONSTRAINT_END
214 };
215
216 static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
217 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
218 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
219 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
220 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
221 EVENT_CONSTRAINT_END
222 };
223
224 static struct event_constraint intel_skt_event_constraints[] __read_mostly = {
225 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
226 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
227 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
228 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
229 FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */
230 FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */
231 FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */
232 EVENT_CONSTRAINT_END
233 };
234
235 static struct event_constraint intel_skl_event_constraints[] = {
236 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
237 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
238 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
239 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
240
241 /*
242 * when HT is off, these can only run on the bottom 4 counters
243 */
244 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
245 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
246 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
247 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
248 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
249
250 EVENT_CONSTRAINT_END
251 };
252
253 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
254 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
255 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
256 EVENT_EXTRA_END
257 };
258
259 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
260 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
261 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
262 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
263 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
264 EVENT_EXTRA_END
265 };
266
267 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
268 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
269 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
270 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
271 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
272 EVENT_EXTRA_END
273 };
274
275 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
276 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
277 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
278 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
279 /*
280 * Note the low 8 bits eventsel code is not a continuous field, containing
281 * some #GPing bits. These are masked out.
282 */
283 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
284 EVENT_EXTRA_END
285 };
286
287 static struct event_constraint intel_icl_event_constraints[] = {
288 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
289 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */
290 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
291 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
292 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
293 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
294 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
295 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
296 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
297 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
298 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
299 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
300 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
301 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
302 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
303 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
304 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
305 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
306 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
307 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
308 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
309 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
310 INTEL_EVENT_CONSTRAINT(0xef, 0xf),
311 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
312 EVENT_CONSTRAINT_END
313 };
314
315 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
316 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
317 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
318 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
319 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
320 EVENT_EXTRA_END
321 };
322
323 static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
324 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
325 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
326 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
327 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
328 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
329 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
330 EVENT_EXTRA_END
331 };
332
333 static struct event_constraint intel_glc_event_constraints[] = {
334 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
335 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
336 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
337 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
338 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
339 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
340 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
341 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
342 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
343 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
344 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
345 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
346 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
347 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
348
349 INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
350 INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
351 /*
352 * Generally event codes < 0x90 are restricted to counters 0-3.
353 * The 0x2E and 0x3C are exception, which has no restriction.
354 */
355 INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
356
357 INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
358 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
359 INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
360 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
361 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
362 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
363 INTEL_EVENT_CONSTRAINT(0xce, 0x1),
364 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
365 /*
366 * Generally event codes >= 0x90 are likely to have no restrictions.
367 * The exception are defined as above.
368 */
369 INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
370
371 EVENT_CONSTRAINT_END
372 };
373
374 static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
375 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
376 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
377 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
378 INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
379 INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
380 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
381 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
382 EVENT_EXTRA_END
383 };
384
385 static struct event_constraint intel_lnc_event_constraints[] = {
386 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
387 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
388 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
389 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
390 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
391 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
392 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
393 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
394 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
395 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
396 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
397 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
398 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
399 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
400
401 INTEL_EVENT_CONSTRAINT(0x20, 0xf),
402
403 INTEL_UEVENT_CONSTRAINT(0x012a, 0xf),
404 INTEL_UEVENT_CONSTRAINT(0x012b, 0xf),
405 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4),
406 INTEL_UEVENT_CONSTRAINT(0x0175, 0x4),
407
408 INTEL_EVENT_CONSTRAINT(0x2e, 0x3ff),
409 INTEL_EVENT_CONSTRAINT(0x3c, 0x3ff),
410
411 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
412 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
413 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
414 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
415 INTEL_UEVENT_CONSTRAINT(0x10a4, 0x1),
416 INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8),
417 INTEL_UEVENT_CONSTRAINT(0x01cd, 0x3fc),
418 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3),
419
420 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
421
422 INTEL_UEVENT_CONSTRAINT(0x00e0, 0xf),
423
424 EVENT_CONSTRAINT_END
425 };
426
427 static struct extra_reg intel_lnc_extra_regs[] __read_mostly = {
428 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0xfffffffffffull, RSP_0),
429 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0xfffffffffffull, RSP_1),
430 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
431 INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
432 INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
433 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE),
434 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
435 EVENT_EXTRA_END
436 };
437
438 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
439 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
440 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
441
442 static struct attribute *nhm_mem_events_attrs[] = {
443 EVENT_PTR(mem_ld_nhm),
444 NULL,
445 };
446
447 /*
448 * topdown events for Intel Core CPUs.
449 *
450 * The events are all in slots, which is a free slot in a 4 wide
451 * pipeline. Some events are already reported in slots, for cycle
452 * events we multiply by the pipeline width (4).
453 *
454 * With Hyper Threading on, topdown metrics are either summed or averaged
455 * between the threads of a core: (count_t0 + count_t1).
456 *
457 * For the average case the metric is always scaled to pipeline width,
458 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
459 */
460
461 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
462 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
463 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
464 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
465 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
466 "event=0xe,umask=0x1"); /* uops_issued.any */
467 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
468 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
469 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
470 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
471 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
472 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
473 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
474 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
475 "4", "2");
476
477 EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
478 EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
479 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
480 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
481 EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
482 EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
483 EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
484 EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
485 EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
486
487 static struct attribute *snb_events_attrs[] = {
488 EVENT_PTR(td_slots_issued),
489 EVENT_PTR(td_slots_retired),
490 EVENT_PTR(td_fetch_bubbles),
491 EVENT_PTR(td_total_slots),
492 EVENT_PTR(td_total_slots_scale),
493 EVENT_PTR(td_recovery_bubbles),
494 EVENT_PTR(td_recovery_bubbles_scale),
495 NULL,
496 };
497
498 static struct attribute *snb_mem_events_attrs[] = {
499 EVENT_PTR(mem_ld_snb),
500 EVENT_PTR(mem_st_snb),
501 NULL,
502 };
503
504 static struct event_constraint intel_hsw_event_constraints[] = {
505 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
506 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
507 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
508 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
509 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
510 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
511 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
512 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
513 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
514 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
515 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
516 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
517
518 /*
519 * When HT is off these events can only run on the bottom 4 counters
520 * When HT is on, they are impacted by the HT bug and require EXCL access
521 */
522 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
523 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
524 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
525 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
526
527 EVENT_CONSTRAINT_END
528 };
529
530 static struct event_constraint intel_bdw_event_constraints[] = {
531 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
532 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
533 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
534 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
535 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
536 /*
537 * when HT is off, these can only run on the bottom 4 counters
538 */
539 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
540 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
541 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
542 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
543 EVENT_CONSTRAINT_END
544 };
545
intel_pmu_event_map(int hw_event)546 static u64 intel_pmu_event_map(int hw_event)
547 {
548 return intel_perfmon_event_map[hw_event];
549 }
550
551 static __initconst const u64 glc_hw_cache_event_ids
552 [PERF_COUNT_HW_CACHE_MAX]
553 [PERF_COUNT_HW_CACHE_OP_MAX]
554 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
555 {
556 [ C(L1D ) ] = {
557 [ C(OP_READ) ] = {
558 [ C(RESULT_ACCESS) ] = 0x81d0,
559 [ C(RESULT_MISS) ] = 0xe124,
560 },
561 [ C(OP_WRITE) ] = {
562 [ C(RESULT_ACCESS) ] = 0x82d0,
563 },
564 },
565 [ C(L1I ) ] = {
566 [ C(OP_READ) ] = {
567 [ C(RESULT_MISS) ] = 0xe424,
568 },
569 [ C(OP_WRITE) ] = {
570 [ C(RESULT_ACCESS) ] = -1,
571 [ C(RESULT_MISS) ] = -1,
572 },
573 },
574 [ C(LL ) ] = {
575 [ C(OP_READ) ] = {
576 [ C(RESULT_ACCESS) ] = 0x12a,
577 [ C(RESULT_MISS) ] = 0x12a,
578 },
579 [ C(OP_WRITE) ] = {
580 [ C(RESULT_ACCESS) ] = 0x12a,
581 [ C(RESULT_MISS) ] = 0x12a,
582 },
583 },
584 [ C(DTLB) ] = {
585 [ C(OP_READ) ] = {
586 [ C(RESULT_ACCESS) ] = 0x81d0,
587 [ C(RESULT_MISS) ] = 0xe12,
588 },
589 [ C(OP_WRITE) ] = {
590 [ C(RESULT_ACCESS) ] = 0x82d0,
591 [ C(RESULT_MISS) ] = 0xe13,
592 },
593 },
594 [ C(ITLB) ] = {
595 [ C(OP_READ) ] = {
596 [ C(RESULT_ACCESS) ] = -1,
597 [ C(RESULT_MISS) ] = 0xe11,
598 },
599 [ C(OP_WRITE) ] = {
600 [ C(RESULT_ACCESS) ] = -1,
601 [ C(RESULT_MISS) ] = -1,
602 },
603 [ C(OP_PREFETCH) ] = {
604 [ C(RESULT_ACCESS) ] = -1,
605 [ C(RESULT_MISS) ] = -1,
606 },
607 },
608 [ C(BPU ) ] = {
609 [ C(OP_READ) ] = {
610 [ C(RESULT_ACCESS) ] = 0x4c4,
611 [ C(RESULT_MISS) ] = 0x4c5,
612 },
613 [ C(OP_WRITE) ] = {
614 [ C(RESULT_ACCESS) ] = -1,
615 [ C(RESULT_MISS) ] = -1,
616 },
617 [ C(OP_PREFETCH) ] = {
618 [ C(RESULT_ACCESS) ] = -1,
619 [ C(RESULT_MISS) ] = -1,
620 },
621 },
622 [ C(NODE) ] = {
623 [ C(OP_READ) ] = {
624 [ C(RESULT_ACCESS) ] = 0x12a,
625 [ C(RESULT_MISS) ] = 0x12a,
626 },
627 },
628 };
629
630 static __initconst const u64 glc_hw_cache_extra_regs
631 [PERF_COUNT_HW_CACHE_MAX]
632 [PERF_COUNT_HW_CACHE_OP_MAX]
633 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
634 {
635 [ C(LL ) ] = {
636 [ C(OP_READ) ] = {
637 [ C(RESULT_ACCESS) ] = 0x10001,
638 [ C(RESULT_MISS) ] = 0x3fbfc00001,
639 },
640 [ C(OP_WRITE) ] = {
641 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
642 [ C(RESULT_MISS) ] = 0x3f3fc00002,
643 },
644 },
645 [ C(NODE) ] = {
646 [ C(OP_READ) ] = {
647 [ C(RESULT_ACCESS) ] = 0x10c000001,
648 [ C(RESULT_MISS) ] = 0x3fb3000001,
649 },
650 },
651 };
652
653 /*
654 * Notes on the events:
655 * - data reads do not include code reads (comparable to earlier tables)
656 * - data counts include speculative execution (except L1 write, dtlb, bpu)
657 * - remote node access includes remote memory, remote cache, remote mmio.
658 * - prefetches are not included in the counts.
659 * - icache miss does not include decoded icache
660 */
661
662 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
663 #define SKL_DEMAND_RFO BIT_ULL(1)
664 #define SKL_ANY_RESPONSE BIT_ULL(16)
665 #define SKL_SUPPLIER_NONE BIT_ULL(17)
666 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
667 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
668 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
669 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
670 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
671 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
672 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
673 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
674 #define SKL_SPL_HIT BIT_ULL(30)
675 #define SKL_SNOOP_NONE BIT_ULL(31)
676 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
677 #define SKL_SNOOP_MISS BIT_ULL(33)
678 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
679 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
680 #define SKL_SNOOP_HITM BIT_ULL(36)
681 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
682 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
683 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
684 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
685 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
686 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
687 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
688 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
689 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
690 SKL_SNOOP_HITM|SKL_SPL_HIT)
691 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
692 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
693 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
694 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
695 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
696
697 static __initconst const u64 skl_hw_cache_event_ids
698 [PERF_COUNT_HW_CACHE_MAX]
699 [PERF_COUNT_HW_CACHE_OP_MAX]
700 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
701 {
702 [ C(L1D ) ] = {
703 [ C(OP_READ) ] = {
704 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
705 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
706 },
707 [ C(OP_WRITE) ] = {
708 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
709 [ C(RESULT_MISS) ] = 0x0,
710 },
711 [ C(OP_PREFETCH) ] = {
712 [ C(RESULT_ACCESS) ] = 0x0,
713 [ C(RESULT_MISS) ] = 0x0,
714 },
715 },
716 [ C(L1I ) ] = {
717 [ C(OP_READ) ] = {
718 [ C(RESULT_ACCESS) ] = 0x0,
719 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
720 },
721 [ C(OP_WRITE) ] = {
722 [ C(RESULT_ACCESS) ] = -1,
723 [ C(RESULT_MISS) ] = -1,
724 },
725 [ C(OP_PREFETCH) ] = {
726 [ C(RESULT_ACCESS) ] = 0x0,
727 [ C(RESULT_MISS) ] = 0x0,
728 },
729 },
730 [ C(LL ) ] = {
731 [ C(OP_READ) ] = {
732 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
733 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
734 },
735 [ C(OP_WRITE) ] = {
736 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
737 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
738 },
739 [ C(OP_PREFETCH) ] = {
740 [ C(RESULT_ACCESS) ] = 0x0,
741 [ C(RESULT_MISS) ] = 0x0,
742 },
743 },
744 [ C(DTLB) ] = {
745 [ C(OP_READ) ] = {
746 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
747 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
748 },
749 [ C(OP_WRITE) ] = {
750 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
751 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
752 },
753 [ C(OP_PREFETCH) ] = {
754 [ C(RESULT_ACCESS) ] = 0x0,
755 [ C(RESULT_MISS) ] = 0x0,
756 },
757 },
758 [ C(ITLB) ] = {
759 [ C(OP_READ) ] = {
760 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
761 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
762 },
763 [ C(OP_WRITE) ] = {
764 [ C(RESULT_ACCESS) ] = -1,
765 [ C(RESULT_MISS) ] = -1,
766 },
767 [ C(OP_PREFETCH) ] = {
768 [ C(RESULT_ACCESS) ] = -1,
769 [ C(RESULT_MISS) ] = -1,
770 },
771 },
772 [ C(BPU ) ] = {
773 [ C(OP_READ) ] = {
774 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
775 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
776 },
777 [ C(OP_WRITE) ] = {
778 [ C(RESULT_ACCESS) ] = -1,
779 [ C(RESULT_MISS) ] = -1,
780 },
781 [ C(OP_PREFETCH) ] = {
782 [ C(RESULT_ACCESS) ] = -1,
783 [ C(RESULT_MISS) ] = -1,
784 },
785 },
786 [ C(NODE) ] = {
787 [ C(OP_READ) ] = {
788 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
789 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
790 },
791 [ C(OP_WRITE) ] = {
792 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
793 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
794 },
795 [ C(OP_PREFETCH) ] = {
796 [ C(RESULT_ACCESS) ] = 0x0,
797 [ C(RESULT_MISS) ] = 0x0,
798 },
799 },
800 };
801
802 static __initconst const u64 skl_hw_cache_extra_regs
803 [PERF_COUNT_HW_CACHE_MAX]
804 [PERF_COUNT_HW_CACHE_OP_MAX]
805 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
806 {
807 [ C(LL ) ] = {
808 [ C(OP_READ) ] = {
809 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
810 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
811 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
812 SKL_L3_MISS|SKL_ANY_SNOOP|
813 SKL_SUPPLIER_NONE,
814 },
815 [ C(OP_WRITE) ] = {
816 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
817 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
818 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
819 SKL_L3_MISS|SKL_ANY_SNOOP|
820 SKL_SUPPLIER_NONE,
821 },
822 [ C(OP_PREFETCH) ] = {
823 [ C(RESULT_ACCESS) ] = 0x0,
824 [ C(RESULT_MISS) ] = 0x0,
825 },
826 },
827 [ C(NODE) ] = {
828 [ C(OP_READ) ] = {
829 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
830 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
831 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
832 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
833 },
834 [ C(OP_WRITE) ] = {
835 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
836 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
837 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
838 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
839 },
840 [ C(OP_PREFETCH) ] = {
841 [ C(RESULT_ACCESS) ] = 0x0,
842 [ C(RESULT_MISS) ] = 0x0,
843 },
844 },
845 };
846
847 #define SNB_DMND_DATA_RD (1ULL << 0)
848 #define SNB_DMND_RFO (1ULL << 1)
849 #define SNB_DMND_IFETCH (1ULL << 2)
850 #define SNB_DMND_WB (1ULL << 3)
851 #define SNB_PF_DATA_RD (1ULL << 4)
852 #define SNB_PF_RFO (1ULL << 5)
853 #define SNB_PF_IFETCH (1ULL << 6)
854 #define SNB_LLC_DATA_RD (1ULL << 7)
855 #define SNB_LLC_RFO (1ULL << 8)
856 #define SNB_LLC_IFETCH (1ULL << 9)
857 #define SNB_BUS_LOCKS (1ULL << 10)
858 #define SNB_STRM_ST (1ULL << 11)
859 #define SNB_OTHER (1ULL << 15)
860 #define SNB_RESP_ANY (1ULL << 16)
861 #define SNB_NO_SUPP (1ULL << 17)
862 #define SNB_LLC_HITM (1ULL << 18)
863 #define SNB_LLC_HITE (1ULL << 19)
864 #define SNB_LLC_HITS (1ULL << 20)
865 #define SNB_LLC_HITF (1ULL << 21)
866 #define SNB_LOCAL (1ULL << 22)
867 #define SNB_REMOTE (0xffULL << 23)
868 #define SNB_SNP_NONE (1ULL << 31)
869 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
870 #define SNB_SNP_MISS (1ULL << 33)
871 #define SNB_NO_FWD (1ULL << 34)
872 #define SNB_SNP_FWD (1ULL << 35)
873 #define SNB_HITM (1ULL << 36)
874 #define SNB_NON_DRAM (1ULL << 37)
875
876 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
877 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
878 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
879
880 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
881 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
882 SNB_HITM)
883
884 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
885 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
886
887 #define SNB_L3_ACCESS SNB_RESP_ANY
888 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
889
890 static __initconst const u64 snb_hw_cache_extra_regs
891 [PERF_COUNT_HW_CACHE_MAX]
892 [PERF_COUNT_HW_CACHE_OP_MAX]
893 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
894 {
895 [ C(LL ) ] = {
896 [ C(OP_READ) ] = {
897 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
898 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
899 },
900 [ C(OP_WRITE) ] = {
901 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
902 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
903 },
904 [ C(OP_PREFETCH) ] = {
905 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
906 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
907 },
908 },
909 [ C(NODE) ] = {
910 [ C(OP_READ) ] = {
911 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
912 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
913 },
914 [ C(OP_WRITE) ] = {
915 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
916 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
917 },
918 [ C(OP_PREFETCH) ] = {
919 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
920 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
921 },
922 },
923 };
924
925 static __initconst const u64 snb_hw_cache_event_ids
926 [PERF_COUNT_HW_CACHE_MAX]
927 [PERF_COUNT_HW_CACHE_OP_MAX]
928 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
929 {
930 [ C(L1D) ] = {
931 [ C(OP_READ) ] = {
932 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
933 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
934 },
935 [ C(OP_WRITE) ] = {
936 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
937 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
938 },
939 [ C(OP_PREFETCH) ] = {
940 [ C(RESULT_ACCESS) ] = 0x0,
941 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
942 },
943 },
944 [ C(L1I ) ] = {
945 [ C(OP_READ) ] = {
946 [ C(RESULT_ACCESS) ] = 0x0,
947 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
948 },
949 [ C(OP_WRITE) ] = {
950 [ C(RESULT_ACCESS) ] = -1,
951 [ C(RESULT_MISS) ] = -1,
952 },
953 [ C(OP_PREFETCH) ] = {
954 [ C(RESULT_ACCESS) ] = 0x0,
955 [ C(RESULT_MISS) ] = 0x0,
956 },
957 },
958 [ C(LL ) ] = {
959 [ C(OP_READ) ] = {
960 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
961 [ C(RESULT_ACCESS) ] = 0x01b7,
962 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
963 [ C(RESULT_MISS) ] = 0x01b7,
964 },
965 [ C(OP_WRITE) ] = {
966 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
967 [ C(RESULT_ACCESS) ] = 0x01b7,
968 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
969 [ C(RESULT_MISS) ] = 0x01b7,
970 },
971 [ C(OP_PREFETCH) ] = {
972 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
973 [ C(RESULT_ACCESS) ] = 0x01b7,
974 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
975 [ C(RESULT_MISS) ] = 0x01b7,
976 },
977 },
978 [ C(DTLB) ] = {
979 [ C(OP_READ) ] = {
980 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
981 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
982 },
983 [ C(OP_WRITE) ] = {
984 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
985 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
986 },
987 [ C(OP_PREFETCH) ] = {
988 [ C(RESULT_ACCESS) ] = 0x0,
989 [ C(RESULT_MISS) ] = 0x0,
990 },
991 },
992 [ C(ITLB) ] = {
993 [ C(OP_READ) ] = {
994 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
995 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
996 },
997 [ C(OP_WRITE) ] = {
998 [ C(RESULT_ACCESS) ] = -1,
999 [ C(RESULT_MISS) ] = -1,
1000 },
1001 [ C(OP_PREFETCH) ] = {
1002 [ C(RESULT_ACCESS) ] = -1,
1003 [ C(RESULT_MISS) ] = -1,
1004 },
1005 },
1006 [ C(BPU ) ] = {
1007 [ C(OP_READ) ] = {
1008 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1009 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1010 },
1011 [ C(OP_WRITE) ] = {
1012 [ C(RESULT_ACCESS) ] = -1,
1013 [ C(RESULT_MISS) ] = -1,
1014 },
1015 [ C(OP_PREFETCH) ] = {
1016 [ C(RESULT_ACCESS) ] = -1,
1017 [ C(RESULT_MISS) ] = -1,
1018 },
1019 },
1020 [ C(NODE) ] = {
1021 [ C(OP_READ) ] = {
1022 [ C(RESULT_ACCESS) ] = 0x01b7,
1023 [ C(RESULT_MISS) ] = 0x01b7,
1024 },
1025 [ C(OP_WRITE) ] = {
1026 [ C(RESULT_ACCESS) ] = 0x01b7,
1027 [ C(RESULT_MISS) ] = 0x01b7,
1028 },
1029 [ C(OP_PREFETCH) ] = {
1030 [ C(RESULT_ACCESS) ] = 0x01b7,
1031 [ C(RESULT_MISS) ] = 0x01b7,
1032 },
1033 },
1034
1035 };
1036
1037 /*
1038 * Notes on the events:
1039 * - data reads do not include code reads (comparable to earlier tables)
1040 * - data counts include speculative execution (except L1 write, dtlb, bpu)
1041 * - remote node access includes remote memory, remote cache, remote mmio.
1042 * - prefetches are not included in the counts because they are not
1043 * reliably counted.
1044 */
1045
1046 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
1047 #define HSW_DEMAND_RFO BIT_ULL(1)
1048 #define HSW_ANY_RESPONSE BIT_ULL(16)
1049 #define HSW_SUPPLIER_NONE BIT_ULL(17)
1050 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
1051 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
1052 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
1053 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
1054 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
1055 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1056 HSW_L3_MISS_REMOTE_HOP2P)
1057 #define HSW_SNOOP_NONE BIT_ULL(31)
1058 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
1059 #define HSW_SNOOP_MISS BIT_ULL(33)
1060 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
1061 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
1062 #define HSW_SNOOP_HITM BIT_ULL(36)
1063 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
1064 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
1065 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1066 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1067 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1068 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1069 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
1070 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
1071 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
1072 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1073 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
1074
1075 #define BDW_L3_MISS_LOCAL BIT(26)
1076 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
1077 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1078 HSW_L3_MISS_REMOTE_HOP2P)
1079
1080
1081 static __initconst const u64 hsw_hw_cache_event_ids
1082 [PERF_COUNT_HW_CACHE_MAX]
1083 [PERF_COUNT_HW_CACHE_OP_MAX]
1084 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1085 {
1086 [ C(L1D ) ] = {
1087 [ C(OP_READ) ] = {
1088 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1089 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
1090 },
1091 [ C(OP_WRITE) ] = {
1092 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1093 [ C(RESULT_MISS) ] = 0x0,
1094 },
1095 [ C(OP_PREFETCH) ] = {
1096 [ C(RESULT_ACCESS) ] = 0x0,
1097 [ C(RESULT_MISS) ] = 0x0,
1098 },
1099 },
1100 [ C(L1I ) ] = {
1101 [ C(OP_READ) ] = {
1102 [ C(RESULT_ACCESS) ] = 0x0,
1103 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
1104 },
1105 [ C(OP_WRITE) ] = {
1106 [ C(RESULT_ACCESS) ] = -1,
1107 [ C(RESULT_MISS) ] = -1,
1108 },
1109 [ C(OP_PREFETCH) ] = {
1110 [ C(RESULT_ACCESS) ] = 0x0,
1111 [ C(RESULT_MISS) ] = 0x0,
1112 },
1113 },
1114 [ C(LL ) ] = {
1115 [ C(OP_READ) ] = {
1116 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1117 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1118 },
1119 [ C(OP_WRITE) ] = {
1120 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1121 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1122 },
1123 [ C(OP_PREFETCH) ] = {
1124 [ C(RESULT_ACCESS) ] = 0x0,
1125 [ C(RESULT_MISS) ] = 0x0,
1126 },
1127 },
1128 [ C(DTLB) ] = {
1129 [ C(OP_READ) ] = {
1130 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1131 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1132 },
1133 [ C(OP_WRITE) ] = {
1134 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1135 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1136 },
1137 [ C(OP_PREFETCH) ] = {
1138 [ C(RESULT_ACCESS) ] = 0x0,
1139 [ C(RESULT_MISS) ] = 0x0,
1140 },
1141 },
1142 [ C(ITLB) ] = {
1143 [ C(OP_READ) ] = {
1144 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
1145 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1146 },
1147 [ C(OP_WRITE) ] = {
1148 [ C(RESULT_ACCESS) ] = -1,
1149 [ C(RESULT_MISS) ] = -1,
1150 },
1151 [ C(OP_PREFETCH) ] = {
1152 [ C(RESULT_ACCESS) ] = -1,
1153 [ C(RESULT_MISS) ] = -1,
1154 },
1155 },
1156 [ C(BPU ) ] = {
1157 [ C(OP_READ) ] = {
1158 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
1159 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1160 },
1161 [ C(OP_WRITE) ] = {
1162 [ C(RESULT_ACCESS) ] = -1,
1163 [ C(RESULT_MISS) ] = -1,
1164 },
1165 [ C(OP_PREFETCH) ] = {
1166 [ C(RESULT_ACCESS) ] = -1,
1167 [ C(RESULT_MISS) ] = -1,
1168 },
1169 },
1170 [ C(NODE) ] = {
1171 [ C(OP_READ) ] = {
1172 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1173 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1174 },
1175 [ C(OP_WRITE) ] = {
1176 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1177 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1178 },
1179 [ C(OP_PREFETCH) ] = {
1180 [ C(RESULT_ACCESS) ] = 0x0,
1181 [ C(RESULT_MISS) ] = 0x0,
1182 },
1183 },
1184 };
1185
1186 static __initconst const u64 hsw_hw_cache_extra_regs
1187 [PERF_COUNT_HW_CACHE_MAX]
1188 [PERF_COUNT_HW_CACHE_OP_MAX]
1189 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1190 {
1191 [ C(LL ) ] = {
1192 [ C(OP_READ) ] = {
1193 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1194 HSW_LLC_ACCESS,
1195 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1196 HSW_L3_MISS|HSW_ANY_SNOOP,
1197 },
1198 [ C(OP_WRITE) ] = {
1199 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1200 HSW_LLC_ACCESS,
1201 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1202 HSW_L3_MISS|HSW_ANY_SNOOP,
1203 },
1204 [ C(OP_PREFETCH) ] = {
1205 [ C(RESULT_ACCESS) ] = 0x0,
1206 [ C(RESULT_MISS) ] = 0x0,
1207 },
1208 },
1209 [ C(NODE) ] = {
1210 [ C(OP_READ) ] = {
1211 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1212 HSW_L3_MISS_LOCAL_DRAM|
1213 HSW_SNOOP_DRAM,
1214 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1215 HSW_L3_MISS_REMOTE|
1216 HSW_SNOOP_DRAM,
1217 },
1218 [ C(OP_WRITE) ] = {
1219 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1220 HSW_L3_MISS_LOCAL_DRAM|
1221 HSW_SNOOP_DRAM,
1222 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1223 HSW_L3_MISS_REMOTE|
1224 HSW_SNOOP_DRAM,
1225 },
1226 [ C(OP_PREFETCH) ] = {
1227 [ C(RESULT_ACCESS) ] = 0x0,
1228 [ C(RESULT_MISS) ] = 0x0,
1229 },
1230 },
1231 };
1232
1233 static __initconst const u64 westmere_hw_cache_event_ids
1234 [PERF_COUNT_HW_CACHE_MAX]
1235 [PERF_COUNT_HW_CACHE_OP_MAX]
1236 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1237 {
1238 [ C(L1D) ] = {
1239 [ C(OP_READ) ] = {
1240 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1241 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1242 },
1243 [ C(OP_WRITE) ] = {
1244 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1245 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1246 },
1247 [ C(OP_PREFETCH) ] = {
1248 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1249 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1250 },
1251 },
1252 [ C(L1I ) ] = {
1253 [ C(OP_READ) ] = {
1254 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1255 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1256 },
1257 [ C(OP_WRITE) ] = {
1258 [ C(RESULT_ACCESS) ] = -1,
1259 [ C(RESULT_MISS) ] = -1,
1260 },
1261 [ C(OP_PREFETCH) ] = {
1262 [ C(RESULT_ACCESS) ] = 0x0,
1263 [ C(RESULT_MISS) ] = 0x0,
1264 },
1265 },
1266 [ C(LL ) ] = {
1267 [ C(OP_READ) ] = {
1268 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1269 [ C(RESULT_ACCESS) ] = 0x01b7,
1270 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1271 [ C(RESULT_MISS) ] = 0x01b7,
1272 },
1273 /*
1274 * Use RFO, not WRITEBACK, because a write miss would typically occur
1275 * on RFO.
1276 */
1277 [ C(OP_WRITE) ] = {
1278 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1279 [ C(RESULT_ACCESS) ] = 0x01b7,
1280 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1281 [ C(RESULT_MISS) ] = 0x01b7,
1282 },
1283 [ C(OP_PREFETCH) ] = {
1284 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1285 [ C(RESULT_ACCESS) ] = 0x01b7,
1286 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1287 [ C(RESULT_MISS) ] = 0x01b7,
1288 },
1289 },
1290 [ C(DTLB) ] = {
1291 [ C(OP_READ) ] = {
1292 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1293 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1294 },
1295 [ C(OP_WRITE) ] = {
1296 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1297 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1298 },
1299 [ C(OP_PREFETCH) ] = {
1300 [ C(RESULT_ACCESS) ] = 0x0,
1301 [ C(RESULT_MISS) ] = 0x0,
1302 },
1303 },
1304 [ C(ITLB) ] = {
1305 [ C(OP_READ) ] = {
1306 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1307 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1308 },
1309 [ C(OP_WRITE) ] = {
1310 [ C(RESULT_ACCESS) ] = -1,
1311 [ C(RESULT_MISS) ] = -1,
1312 },
1313 [ C(OP_PREFETCH) ] = {
1314 [ C(RESULT_ACCESS) ] = -1,
1315 [ C(RESULT_MISS) ] = -1,
1316 },
1317 },
1318 [ C(BPU ) ] = {
1319 [ C(OP_READ) ] = {
1320 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1321 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1322 },
1323 [ C(OP_WRITE) ] = {
1324 [ C(RESULT_ACCESS) ] = -1,
1325 [ C(RESULT_MISS) ] = -1,
1326 },
1327 [ C(OP_PREFETCH) ] = {
1328 [ C(RESULT_ACCESS) ] = -1,
1329 [ C(RESULT_MISS) ] = -1,
1330 },
1331 },
1332 [ C(NODE) ] = {
1333 [ C(OP_READ) ] = {
1334 [ C(RESULT_ACCESS) ] = 0x01b7,
1335 [ C(RESULT_MISS) ] = 0x01b7,
1336 },
1337 [ C(OP_WRITE) ] = {
1338 [ C(RESULT_ACCESS) ] = 0x01b7,
1339 [ C(RESULT_MISS) ] = 0x01b7,
1340 },
1341 [ C(OP_PREFETCH) ] = {
1342 [ C(RESULT_ACCESS) ] = 0x01b7,
1343 [ C(RESULT_MISS) ] = 0x01b7,
1344 },
1345 },
1346 };
1347
1348 /*
1349 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1350 * See IA32 SDM Vol 3B 30.6.1.3
1351 */
1352
1353 #define NHM_DMND_DATA_RD (1 << 0)
1354 #define NHM_DMND_RFO (1 << 1)
1355 #define NHM_DMND_IFETCH (1 << 2)
1356 #define NHM_DMND_WB (1 << 3)
1357 #define NHM_PF_DATA_RD (1 << 4)
1358 #define NHM_PF_DATA_RFO (1 << 5)
1359 #define NHM_PF_IFETCH (1 << 6)
1360 #define NHM_OFFCORE_OTHER (1 << 7)
1361 #define NHM_UNCORE_HIT (1 << 8)
1362 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1363 #define NHM_OTHER_CORE_HITM (1 << 10)
1364 /* reserved */
1365 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1366 #define NHM_REMOTE_DRAM (1 << 13)
1367 #define NHM_LOCAL_DRAM (1 << 14)
1368 #define NHM_NON_DRAM (1 << 15)
1369
1370 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1371 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1372
1373 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1374 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1375 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1376
1377 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1378 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1379 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1380
1381 static __initconst const u64 nehalem_hw_cache_extra_regs
1382 [PERF_COUNT_HW_CACHE_MAX]
1383 [PERF_COUNT_HW_CACHE_OP_MAX]
1384 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1385 {
1386 [ C(LL ) ] = {
1387 [ C(OP_READ) ] = {
1388 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1389 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1390 },
1391 [ C(OP_WRITE) ] = {
1392 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1393 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1394 },
1395 [ C(OP_PREFETCH) ] = {
1396 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1397 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1398 },
1399 },
1400 [ C(NODE) ] = {
1401 [ C(OP_READ) ] = {
1402 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1403 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1404 },
1405 [ C(OP_WRITE) ] = {
1406 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1407 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1408 },
1409 [ C(OP_PREFETCH) ] = {
1410 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1411 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1412 },
1413 },
1414 };
1415
1416 static __initconst const u64 nehalem_hw_cache_event_ids
1417 [PERF_COUNT_HW_CACHE_MAX]
1418 [PERF_COUNT_HW_CACHE_OP_MAX]
1419 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1420 {
1421 [ C(L1D) ] = {
1422 [ C(OP_READ) ] = {
1423 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1424 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1425 },
1426 [ C(OP_WRITE) ] = {
1427 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1428 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1429 },
1430 [ C(OP_PREFETCH) ] = {
1431 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1432 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1433 },
1434 },
1435 [ C(L1I ) ] = {
1436 [ C(OP_READ) ] = {
1437 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1438 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1439 },
1440 [ C(OP_WRITE) ] = {
1441 [ C(RESULT_ACCESS) ] = -1,
1442 [ C(RESULT_MISS) ] = -1,
1443 },
1444 [ C(OP_PREFETCH) ] = {
1445 [ C(RESULT_ACCESS) ] = 0x0,
1446 [ C(RESULT_MISS) ] = 0x0,
1447 },
1448 },
1449 [ C(LL ) ] = {
1450 [ C(OP_READ) ] = {
1451 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1452 [ C(RESULT_ACCESS) ] = 0x01b7,
1453 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1454 [ C(RESULT_MISS) ] = 0x01b7,
1455 },
1456 /*
1457 * Use RFO, not WRITEBACK, because a write miss would typically occur
1458 * on RFO.
1459 */
1460 [ C(OP_WRITE) ] = {
1461 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1462 [ C(RESULT_ACCESS) ] = 0x01b7,
1463 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1464 [ C(RESULT_MISS) ] = 0x01b7,
1465 },
1466 [ C(OP_PREFETCH) ] = {
1467 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1468 [ C(RESULT_ACCESS) ] = 0x01b7,
1469 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1470 [ C(RESULT_MISS) ] = 0x01b7,
1471 },
1472 },
1473 [ C(DTLB) ] = {
1474 [ C(OP_READ) ] = {
1475 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1476 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1477 },
1478 [ C(OP_WRITE) ] = {
1479 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1480 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1481 },
1482 [ C(OP_PREFETCH) ] = {
1483 [ C(RESULT_ACCESS) ] = 0x0,
1484 [ C(RESULT_MISS) ] = 0x0,
1485 },
1486 },
1487 [ C(ITLB) ] = {
1488 [ C(OP_READ) ] = {
1489 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1490 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1491 },
1492 [ C(OP_WRITE) ] = {
1493 [ C(RESULT_ACCESS) ] = -1,
1494 [ C(RESULT_MISS) ] = -1,
1495 },
1496 [ C(OP_PREFETCH) ] = {
1497 [ C(RESULT_ACCESS) ] = -1,
1498 [ C(RESULT_MISS) ] = -1,
1499 },
1500 },
1501 [ C(BPU ) ] = {
1502 [ C(OP_READ) ] = {
1503 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1504 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1505 },
1506 [ C(OP_WRITE) ] = {
1507 [ C(RESULT_ACCESS) ] = -1,
1508 [ C(RESULT_MISS) ] = -1,
1509 },
1510 [ C(OP_PREFETCH) ] = {
1511 [ C(RESULT_ACCESS) ] = -1,
1512 [ C(RESULT_MISS) ] = -1,
1513 },
1514 },
1515 [ C(NODE) ] = {
1516 [ C(OP_READ) ] = {
1517 [ C(RESULT_ACCESS) ] = 0x01b7,
1518 [ C(RESULT_MISS) ] = 0x01b7,
1519 },
1520 [ C(OP_WRITE) ] = {
1521 [ C(RESULT_ACCESS) ] = 0x01b7,
1522 [ C(RESULT_MISS) ] = 0x01b7,
1523 },
1524 [ C(OP_PREFETCH) ] = {
1525 [ C(RESULT_ACCESS) ] = 0x01b7,
1526 [ C(RESULT_MISS) ] = 0x01b7,
1527 },
1528 },
1529 };
1530
1531 static __initconst const u64 core2_hw_cache_event_ids
1532 [PERF_COUNT_HW_CACHE_MAX]
1533 [PERF_COUNT_HW_CACHE_OP_MAX]
1534 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1535 {
1536 [ C(L1D) ] = {
1537 [ C(OP_READ) ] = {
1538 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1539 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1540 },
1541 [ C(OP_WRITE) ] = {
1542 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1543 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1544 },
1545 [ C(OP_PREFETCH) ] = {
1546 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1547 [ C(RESULT_MISS) ] = 0,
1548 },
1549 },
1550 [ C(L1I ) ] = {
1551 [ C(OP_READ) ] = {
1552 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1553 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1554 },
1555 [ C(OP_WRITE) ] = {
1556 [ C(RESULT_ACCESS) ] = -1,
1557 [ C(RESULT_MISS) ] = -1,
1558 },
1559 [ C(OP_PREFETCH) ] = {
1560 [ C(RESULT_ACCESS) ] = 0,
1561 [ C(RESULT_MISS) ] = 0,
1562 },
1563 },
1564 [ C(LL ) ] = {
1565 [ C(OP_READ) ] = {
1566 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1567 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1568 },
1569 [ C(OP_WRITE) ] = {
1570 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1571 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1572 },
1573 [ C(OP_PREFETCH) ] = {
1574 [ C(RESULT_ACCESS) ] = 0,
1575 [ C(RESULT_MISS) ] = 0,
1576 },
1577 },
1578 [ C(DTLB) ] = {
1579 [ C(OP_READ) ] = {
1580 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1581 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1582 },
1583 [ C(OP_WRITE) ] = {
1584 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1585 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1586 },
1587 [ C(OP_PREFETCH) ] = {
1588 [ C(RESULT_ACCESS) ] = 0,
1589 [ C(RESULT_MISS) ] = 0,
1590 },
1591 },
1592 [ C(ITLB) ] = {
1593 [ C(OP_READ) ] = {
1594 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1595 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1596 },
1597 [ C(OP_WRITE) ] = {
1598 [ C(RESULT_ACCESS) ] = -1,
1599 [ C(RESULT_MISS) ] = -1,
1600 },
1601 [ C(OP_PREFETCH) ] = {
1602 [ C(RESULT_ACCESS) ] = -1,
1603 [ C(RESULT_MISS) ] = -1,
1604 },
1605 },
1606 [ C(BPU ) ] = {
1607 [ C(OP_READ) ] = {
1608 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1609 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1610 },
1611 [ C(OP_WRITE) ] = {
1612 [ C(RESULT_ACCESS) ] = -1,
1613 [ C(RESULT_MISS) ] = -1,
1614 },
1615 [ C(OP_PREFETCH) ] = {
1616 [ C(RESULT_ACCESS) ] = -1,
1617 [ C(RESULT_MISS) ] = -1,
1618 },
1619 },
1620 };
1621
1622 static __initconst const u64 atom_hw_cache_event_ids
1623 [PERF_COUNT_HW_CACHE_MAX]
1624 [PERF_COUNT_HW_CACHE_OP_MAX]
1625 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1626 {
1627 [ C(L1D) ] = {
1628 [ C(OP_READ) ] = {
1629 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1630 [ C(RESULT_MISS) ] = 0,
1631 },
1632 [ C(OP_WRITE) ] = {
1633 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1634 [ C(RESULT_MISS) ] = 0,
1635 },
1636 [ C(OP_PREFETCH) ] = {
1637 [ C(RESULT_ACCESS) ] = 0x0,
1638 [ C(RESULT_MISS) ] = 0,
1639 },
1640 },
1641 [ C(L1I ) ] = {
1642 [ C(OP_READ) ] = {
1643 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1644 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1645 },
1646 [ C(OP_WRITE) ] = {
1647 [ C(RESULT_ACCESS) ] = -1,
1648 [ C(RESULT_MISS) ] = -1,
1649 },
1650 [ C(OP_PREFETCH) ] = {
1651 [ C(RESULT_ACCESS) ] = 0,
1652 [ C(RESULT_MISS) ] = 0,
1653 },
1654 },
1655 [ C(LL ) ] = {
1656 [ C(OP_READ) ] = {
1657 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1658 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1659 },
1660 [ C(OP_WRITE) ] = {
1661 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1662 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1663 },
1664 [ C(OP_PREFETCH) ] = {
1665 [ C(RESULT_ACCESS) ] = 0,
1666 [ C(RESULT_MISS) ] = 0,
1667 },
1668 },
1669 [ C(DTLB) ] = {
1670 [ C(OP_READ) ] = {
1671 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1672 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1673 },
1674 [ C(OP_WRITE) ] = {
1675 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1676 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1677 },
1678 [ C(OP_PREFETCH) ] = {
1679 [ C(RESULT_ACCESS) ] = 0,
1680 [ C(RESULT_MISS) ] = 0,
1681 },
1682 },
1683 [ C(ITLB) ] = {
1684 [ C(OP_READ) ] = {
1685 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1686 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1687 },
1688 [ C(OP_WRITE) ] = {
1689 [ C(RESULT_ACCESS) ] = -1,
1690 [ C(RESULT_MISS) ] = -1,
1691 },
1692 [ C(OP_PREFETCH) ] = {
1693 [ C(RESULT_ACCESS) ] = -1,
1694 [ C(RESULT_MISS) ] = -1,
1695 },
1696 },
1697 [ C(BPU ) ] = {
1698 [ C(OP_READ) ] = {
1699 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1700 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1701 },
1702 [ C(OP_WRITE) ] = {
1703 [ C(RESULT_ACCESS) ] = -1,
1704 [ C(RESULT_MISS) ] = -1,
1705 },
1706 [ C(OP_PREFETCH) ] = {
1707 [ C(RESULT_ACCESS) ] = -1,
1708 [ C(RESULT_MISS) ] = -1,
1709 },
1710 },
1711 };
1712
1713 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1714 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1715 /* no_alloc_cycles.not_delivered */
1716 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1717 "event=0xca,umask=0x50");
1718 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1719 /* uops_retired.all */
1720 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1721 "event=0xc2,umask=0x10");
1722 /* uops_retired.all */
1723 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1724 "event=0xc2,umask=0x10");
1725
1726 static struct attribute *slm_events_attrs[] = {
1727 EVENT_PTR(td_total_slots_slm),
1728 EVENT_PTR(td_total_slots_scale_slm),
1729 EVENT_PTR(td_fetch_bubbles_slm),
1730 EVENT_PTR(td_fetch_bubbles_scale_slm),
1731 EVENT_PTR(td_slots_issued_slm),
1732 EVENT_PTR(td_slots_retired_slm),
1733 NULL
1734 };
1735
1736 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1737 {
1738 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1739 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1740 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1741 EVENT_EXTRA_END
1742 };
1743
1744 #define SLM_DMND_READ SNB_DMND_DATA_RD
1745 #define SLM_DMND_WRITE SNB_DMND_RFO
1746 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1747
1748 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1749 #define SLM_LLC_ACCESS SNB_RESP_ANY
1750 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1751
1752 static __initconst const u64 slm_hw_cache_extra_regs
1753 [PERF_COUNT_HW_CACHE_MAX]
1754 [PERF_COUNT_HW_CACHE_OP_MAX]
1755 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1756 {
1757 [ C(LL ) ] = {
1758 [ C(OP_READ) ] = {
1759 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1760 [ C(RESULT_MISS) ] = 0,
1761 },
1762 [ C(OP_WRITE) ] = {
1763 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1764 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1765 },
1766 [ C(OP_PREFETCH) ] = {
1767 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1768 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1769 },
1770 },
1771 };
1772
1773 static __initconst const u64 slm_hw_cache_event_ids
1774 [PERF_COUNT_HW_CACHE_MAX]
1775 [PERF_COUNT_HW_CACHE_OP_MAX]
1776 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1777 {
1778 [ C(L1D) ] = {
1779 [ C(OP_READ) ] = {
1780 [ C(RESULT_ACCESS) ] = 0,
1781 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1782 },
1783 [ C(OP_WRITE) ] = {
1784 [ C(RESULT_ACCESS) ] = 0,
1785 [ C(RESULT_MISS) ] = 0,
1786 },
1787 [ C(OP_PREFETCH) ] = {
1788 [ C(RESULT_ACCESS) ] = 0,
1789 [ C(RESULT_MISS) ] = 0,
1790 },
1791 },
1792 [ C(L1I ) ] = {
1793 [ C(OP_READ) ] = {
1794 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1795 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1796 },
1797 [ C(OP_WRITE) ] = {
1798 [ C(RESULT_ACCESS) ] = -1,
1799 [ C(RESULT_MISS) ] = -1,
1800 },
1801 [ C(OP_PREFETCH) ] = {
1802 [ C(RESULT_ACCESS) ] = 0,
1803 [ C(RESULT_MISS) ] = 0,
1804 },
1805 },
1806 [ C(LL ) ] = {
1807 [ C(OP_READ) ] = {
1808 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1809 [ C(RESULT_ACCESS) ] = 0x01b7,
1810 [ C(RESULT_MISS) ] = 0,
1811 },
1812 [ C(OP_WRITE) ] = {
1813 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1814 [ C(RESULT_ACCESS) ] = 0x01b7,
1815 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1816 [ C(RESULT_MISS) ] = 0x01b7,
1817 },
1818 [ C(OP_PREFETCH) ] = {
1819 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1820 [ C(RESULT_ACCESS) ] = 0x01b7,
1821 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1822 [ C(RESULT_MISS) ] = 0x01b7,
1823 },
1824 },
1825 [ C(DTLB) ] = {
1826 [ C(OP_READ) ] = {
1827 [ C(RESULT_ACCESS) ] = 0,
1828 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1829 },
1830 [ C(OP_WRITE) ] = {
1831 [ C(RESULT_ACCESS) ] = 0,
1832 [ C(RESULT_MISS) ] = 0,
1833 },
1834 [ C(OP_PREFETCH) ] = {
1835 [ C(RESULT_ACCESS) ] = 0,
1836 [ C(RESULT_MISS) ] = 0,
1837 },
1838 },
1839 [ C(ITLB) ] = {
1840 [ C(OP_READ) ] = {
1841 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1842 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1843 },
1844 [ C(OP_WRITE) ] = {
1845 [ C(RESULT_ACCESS) ] = -1,
1846 [ C(RESULT_MISS) ] = -1,
1847 },
1848 [ C(OP_PREFETCH) ] = {
1849 [ C(RESULT_ACCESS) ] = -1,
1850 [ C(RESULT_MISS) ] = -1,
1851 },
1852 },
1853 [ C(BPU ) ] = {
1854 [ C(OP_READ) ] = {
1855 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1856 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1857 },
1858 [ C(OP_WRITE) ] = {
1859 [ C(RESULT_ACCESS) ] = -1,
1860 [ C(RESULT_MISS) ] = -1,
1861 },
1862 [ C(OP_PREFETCH) ] = {
1863 [ C(RESULT_ACCESS) ] = -1,
1864 [ C(RESULT_MISS) ] = -1,
1865 },
1866 },
1867 };
1868
1869 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1870 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1871 /* UOPS_NOT_DELIVERED.ANY */
1872 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1873 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1874 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1875 /* UOPS_RETIRED.ANY */
1876 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1877 /* UOPS_ISSUED.ANY */
1878 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1879
1880 static struct attribute *glm_events_attrs[] = {
1881 EVENT_PTR(td_total_slots_glm),
1882 EVENT_PTR(td_total_slots_scale_glm),
1883 EVENT_PTR(td_fetch_bubbles_glm),
1884 EVENT_PTR(td_recovery_bubbles_glm),
1885 EVENT_PTR(td_slots_issued_glm),
1886 EVENT_PTR(td_slots_retired_glm),
1887 NULL
1888 };
1889
1890 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1891 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1892 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1893 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1894 EVENT_EXTRA_END
1895 };
1896
1897 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1898 #define GLM_DEMAND_RFO BIT_ULL(1)
1899 #define GLM_ANY_RESPONSE BIT_ULL(16)
1900 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1901 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1902 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1903 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1904 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1905 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1906 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1907
1908 static __initconst const u64 glm_hw_cache_event_ids
1909 [PERF_COUNT_HW_CACHE_MAX]
1910 [PERF_COUNT_HW_CACHE_OP_MAX]
1911 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1912 [C(L1D)] = {
1913 [C(OP_READ)] = {
1914 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1915 [C(RESULT_MISS)] = 0x0,
1916 },
1917 [C(OP_WRITE)] = {
1918 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1919 [C(RESULT_MISS)] = 0x0,
1920 },
1921 [C(OP_PREFETCH)] = {
1922 [C(RESULT_ACCESS)] = 0x0,
1923 [C(RESULT_MISS)] = 0x0,
1924 },
1925 },
1926 [C(L1I)] = {
1927 [C(OP_READ)] = {
1928 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1929 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1930 },
1931 [C(OP_WRITE)] = {
1932 [C(RESULT_ACCESS)] = -1,
1933 [C(RESULT_MISS)] = -1,
1934 },
1935 [C(OP_PREFETCH)] = {
1936 [C(RESULT_ACCESS)] = 0x0,
1937 [C(RESULT_MISS)] = 0x0,
1938 },
1939 },
1940 [C(LL)] = {
1941 [C(OP_READ)] = {
1942 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1943 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1944 },
1945 [C(OP_WRITE)] = {
1946 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1947 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1948 },
1949 [C(OP_PREFETCH)] = {
1950 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1951 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1952 },
1953 },
1954 [C(DTLB)] = {
1955 [C(OP_READ)] = {
1956 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1957 [C(RESULT_MISS)] = 0x0,
1958 },
1959 [C(OP_WRITE)] = {
1960 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1961 [C(RESULT_MISS)] = 0x0,
1962 },
1963 [C(OP_PREFETCH)] = {
1964 [C(RESULT_ACCESS)] = 0x0,
1965 [C(RESULT_MISS)] = 0x0,
1966 },
1967 },
1968 [C(ITLB)] = {
1969 [C(OP_READ)] = {
1970 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1971 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1972 },
1973 [C(OP_WRITE)] = {
1974 [C(RESULT_ACCESS)] = -1,
1975 [C(RESULT_MISS)] = -1,
1976 },
1977 [C(OP_PREFETCH)] = {
1978 [C(RESULT_ACCESS)] = -1,
1979 [C(RESULT_MISS)] = -1,
1980 },
1981 },
1982 [C(BPU)] = {
1983 [C(OP_READ)] = {
1984 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1985 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1986 },
1987 [C(OP_WRITE)] = {
1988 [C(RESULT_ACCESS)] = -1,
1989 [C(RESULT_MISS)] = -1,
1990 },
1991 [C(OP_PREFETCH)] = {
1992 [C(RESULT_ACCESS)] = -1,
1993 [C(RESULT_MISS)] = -1,
1994 },
1995 },
1996 };
1997
1998 static __initconst const u64 glm_hw_cache_extra_regs
1999 [PERF_COUNT_HW_CACHE_MAX]
2000 [PERF_COUNT_HW_CACHE_OP_MAX]
2001 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2002 [C(LL)] = {
2003 [C(OP_READ)] = {
2004 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2005 GLM_LLC_ACCESS,
2006 [C(RESULT_MISS)] = GLM_DEMAND_READ|
2007 GLM_LLC_MISS,
2008 },
2009 [C(OP_WRITE)] = {
2010 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2011 GLM_LLC_ACCESS,
2012 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2013 GLM_LLC_MISS,
2014 },
2015 [C(OP_PREFETCH)] = {
2016 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
2017 GLM_LLC_ACCESS,
2018 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
2019 GLM_LLC_MISS,
2020 },
2021 },
2022 };
2023
2024 static __initconst const u64 glp_hw_cache_event_ids
2025 [PERF_COUNT_HW_CACHE_MAX]
2026 [PERF_COUNT_HW_CACHE_OP_MAX]
2027 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2028 [C(L1D)] = {
2029 [C(OP_READ)] = {
2030 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2031 [C(RESULT_MISS)] = 0x0,
2032 },
2033 [C(OP_WRITE)] = {
2034 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2035 [C(RESULT_MISS)] = 0x0,
2036 },
2037 [C(OP_PREFETCH)] = {
2038 [C(RESULT_ACCESS)] = 0x0,
2039 [C(RESULT_MISS)] = 0x0,
2040 },
2041 },
2042 [C(L1I)] = {
2043 [C(OP_READ)] = {
2044 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
2045 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
2046 },
2047 [C(OP_WRITE)] = {
2048 [C(RESULT_ACCESS)] = -1,
2049 [C(RESULT_MISS)] = -1,
2050 },
2051 [C(OP_PREFETCH)] = {
2052 [C(RESULT_ACCESS)] = 0x0,
2053 [C(RESULT_MISS)] = 0x0,
2054 },
2055 },
2056 [C(LL)] = {
2057 [C(OP_READ)] = {
2058 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2059 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2060 },
2061 [C(OP_WRITE)] = {
2062 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2063 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2064 },
2065 [C(OP_PREFETCH)] = {
2066 [C(RESULT_ACCESS)] = 0x0,
2067 [C(RESULT_MISS)] = 0x0,
2068 },
2069 },
2070 [C(DTLB)] = {
2071 [C(OP_READ)] = {
2072 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2073 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
2074 },
2075 [C(OP_WRITE)] = {
2076 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2077 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
2078 },
2079 [C(OP_PREFETCH)] = {
2080 [C(RESULT_ACCESS)] = 0x0,
2081 [C(RESULT_MISS)] = 0x0,
2082 },
2083 },
2084 [C(ITLB)] = {
2085 [C(OP_READ)] = {
2086 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
2087 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
2088 },
2089 [C(OP_WRITE)] = {
2090 [C(RESULT_ACCESS)] = -1,
2091 [C(RESULT_MISS)] = -1,
2092 },
2093 [C(OP_PREFETCH)] = {
2094 [C(RESULT_ACCESS)] = -1,
2095 [C(RESULT_MISS)] = -1,
2096 },
2097 },
2098 [C(BPU)] = {
2099 [C(OP_READ)] = {
2100 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
2101 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
2102 },
2103 [C(OP_WRITE)] = {
2104 [C(RESULT_ACCESS)] = -1,
2105 [C(RESULT_MISS)] = -1,
2106 },
2107 [C(OP_PREFETCH)] = {
2108 [C(RESULT_ACCESS)] = -1,
2109 [C(RESULT_MISS)] = -1,
2110 },
2111 },
2112 };
2113
2114 static __initconst const u64 glp_hw_cache_extra_regs
2115 [PERF_COUNT_HW_CACHE_MAX]
2116 [PERF_COUNT_HW_CACHE_OP_MAX]
2117 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2118 [C(LL)] = {
2119 [C(OP_READ)] = {
2120 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2121 GLM_LLC_ACCESS,
2122 [C(RESULT_MISS)] = GLM_DEMAND_READ|
2123 GLM_LLC_MISS,
2124 },
2125 [C(OP_WRITE)] = {
2126 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2127 GLM_LLC_ACCESS,
2128 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2129 GLM_LLC_MISS,
2130 },
2131 [C(OP_PREFETCH)] = {
2132 [C(RESULT_ACCESS)] = 0x0,
2133 [C(RESULT_MISS)] = 0x0,
2134 },
2135 },
2136 };
2137
2138 #define TNT_LOCAL_DRAM BIT_ULL(26)
2139 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
2140 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
2141 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
2142 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2143 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2144 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2145
2146 static __initconst const u64 tnt_hw_cache_extra_regs
2147 [PERF_COUNT_HW_CACHE_MAX]
2148 [PERF_COUNT_HW_CACHE_OP_MAX]
2149 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2150 [C(LL)] = {
2151 [C(OP_READ)] = {
2152 [C(RESULT_ACCESS)] = TNT_DEMAND_READ|
2153 TNT_LLC_ACCESS,
2154 [C(RESULT_MISS)] = TNT_DEMAND_READ|
2155 TNT_LLC_MISS,
2156 },
2157 [C(OP_WRITE)] = {
2158 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
2159 TNT_LLC_ACCESS,
2160 [C(RESULT_MISS)] = TNT_DEMAND_WRITE|
2161 TNT_LLC_MISS,
2162 },
2163 [C(OP_PREFETCH)] = {
2164 [C(RESULT_ACCESS)] = 0x0,
2165 [C(RESULT_MISS)] = 0x0,
2166 },
2167 },
2168 };
2169
2170 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
2171 EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
2172 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
2173 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
2174
2175 static struct attribute *tnt_events_attrs[] = {
2176 EVENT_PTR(td_fe_bound_tnt),
2177 EVENT_PTR(td_retiring_tnt),
2178 EVENT_PTR(td_bad_spec_tnt),
2179 EVENT_PTR(td_be_bound_tnt),
2180 NULL,
2181 };
2182
2183 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2184 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2185 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2186 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2187 EVENT_EXTRA_END
2188 };
2189
2190 EVENT_ATTR_STR(mem-loads, mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3");
2191 EVENT_ATTR_STR(mem-stores, mem_st_grt, "event=0xd0,umask=0x6");
2192
2193 static struct attribute *grt_mem_attrs[] = {
2194 EVENT_PTR(mem_ld_grt),
2195 EVENT_PTR(mem_st_grt),
2196 NULL
2197 };
2198
2199 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2200 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2201 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2202 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2203 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2204 EVENT_EXTRA_END
2205 };
2206
2207 EVENT_ATTR_STR(topdown-retiring, td_retiring_cmt, "event=0x72,umask=0x0");
2208 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_cmt, "event=0x73,umask=0x0");
2209
2210 static struct attribute *cmt_events_attrs[] = {
2211 EVENT_PTR(td_fe_bound_tnt),
2212 EVENT_PTR(td_retiring_cmt),
2213 EVENT_PTR(td_bad_spec_cmt),
2214 EVENT_PTR(td_be_bound_tnt),
2215 NULL
2216 };
2217
2218 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2219 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2220 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2221 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2222 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2223 INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2224 INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2225 EVENT_EXTRA_END
2226 };
2227
2228 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_skt, "event=0x9c,umask=0x01");
2229 EVENT_ATTR_STR(topdown-retiring, td_retiring_skt, "event=0xc2,umask=0x02");
2230 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_skt, "event=0xa4,umask=0x02");
2231
2232 static struct attribute *skt_events_attrs[] = {
2233 EVENT_PTR(td_fe_bound_skt),
2234 EVENT_PTR(td_retiring_skt),
2235 EVENT_PTR(td_bad_spec_cmt),
2236 EVENT_PTR(td_be_bound_skt),
2237 NULL,
2238 };
2239
2240 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
2241 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
2242 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
2243 #define KNL_MCDRAM_FAR BIT_ULL(22)
2244 #define KNL_DDR_LOCAL BIT_ULL(23)
2245 #define KNL_DDR_FAR BIT_ULL(24)
2246 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2247 KNL_DDR_LOCAL | KNL_DDR_FAR)
2248 #define KNL_L2_READ SLM_DMND_READ
2249 #define KNL_L2_WRITE SLM_DMND_WRITE
2250 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
2251 #define KNL_L2_ACCESS SLM_LLC_ACCESS
2252 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2253 KNL_DRAM_ANY | SNB_SNP_ANY | \
2254 SNB_NON_DRAM)
2255
2256 static __initconst const u64 knl_hw_cache_extra_regs
2257 [PERF_COUNT_HW_CACHE_MAX]
2258 [PERF_COUNT_HW_CACHE_OP_MAX]
2259 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2260 [C(LL)] = {
2261 [C(OP_READ)] = {
2262 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2263 [C(RESULT_MISS)] = 0,
2264 },
2265 [C(OP_WRITE)] = {
2266 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2267 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
2268 },
2269 [C(OP_PREFETCH)] = {
2270 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2271 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
2272 },
2273 },
2274 };
2275
2276 /*
2277 * Used from PMIs where the LBRs are already disabled.
2278 *
2279 * This function could be called consecutively. It is required to remain in
2280 * disabled state if called consecutively.
2281 *
2282 * During consecutive calls, the same disable value will be written to related
2283 * registers, so the PMU state remains unchanged.
2284 *
2285 * intel_bts events don't coexist with intel PMU's BTS events because of
2286 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2287 * disabled around intel PMU's event batching etc, only inside the PMI handler.
2288 *
2289 * Avoid PEBS_ENABLE MSR access in PMIs.
2290 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2291 * It doesn't matter if the PEBS is enabled or not.
2292 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2293 * access PEBS_ENABLE MSR in disable_all()/enable_all().
2294 * However, there are some cases which may change PEBS status, e.g. PMI
2295 * throttle. The PEBS_ENABLE should be updated where the status changes.
2296 */
__intel_pmu_disable_all(bool bts)2297 static __always_inline void __intel_pmu_disable_all(bool bts)
2298 {
2299 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2300
2301 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2302
2303 if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2304 intel_pmu_disable_bts();
2305 }
2306
intel_pmu_disable_all(void)2307 static __always_inline void intel_pmu_disable_all(void)
2308 {
2309 __intel_pmu_disable_all(true);
2310 static_call_cond(x86_pmu_pebs_disable_all)();
2311 intel_pmu_lbr_disable_all();
2312 }
2313
__intel_pmu_enable_all(int added,bool pmi)2314 static void __intel_pmu_enable_all(int added, bool pmi)
2315 {
2316 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2317 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2318
2319 intel_pmu_lbr_enable_all(pmi);
2320
2321 if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2322 wrmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2323 cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2324 }
2325
2326 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL,
2327 intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2328
2329 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2330 struct perf_event *event =
2331 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2332
2333 if (WARN_ON_ONCE(!event))
2334 return;
2335
2336 intel_pmu_enable_bts(event->hw.config);
2337 }
2338 }
2339
intel_pmu_enable_all(int added)2340 static void intel_pmu_enable_all(int added)
2341 {
2342 static_call_cond(x86_pmu_pebs_enable_all)();
2343 __intel_pmu_enable_all(added, false);
2344 }
2345
2346 static noinline int
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt,unsigned long flags)2347 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2348 unsigned int cnt, unsigned long flags)
2349 {
2350 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2351
2352 intel_pmu_lbr_read();
2353 cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2354
2355 memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2356 intel_pmu_enable_all(0);
2357 local_irq_restore(flags);
2358 return cnt;
2359 }
2360
2361 static int
intel_pmu_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)2362 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2363 {
2364 unsigned long flags;
2365
2366 /* must not have branches... */
2367 local_irq_save(flags);
2368 __intel_pmu_disable_all(false); /* we don't care about BTS */
2369 __intel_pmu_lbr_disable();
2370 /* ... until here */
2371 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2372 }
2373
2374 static int
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)2375 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2376 {
2377 unsigned long flags;
2378
2379 /* must not have branches... */
2380 local_irq_save(flags);
2381 __intel_pmu_disable_all(false); /* we don't care about BTS */
2382 __intel_pmu_arch_lbr_disable();
2383 /* ... until here */
2384 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2385 }
2386
2387 /*
2388 * Workaround for:
2389 * Intel Errata AAK100 (model 26)
2390 * Intel Errata AAP53 (model 30)
2391 * Intel Errata BD53 (model 44)
2392 *
2393 * The official story:
2394 * These chips need to be 'reset' when adding counters by programming the
2395 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2396 * in sequence on the same PMC or on different PMCs.
2397 *
2398 * In practice it appears some of these events do in fact count, and
2399 * we need to program all 4 events.
2400 */
intel_pmu_nhm_workaround(void)2401 static void intel_pmu_nhm_workaround(void)
2402 {
2403 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2404 static const unsigned long nhm_magic[4] = {
2405 0x4300B5,
2406 0x4300D2,
2407 0x4300B1,
2408 0x4300B1
2409 };
2410 struct perf_event *event;
2411 int i;
2412
2413 /*
2414 * The Errata requires below steps:
2415 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2416 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2417 * the corresponding PMCx;
2418 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2419 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2420 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2421 */
2422
2423 /*
2424 * The real steps we choose are a little different from above.
2425 * A) To reduce MSR operations, we don't run step 1) as they
2426 * are already cleared before this function is called;
2427 * B) Call x86_perf_event_update to save PMCx before configuring
2428 * PERFEVTSELx with magic number;
2429 * C) With step 5), we do clear only when the PERFEVTSELx is
2430 * not used currently.
2431 * D) Call x86_perf_event_set_period to restore PMCx;
2432 */
2433
2434 /* We always operate 4 pairs of PERF Counters */
2435 for (i = 0; i < 4; i++) {
2436 event = cpuc->events[i];
2437 if (event)
2438 static_call(x86_pmu_update)(event);
2439 }
2440
2441 for (i = 0; i < 4; i++) {
2442 wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2443 wrmsrq(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2444 }
2445
2446 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2447 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2448
2449 for (i = 0; i < 4; i++) {
2450 event = cpuc->events[i];
2451
2452 if (event) {
2453 static_call(x86_pmu_set_period)(event);
2454 __x86_pmu_enable_event(&event->hw,
2455 ARCH_PERFMON_EVENTSEL_ENABLE);
2456 } else
2457 wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2458 }
2459 }
2460
intel_pmu_nhm_enable_all(int added)2461 static void intel_pmu_nhm_enable_all(int added)
2462 {
2463 if (added)
2464 intel_pmu_nhm_workaround();
2465 intel_pmu_enable_all(added);
2466 }
2467
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2468 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2469 {
2470 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2471
2472 if (cpuc->tfa_shadow != val) {
2473 cpuc->tfa_shadow = val;
2474 wrmsrq(MSR_TSX_FORCE_ABORT, val);
2475 }
2476 }
2477
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2478 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2479 {
2480 /*
2481 * We're going to use PMC3, make sure TFA is set before we touch it.
2482 */
2483 if (cntr == 3)
2484 intel_set_tfa(cpuc, true);
2485 }
2486
intel_tfa_pmu_enable_all(int added)2487 static void intel_tfa_pmu_enable_all(int added)
2488 {
2489 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2490
2491 /*
2492 * If we find PMC3 is no longer used when we enable the PMU, we can
2493 * clear TFA.
2494 */
2495 if (!test_bit(3, cpuc->active_mask))
2496 intel_set_tfa(cpuc, false);
2497
2498 intel_pmu_enable_all(added);
2499 }
2500
intel_pmu_get_status(void)2501 static inline u64 intel_pmu_get_status(void)
2502 {
2503 u64 status;
2504
2505 rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status);
2506
2507 return status;
2508 }
2509
intel_pmu_ack_status(u64 ack)2510 static inline void intel_pmu_ack_status(u64 ack)
2511 {
2512 wrmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2513 }
2514
event_is_checkpointed(struct perf_event * event)2515 static inline bool event_is_checkpointed(struct perf_event *event)
2516 {
2517 return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2518 }
2519
intel_set_masks(struct perf_event * event,int idx)2520 static inline void intel_set_masks(struct perf_event *event, int idx)
2521 {
2522 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2523
2524 if (event->attr.exclude_host)
2525 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2526 if (event->attr.exclude_guest)
2527 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2528 if (event_is_checkpointed(event))
2529 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2530 }
2531
intel_clear_masks(struct perf_event * event,int idx)2532 static inline void intel_clear_masks(struct perf_event *event, int idx)
2533 {
2534 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2535
2536 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2537 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2538 __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2539 }
2540
intel_pmu_disable_fixed(struct perf_event * event)2541 static void intel_pmu_disable_fixed(struct perf_event *event)
2542 {
2543 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2544 struct hw_perf_event *hwc = &event->hw;
2545 int idx = hwc->idx;
2546 u64 mask;
2547
2548 if (is_topdown_idx(idx)) {
2549 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2550
2551 /*
2552 * When there are other active TopDown events,
2553 * don't disable the fixed counter 3.
2554 */
2555 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2556 return;
2557 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2558 }
2559
2560 intel_clear_masks(event, idx);
2561
2562 mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2563 cpuc->fixed_ctrl_val &= ~mask;
2564 }
2565
__intel_pmu_update_event_ext(int idx,u64 ext)2566 static inline void __intel_pmu_update_event_ext(int idx, u64 ext)
2567 {
2568 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2569 u32 msr;
2570
2571 if (idx < INTEL_PMC_IDX_FIXED) {
2572 msr = MSR_IA32_PMC_V6_GP0_CFG_C +
2573 x86_pmu.addr_offset(idx, false);
2574 } else {
2575 msr = MSR_IA32_PMC_V6_FX0_CFG_C +
2576 x86_pmu.addr_offset(idx - INTEL_PMC_IDX_FIXED, false);
2577 }
2578
2579 cpuc->cfg_c_val[idx] = ext;
2580 wrmsrq(msr, ext);
2581 }
2582
intel_pmu_disable_event_ext(struct perf_event * event)2583 static void intel_pmu_disable_event_ext(struct perf_event *event)
2584 {
2585 /*
2586 * Only clear CFG_C MSR for PEBS counter group events,
2587 * it avoids the HW counter's value to be added into
2588 * other PEBS records incorrectly after PEBS counter
2589 * group events are disabled.
2590 *
2591 * For other events, it's unnecessary to clear CFG_C MSRs
2592 * since CFG_C doesn't take effect if counter is in
2593 * disabled state. That helps to reduce the WRMSR overhead
2594 * in context switches.
2595 */
2596 if (!is_pebs_counter_event_group(event))
2597 return;
2598
2599 __intel_pmu_update_event_ext(event->hw.idx, 0);
2600 }
2601
2602 DEFINE_STATIC_CALL_NULL(intel_pmu_disable_event_ext, intel_pmu_disable_event_ext);
2603
intel_pmu_disable_event(struct perf_event * event)2604 static void intel_pmu_disable_event(struct perf_event *event)
2605 {
2606 struct hw_perf_event *hwc = &event->hw;
2607 int idx = hwc->idx;
2608
2609 switch (idx) {
2610 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2611 intel_clear_masks(event, idx);
2612 static_call_cond(intel_pmu_disable_event_ext)(event);
2613 x86_pmu_disable_event(event);
2614 break;
2615 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2616 static_call_cond(intel_pmu_disable_event_ext)(event);
2617 fallthrough;
2618 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2619 intel_pmu_disable_fixed(event);
2620 break;
2621 case INTEL_PMC_IDX_FIXED_BTS:
2622 intel_pmu_disable_bts();
2623 intel_pmu_drain_bts_buffer();
2624 return;
2625 case INTEL_PMC_IDX_FIXED_VLBR:
2626 intel_clear_masks(event, idx);
2627 break;
2628 default:
2629 intel_clear_masks(event, idx);
2630 pr_warn("Failed to disable the event with invalid index %d\n",
2631 idx);
2632 return;
2633 }
2634
2635 /*
2636 * Needs to be called after x86_pmu_disable_event,
2637 * so we don't trigger the event without PEBS bit set.
2638 */
2639 if (unlikely(event->attr.precise_ip))
2640 static_call(x86_pmu_pebs_disable)(event);
2641 }
2642
intel_pmu_assign_event(struct perf_event * event,int idx)2643 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2644 {
2645 if (is_pebs_pt(event))
2646 perf_report_aux_output_id(event, idx);
2647 }
2648
intel_pmu_needs_branch_stack(struct perf_event * event)2649 static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2650 {
2651 return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2652 }
2653
intel_pmu_del_event(struct perf_event * event)2654 static void intel_pmu_del_event(struct perf_event *event)
2655 {
2656 if (intel_pmu_needs_branch_stack(event))
2657 intel_pmu_lbr_del(event);
2658 if (event->attr.precise_ip)
2659 intel_pmu_pebs_del(event);
2660 if (is_pebs_counter_event_group(event) ||
2661 is_acr_event_group(event))
2662 this_cpu_ptr(&cpu_hw_events)->n_late_setup--;
2663 }
2664
icl_set_topdown_event_period(struct perf_event * event)2665 static int icl_set_topdown_event_period(struct perf_event *event)
2666 {
2667 struct hw_perf_event *hwc = &event->hw;
2668 s64 left = local64_read(&hwc->period_left);
2669
2670 /*
2671 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2672 * Software should start both registers, PERF_METRICS and fixed
2673 * counter 3, from zero.
2674 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2675 * After that, both MSRs will be cleared for each read.
2676 * Don't need to clear them again.
2677 */
2678 if (left == x86_pmu.max_period) {
2679 wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
2680 wrmsrq(MSR_PERF_METRICS, 0);
2681 hwc->saved_slots = 0;
2682 hwc->saved_metric = 0;
2683 }
2684
2685 if ((hwc->saved_slots) && is_slots_event(event)) {
2686 wrmsrq(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2687 wrmsrq(MSR_PERF_METRICS, hwc->saved_metric);
2688 }
2689
2690 perf_event_update_userpage(event);
2691
2692 return 0;
2693 }
2694
2695 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2696
icl_get_metrics_event_value(u64 metric,u64 slots,int idx)2697 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2698 {
2699 u32 val;
2700
2701 /*
2702 * The metric is reported as an 8bit integer fraction
2703 * summing up to 0xff.
2704 * slots-in-metric = (Metric / 0xff) * slots
2705 */
2706 val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2707 return mul_u64_u32_div(slots, val, 0xff);
2708 }
2709
icl_get_topdown_value(struct perf_event * event,u64 slots,u64 metrics)2710 static u64 icl_get_topdown_value(struct perf_event *event,
2711 u64 slots, u64 metrics)
2712 {
2713 int idx = event->hw.idx;
2714 u64 delta;
2715
2716 if (is_metric_idx(idx))
2717 delta = icl_get_metrics_event_value(metrics, slots, idx);
2718 else
2719 delta = slots;
2720
2721 return delta;
2722 }
2723
__icl_update_topdown_event(struct perf_event * event,u64 slots,u64 metrics,u64 last_slots,u64 last_metrics)2724 static void __icl_update_topdown_event(struct perf_event *event,
2725 u64 slots, u64 metrics,
2726 u64 last_slots, u64 last_metrics)
2727 {
2728 u64 delta, last = 0;
2729
2730 delta = icl_get_topdown_value(event, slots, metrics);
2731 if (last_slots)
2732 last = icl_get_topdown_value(event, last_slots, last_metrics);
2733
2734 /*
2735 * The 8bit integer fraction of metric may be not accurate,
2736 * especially when the changes is very small.
2737 * For example, if only a few bad_spec happens, the fraction
2738 * may be reduced from 1 to 0. If so, the bad_spec event value
2739 * will be 0 which is definitely less than the last value.
2740 * Avoid update event->count for this case.
2741 */
2742 if (delta > last) {
2743 delta -= last;
2744 local64_add(delta, &event->count);
2745 }
2746 }
2747
update_saved_topdown_regs(struct perf_event * event,u64 slots,u64 metrics,int metric_end)2748 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2749 u64 metrics, int metric_end)
2750 {
2751 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2752 struct perf_event *other;
2753 int idx;
2754
2755 event->hw.saved_slots = slots;
2756 event->hw.saved_metric = metrics;
2757
2758 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2759 if (!is_topdown_idx(idx))
2760 continue;
2761 other = cpuc->events[idx];
2762 other->hw.saved_slots = slots;
2763 other->hw.saved_metric = metrics;
2764 }
2765 }
2766
2767 /*
2768 * Update all active Topdown events.
2769 *
2770 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2771 * modify by a NMI. PMU has to be disabled before calling this function.
2772 */
2773
intel_update_topdown_event(struct perf_event * event,int metric_end,u64 * val)2774 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end, u64 *val)
2775 {
2776 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2777 struct perf_event *other;
2778 u64 slots, metrics;
2779 bool reset = true;
2780 int idx;
2781
2782 if (!val) {
2783 /* read Fixed counter 3 */
2784 slots = rdpmc(3 | INTEL_PMC_FIXED_RDPMC_BASE);
2785 if (!slots)
2786 return 0;
2787
2788 /* read PERF_METRICS */
2789 metrics = rdpmc(INTEL_PMC_FIXED_RDPMC_METRICS);
2790 } else {
2791 slots = val[0];
2792 metrics = val[1];
2793 /*
2794 * Don't reset the PERF_METRICS and Fixed counter 3
2795 * for each PEBS record read. Utilize the RDPMC metrics
2796 * clear mode.
2797 */
2798 reset = false;
2799 }
2800
2801 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2802 if (!is_topdown_idx(idx))
2803 continue;
2804 other = cpuc->events[idx];
2805 __icl_update_topdown_event(other, slots, metrics,
2806 event ? event->hw.saved_slots : 0,
2807 event ? event->hw.saved_metric : 0);
2808 }
2809
2810 /*
2811 * Check and update this event, which may have been cleared
2812 * in active_mask e.g. x86_pmu_stop()
2813 */
2814 if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2815 __icl_update_topdown_event(event, slots, metrics,
2816 event->hw.saved_slots,
2817 event->hw.saved_metric);
2818
2819 /*
2820 * In x86_pmu_stop(), the event is cleared in active_mask first,
2821 * then drain the delta, which indicates context switch for
2822 * counting.
2823 * Save metric and slots for context switch.
2824 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2825 * Because the values will be restored in next schedule in.
2826 */
2827 update_saved_topdown_regs(event, slots, metrics, metric_end);
2828 reset = false;
2829 }
2830
2831 if (reset) {
2832 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2833 wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
2834 wrmsrq(MSR_PERF_METRICS, 0);
2835 if (event)
2836 update_saved_topdown_regs(event, 0, 0, metric_end);
2837 }
2838
2839 return slots;
2840 }
2841
icl_update_topdown_event(struct perf_event * event,u64 * val)2842 static u64 icl_update_topdown_event(struct perf_event *event, u64 *val)
2843 {
2844 return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2845 x86_pmu.num_topdown_events - 1,
2846 val);
2847 }
2848
2849 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, intel_pmu_topdown_event_update);
2850
intel_pmu_read_event(struct perf_event * event)2851 static void intel_pmu_read_event(struct perf_event *event)
2852 {
2853 if (event->hw.flags & (PERF_X86_EVENT_AUTO_RELOAD | PERF_X86_EVENT_TOPDOWN) ||
2854 is_pebs_counter_event_group(event)) {
2855 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2856 bool pmu_enabled = cpuc->enabled;
2857
2858 /* Only need to call update_topdown_event() once for group read. */
2859 if (is_metric_event(event) && (cpuc->txn_flags & PERF_PMU_TXN_READ))
2860 return;
2861
2862 cpuc->enabled = 0;
2863 if (pmu_enabled)
2864 intel_pmu_disable_all();
2865
2866 /*
2867 * If the PEBS counters snapshotting is enabled,
2868 * the topdown event is available in PEBS records.
2869 */
2870 if (is_topdown_count(event) && !is_pebs_counter_event_group(event))
2871 static_call(intel_pmu_update_topdown_event)(event, NULL);
2872 else
2873 intel_pmu_drain_pebs_buffer();
2874
2875 cpuc->enabled = pmu_enabled;
2876 if (pmu_enabled)
2877 intel_pmu_enable_all(0);
2878
2879 return;
2880 }
2881
2882 x86_perf_event_update(event);
2883 }
2884
intel_pmu_enable_fixed(struct perf_event * event)2885 static void intel_pmu_enable_fixed(struct perf_event *event)
2886 {
2887 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2888 struct hw_perf_event *hwc = &event->hw;
2889 int idx = hwc->idx;
2890 u64 bits = 0;
2891
2892 if (is_topdown_idx(idx)) {
2893 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2894 /*
2895 * When there are other active TopDown events,
2896 * don't enable the fixed counter 3 again.
2897 */
2898 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2899 return;
2900
2901 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2902
2903 if (event->attr.config1 & INTEL_TD_CFG_METRIC_CLEAR)
2904 bits |= INTEL_FIXED_3_METRICS_CLEAR;
2905 }
2906
2907 intel_set_masks(event, idx);
2908
2909 /*
2910 * Enable IRQ generation (0x8), if not PEBS,
2911 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2912 * if requested:
2913 */
2914 if (!event->attr.precise_ip)
2915 bits |= INTEL_FIXED_0_ENABLE_PMI;
2916 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2917 bits |= INTEL_FIXED_0_USER;
2918 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2919 bits |= INTEL_FIXED_0_KERNEL;
2920
2921 /*
2922 * ANY bit is supported in v3 and up
2923 */
2924 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2925 bits |= INTEL_FIXED_0_ANYTHREAD;
2926
2927 idx -= INTEL_PMC_IDX_FIXED;
2928 bits = intel_fixed_bits_by_idx(idx, bits);
2929 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip)
2930 bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2931
2932 cpuc->fixed_ctrl_val &= ~intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2933 cpuc->fixed_ctrl_val |= bits;
2934 }
2935
intel_pmu_config_acr(int idx,u64 mask,u32 reload)2936 static void intel_pmu_config_acr(int idx, u64 mask, u32 reload)
2937 {
2938 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2939 int msr_b, msr_c;
2940 int msr_offset;
2941
2942 if (!mask && !cpuc->acr_cfg_b[idx])
2943 return;
2944
2945 if (idx < INTEL_PMC_IDX_FIXED) {
2946 msr_b = MSR_IA32_PMC_V6_GP0_CFG_B;
2947 msr_c = MSR_IA32_PMC_V6_GP0_CFG_C;
2948 msr_offset = x86_pmu.addr_offset(idx, false);
2949 } else {
2950 msr_b = MSR_IA32_PMC_V6_FX0_CFG_B;
2951 msr_c = MSR_IA32_PMC_V6_FX0_CFG_C;
2952 msr_offset = x86_pmu.addr_offset(idx - INTEL_PMC_IDX_FIXED, false);
2953 }
2954
2955 if (cpuc->acr_cfg_b[idx] != mask) {
2956 wrmsrl(msr_b + msr_offset, mask);
2957 cpuc->acr_cfg_b[idx] = mask;
2958 }
2959 /* Only need to update the reload value when there is a valid config value. */
2960 if (mask && cpuc->acr_cfg_c[idx] != reload) {
2961 wrmsrl(msr_c + msr_offset, reload);
2962 cpuc->acr_cfg_c[idx] = reload;
2963 }
2964 }
2965
intel_pmu_enable_acr(struct perf_event * event)2966 static void intel_pmu_enable_acr(struct perf_event *event)
2967 {
2968 struct hw_perf_event *hwc = &event->hw;
2969
2970 if (!is_acr_event_group(event) || !event->attr.config2) {
2971 /*
2972 * The disable doesn't clear the ACR CFG register.
2973 * Check and clear the ACR CFG register.
2974 */
2975 intel_pmu_config_acr(hwc->idx, 0, 0);
2976 return;
2977 }
2978
2979 intel_pmu_config_acr(hwc->idx, hwc->config1, -hwc->sample_period);
2980 }
2981
2982 DEFINE_STATIC_CALL_NULL(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
2983
intel_pmu_enable_event_ext(struct perf_event * event)2984 static void intel_pmu_enable_event_ext(struct perf_event *event)
2985 {
2986 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2987 struct hw_perf_event *hwc = &event->hw;
2988 union arch_pebs_index old, new;
2989 struct arch_pebs_cap cap;
2990 u64 ext = 0;
2991
2992 cap = hybrid(cpuc->pmu, arch_pebs_cap);
2993
2994 if (event->attr.precise_ip) {
2995 u64 pebs_data_cfg = intel_get_arch_pebs_data_config(event);
2996
2997 ext |= ARCH_PEBS_EN;
2998 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD)
2999 ext |= (-hwc->sample_period) & ARCH_PEBS_RELOAD;
3000
3001 if (pebs_data_cfg && cap.caps) {
3002 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
3003 ext |= ARCH_PEBS_AUX & cap.caps;
3004
3005 if (pebs_data_cfg & PEBS_DATACFG_GP)
3006 ext |= ARCH_PEBS_GPR & cap.caps;
3007
3008 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
3009 ext |= ARCH_PEBS_VECR_XMM & cap.caps;
3010
3011 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
3012 ext |= ARCH_PEBS_LBR & cap.caps;
3013
3014 if (pebs_data_cfg &
3015 (PEBS_DATACFG_CNTR_MASK << PEBS_DATACFG_CNTR_SHIFT))
3016 ext |= ARCH_PEBS_CNTR_GP & cap.caps;
3017
3018 if (pebs_data_cfg &
3019 (PEBS_DATACFG_FIX_MASK << PEBS_DATACFG_FIX_SHIFT))
3020 ext |= ARCH_PEBS_CNTR_FIXED & cap.caps;
3021
3022 if (pebs_data_cfg & PEBS_DATACFG_METRICS)
3023 ext |= ARCH_PEBS_CNTR_METRICS & cap.caps;
3024 }
3025
3026 if (cpuc->n_pebs == cpuc->n_large_pebs)
3027 new.thresh = ARCH_PEBS_THRESH_MULTI;
3028 else
3029 new.thresh = ARCH_PEBS_THRESH_SINGLE;
3030
3031 rdmsrq(MSR_IA32_PEBS_INDEX, old.whole);
3032 if (new.thresh != old.thresh || !old.en) {
3033 if (old.thresh == ARCH_PEBS_THRESH_MULTI && old.wr > 0) {
3034 /*
3035 * Large PEBS was enabled.
3036 * Drain PEBS buffer before applying the single PEBS.
3037 */
3038 intel_pmu_drain_pebs_buffer();
3039 } else {
3040 new.wr = 0;
3041 new.full = 0;
3042 new.en = 1;
3043 wrmsrq(MSR_IA32_PEBS_INDEX, new.whole);
3044 }
3045 }
3046 }
3047
3048 if (is_pebs_counter_event_group(event))
3049 ext |= ARCH_PEBS_CNTR_ALLOW;
3050
3051 if (cpuc->cfg_c_val[hwc->idx] != ext)
3052 __intel_pmu_update_event_ext(hwc->idx, ext);
3053 }
3054
3055 DEFINE_STATIC_CALL_NULL(intel_pmu_enable_event_ext, intel_pmu_enable_event_ext);
3056
intel_pmu_enable_event(struct perf_event * event)3057 static void intel_pmu_enable_event(struct perf_event *event)
3058 {
3059 u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
3060 struct hw_perf_event *hwc = &event->hw;
3061 int idx = hwc->idx;
3062
3063 if (unlikely(event->attr.precise_ip))
3064 static_call(x86_pmu_pebs_enable)(event);
3065
3066 switch (idx) {
3067 case 0 ... INTEL_PMC_IDX_FIXED - 1:
3068 if (branch_sample_counters(event))
3069 enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
3070 intel_set_masks(event, idx);
3071 static_call_cond(intel_pmu_enable_acr_event)(event);
3072 static_call_cond(intel_pmu_enable_event_ext)(event);
3073 __x86_pmu_enable_event(hwc, enable_mask);
3074 break;
3075 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
3076 static_call_cond(intel_pmu_enable_acr_event)(event);
3077 static_call_cond(intel_pmu_enable_event_ext)(event);
3078 fallthrough;
3079 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
3080 intel_pmu_enable_fixed(event);
3081 break;
3082 case INTEL_PMC_IDX_FIXED_BTS:
3083 if (!__this_cpu_read(cpu_hw_events.enabled))
3084 return;
3085 intel_pmu_enable_bts(hwc->config);
3086 break;
3087 case INTEL_PMC_IDX_FIXED_VLBR:
3088 intel_set_masks(event, idx);
3089 break;
3090 default:
3091 pr_warn("Failed to enable the event with invalid index %d\n",
3092 idx);
3093 }
3094 }
3095
intel_pmu_acr_late_setup(struct cpu_hw_events * cpuc)3096 static void intel_pmu_acr_late_setup(struct cpu_hw_events *cpuc)
3097 {
3098 struct perf_event *event, *leader;
3099 int i, j, idx;
3100
3101 for (i = 0; i < cpuc->n_events; i++) {
3102 leader = cpuc->event_list[i];
3103 if (!is_acr_event_group(leader))
3104 continue;
3105
3106 /* The ACR events must be contiguous. */
3107 for (j = i; j < cpuc->n_events; j++) {
3108 event = cpuc->event_list[j];
3109 if (event->group_leader != leader->group_leader)
3110 break;
3111 for_each_set_bit(idx, (unsigned long *)&event->attr.config2, X86_PMC_IDX_MAX) {
3112 if (i + idx >= cpuc->n_events ||
3113 !is_acr_event_group(cpuc->event_list[i + idx]))
3114 return;
3115 __set_bit(cpuc->assign[i + idx], (unsigned long *)&event->hw.config1);
3116 }
3117 }
3118 i = j - 1;
3119 }
3120 }
3121
intel_pmu_late_setup(void)3122 void intel_pmu_late_setup(void)
3123 {
3124 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3125
3126 if (!cpuc->n_late_setup)
3127 return;
3128
3129 intel_pmu_pebs_late_setup(cpuc);
3130 intel_pmu_acr_late_setup(cpuc);
3131 }
3132
intel_pmu_add_event(struct perf_event * event)3133 static void intel_pmu_add_event(struct perf_event *event)
3134 {
3135 if (event->attr.precise_ip)
3136 intel_pmu_pebs_add(event);
3137 if (intel_pmu_needs_branch_stack(event))
3138 intel_pmu_lbr_add(event);
3139 if (is_pebs_counter_event_group(event) ||
3140 is_acr_event_group(event))
3141 this_cpu_ptr(&cpu_hw_events)->n_late_setup++;
3142 }
3143
3144 /*
3145 * Save and restart an expired event. Called by NMI contexts,
3146 * so it has to be careful about preempting normal event ops:
3147 */
intel_pmu_save_and_restart(struct perf_event * event)3148 int intel_pmu_save_and_restart(struct perf_event *event)
3149 {
3150 static_call(x86_pmu_update)(event);
3151 /*
3152 * For a checkpointed counter always reset back to 0. This
3153 * avoids a situation where the counter overflows, aborts the
3154 * transaction and is then set back to shortly before the
3155 * overflow, and overflows and aborts again.
3156 */
3157 if (unlikely(event_is_checkpointed(event))) {
3158 /* No race with NMIs because the counter should not be armed */
3159 wrmsrq(event->hw.event_base, 0);
3160 local64_set(&event->hw.prev_count, 0);
3161 }
3162 return static_call(x86_pmu_set_period)(event);
3163 }
3164
intel_pmu_set_period(struct perf_event * event)3165 static int intel_pmu_set_period(struct perf_event *event)
3166 {
3167 if (unlikely(is_topdown_count(event)))
3168 return static_call(intel_pmu_set_topdown_event_period)(event);
3169
3170 return x86_perf_event_set_period(event);
3171 }
3172
intel_pmu_update(struct perf_event * event)3173 static u64 intel_pmu_update(struct perf_event *event)
3174 {
3175 if (unlikely(is_topdown_count(event)))
3176 return static_call(intel_pmu_update_topdown_event)(event, NULL);
3177
3178 return x86_perf_event_update(event);
3179 }
3180
intel_pmu_reset(void)3181 static void intel_pmu_reset(void)
3182 {
3183 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
3184 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3185 unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask);
3186 unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
3187 unsigned long flags;
3188 int idx;
3189
3190 if (!*(u64 *)cntr_mask)
3191 return;
3192
3193 local_irq_save(flags);
3194
3195 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
3196
3197 for_each_set_bit(idx, cntr_mask, INTEL_PMC_MAX_GENERIC) {
3198 wrmsrq_safe(x86_pmu_config_addr(idx), 0ull);
3199 wrmsrq_safe(x86_pmu_event_addr(idx), 0ull);
3200 }
3201 for_each_set_bit(idx, fixed_cntr_mask, INTEL_PMC_MAX_FIXED) {
3202 if (fixed_counter_disabled(idx, cpuc->pmu))
3203 continue;
3204 wrmsrq_safe(x86_pmu_fixed_ctr_addr(idx), 0ull);
3205 }
3206
3207 if (ds)
3208 ds->bts_index = ds->bts_buffer_base;
3209
3210 /* Ack all overflows and disable fixed counters */
3211 if (x86_pmu.version >= 2) {
3212 intel_pmu_ack_status(intel_pmu_get_status());
3213 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
3214 }
3215
3216 /* Reset LBRs and LBR freezing */
3217 if (x86_pmu.lbr_nr) {
3218 update_debugctlmsr(get_debugctlmsr() &
3219 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
3220 }
3221
3222 local_irq_restore(flags);
3223 }
3224
3225 /*
3226 * We may be running with guest PEBS events created by KVM, and the
3227 * PEBS records are logged into the guest's DS and invisible to host.
3228 *
3229 * In the case of guest PEBS overflow, we only trigger a fake event
3230 * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
3231 * The guest will then vm-entry and check the guest DS area to read
3232 * the guest PEBS records.
3233 *
3234 * The contents and other behavior of the guest event do not matter.
3235 */
x86_pmu_handle_guest_pebs(struct pt_regs * regs,struct perf_sample_data * data)3236 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
3237 struct perf_sample_data *data)
3238 {
3239 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3240 u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
3241 struct perf_event *event = NULL;
3242 int bit;
3243
3244 if (!unlikely(perf_guest_state()))
3245 return;
3246
3247 if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
3248 !guest_pebs_idxs)
3249 return;
3250
3251 for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs, X86_PMC_IDX_MAX) {
3252 event = cpuc->events[bit];
3253 if (!event->attr.precise_ip)
3254 continue;
3255
3256 perf_sample_data_init(data, 0, event->hw.last_period);
3257 perf_event_overflow(event, data, regs);
3258
3259 /* Inject one fake event is enough. */
3260 break;
3261 }
3262 }
3263
handle_pmi_common(struct pt_regs * regs,u64 status)3264 static int handle_pmi_common(struct pt_regs *regs, u64 status)
3265 {
3266 struct perf_sample_data data;
3267 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3268 int bit;
3269 int handled = 0;
3270
3271 inc_irq_stat(apic_perf_irqs);
3272
3273 /*
3274 * Ignore a range of extra bits in status that do not indicate
3275 * overflow by themselves.
3276 */
3277 status &= ~(GLOBAL_STATUS_COND_CHG |
3278 GLOBAL_STATUS_ASIF |
3279 GLOBAL_STATUS_LBRS_FROZEN);
3280 if (!status)
3281 return 0;
3282 /*
3283 * In case multiple PEBS events are sampled at the same time,
3284 * it is possible to have GLOBAL_STATUS bit 62 set indicating
3285 * PEBS buffer overflow and also seeing at most 3 PEBS counters
3286 * having their bits set in the status register. This is a sign
3287 * that there was at least one PEBS record pending at the time
3288 * of the PMU interrupt. PEBS counters must only be processed
3289 * via the drain_pebs() calls and not via the regular sample
3290 * processing loop coming after that the function, otherwise
3291 * phony regular samples may be generated in the sampling buffer
3292 * not marked with the EXACT tag. Another possibility is to have
3293 * one PEBS event and at least one non-PEBS event which overflows
3294 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
3295 * not be set, yet the overflow status bit for the PEBS counter will
3296 * be on Skylake.
3297 *
3298 * To avoid this problem, we systematically ignore the PEBS-enabled
3299 * counters from the GLOBAL_STATUS mask and we always process PEBS
3300 * events via drain_pebs().
3301 */
3302 status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
3303
3304 /*
3305 * PEBS overflow sets bit 62 in the global status register
3306 */
3307 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3308 u64 pebs_enabled = cpuc->pebs_enabled;
3309
3310 handled++;
3311 x86_pmu_handle_guest_pebs(regs, &data);
3312 static_call(x86_pmu_drain_pebs)(regs, &data);
3313
3314 /*
3315 * PMI throttle may be triggered, which stops the PEBS event.
3316 * Although cpuc->pebs_enabled is updated accordingly, the
3317 * MSR_IA32_PEBS_ENABLE is not updated. Because the
3318 * cpuc->enabled has been forced to 0 in PMI.
3319 * Update the MSR if pebs_enabled is changed.
3320 */
3321 if (pebs_enabled != cpuc->pebs_enabled)
3322 wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3323
3324 /*
3325 * Above PEBS handler (PEBS counters snapshotting) has updated fixed
3326 * counter 3 and perf metrics counts if they are in counter group,
3327 * unnecessary to update again.
3328 */
3329 if (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS] &&
3330 is_pebs_counter_event_group(cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS]))
3331 status &= ~GLOBAL_STATUS_PERF_METRICS_OVF_BIT;
3332 }
3333
3334 /*
3335 * Arch PEBS sets bit 54 in the global status register
3336 */
3337 if (__test_and_clear_bit(GLOBAL_STATUS_ARCH_PEBS_THRESHOLD_BIT,
3338 (unsigned long *)&status)) {
3339 handled++;
3340 static_call(x86_pmu_drain_pebs)(regs, &data);
3341
3342 if (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS] &&
3343 is_pebs_counter_event_group(cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS]))
3344 status &= ~GLOBAL_STATUS_PERF_METRICS_OVF_BIT;
3345 }
3346
3347 /*
3348 * Intel PT
3349 */
3350 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3351 handled++;
3352 if (!perf_guest_handle_intel_pt_intr())
3353 intel_pt_interrupt();
3354 }
3355
3356 /*
3357 * Intel Perf metrics
3358 */
3359 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3360 handled++;
3361 static_call(intel_pmu_update_topdown_event)(NULL, NULL);
3362 }
3363
3364 status &= hybrid(cpuc->pmu, intel_ctrl);
3365
3366 /*
3367 * Checkpointed counters can lead to 'spurious' PMIs because the
3368 * rollback caused by the PMI will have cleared the overflow status
3369 * bit. Therefore always force probe these counters.
3370 */
3371 status |= cpuc->intel_cp_status;
3372
3373 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3374 struct perf_event *event = cpuc->events[bit];
3375 u64 last_period;
3376
3377 handled++;
3378
3379 if (!test_bit(bit, cpuc->active_mask))
3380 continue;
3381 /* Event may have already been cleared: */
3382 if (!event)
3383 continue;
3384
3385 /*
3386 * There may be unprocessed PEBS records in the PEBS buffer,
3387 * which still stores the previous values.
3388 * Process those records first before handling the latest value.
3389 * For example,
3390 * A is a regular counter
3391 * B is a PEBS event which reads A
3392 * C is a PEBS event
3393 *
3394 * The following can happen:
3395 * B-assist A=1
3396 * C A=2
3397 * B-assist A=3
3398 * A-overflow-PMI A=4
3399 * C-assist-PMI (PEBS buffer) A=5
3400 *
3401 * The PEBS buffer has to be drained before handling the A-PMI
3402 */
3403 if (is_pebs_counter_event_group(event))
3404 static_call(x86_pmu_drain_pebs)(regs, &data);
3405
3406 last_period = event->hw.last_period;
3407
3408 if (!intel_pmu_save_and_restart(event))
3409 continue;
3410
3411 perf_sample_data_init(&data, 0, last_period);
3412
3413 if (has_branch_stack(event))
3414 intel_pmu_lbr_save_brstack(&data, cpuc, event);
3415
3416 perf_event_overflow(event, &data, regs);
3417 }
3418
3419 return handled;
3420 }
3421
3422 /*
3423 * This handler is triggered by the local APIC, so the APIC IRQ handling
3424 * rules apply:
3425 */
intel_pmu_handle_irq(struct pt_regs * regs)3426 static int intel_pmu_handle_irq(struct pt_regs *regs)
3427 {
3428 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3429 bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3430 bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3431 int loops;
3432 u64 status;
3433 int handled;
3434 int pmu_enabled;
3435
3436 /*
3437 * Save the PMU state.
3438 * It needs to be restored when leaving the handler.
3439 */
3440 pmu_enabled = cpuc->enabled;
3441 /*
3442 * In general, the early ACK is only applied for old platforms.
3443 * For the big core starts from Haswell, the late ACK should be
3444 * applied.
3445 * For the small core after Tremont, we have to do the ACK right
3446 * before re-enabling counters, which is in the middle of the
3447 * NMI handler.
3448 */
3449 if (!late_ack && !mid_ack)
3450 apic_write(APIC_LVTPC, APIC_DM_NMI);
3451 intel_bts_disable_local();
3452 cpuc->enabled = 0;
3453 __intel_pmu_disable_all(true);
3454 handled = intel_pmu_drain_bts_buffer();
3455 handled += intel_bts_interrupt();
3456 status = intel_pmu_get_status();
3457 if (!status)
3458 goto done;
3459
3460 loops = 0;
3461 again:
3462 intel_pmu_lbr_read();
3463 intel_pmu_ack_status(status);
3464 if (++loops > 100) {
3465 static bool warned;
3466
3467 if (!warned) {
3468 WARN(1, "perfevents: irq loop stuck!\n");
3469 perf_event_print_debug();
3470 warned = true;
3471 }
3472 intel_pmu_reset();
3473 goto done;
3474 }
3475
3476 handled += handle_pmi_common(regs, status);
3477
3478 /*
3479 * Repeat if there is more work to be done:
3480 */
3481 status = intel_pmu_get_status();
3482 if (status)
3483 goto again;
3484
3485 done:
3486 if (mid_ack)
3487 apic_write(APIC_LVTPC, APIC_DM_NMI);
3488 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3489 cpuc->enabled = pmu_enabled;
3490 if (pmu_enabled)
3491 __intel_pmu_enable_all(0, true);
3492 intel_bts_enable_local();
3493
3494 /*
3495 * Only unmask the NMI after the overflow counters
3496 * have been reset. This avoids spurious NMIs on
3497 * Haswell CPUs.
3498 */
3499 if (late_ack)
3500 apic_write(APIC_LVTPC, APIC_DM_NMI);
3501 return handled;
3502 }
3503
3504 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)3505 intel_bts_constraints(struct perf_event *event)
3506 {
3507 if (unlikely(intel_pmu_has_bts(event)))
3508 return &bts_constraint;
3509
3510 return NULL;
3511 }
3512
3513 /*
3514 * Note: matches a fake event, like Fixed2.
3515 */
3516 static struct event_constraint *
intel_vlbr_constraints(struct perf_event * event)3517 intel_vlbr_constraints(struct perf_event *event)
3518 {
3519 struct event_constraint *c = &vlbr_constraint;
3520
3521 if (unlikely(constraint_match(c, event->hw.config))) {
3522 event->hw.flags |= c->flags;
3523 return c;
3524 }
3525
3526 return NULL;
3527 }
3528
intel_alt_er(struct cpu_hw_events * cpuc,int idx,u64 config)3529 static int intel_alt_er(struct cpu_hw_events *cpuc,
3530 int idx, u64 config)
3531 {
3532 struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3533 int alt_idx = idx;
3534
3535 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3536 return idx;
3537
3538 if (idx == EXTRA_REG_RSP_0)
3539 alt_idx = EXTRA_REG_RSP_1;
3540
3541 if (idx == EXTRA_REG_RSP_1)
3542 alt_idx = EXTRA_REG_RSP_0;
3543
3544 if (config & ~extra_regs[alt_idx].valid_mask)
3545 return idx;
3546
3547 return alt_idx;
3548 }
3549
intel_fixup_er(struct perf_event * event,int idx)3550 static void intel_fixup_er(struct perf_event *event, int idx)
3551 {
3552 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3553 event->hw.extra_reg.idx = idx;
3554
3555 if (idx == EXTRA_REG_RSP_0) {
3556 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3557 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3558 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3559 } else if (idx == EXTRA_REG_RSP_1) {
3560 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3561 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3562 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3563 }
3564 }
3565
3566 /*
3567 * manage allocation of shared extra msr for certain events
3568 *
3569 * sharing can be:
3570 * per-cpu: to be shared between the various events on a single PMU
3571 * per-core: per-cpu + shared by HT threads
3572 */
3573 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)3574 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3575 struct perf_event *event,
3576 struct hw_perf_event_extra *reg)
3577 {
3578 struct event_constraint *c = &emptyconstraint;
3579 struct er_account *era;
3580 unsigned long flags;
3581 int idx = reg->idx;
3582
3583 /*
3584 * reg->alloc can be set due to existing state, so for fake cpuc we
3585 * need to ignore this, otherwise we might fail to allocate proper fake
3586 * state for this extra reg constraint. Also see the comment below.
3587 */
3588 if (reg->alloc && !cpuc->is_fake)
3589 return NULL; /* call x86_get_event_constraint() */
3590
3591 again:
3592 era = &cpuc->shared_regs->regs[idx];
3593 /*
3594 * we use spin_lock_irqsave() to avoid lockdep issues when
3595 * passing a fake cpuc
3596 */
3597 raw_spin_lock_irqsave(&era->lock, flags);
3598
3599 if (!atomic_read(&era->ref) || era->config == reg->config) {
3600
3601 /*
3602 * If its a fake cpuc -- as per validate_{group,event}() we
3603 * shouldn't touch event state and we can avoid doing so
3604 * since both will only call get_event_constraints() once
3605 * on each event, this avoids the need for reg->alloc.
3606 *
3607 * Not doing the ER fixup will only result in era->reg being
3608 * wrong, but since we won't actually try and program hardware
3609 * this isn't a problem either.
3610 */
3611 if (!cpuc->is_fake) {
3612 if (idx != reg->idx)
3613 intel_fixup_er(event, idx);
3614
3615 /*
3616 * x86_schedule_events() can call get_event_constraints()
3617 * multiple times on events in the case of incremental
3618 * scheduling(). reg->alloc ensures we only do the ER
3619 * allocation once.
3620 */
3621 reg->alloc = 1;
3622 }
3623
3624 /* lock in msr value */
3625 era->config = reg->config;
3626 era->reg = reg->reg;
3627
3628 /* one more user */
3629 atomic_inc(&era->ref);
3630
3631 /*
3632 * need to call x86_get_event_constraint()
3633 * to check if associated event has constraints
3634 */
3635 c = NULL;
3636 } else {
3637 idx = intel_alt_er(cpuc, idx, reg->config);
3638 if (idx != reg->idx) {
3639 raw_spin_unlock_irqrestore(&era->lock, flags);
3640 goto again;
3641 }
3642 }
3643 raw_spin_unlock_irqrestore(&era->lock, flags);
3644
3645 return c;
3646 }
3647
3648 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)3649 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3650 struct hw_perf_event_extra *reg)
3651 {
3652 struct er_account *era;
3653
3654 /*
3655 * Only put constraint if extra reg was actually allocated. Also takes
3656 * care of event which do not use an extra shared reg.
3657 *
3658 * Also, if this is a fake cpuc we shouldn't touch any event state
3659 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3660 * either since it'll be thrown out.
3661 */
3662 if (!reg->alloc || cpuc->is_fake)
3663 return;
3664
3665 era = &cpuc->shared_regs->regs[reg->idx];
3666
3667 /* one fewer user */
3668 atomic_dec(&era->ref);
3669
3670 /* allocate again next time */
3671 reg->alloc = 0;
3672 }
3673
3674 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3675 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3676 struct perf_event *event)
3677 {
3678 struct event_constraint *c = NULL, *d;
3679 struct hw_perf_event_extra *xreg, *breg;
3680
3681 xreg = &event->hw.extra_reg;
3682 if (xreg->idx != EXTRA_REG_NONE) {
3683 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3684 if (c == &emptyconstraint)
3685 return c;
3686 }
3687 breg = &event->hw.branch_reg;
3688 if (breg->idx != EXTRA_REG_NONE) {
3689 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3690 if (d == &emptyconstraint) {
3691 __intel_shared_reg_put_constraints(cpuc, xreg);
3692 c = d;
3693 }
3694 }
3695 return c;
3696 }
3697
3698 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3699 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3700 struct perf_event *event)
3701 {
3702 struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3703 struct event_constraint *c;
3704
3705 if (event_constraints) {
3706 for_each_event_constraint(c, event_constraints) {
3707 if (constraint_match(c, event->hw.config)) {
3708 event->hw.flags |= c->flags;
3709 return c;
3710 }
3711 }
3712 }
3713
3714 return &hybrid_var(cpuc->pmu, unconstrained);
3715 }
3716
3717 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3718 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3719 struct perf_event *event)
3720 {
3721 struct event_constraint *c;
3722
3723 c = intel_vlbr_constraints(event);
3724 if (c)
3725 return c;
3726
3727 c = intel_bts_constraints(event);
3728 if (c)
3729 return c;
3730
3731 c = intel_shared_regs_constraints(cpuc, event);
3732 if (c)
3733 return c;
3734
3735 c = intel_pebs_constraints(event);
3736 if (c)
3737 return c;
3738
3739 return x86_get_event_constraints(cpuc, idx, event);
3740 }
3741
3742 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)3743 intel_start_scheduling(struct cpu_hw_events *cpuc)
3744 {
3745 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3746 struct intel_excl_states *xl;
3747 int tid = cpuc->excl_thread_id;
3748
3749 /*
3750 * nothing needed if in group validation mode
3751 */
3752 if (cpuc->is_fake || !is_ht_workaround_enabled())
3753 return;
3754
3755 /*
3756 * no exclusion needed
3757 */
3758 if (WARN_ON_ONCE(!excl_cntrs))
3759 return;
3760
3761 xl = &excl_cntrs->states[tid];
3762
3763 xl->sched_started = true;
3764 /*
3765 * lock shared state until we are done scheduling
3766 * in stop_event_scheduling()
3767 * makes scheduling appear as a transaction
3768 */
3769 raw_spin_lock(&excl_cntrs->lock);
3770 }
3771
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)3772 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3773 {
3774 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3775 struct event_constraint *c = cpuc->event_constraint[idx];
3776 struct intel_excl_states *xl;
3777 int tid = cpuc->excl_thread_id;
3778
3779 if (cpuc->is_fake || !is_ht_workaround_enabled())
3780 return;
3781
3782 if (WARN_ON_ONCE(!excl_cntrs))
3783 return;
3784
3785 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3786 return;
3787
3788 xl = &excl_cntrs->states[tid];
3789
3790 lockdep_assert_held(&excl_cntrs->lock);
3791
3792 if (c->flags & PERF_X86_EVENT_EXCL)
3793 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3794 else
3795 xl->state[cntr] = INTEL_EXCL_SHARED;
3796 }
3797
3798 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)3799 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3800 {
3801 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3802 struct intel_excl_states *xl;
3803 int tid = cpuc->excl_thread_id;
3804
3805 /*
3806 * nothing needed if in group validation mode
3807 */
3808 if (cpuc->is_fake || !is_ht_workaround_enabled())
3809 return;
3810 /*
3811 * no exclusion needed
3812 */
3813 if (WARN_ON_ONCE(!excl_cntrs))
3814 return;
3815
3816 xl = &excl_cntrs->states[tid];
3817
3818 xl->sched_started = false;
3819 /*
3820 * release shared state lock (acquired in intel_start_scheduling())
3821 */
3822 raw_spin_unlock(&excl_cntrs->lock);
3823 }
3824
3825 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)3826 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3827 {
3828 WARN_ON_ONCE(!cpuc->constraint_list);
3829
3830 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3831 struct event_constraint *cx;
3832
3833 /*
3834 * grab pre-allocated constraint entry
3835 */
3836 cx = &cpuc->constraint_list[idx];
3837
3838 /*
3839 * initialize dynamic constraint
3840 * with static constraint
3841 */
3842 *cx = *c;
3843
3844 /*
3845 * mark constraint as dynamic
3846 */
3847 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3848 c = cx;
3849 }
3850
3851 return c;
3852 }
3853
3854 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)3855 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3856 int idx, struct event_constraint *c)
3857 {
3858 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3859 struct intel_excl_states *xlo;
3860 int tid = cpuc->excl_thread_id;
3861 int is_excl, i, w;
3862
3863 /*
3864 * validating a group does not require
3865 * enforcing cross-thread exclusion
3866 */
3867 if (cpuc->is_fake || !is_ht_workaround_enabled())
3868 return c;
3869
3870 /*
3871 * no exclusion needed
3872 */
3873 if (WARN_ON_ONCE(!excl_cntrs))
3874 return c;
3875
3876 /*
3877 * because we modify the constraint, we need
3878 * to make a copy. Static constraints come
3879 * from static const tables.
3880 *
3881 * only needed when constraint has not yet
3882 * been cloned (marked dynamic)
3883 */
3884 c = dyn_constraint(cpuc, c, idx);
3885
3886 /*
3887 * From here on, the constraint is dynamic.
3888 * Either it was just allocated above, or it
3889 * was allocated during a earlier invocation
3890 * of this function
3891 */
3892
3893 /*
3894 * state of sibling HT
3895 */
3896 xlo = &excl_cntrs->states[tid ^ 1];
3897
3898 /*
3899 * event requires exclusive counter access
3900 * across HT threads
3901 */
3902 is_excl = c->flags & PERF_X86_EVENT_EXCL;
3903 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3904 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3905 if (!cpuc->n_excl++)
3906 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3907 }
3908
3909 /*
3910 * Modify static constraint with current dynamic
3911 * state of thread
3912 *
3913 * EXCLUSIVE: sibling counter measuring exclusive event
3914 * SHARED : sibling counter measuring non-exclusive event
3915 * UNUSED : sibling counter unused
3916 */
3917 w = c->weight;
3918 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3919 /*
3920 * exclusive event in sibling counter
3921 * our corresponding counter cannot be used
3922 * regardless of our event
3923 */
3924 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3925 __clear_bit(i, c->idxmsk);
3926 w--;
3927 continue;
3928 }
3929 /*
3930 * if measuring an exclusive event, sibling
3931 * measuring non-exclusive, then counter cannot
3932 * be used
3933 */
3934 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3935 __clear_bit(i, c->idxmsk);
3936 w--;
3937 continue;
3938 }
3939 }
3940
3941 /*
3942 * if we return an empty mask, then switch
3943 * back to static empty constraint to avoid
3944 * the cost of freeing later on
3945 */
3946 if (!w)
3947 c = &emptyconstraint;
3948
3949 c->weight = w;
3950
3951 return c;
3952 }
3953
3954 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3955 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3956 struct perf_event *event)
3957 {
3958 struct event_constraint *c1, *c2;
3959
3960 c1 = cpuc->event_constraint[idx];
3961
3962 /*
3963 * first time only
3964 * - static constraint: no change across incremental scheduling calls
3965 * - dynamic constraint: handled by intel_get_excl_constraints()
3966 */
3967 c2 = __intel_get_event_constraints(cpuc, idx, event);
3968 if (c1) {
3969 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3970 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3971 c1->weight = c2->weight;
3972 c2 = c1;
3973 }
3974
3975 if (cpuc->excl_cntrs)
3976 return intel_get_excl_constraints(cpuc, event, idx, c2);
3977
3978 if (event->hw.dyn_constraint != ~0ULL) {
3979 c2 = dyn_constraint(cpuc, c2, idx);
3980 c2->idxmsk64 &= event->hw.dyn_constraint;
3981 c2->weight = hweight64(c2->idxmsk64);
3982 }
3983
3984 return c2;
3985 }
3986
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3987 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3988 struct perf_event *event)
3989 {
3990 struct hw_perf_event *hwc = &event->hw;
3991 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3992 int tid = cpuc->excl_thread_id;
3993 struct intel_excl_states *xl;
3994
3995 /*
3996 * nothing needed if in group validation mode
3997 */
3998 if (cpuc->is_fake)
3999 return;
4000
4001 if (WARN_ON_ONCE(!excl_cntrs))
4002 return;
4003
4004 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
4005 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
4006 if (!--cpuc->n_excl)
4007 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
4008 }
4009
4010 /*
4011 * If event was actually assigned, then mark the counter state as
4012 * unused now.
4013 */
4014 if (hwc->idx >= 0) {
4015 xl = &excl_cntrs->states[tid];
4016
4017 /*
4018 * put_constraint may be called from x86_schedule_events()
4019 * which already has the lock held so here make locking
4020 * conditional.
4021 */
4022 if (!xl->sched_started)
4023 raw_spin_lock(&excl_cntrs->lock);
4024
4025 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
4026
4027 if (!xl->sched_started)
4028 raw_spin_unlock(&excl_cntrs->lock);
4029 }
4030 }
4031
4032 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)4033 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
4034 struct perf_event *event)
4035 {
4036 struct hw_perf_event_extra *reg;
4037
4038 reg = &event->hw.extra_reg;
4039 if (reg->idx != EXTRA_REG_NONE)
4040 __intel_shared_reg_put_constraints(cpuc, reg);
4041
4042 reg = &event->hw.branch_reg;
4043 if (reg->idx != EXTRA_REG_NONE)
4044 __intel_shared_reg_put_constraints(cpuc, reg);
4045 }
4046
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)4047 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
4048 struct perf_event *event)
4049 {
4050 intel_put_shared_regs_event_constraints(cpuc, event);
4051
4052 /*
4053 * is PMU has exclusive counter restrictions, then
4054 * all events are subject to and must call the
4055 * put_excl_constraints() routine
4056 */
4057 if (cpuc->excl_cntrs)
4058 intel_put_excl_constraints(cpuc, event);
4059 }
4060
intel_pebs_aliases_core2(struct perf_event * event)4061 static void intel_pebs_aliases_core2(struct perf_event *event)
4062 {
4063 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
4064 /*
4065 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
4066 * (0x003c) so that we can use it with PEBS.
4067 *
4068 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
4069 * PEBS capable. However we can use INST_RETIRED.ANY_P
4070 * (0x00c0), which is a PEBS capable event, to get the same
4071 * count.
4072 *
4073 * INST_RETIRED.ANY_P counts the number of cycles that retires
4074 * CNTMASK instructions. By setting CNTMASK to a value (16)
4075 * larger than the maximum number of instructions that can be
4076 * retired per cycle (4) and then inverting the condition, we
4077 * count all cycles that retire 16 or less instructions, which
4078 * is every cycle.
4079 *
4080 * Thereby we gain a PEBS capable cycle counter.
4081 */
4082 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
4083
4084 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4085 event->hw.config = alt_config;
4086 }
4087 }
4088
intel_pebs_aliases_snb(struct perf_event * event)4089 static void intel_pebs_aliases_snb(struct perf_event *event)
4090 {
4091 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
4092 /*
4093 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
4094 * (0x003c) so that we can use it with PEBS.
4095 *
4096 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
4097 * PEBS capable. However we can use UOPS_RETIRED.ALL
4098 * (0x01c2), which is a PEBS capable event, to get the same
4099 * count.
4100 *
4101 * UOPS_RETIRED.ALL counts the number of cycles that retires
4102 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
4103 * larger than the maximum number of micro-ops that can be
4104 * retired per cycle (4) and then inverting the condition, we
4105 * count all cycles that retire 16 or less micro-ops, which
4106 * is every cycle.
4107 *
4108 * Thereby we gain a PEBS capable cycle counter.
4109 */
4110 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
4111
4112 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4113 event->hw.config = alt_config;
4114 }
4115 }
4116
intel_pebs_aliases_precdist(struct perf_event * event)4117 static void intel_pebs_aliases_precdist(struct perf_event *event)
4118 {
4119 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
4120 /*
4121 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
4122 * (0x003c) so that we can use it with PEBS.
4123 *
4124 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
4125 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
4126 * (0x01c0), which is a PEBS capable event, to get the same
4127 * count.
4128 *
4129 * The PREC_DIST event has special support to minimize sample
4130 * shadowing effects. One drawback is that it can be
4131 * only programmed on counter 1, but that seems like an
4132 * acceptable trade off.
4133 */
4134 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
4135
4136 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4137 event->hw.config = alt_config;
4138 }
4139 }
4140
intel_pebs_aliases_ivb(struct perf_event * event)4141 static void intel_pebs_aliases_ivb(struct perf_event *event)
4142 {
4143 if (event->attr.precise_ip < 3)
4144 return intel_pebs_aliases_snb(event);
4145 return intel_pebs_aliases_precdist(event);
4146 }
4147
intel_pebs_aliases_skl(struct perf_event * event)4148 static void intel_pebs_aliases_skl(struct perf_event *event)
4149 {
4150 if (event->attr.precise_ip < 3)
4151 return intel_pebs_aliases_core2(event);
4152 return intel_pebs_aliases_precdist(event);
4153 }
4154
intel_pmu_large_pebs_flags(struct perf_event * event)4155 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
4156 {
4157 unsigned long flags = x86_pmu.large_pebs_flags;
4158
4159 if (event->attr.use_clockid)
4160 flags &= ~PERF_SAMPLE_TIME;
4161 if (!event->attr.exclude_kernel)
4162 flags &= ~PERF_SAMPLE_REGS_USER;
4163 if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
4164 flags &= ~PERF_SAMPLE_REGS_USER;
4165 if (event->attr.sample_regs_intr & ~PEBS_GP_REGS)
4166 flags &= ~PERF_SAMPLE_REGS_INTR;
4167 return flags;
4168 }
4169
intel_pmu_bts_config(struct perf_event * event)4170 static int intel_pmu_bts_config(struct perf_event *event)
4171 {
4172 struct perf_event_attr *attr = &event->attr;
4173
4174 if (unlikely(intel_pmu_has_bts(event))) {
4175 /* BTS is not supported by this architecture. */
4176 if (!x86_pmu.bts_active)
4177 return -EOPNOTSUPP;
4178
4179 /* BTS is currently only allowed for user-mode. */
4180 if (!attr->exclude_kernel)
4181 return -EOPNOTSUPP;
4182
4183 /* BTS is not allowed for precise events. */
4184 if (attr->precise_ip)
4185 return -EOPNOTSUPP;
4186
4187 /* disallow bts if conflicting events are present */
4188 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4189 return -EBUSY;
4190
4191 event->destroy = hw_perf_lbr_event_destroy;
4192 }
4193
4194 return 0;
4195 }
4196
core_pmu_hw_config(struct perf_event * event)4197 static int core_pmu_hw_config(struct perf_event *event)
4198 {
4199 int ret = x86_pmu_hw_config(event);
4200
4201 if (ret)
4202 return ret;
4203
4204 return intel_pmu_bts_config(event);
4205 }
4206
4207 #define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
4208 ((x86_pmu.num_topdown_events - 1) << 8))
4209
is_available_metric_event(struct perf_event * event)4210 static bool is_available_metric_event(struct perf_event *event)
4211 {
4212 return is_metric_event(event) &&
4213 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
4214 }
4215
is_mem_loads_event(struct perf_event * event)4216 static inline bool is_mem_loads_event(struct perf_event *event)
4217 {
4218 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
4219 }
4220
is_mem_loads_aux_event(struct perf_event * event)4221 static inline bool is_mem_loads_aux_event(struct perf_event *event)
4222 {
4223 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
4224 }
4225
require_mem_loads_aux_event(struct perf_event * event)4226 static inline bool require_mem_loads_aux_event(struct perf_event *event)
4227 {
4228 if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
4229 return false;
4230
4231 if (is_hybrid())
4232 return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
4233
4234 return true;
4235 }
4236
intel_pmu_has_cap(struct perf_event * event,int idx)4237 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
4238 {
4239 union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
4240
4241 return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
4242 }
4243
intel_pmu_freq_start_period(struct perf_event * event)4244 static u64 intel_pmu_freq_start_period(struct perf_event *event)
4245 {
4246 int type = event->attr.type;
4247 u64 config, factor;
4248 s64 start;
4249
4250 /*
4251 * The 127 is the lowest possible recommended SAV (sample after value)
4252 * for a 4000 freq (default freq), according to the event list JSON file.
4253 * Also, assume the workload is idle 50% time.
4254 */
4255 factor = 64 * 4000;
4256 if (type != PERF_TYPE_HARDWARE && type != PERF_TYPE_HW_CACHE)
4257 goto end;
4258
4259 /*
4260 * The estimation of the start period in the freq mode is
4261 * based on the below assumption.
4262 *
4263 * For a cycles or an instructions event, 1GHZ of the
4264 * underlying platform, 1 IPC. The workload is idle 50% time.
4265 * The start period = 1,000,000,000 * 1 / freq / 2.
4266 * = 500,000,000 / freq
4267 *
4268 * Usually, the branch-related events occur less than the
4269 * instructions event. According to the Intel event list JSON
4270 * file, the SAV (sample after value) of a branch-related event
4271 * is usually 1/4 of an instruction event.
4272 * The start period of branch-related events = 125,000,000 / freq.
4273 *
4274 * The cache-related events occurs even less. The SAV is usually
4275 * 1/20 of an instruction event.
4276 * The start period of cache-related events = 25,000,000 / freq.
4277 */
4278 config = event->attr.config & PERF_HW_EVENT_MASK;
4279 if (type == PERF_TYPE_HARDWARE) {
4280 switch (config) {
4281 case PERF_COUNT_HW_CPU_CYCLES:
4282 case PERF_COUNT_HW_INSTRUCTIONS:
4283 case PERF_COUNT_HW_BUS_CYCLES:
4284 case PERF_COUNT_HW_STALLED_CYCLES_FRONTEND:
4285 case PERF_COUNT_HW_STALLED_CYCLES_BACKEND:
4286 case PERF_COUNT_HW_REF_CPU_CYCLES:
4287 factor = 500000000;
4288 break;
4289 case PERF_COUNT_HW_BRANCH_INSTRUCTIONS:
4290 case PERF_COUNT_HW_BRANCH_MISSES:
4291 factor = 125000000;
4292 break;
4293 case PERF_COUNT_HW_CACHE_REFERENCES:
4294 case PERF_COUNT_HW_CACHE_MISSES:
4295 factor = 25000000;
4296 break;
4297 default:
4298 goto end;
4299 }
4300 }
4301
4302 if (type == PERF_TYPE_HW_CACHE)
4303 factor = 25000000;
4304 end:
4305 /*
4306 * Usually, a prime or a number with less factors (close to prime)
4307 * is chosen as an SAV, which makes it less likely that the sampling
4308 * period synchronizes with some periodic event in the workload.
4309 * Minus 1 to make it at least avoiding values near power of twos
4310 * for the default freq.
4311 */
4312 start = DIV_ROUND_UP_ULL(factor, event->attr.sample_freq) - 1;
4313
4314 if (start > x86_pmu.max_period)
4315 start = x86_pmu.max_period;
4316
4317 if (x86_pmu.limit_period)
4318 x86_pmu.limit_period(event, &start);
4319
4320 return start;
4321 }
4322
intel_pmu_has_acr(struct pmu * pmu)4323 static inline bool intel_pmu_has_acr(struct pmu *pmu)
4324 {
4325 return !!hybrid(pmu, acr_cause_mask64);
4326 }
4327
intel_pmu_is_acr_group(struct perf_event * event)4328 static bool intel_pmu_is_acr_group(struct perf_event *event)
4329 {
4330 /* The group leader has the ACR flag set */
4331 if (is_acr_event_group(event))
4332 return true;
4333
4334 /* The acr_mask is set */
4335 if (event->attr.config2)
4336 return true;
4337
4338 return false;
4339 }
4340
intel_pmu_has_pebs_counter_group(struct pmu * pmu)4341 static inline bool intel_pmu_has_pebs_counter_group(struct pmu *pmu)
4342 {
4343 u64 caps;
4344
4345 if (x86_pmu.intel_cap.pebs_format >= 6 && x86_pmu.intel_cap.pebs_baseline)
4346 return true;
4347
4348 caps = hybrid(pmu, arch_pebs_cap).caps;
4349 if (x86_pmu.arch_pebs && (caps & ARCH_PEBS_CNTR_MASK))
4350 return true;
4351
4352 return false;
4353 }
4354
intel_pmu_set_acr_cntr_constr(struct perf_event * event,u64 * cause_mask,int * num)4355 static inline void intel_pmu_set_acr_cntr_constr(struct perf_event *event,
4356 u64 *cause_mask, int *num)
4357 {
4358 event->hw.dyn_constraint &= hybrid(event->pmu, acr_cntr_mask64);
4359 *cause_mask |= event->attr.config2;
4360 *num += 1;
4361 }
4362
intel_pmu_set_acr_caused_constr(struct perf_event * event,int idx,u64 cause_mask)4363 static inline void intel_pmu_set_acr_caused_constr(struct perf_event *event,
4364 int idx, u64 cause_mask)
4365 {
4366 if (test_bit(idx, (unsigned long *)&cause_mask))
4367 event->hw.dyn_constraint &= hybrid(event->pmu, acr_cause_mask64);
4368 }
4369
intel_pmu_hw_config(struct perf_event * event)4370 static int intel_pmu_hw_config(struct perf_event *event)
4371 {
4372 int ret = x86_pmu_hw_config(event);
4373
4374 if (ret)
4375 return ret;
4376
4377 ret = intel_pmu_bts_config(event);
4378 if (ret)
4379 return ret;
4380
4381 if (event->attr.freq && event->attr.sample_freq) {
4382 event->hw.sample_period = intel_pmu_freq_start_period(event);
4383 event->hw.last_period = event->hw.sample_period;
4384 local64_set(&event->hw.period_left, event->hw.sample_period);
4385 }
4386
4387 if (event->attr.precise_ip) {
4388 struct arch_pebs_cap pebs_cap = hybrid(event->pmu, arch_pebs_cap);
4389
4390 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
4391 return -EINVAL;
4392
4393 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
4394 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
4395 if (!(event->attr.sample_type & ~intel_pmu_large_pebs_flags(event)) &&
4396 !has_aux_action(event)) {
4397 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
4398 event->attach_state |= PERF_ATTACH_SCHED_CB;
4399 }
4400 }
4401 if (x86_pmu.pebs_aliases)
4402 x86_pmu.pebs_aliases(event);
4403
4404 if (x86_pmu.arch_pebs) {
4405 u64 cntr_mask = hybrid(event->pmu, intel_ctrl) &
4406 ~GLOBAL_CTRL_EN_PERF_METRICS;
4407 u64 pebs_mask = event->attr.precise_ip >= 3 ?
4408 pebs_cap.pdists : pebs_cap.counters;
4409 if (cntr_mask != pebs_mask)
4410 event->hw.dyn_constraint &= pebs_mask;
4411 }
4412 }
4413
4414 if (needs_branch_stack(event)) {
4415 /* Avoid branch stack setup for counting events in SAMPLE READ */
4416 if (is_sampling_event(event) ||
4417 !(event->attr.sample_type & PERF_SAMPLE_READ))
4418 event->hw.flags |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4419 }
4420
4421 if (branch_sample_counters(event)) {
4422 struct perf_event *leader, *sibling;
4423 int num = 0;
4424
4425 if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
4426 (event->attr.config & ~INTEL_ARCH_EVENT_MASK))
4427 return -EINVAL;
4428
4429 /*
4430 * The branch counter logging is not supported in the call stack
4431 * mode yet, since we cannot simply flush the LBR during e.g.,
4432 * multiplexing. Also, there is no obvious usage with the call
4433 * stack mode. Simply forbids it for now.
4434 *
4435 * If any events in the group enable the branch counter logging
4436 * feature, the group is treated as a branch counter logging
4437 * group, which requires the extra space to store the counters.
4438 */
4439 leader = event->group_leader;
4440 if (branch_sample_call_stack(leader))
4441 return -EINVAL;
4442 if (branch_sample_counters(leader)) {
4443 num++;
4444 leader->hw.dyn_constraint &= x86_pmu.lbr_counters;
4445 }
4446 leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
4447
4448 for_each_sibling_event(sibling, leader) {
4449 if (branch_sample_call_stack(sibling))
4450 return -EINVAL;
4451 if (branch_sample_counters(sibling)) {
4452 num++;
4453 sibling->hw.dyn_constraint &= x86_pmu.lbr_counters;
4454 }
4455 }
4456
4457 if (num > fls(x86_pmu.lbr_counters))
4458 return -EINVAL;
4459 /*
4460 * Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
4461 * require any branch stack setup.
4462 * Clear the bit to avoid unnecessary branch stack setup.
4463 */
4464 if (0 == (event->attr.branch_sample_type &
4465 ~(PERF_SAMPLE_BRANCH_PLM_ALL |
4466 PERF_SAMPLE_BRANCH_COUNTERS)))
4467 event->hw.flags &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4468
4469 /*
4470 * Force the leader to be a LBR event. So LBRs can be reset
4471 * with the leader event. See intel_pmu_lbr_del() for details.
4472 */
4473 if (!intel_pmu_needs_branch_stack(leader))
4474 return -EINVAL;
4475 }
4476
4477 if (intel_pmu_needs_branch_stack(event)) {
4478 ret = intel_pmu_setup_lbr_filter(event);
4479 if (ret)
4480 return ret;
4481 event->attach_state |= PERF_ATTACH_SCHED_CB;
4482
4483 /*
4484 * BTS is set up earlier in this path, so don't account twice
4485 */
4486 if (!unlikely(intel_pmu_has_bts(event))) {
4487 /* disallow lbr if conflicting events are present */
4488 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4489 return -EBUSY;
4490
4491 event->destroy = hw_perf_lbr_event_destroy;
4492 }
4493 }
4494
4495 if (event->attr.aux_output) {
4496 if (!event->attr.precise_ip)
4497 return -EINVAL;
4498
4499 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
4500 }
4501
4502 if ((event->attr.sample_type & PERF_SAMPLE_READ) &&
4503 intel_pmu_has_pebs_counter_group(event->pmu) &&
4504 is_sampling_event(event) &&
4505 event->attr.precise_ip)
4506 event->group_leader->hw.flags |= PERF_X86_EVENT_PEBS_CNTR;
4507
4508 if (intel_pmu_has_acr(event->pmu) && intel_pmu_is_acr_group(event)) {
4509 struct perf_event *sibling, *leader = event->group_leader;
4510 struct pmu *pmu = event->pmu;
4511 bool has_sw_event = false;
4512 int num = 0, idx = 0;
4513 u64 cause_mask = 0;
4514
4515 /* Not support perf metrics */
4516 if (is_metric_event(event))
4517 return -EINVAL;
4518
4519 /* Not support freq mode */
4520 if (event->attr.freq)
4521 return -EINVAL;
4522
4523 /* PDist is not supported */
4524 if (event->attr.config2 && event->attr.precise_ip > 2)
4525 return -EINVAL;
4526
4527 /* The reload value cannot exceeds the max period */
4528 if (event->attr.sample_period > x86_pmu.max_period)
4529 return -EINVAL;
4530 /*
4531 * The counter-constraints of each event cannot be finalized
4532 * unless the whole group is scanned. However, it's hard
4533 * to know whether the event is the last one of the group.
4534 * Recalculate the counter-constraints for each event when
4535 * adding a new event.
4536 *
4537 * The group is traversed twice, which may be optimized later.
4538 * In the first round,
4539 * - Find all events which do reload when other events
4540 * overflow and set the corresponding counter-constraints
4541 * - Add all events, which can cause other events reload,
4542 * in the cause_mask
4543 * - Error out if the number of events exceeds the HW limit
4544 * - The ACR events must be contiguous.
4545 * Error out if there are non-X86 events between ACR events.
4546 * This is not a HW limit, but a SW limit.
4547 * With the assumption, the intel_pmu_acr_late_setup() can
4548 * easily convert the event idx to counter idx without
4549 * traversing the whole event list.
4550 */
4551 if (!is_x86_event(leader))
4552 return -EINVAL;
4553
4554 if (leader->attr.config2)
4555 intel_pmu_set_acr_cntr_constr(leader, &cause_mask, &num);
4556
4557 if (leader->nr_siblings) {
4558 for_each_sibling_event(sibling, leader) {
4559 if (!is_x86_event(sibling)) {
4560 has_sw_event = true;
4561 continue;
4562 }
4563 if (!sibling->attr.config2)
4564 continue;
4565 if (has_sw_event)
4566 return -EINVAL;
4567 intel_pmu_set_acr_cntr_constr(sibling, &cause_mask, &num);
4568 }
4569 }
4570 if (leader != event && event->attr.config2) {
4571 if (has_sw_event)
4572 return -EINVAL;
4573 intel_pmu_set_acr_cntr_constr(event, &cause_mask, &num);
4574 }
4575
4576 if (hweight64(cause_mask) > hweight64(hybrid(pmu, acr_cause_mask64)) ||
4577 num > hweight64(hybrid(event->pmu, acr_cntr_mask64)))
4578 return -EINVAL;
4579 /*
4580 * In the second round, apply the counter-constraints for
4581 * the events which can cause other events reload.
4582 */
4583 intel_pmu_set_acr_caused_constr(leader, idx++, cause_mask);
4584
4585 if (leader->nr_siblings) {
4586 for_each_sibling_event(sibling, leader)
4587 intel_pmu_set_acr_caused_constr(sibling, idx++, cause_mask);
4588 }
4589
4590 if (leader != event)
4591 intel_pmu_set_acr_caused_constr(event, idx, cause_mask);
4592
4593 leader->hw.flags |= PERF_X86_EVENT_ACR;
4594 }
4595
4596 if ((event->attr.type == PERF_TYPE_HARDWARE) ||
4597 (event->attr.type == PERF_TYPE_HW_CACHE))
4598 return 0;
4599
4600 /*
4601 * Config Topdown slots and metric events
4602 *
4603 * The slots event on Fixed Counter 3 can support sampling,
4604 * which will be handled normally in x86_perf_event_update().
4605 *
4606 * Metric events don't support sampling and require being paired
4607 * with a slots event as group leader. When the slots event
4608 * is used in a metrics group, it too cannot support sampling.
4609 */
4610 if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4611 /* The metrics_clear can only be set for the slots event */
4612 if (event->attr.config1 &&
4613 (!is_slots_event(event) || (event->attr.config1 & ~INTEL_TD_CFG_METRIC_CLEAR)))
4614 return -EINVAL;
4615
4616 if (event->attr.config2)
4617 return -EINVAL;
4618
4619 /*
4620 * The TopDown metrics events and slots event don't
4621 * support any filters.
4622 */
4623 if (event->attr.config & X86_ALL_EVENT_FLAGS)
4624 return -EINVAL;
4625
4626 if (is_available_metric_event(event)) {
4627 struct perf_event *leader = event->group_leader;
4628
4629 /* The metric events don't support sampling. */
4630 if (is_sampling_event(event))
4631 return -EINVAL;
4632
4633 /* The metric events require a slots group leader. */
4634 if (!is_slots_event(leader))
4635 return -EINVAL;
4636
4637 /*
4638 * The leader/SLOTS must not be a sampling event for
4639 * metric use; hardware requires it starts at 0 when used
4640 * in conjunction with MSR_PERF_METRICS.
4641 */
4642 if (is_sampling_event(leader))
4643 return -EINVAL;
4644
4645 event->event_caps |= PERF_EV_CAP_SIBLING;
4646 /*
4647 * Only once we have a METRICs sibling do we
4648 * need TopDown magic.
4649 */
4650 leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4651 event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4652 }
4653 }
4654
4655 /*
4656 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4657 * doesn't function quite right. As a work-around it needs to always be
4658 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4659 * The actual count of this second event is irrelevant it just needs
4660 * to be active to make the first event function correctly.
4661 *
4662 * In a group, the auxiliary event must be in front of the load latency
4663 * event. The rule is to simplify the implementation of the check.
4664 * That's because perf cannot have a complete group at the moment.
4665 */
4666 if (require_mem_loads_aux_event(event) &&
4667 (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4668 is_mem_loads_event(event)) {
4669 struct perf_event *leader = event->group_leader;
4670 struct perf_event *sibling = NULL;
4671
4672 /*
4673 * When this memload event is also the first event (no group
4674 * exists yet), then there is no aux event before it.
4675 */
4676 if (leader == event)
4677 return -ENODATA;
4678
4679 if (!is_mem_loads_aux_event(leader)) {
4680 for_each_sibling_event(sibling, leader) {
4681 if (is_mem_loads_aux_event(sibling))
4682 break;
4683 }
4684 if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4685 return -ENODATA;
4686 }
4687 }
4688
4689 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4690 return 0;
4691
4692 if (x86_pmu.version < 3)
4693 return -EINVAL;
4694
4695 ret = perf_allow_cpu();
4696 if (ret)
4697 return ret;
4698
4699 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4700
4701 return 0;
4702 }
4703
4704 /*
4705 * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4706 * The host perf context helps to prepare the values of the real hardware for
4707 * a set of msrs that need to be switched atomically in a vmx transaction.
4708 *
4709 * For example, the pseudocode needed to add a new msr should look like:
4710 *
4711 * arr[(*nr)++] = (struct perf_guest_switch_msr){
4712 * .msr = the hardware msr address,
4713 * .host = the value the hardware has when it doesn't run a guest,
4714 * .guest = the value the hardware has when it runs a guest,
4715 * };
4716 *
4717 * These values have nothing to do with the emulated values the guest sees
4718 * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4719 * specifically in the intel_pmu_{get,set}_msr().
4720 */
intel_guest_get_msrs(int * nr,void * data)4721 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4722 {
4723 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4724 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4725 struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4726 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4727 u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4728 int global_ctrl, pebs_enable;
4729
4730 /*
4731 * In addition to obeying exclude_guest/exclude_host, remove bits being
4732 * used for PEBS when running a guest, because PEBS writes to virtual
4733 * addresses (not physical addresses).
4734 */
4735 *nr = 0;
4736 global_ctrl = (*nr)++;
4737 arr[global_ctrl] = (struct perf_guest_switch_msr){
4738 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4739 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4740 .guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4741 };
4742
4743 if (!x86_pmu.ds_pebs)
4744 return arr;
4745
4746 /*
4747 * If PMU counter has PEBS enabled it is not enough to
4748 * disable counter on a guest entry since PEBS memory
4749 * write can overshoot guest entry and corrupt guest
4750 * memory. Disabling PEBS solves the problem.
4751 *
4752 * Don't do this if the CPU already enforces it.
4753 */
4754 if (x86_pmu.pebs_no_isolation) {
4755 arr[(*nr)++] = (struct perf_guest_switch_msr){
4756 .msr = MSR_IA32_PEBS_ENABLE,
4757 .host = cpuc->pebs_enabled,
4758 .guest = 0,
4759 };
4760 return arr;
4761 }
4762
4763 if (!kvm_pmu || !x86_pmu.pebs_ept)
4764 return arr;
4765
4766 arr[(*nr)++] = (struct perf_guest_switch_msr){
4767 .msr = MSR_IA32_DS_AREA,
4768 .host = (unsigned long)cpuc->ds,
4769 .guest = kvm_pmu->ds_area,
4770 };
4771
4772 if (x86_pmu.intel_cap.pebs_baseline) {
4773 arr[(*nr)++] = (struct perf_guest_switch_msr){
4774 .msr = MSR_PEBS_DATA_CFG,
4775 .host = cpuc->active_pebs_data_cfg,
4776 .guest = kvm_pmu->pebs_data_cfg,
4777 };
4778 }
4779
4780 pebs_enable = (*nr)++;
4781 arr[pebs_enable] = (struct perf_guest_switch_msr){
4782 .msr = MSR_IA32_PEBS_ENABLE,
4783 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4784 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask & kvm_pmu->pebs_enable,
4785 };
4786
4787 if (arr[pebs_enable].host) {
4788 /* Disable guest PEBS if host PEBS is enabled. */
4789 arr[pebs_enable].guest = 0;
4790 } else {
4791 /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4792 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4793 arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4794 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4795 arr[global_ctrl].guest |= arr[pebs_enable].guest;
4796 }
4797
4798 return arr;
4799 }
4800
core_guest_get_msrs(int * nr,void * data)4801 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4802 {
4803 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4804 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4805 int idx;
4806
4807 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4808 struct perf_event *event = cpuc->events[idx];
4809
4810 arr[idx].msr = x86_pmu_config_addr(idx);
4811 arr[idx].host = arr[idx].guest = 0;
4812
4813 if (!test_bit(idx, cpuc->active_mask))
4814 continue;
4815
4816 arr[idx].host = arr[idx].guest =
4817 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4818
4819 if (event->attr.exclude_host)
4820 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4821 else if (event->attr.exclude_guest)
4822 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4823 }
4824
4825 *nr = x86_pmu_max_num_counters(cpuc->pmu);
4826 return arr;
4827 }
4828
core_pmu_enable_event(struct perf_event * event)4829 static void core_pmu_enable_event(struct perf_event *event)
4830 {
4831 if (!event->attr.exclude_host)
4832 x86_pmu_enable_event(event);
4833 }
4834
core_pmu_enable_all(int added)4835 static void core_pmu_enable_all(int added)
4836 {
4837 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4838 int idx;
4839
4840 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4841 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4842
4843 if (!test_bit(idx, cpuc->active_mask) ||
4844 cpuc->events[idx]->attr.exclude_host)
4845 continue;
4846
4847 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4848 }
4849 }
4850
hsw_hw_config(struct perf_event * event)4851 static int hsw_hw_config(struct perf_event *event)
4852 {
4853 int ret = intel_pmu_hw_config(event);
4854
4855 if (ret)
4856 return ret;
4857 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4858 return 0;
4859 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4860
4861 /*
4862 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4863 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4864 * this combination.
4865 */
4866 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4867 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4868 event->attr.precise_ip > 0))
4869 return -EOPNOTSUPP;
4870
4871 if (event_is_checkpointed(event)) {
4872 /*
4873 * Sampling of checkpointed events can cause situations where
4874 * the CPU constantly aborts because of a overflow, which is
4875 * then checkpointed back and ignored. Forbid checkpointing
4876 * for sampling.
4877 *
4878 * But still allow a long sampling period, so that perf stat
4879 * from KVM works.
4880 */
4881 if (event->attr.sample_period > 0 &&
4882 event->attr.sample_period < 0x7fffffff)
4883 return -EOPNOTSUPP;
4884 }
4885 return 0;
4886 }
4887
4888 static struct event_constraint counter0_constraint =
4889 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4890
4891 static struct event_constraint counter1_constraint =
4892 INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4893
4894 static struct event_constraint counter0_1_constraint =
4895 INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4896
4897 static struct event_constraint counter2_constraint =
4898 EVENT_CONSTRAINT(0, 0x4, 0);
4899
4900 static struct event_constraint fixed0_constraint =
4901 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4902
4903 static struct event_constraint fixed0_counter0_constraint =
4904 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4905
4906 static struct event_constraint fixed0_counter0_1_constraint =
4907 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4908
4909 static struct event_constraint counters_1_7_constraint =
4910 INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4911
4912 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4913 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4914 struct perf_event *event)
4915 {
4916 struct event_constraint *c;
4917
4918 c = intel_get_event_constraints(cpuc, idx, event);
4919
4920 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4921 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4922 if (c->idxmsk64 & (1U << 2))
4923 return &counter2_constraint;
4924 return &emptyconstraint;
4925 }
4926
4927 return c;
4928 }
4929
4930 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4931 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4932 struct perf_event *event)
4933 {
4934 /*
4935 * Fixed counter 0 has less skid.
4936 * Force instruction:ppp in Fixed counter 0
4937 */
4938 if ((event->attr.precise_ip == 3) &&
4939 constraint_match(&fixed0_constraint, event->hw.config))
4940 return &fixed0_constraint;
4941
4942 return hsw_get_event_constraints(cpuc, idx, event);
4943 }
4944
4945 static struct event_constraint *
glc_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4946 glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4947 struct perf_event *event)
4948 {
4949 struct event_constraint *c;
4950
4951 c = icl_get_event_constraints(cpuc, idx, event);
4952
4953 /*
4954 * The :ppp indicates the Precise Distribution (PDist) facility, which
4955 * is only supported on the GP counter 0. If a :ppp event which is not
4956 * available on the GP counter 0, error out.
4957 * Exception: Instruction PDIR is only available on the fixed counter 0.
4958 */
4959 if ((event->attr.precise_ip == 3) &&
4960 !constraint_match(&fixed0_constraint, event->hw.config)) {
4961 if (c->idxmsk64 & BIT_ULL(0))
4962 return &counter0_constraint;
4963
4964 return &emptyconstraint;
4965 }
4966
4967 return c;
4968 }
4969
4970 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4971 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4972 struct perf_event *event)
4973 {
4974 struct event_constraint *c;
4975
4976 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4977 if (event->attr.precise_ip == 3)
4978 return &counter0_constraint;
4979
4980 c = intel_get_event_constraints(cpuc, idx, event);
4981
4982 return c;
4983 }
4984
4985 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4986 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4987 struct perf_event *event)
4988 {
4989 struct event_constraint *c;
4990
4991 c = intel_get_event_constraints(cpuc, idx, event);
4992
4993 /*
4994 * :ppp means to do reduced skid PEBS,
4995 * which is available on PMC0 and fixed counter 0.
4996 */
4997 if (event->attr.precise_ip == 3) {
4998 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4999 if (constraint_match(&fixed0_constraint, event->hw.config))
5000 return &fixed0_counter0_constraint;
5001
5002 return &counter0_constraint;
5003 }
5004
5005 return c;
5006 }
5007
5008 static bool allow_tsx_force_abort = true;
5009
5010 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5011 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5012 struct perf_event *event)
5013 {
5014 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
5015
5016 /*
5017 * Without TFA we must not use PMC3.
5018 */
5019 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
5020 c = dyn_constraint(cpuc, c, idx);
5021 c->idxmsk64 &= ~(1ULL << 3);
5022 c->weight--;
5023 }
5024
5025 return c;
5026 }
5027
5028 static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5029 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5030 struct perf_event *event)
5031 {
5032 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5033
5034 if (pmu->pmu_type == hybrid_big)
5035 return glc_get_event_constraints(cpuc, idx, event);
5036 else if (pmu->pmu_type == hybrid_small)
5037 return tnt_get_event_constraints(cpuc, idx, event);
5038
5039 WARN_ON(1);
5040 return &emptyconstraint;
5041 }
5042
5043 static struct event_constraint *
cmt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5044 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5045 struct perf_event *event)
5046 {
5047 struct event_constraint *c;
5048
5049 c = intel_get_event_constraints(cpuc, idx, event);
5050
5051 /*
5052 * The :ppp indicates the Precise Distribution (PDist) facility, which
5053 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
5054 * If a :ppp event which is not available on the above eligible counters,
5055 * error out.
5056 */
5057 if (event->attr.precise_ip == 3) {
5058 /* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
5059 if (constraint_match(&fixed0_constraint, event->hw.config)) {
5060 /* The fixed counter 0 doesn't support LBR event logging. */
5061 if (branch_sample_counters(event))
5062 return &counter0_1_constraint;
5063 else
5064 return &fixed0_counter0_1_constraint;
5065 }
5066
5067 switch (c->idxmsk64 & 0x3ull) {
5068 case 0x1:
5069 return &counter0_constraint;
5070 case 0x2:
5071 return &counter1_constraint;
5072 case 0x3:
5073 return &counter0_1_constraint;
5074 }
5075 return &emptyconstraint;
5076 }
5077
5078 return c;
5079 }
5080
5081 static struct event_constraint *
rwc_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5082 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5083 struct perf_event *event)
5084 {
5085 struct event_constraint *c;
5086
5087 c = glc_get_event_constraints(cpuc, idx, event);
5088
5089 /* The Retire Latency is not supported by the fixed counter 0. */
5090 if (event->attr.precise_ip &&
5091 (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
5092 constraint_match(&fixed0_constraint, event->hw.config)) {
5093 /*
5094 * The Instruction PDIR is only available
5095 * on the fixed counter 0. Error out for this case.
5096 */
5097 if (event->attr.precise_ip == 3)
5098 return &emptyconstraint;
5099 return &counters_1_7_constraint;
5100 }
5101
5102 return c;
5103 }
5104
5105 static struct event_constraint *
mtl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5106 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5107 struct perf_event *event)
5108 {
5109 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5110
5111 if (pmu->pmu_type == hybrid_big)
5112 return rwc_get_event_constraints(cpuc, idx, event);
5113 if (pmu->pmu_type == hybrid_small)
5114 return cmt_get_event_constraints(cpuc, idx, event);
5115
5116 WARN_ON(1);
5117 return &emptyconstraint;
5118 }
5119
adl_hw_config(struct perf_event * event)5120 static int adl_hw_config(struct perf_event *event)
5121 {
5122 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5123
5124 if (pmu->pmu_type == hybrid_big)
5125 return hsw_hw_config(event);
5126 else if (pmu->pmu_type == hybrid_small)
5127 return intel_pmu_hw_config(event);
5128
5129 WARN_ON(1);
5130 return -EOPNOTSUPP;
5131 }
5132
adl_get_hybrid_cpu_type(void)5133 static enum intel_cpu_type adl_get_hybrid_cpu_type(void)
5134 {
5135 return INTEL_CPU_TYPE_CORE;
5136 }
5137
erratum_hsw11(struct perf_event * event)5138 static inline bool erratum_hsw11(struct perf_event *event)
5139 {
5140 return (event->hw.config & INTEL_ARCH_EVENT_MASK) ==
5141 X86_CONFIG(.event=0xc0, .umask=0x01);
5142 }
5143
5144 static struct event_constraint *
arl_h_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5145 arl_h_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5146 struct perf_event *event)
5147 {
5148 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5149
5150 if (pmu->pmu_type == hybrid_tiny)
5151 return cmt_get_event_constraints(cpuc, idx, event);
5152
5153 return mtl_get_event_constraints(cpuc, idx, event);
5154 }
5155
arl_h_hw_config(struct perf_event * event)5156 static int arl_h_hw_config(struct perf_event *event)
5157 {
5158 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5159
5160 if (pmu->pmu_type == hybrid_tiny)
5161 return intel_pmu_hw_config(event);
5162
5163 return adl_hw_config(event);
5164 }
5165
5166 /*
5167 * The HSW11 requires a period larger than 100 which is the same as the BDM11.
5168 * A minimum period of 128 is enforced as well for the INST_RETIRED.ALL.
5169 *
5170 * The message 'interrupt took too long' can be observed on any counter which
5171 * was armed with a period < 32 and two events expired in the same NMI.
5172 * A minimum period of 32 is enforced for the rest of the events.
5173 */
hsw_limit_period(struct perf_event * event,s64 * left)5174 static void hsw_limit_period(struct perf_event *event, s64 *left)
5175 {
5176 *left = max(*left, erratum_hsw11(event) ? 128 : 32);
5177 }
5178
5179 /*
5180 * Broadwell:
5181 *
5182 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
5183 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
5184 * the two to enforce a minimum period of 128 (the smallest value that has bits
5185 * 0-5 cleared and >= 100).
5186 *
5187 * Because of how the code in x86_perf_event_set_period() works, the truncation
5188 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
5189 * to make up for the 'lost' events due to carrying the 'error' in period_left.
5190 *
5191 * Therefore the effective (average) period matches the requested period,
5192 * despite coarser hardware granularity.
5193 */
bdw_limit_period(struct perf_event * event,s64 * left)5194 static void bdw_limit_period(struct perf_event *event, s64 *left)
5195 {
5196 if (erratum_hsw11(event)) {
5197 if (*left < 128)
5198 *left = 128;
5199 *left &= ~0x3fULL;
5200 }
5201 }
5202
nhm_limit_period(struct perf_event * event,s64 * left)5203 static void nhm_limit_period(struct perf_event *event, s64 *left)
5204 {
5205 *left = max(*left, 32LL);
5206 }
5207
glc_limit_period(struct perf_event * event,s64 * left)5208 static void glc_limit_period(struct perf_event *event, s64 *left)
5209 {
5210 if (event->attr.precise_ip == 3)
5211 *left = max(*left, 128LL);
5212 }
5213
5214 PMU_FORMAT_ATTR(event, "config:0-7" );
5215 PMU_FORMAT_ATTR(umask, "config:8-15" );
5216 PMU_FORMAT_ATTR(edge, "config:18" );
5217 PMU_FORMAT_ATTR(pc, "config:19" );
5218 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
5219 PMU_FORMAT_ATTR(inv, "config:23" );
5220 PMU_FORMAT_ATTR(cmask, "config:24-31" );
5221 PMU_FORMAT_ATTR(in_tx, "config:32" );
5222 PMU_FORMAT_ATTR(in_tx_cp, "config:33" );
5223 PMU_FORMAT_ATTR(eq, "config:36" ); /* v6 + */
5224
5225 PMU_FORMAT_ATTR(metrics_clear, "config1:0"); /* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5226
umask2_show(struct device * dev,struct device_attribute * attr,char * page)5227 static ssize_t umask2_show(struct device *dev,
5228 struct device_attribute *attr,
5229 char *page)
5230 {
5231 u64 mask = hybrid(dev_get_drvdata(dev), config_mask) & ARCH_PERFMON_EVENTSEL_UMASK2;
5232
5233 if (mask == ARCH_PERFMON_EVENTSEL_UMASK2)
5234 return sprintf(page, "config:8-15,40-47\n");
5235
5236 /* Roll back to the old format if umask2 is not supported. */
5237 return sprintf(page, "config:8-15\n");
5238 }
5239
5240 static struct device_attribute format_attr_umask2 =
5241 __ATTR(umask, 0444, umask2_show, NULL);
5242
5243 static struct attribute *format_evtsel_ext_attrs[] = {
5244 &format_attr_umask2.attr,
5245 &format_attr_eq.attr,
5246 &format_attr_metrics_clear.attr,
5247 NULL
5248 };
5249
5250 static umode_t
evtsel_ext_is_visible(struct kobject * kobj,struct attribute * attr,int i)5251 evtsel_ext_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5252 {
5253 struct device *dev = kobj_to_dev(kobj);
5254 u64 mask;
5255
5256 /*
5257 * The umask and umask2 have different formats but share the
5258 * same attr name. In update mode, the previous value of the
5259 * umask is unconditionally removed before is_visible. If
5260 * umask2 format is not enumerated, it's impossible to roll
5261 * back to the old format.
5262 * Does the check in umask2_show rather than is_visible.
5263 */
5264 if (i == 0)
5265 return attr->mode;
5266
5267 mask = hybrid(dev_get_drvdata(dev), config_mask);
5268 if (i == 1)
5269 return (mask & ARCH_PERFMON_EVENTSEL_EQ) ? attr->mode : 0;
5270
5271 /* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5272 if (i == 2) {
5273 union perf_capabilities intel_cap = hybrid(dev_get_drvdata(dev), intel_cap);
5274
5275 return intel_cap.rdpmc_metrics_clear ? attr->mode : 0;
5276 }
5277
5278 return 0;
5279 }
5280
5281 static struct attribute *intel_arch_formats_attr[] = {
5282 &format_attr_event.attr,
5283 &format_attr_umask.attr,
5284 &format_attr_edge.attr,
5285 &format_attr_pc.attr,
5286 &format_attr_inv.attr,
5287 &format_attr_cmask.attr,
5288 NULL,
5289 };
5290
intel_event_sysfs_show(char * page,u64 config)5291 ssize_t intel_event_sysfs_show(char *page, u64 config)
5292 {
5293 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
5294
5295 return x86_event_sysfs_show(page, config, event);
5296 }
5297
allocate_shared_regs(int cpu)5298 static struct intel_shared_regs *allocate_shared_regs(int cpu)
5299 {
5300 struct intel_shared_regs *regs;
5301 int i;
5302
5303 regs = kzalloc_node(sizeof(struct intel_shared_regs),
5304 GFP_KERNEL, cpu_to_node(cpu));
5305 if (regs) {
5306 /*
5307 * initialize the locks to keep lockdep happy
5308 */
5309 for (i = 0; i < EXTRA_REG_MAX; i++)
5310 raw_spin_lock_init(®s->regs[i].lock);
5311
5312 regs->core_id = -1;
5313 }
5314 return regs;
5315 }
5316
allocate_excl_cntrs(int cpu)5317 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
5318 {
5319 struct intel_excl_cntrs *c;
5320
5321 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
5322 GFP_KERNEL, cpu_to_node(cpu));
5323 if (c) {
5324 raw_spin_lock_init(&c->lock);
5325 c->core_id = -1;
5326 }
5327 return c;
5328 }
5329
5330
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)5331 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
5332 {
5333 cpuc->pebs_record_size = x86_pmu.pebs_record_size;
5334
5335 if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
5336 cpuc->shared_regs = allocate_shared_regs(cpu);
5337 if (!cpuc->shared_regs)
5338 goto err;
5339 }
5340
5341 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_DYN_CONSTRAINT)) {
5342 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
5343
5344 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
5345 if (!cpuc->constraint_list)
5346 goto err_shared_regs;
5347 }
5348
5349 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5350 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
5351 if (!cpuc->excl_cntrs)
5352 goto err_constraint_list;
5353
5354 cpuc->excl_thread_id = 0;
5355 }
5356
5357 return 0;
5358
5359 err_constraint_list:
5360 kfree(cpuc->constraint_list);
5361 cpuc->constraint_list = NULL;
5362
5363 err_shared_regs:
5364 kfree(cpuc->shared_regs);
5365 cpuc->shared_regs = NULL;
5366
5367 err:
5368 return -ENOMEM;
5369 }
5370
intel_pmu_cpu_prepare(int cpu)5371 static int intel_pmu_cpu_prepare(int cpu)
5372 {
5373 int ret;
5374
5375 ret = intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
5376 if (ret)
5377 return ret;
5378
5379 return alloc_arch_pebs_buf_on_cpu(cpu);
5380 }
5381
flip_smm_bit(void * data)5382 static void flip_smm_bit(void *data)
5383 {
5384 unsigned long set = *(unsigned long *)data;
5385
5386 if (set > 0) {
5387 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
5388 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5389 } else {
5390 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
5391 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5392 }
5393 }
5394
intel_pmu_check_counters_mask(u64 * cntr_mask,u64 * fixed_cntr_mask,u64 * intel_ctrl)5395 static void intel_pmu_check_counters_mask(u64 *cntr_mask,
5396 u64 *fixed_cntr_mask,
5397 u64 *intel_ctrl)
5398 {
5399 unsigned int bit;
5400
5401 bit = fls64(*cntr_mask);
5402 if (bit > INTEL_PMC_MAX_GENERIC) {
5403 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5404 bit, INTEL_PMC_MAX_GENERIC);
5405 *cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5406 }
5407 *intel_ctrl = *cntr_mask;
5408
5409 bit = fls64(*fixed_cntr_mask);
5410 if (bit > INTEL_PMC_MAX_FIXED) {
5411 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5412 bit, INTEL_PMC_MAX_FIXED);
5413 *fixed_cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
5414 }
5415
5416 *intel_ctrl |= *fixed_cntr_mask << INTEL_PMC_IDX_FIXED;
5417 }
5418
5419 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5420 u64 cntr_mask,
5421 u64 fixed_cntr_mask,
5422 u64 intel_ctrl);
5423
5424 enum dyn_constr_type {
5425 DYN_CONSTR_NONE,
5426 DYN_CONSTR_BR_CNTR,
5427 DYN_CONSTR_ACR_CNTR,
5428 DYN_CONSTR_ACR_CAUSE,
5429 DYN_CONSTR_PEBS,
5430 DYN_CONSTR_PDIST,
5431
5432 DYN_CONSTR_MAX,
5433 };
5434
5435 static const char * const dyn_constr_type_name[] = {
5436 [DYN_CONSTR_NONE] = "a normal event",
5437 [DYN_CONSTR_BR_CNTR] = "a branch counter logging event",
5438 [DYN_CONSTR_ACR_CNTR] = "an auto-counter reload event",
5439 [DYN_CONSTR_ACR_CAUSE] = "an auto-counter reload cause event",
5440 [DYN_CONSTR_PEBS] = "a PEBS event",
5441 [DYN_CONSTR_PDIST] = "a PEBS PDIST event",
5442 };
5443
__intel_pmu_check_dyn_constr(struct event_constraint * constr,enum dyn_constr_type type,u64 mask)5444 static void __intel_pmu_check_dyn_constr(struct event_constraint *constr,
5445 enum dyn_constr_type type, u64 mask)
5446 {
5447 struct event_constraint *c1, *c2;
5448 int new_weight, check_weight;
5449 u64 new_mask, check_mask;
5450
5451 for_each_event_constraint(c1, constr) {
5452 new_mask = c1->idxmsk64 & mask;
5453 new_weight = hweight64(new_mask);
5454
5455 /* ignore topdown perf metrics event */
5456 if (c1->idxmsk64 & INTEL_PMC_MSK_TOPDOWN)
5457 continue;
5458
5459 if (!new_weight && fls64(c1->idxmsk64) < INTEL_PMC_IDX_FIXED) {
5460 pr_info("The event 0x%llx is not supported as %s.\n",
5461 c1->code, dyn_constr_type_name[type]);
5462 }
5463
5464 if (new_weight <= 1)
5465 continue;
5466
5467 for_each_event_constraint(c2, c1 + 1) {
5468 bool check_fail = false;
5469
5470 check_mask = c2->idxmsk64 & mask;
5471 check_weight = hweight64(check_mask);
5472
5473 if (c2->idxmsk64 & INTEL_PMC_MSK_TOPDOWN ||
5474 !check_weight)
5475 continue;
5476
5477 /* The same constraints or no overlap */
5478 if (new_mask == check_mask ||
5479 (new_mask ^ check_mask) == (new_mask | check_mask))
5480 continue;
5481
5482 /*
5483 * A scheduler issue may be triggered in the following cases.
5484 * - Two overlap constraints have the same weight.
5485 * E.g., A constraints: 0x3, B constraints: 0x6
5486 * event counter failure case
5487 * B PMC[2:1] 1
5488 * A PMC[1:0] 0
5489 * A PMC[1:0] FAIL
5490 * - Two overlap constraints have different weight.
5491 * The constraint has a low weight, but has high last bit.
5492 * E.g., A constraints: 0x7, B constraints: 0xC
5493 * event counter failure case
5494 * B PMC[3:2] 2
5495 * A PMC[2:0] 0
5496 * A PMC[2:0] 1
5497 * A PMC[2:0] FAIL
5498 */
5499 if (new_weight == check_weight) {
5500 check_fail = true;
5501 } else if (new_weight < check_weight) {
5502 if ((new_mask | check_mask) != check_mask &&
5503 fls64(new_mask) > fls64(check_mask))
5504 check_fail = true;
5505 } else {
5506 if ((new_mask | check_mask) != new_mask &&
5507 fls64(new_mask) < fls64(check_mask))
5508 check_fail = true;
5509 }
5510
5511 if (check_fail) {
5512 pr_info("The two events 0x%llx and 0x%llx may not be "
5513 "fully scheduled under some circumstances as "
5514 "%s.\n",
5515 c1->code, c2->code, dyn_constr_type_name[type]);
5516 }
5517 }
5518 }
5519 }
5520
intel_pmu_check_dyn_constr(struct pmu * pmu,struct event_constraint * constr,u64 cntr_mask)5521 static void intel_pmu_check_dyn_constr(struct pmu *pmu,
5522 struct event_constraint *constr,
5523 u64 cntr_mask)
5524 {
5525 enum dyn_constr_type i;
5526 u64 mask;
5527
5528 for (i = DYN_CONSTR_NONE; i < DYN_CONSTR_MAX; i++) {
5529 mask = 0;
5530 switch (i) {
5531 case DYN_CONSTR_NONE:
5532 mask = cntr_mask;
5533 break;
5534 case DYN_CONSTR_BR_CNTR:
5535 if (x86_pmu.flags & PMU_FL_BR_CNTR)
5536 mask = x86_pmu.lbr_counters;
5537 break;
5538 case DYN_CONSTR_ACR_CNTR:
5539 mask = hybrid(pmu, acr_cntr_mask64) & GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5540 break;
5541 case DYN_CONSTR_ACR_CAUSE:
5542 if (hybrid(pmu, acr_cntr_mask64) == hybrid(pmu, acr_cause_mask64))
5543 continue;
5544 mask = hybrid(pmu, acr_cause_mask64) & GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5545 break;
5546 case DYN_CONSTR_PEBS:
5547 if (x86_pmu.arch_pebs)
5548 mask = hybrid(pmu, arch_pebs_cap).counters;
5549 break;
5550 case DYN_CONSTR_PDIST:
5551 if (x86_pmu.arch_pebs)
5552 mask = hybrid(pmu, arch_pebs_cap).pdists;
5553 break;
5554 default:
5555 pr_warn("Unsupported dynamic constraint type %d\n", i);
5556 }
5557
5558 if (mask)
5559 __intel_pmu_check_dyn_constr(constr, i, mask);
5560 }
5561 }
5562
intel_pmu_check_event_constraints_all(struct pmu * pmu)5563 static void intel_pmu_check_event_constraints_all(struct pmu *pmu)
5564 {
5565 struct event_constraint *event_constraints = hybrid(pmu, event_constraints);
5566 struct event_constraint *pebs_constraints = hybrid(pmu, pebs_constraints);
5567 u64 cntr_mask = hybrid(pmu, cntr_mask64);
5568 u64 fixed_cntr_mask = hybrid(pmu, fixed_cntr_mask64);
5569 u64 intel_ctrl = hybrid(pmu, intel_ctrl);
5570
5571 intel_pmu_check_event_constraints(event_constraints, cntr_mask,
5572 fixed_cntr_mask, intel_ctrl);
5573
5574 if (event_constraints)
5575 intel_pmu_check_dyn_constr(pmu, event_constraints, cntr_mask);
5576
5577 if (pebs_constraints)
5578 intel_pmu_check_dyn_constr(pmu, pebs_constraints, cntr_mask);
5579 }
5580
5581 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
5582
intel_pmu_broken_perf_cap(void)5583 static inline bool intel_pmu_broken_perf_cap(void)
5584 {
5585 /* The Perf Metric (Bit 15) is always cleared */
5586 if (boot_cpu_data.x86_vfm == INTEL_METEORLAKE ||
5587 boot_cpu_data.x86_vfm == INTEL_METEORLAKE_L)
5588 return true;
5589
5590 return false;
5591 }
5592
__intel_update_pmu_caps(struct pmu * pmu)5593 static inline void __intel_update_pmu_caps(struct pmu *pmu)
5594 {
5595 struct pmu *dest_pmu = pmu ? pmu : x86_get_pmu(smp_processor_id());
5596
5597 if (hybrid(pmu, arch_pebs_cap).caps & ARCH_PEBS_VECR_XMM)
5598 dest_pmu->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
5599 }
5600
__intel_update_large_pebs_flags(struct pmu * pmu)5601 static inline void __intel_update_large_pebs_flags(struct pmu *pmu)
5602 {
5603 u64 caps = hybrid(pmu, arch_pebs_cap).caps;
5604
5605 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
5606 if (caps & ARCH_PEBS_LBR)
5607 x86_pmu.large_pebs_flags |= PERF_SAMPLE_BRANCH_STACK;
5608 if (caps & ARCH_PEBS_CNTR_MASK)
5609 x86_pmu.large_pebs_flags |= PERF_SAMPLE_READ;
5610
5611 if (!(caps & ARCH_PEBS_AUX))
5612 x86_pmu.large_pebs_flags &= ~PERF_SAMPLE_DATA_SRC;
5613 if (!(caps & ARCH_PEBS_GPR)) {
5614 x86_pmu.large_pebs_flags &=
5615 ~(PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER);
5616 }
5617 }
5618
5619 #define counter_mask(_gp, _fixed) ((_gp) | ((u64)(_fixed) << INTEL_PMC_IDX_FIXED))
5620
update_pmu_cap(struct pmu * pmu)5621 static void update_pmu_cap(struct pmu *pmu)
5622 {
5623 unsigned int eax, ebx, ecx, edx;
5624 union cpuid35_eax eax_0;
5625 union cpuid35_ebx ebx_0;
5626 u64 cntrs_mask = 0;
5627 u64 pebs_mask = 0;
5628 u64 pdists_mask = 0;
5629
5630 cpuid(ARCH_PERFMON_EXT_LEAF, &eax_0.full, &ebx_0.full, &ecx, &edx);
5631
5632 if (ebx_0.split.umask2)
5633 hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_UMASK2;
5634 if (ebx_0.split.eq)
5635 hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_EQ;
5636
5637 if (eax_0.split.cntr_subleaf) {
5638 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
5639 &eax, &ebx, &ecx, &edx);
5640 hybrid(pmu, cntr_mask64) = eax;
5641 hybrid(pmu, fixed_cntr_mask64) = ebx;
5642 cntrs_mask = counter_mask(eax, ebx);
5643 }
5644
5645 if (eax_0.split.acr_subleaf) {
5646 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_ACR_LEAF,
5647 &eax, &ebx, &ecx, &edx);
5648 /* The mask of the counters which can be reloaded */
5649 hybrid(pmu, acr_cntr_mask64) = counter_mask(eax, ebx);
5650 /* The mask of the counters which can cause a reload of reloadable counters */
5651 hybrid(pmu, acr_cause_mask64) = counter_mask(ecx, edx);
5652 }
5653
5654 /* Bits[5:4] should be set simultaneously if arch-PEBS is supported */
5655 if (eax_0.split.pebs_caps_subleaf && eax_0.split.pebs_cnts_subleaf) {
5656 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_PEBS_CAP_LEAF,
5657 &eax, &ebx, &ecx, &edx);
5658 hybrid(pmu, arch_pebs_cap).caps = (u64)ebx << 32;
5659
5660 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_PEBS_COUNTER_LEAF,
5661 &eax, &ebx, &ecx, &edx);
5662 pebs_mask = counter_mask(eax, ecx);
5663 pdists_mask = counter_mask(ebx, edx);
5664 hybrid(pmu, arch_pebs_cap).counters = pebs_mask;
5665 hybrid(pmu, arch_pebs_cap).pdists = pdists_mask;
5666
5667 if (WARN_ON((pebs_mask | pdists_mask) & ~cntrs_mask)) {
5668 x86_pmu.arch_pebs = 0;
5669 } else {
5670 __intel_update_pmu_caps(pmu);
5671 __intel_update_large_pebs_flags(pmu);
5672 }
5673 } else {
5674 WARN_ON(x86_pmu.arch_pebs == 1);
5675 x86_pmu.arch_pebs = 0;
5676 }
5677
5678 if (!intel_pmu_broken_perf_cap()) {
5679 /* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
5680 rdmsrq(MSR_IA32_PERF_CAPABILITIES, hybrid(pmu, intel_cap).capabilities);
5681 }
5682 }
5683
intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu * pmu)5684 static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
5685 {
5686 intel_pmu_check_counters_mask(&pmu->cntr_mask64, &pmu->fixed_cntr_mask64,
5687 &pmu->intel_ctrl);
5688 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
5689 pmu->unconstrained = (struct event_constraint)
5690 __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
5691 0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
5692
5693 if (pmu->intel_cap.perf_metrics)
5694 pmu->intel_ctrl |= GLOBAL_CTRL_EN_PERF_METRICS;
5695 else
5696 pmu->intel_ctrl &= ~GLOBAL_CTRL_EN_PERF_METRICS;
5697
5698 intel_pmu_check_event_constraints_all(&pmu->pmu);
5699
5700 intel_pmu_check_extra_regs(pmu->extra_regs);
5701 }
5702
find_hybrid_pmu_for_cpu(void)5703 static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
5704 {
5705 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
5706 enum intel_cpu_type cpu_type = c->topo.intel_type;
5707 int i;
5708
5709 /*
5710 * This is running on a CPU model that is known to have hybrid
5711 * configurations. But the CPU told us it is not hybrid, shame
5712 * on it. There should be a fixup function provided for these
5713 * troublesome CPUs (->get_hybrid_cpu_type).
5714 */
5715 if (cpu_type == INTEL_CPU_TYPE_UNKNOWN) {
5716 if (x86_pmu.get_hybrid_cpu_type)
5717 cpu_type = x86_pmu.get_hybrid_cpu_type();
5718 else
5719 return NULL;
5720 }
5721
5722 /*
5723 * This essentially just maps between the 'hybrid_cpu_type'
5724 * and 'hybrid_pmu_type' enums except for ARL-H processor
5725 * which needs to compare atom uarch native id since ARL-H
5726 * contains two different atom uarchs.
5727 */
5728 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5729 enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
5730 u32 native_id;
5731
5732 if (cpu_type == INTEL_CPU_TYPE_CORE && pmu_type == hybrid_big)
5733 return &x86_pmu.hybrid_pmu[i];
5734 if (cpu_type == INTEL_CPU_TYPE_ATOM) {
5735 if (x86_pmu.num_hybrid_pmus == 2 && pmu_type == hybrid_small)
5736 return &x86_pmu.hybrid_pmu[i];
5737
5738 native_id = c->topo.intel_native_model_id;
5739 if (native_id == INTEL_ATOM_SKT_NATIVE_ID && pmu_type == hybrid_small)
5740 return &x86_pmu.hybrid_pmu[i];
5741 if (native_id == INTEL_ATOM_CMT_NATIVE_ID && pmu_type == hybrid_tiny)
5742 return &x86_pmu.hybrid_pmu[i];
5743 }
5744 }
5745
5746 return NULL;
5747 }
5748
init_hybrid_pmu(int cpu)5749 static bool init_hybrid_pmu(int cpu)
5750 {
5751 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5752 struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
5753
5754 if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
5755 cpuc->pmu = NULL;
5756 return false;
5757 }
5758
5759 /* Only check and dump the PMU information for the first CPU */
5760 if (!cpumask_empty(&pmu->supported_cpus))
5761 goto end;
5762
5763 if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
5764 update_pmu_cap(&pmu->pmu);
5765
5766 intel_pmu_check_hybrid_pmus(pmu);
5767
5768 if (!check_hw_exists(&pmu->pmu, pmu->cntr_mask, pmu->fixed_cntr_mask))
5769 return false;
5770
5771 pr_info("%s PMU driver: ", pmu->name);
5772
5773 pr_cont("\n");
5774
5775 x86_pmu_show_pmu_cap(&pmu->pmu);
5776
5777 end:
5778 cpumask_set_cpu(cpu, &pmu->supported_cpus);
5779 cpuc->pmu = &pmu->pmu;
5780
5781 return true;
5782 }
5783
intel_pmu_cpu_starting(int cpu)5784 static void intel_pmu_cpu_starting(int cpu)
5785 {
5786 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5787 int core_id = topology_core_id(cpu);
5788 int i;
5789
5790 if (is_hybrid() && !init_hybrid_pmu(cpu))
5791 return;
5792
5793 init_debug_store_on_cpu(cpu);
5794 init_arch_pebs_on_cpu(cpu);
5795 /*
5796 * Deal with CPUs that don't clear their LBRs on power-up, and that may
5797 * even boot with LBRs enabled.
5798 */
5799 if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && x86_pmu.lbr_nr)
5800 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR_BIT);
5801 intel_pmu_lbr_reset();
5802
5803 cpuc->lbr_sel = NULL;
5804
5805 if (x86_pmu.flags & PMU_FL_TFA) {
5806 WARN_ON_ONCE(cpuc->tfa_shadow);
5807 cpuc->tfa_shadow = ~0ULL;
5808 intel_set_tfa(cpuc, false);
5809 }
5810
5811 if (x86_pmu.version > 1)
5812 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
5813
5814 /*
5815 * Disable perf metrics if any added CPU doesn't support it.
5816 *
5817 * Turn off the check for a hybrid architecture, because the
5818 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
5819 * the architecture features. The perf metrics is a model-specific
5820 * feature for now. The corresponding bit should always be 0 on
5821 * a hybrid platform, e.g., Alder Lake.
5822 */
5823 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
5824 union perf_capabilities perf_cap;
5825
5826 rdmsrq(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
5827 if (!perf_cap.perf_metrics) {
5828 x86_pmu.intel_cap.perf_metrics = 0;
5829 x86_pmu.intel_ctrl &= ~GLOBAL_CTRL_EN_PERF_METRICS;
5830 }
5831 }
5832
5833 __intel_update_pmu_caps(cpuc->pmu);
5834
5835 if (!cpuc->shared_regs)
5836 return;
5837
5838 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
5839 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5840 struct intel_shared_regs *pc;
5841
5842 pc = per_cpu(cpu_hw_events, i).shared_regs;
5843 if (pc && pc->core_id == core_id) {
5844 cpuc->kfree_on_online[0] = cpuc->shared_regs;
5845 cpuc->shared_regs = pc;
5846 break;
5847 }
5848 }
5849 cpuc->shared_regs->core_id = core_id;
5850 cpuc->shared_regs->refcnt++;
5851 }
5852
5853 if (x86_pmu.lbr_sel_map)
5854 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
5855
5856 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5857 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5858 struct cpu_hw_events *sibling;
5859 struct intel_excl_cntrs *c;
5860
5861 sibling = &per_cpu(cpu_hw_events, i);
5862 c = sibling->excl_cntrs;
5863 if (c && c->core_id == core_id) {
5864 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
5865 cpuc->excl_cntrs = c;
5866 if (!sibling->excl_thread_id)
5867 cpuc->excl_thread_id = 1;
5868 break;
5869 }
5870 }
5871 cpuc->excl_cntrs->core_id = core_id;
5872 cpuc->excl_cntrs->refcnt++;
5873 }
5874 }
5875
free_excl_cntrs(struct cpu_hw_events * cpuc)5876 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
5877 {
5878 struct intel_excl_cntrs *c;
5879
5880 c = cpuc->excl_cntrs;
5881 if (c) {
5882 if (c->core_id == -1 || --c->refcnt == 0)
5883 kfree(c);
5884 cpuc->excl_cntrs = NULL;
5885 }
5886
5887 kfree(cpuc->constraint_list);
5888 cpuc->constraint_list = NULL;
5889 }
5890
intel_pmu_cpu_dying(int cpu)5891 static void intel_pmu_cpu_dying(int cpu)
5892 {
5893 fini_debug_store_on_cpu(cpu);
5894 fini_arch_pebs_on_cpu(cpu);
5895 }
5896
intel_cpuc_finish(struct cpu_hw_events * cpuc)5897 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
5898 {
5899 struct intel_shared_regs *pc;
5900
5901 pc = cpuc->shared_regs;
5902 if (pc) {
5903 if (pc->core_id == -1 || --pc->refcnt == 0)
5904 kfree(pc);
5905 cpuc->shared_regs = NULL;
5906 }
5907
5908 free_excl_cntrs(cpuc);
5909 }
5910
intel_pmu_cpu_dead(int cpu)5911 static void intel_pmu_cpu_dead(int cpu)
5912 {
5913 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5914
5915 release_arch_pebs_buf_on_cpu(cpu);
5916 intel_cpuc_finish(cpuc);
5917
5918 if (is_hybrid() && cpuc->pmu)
5919 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
5920 }
5921
intel_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)5922 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
5923 struct task_struct *task, bool sched_in)
5924 {
5925 intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
5926 intel_pmu_lbr_sched_task(pmu_ctx, task, sched_in);
5927 }
5928
intel_pmu_check_period(struct perf_event * event,u64 value)5929 static int intel_pmu_check_period(struct perf_event *event, u64 value)
5930 {
5931 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
5932 }
5933
intel_aux_output_init(void)5934 static void intel_aux_output_init(void)
5935 {
5936 /* Refer also intel_pmu_aux_output_match() */
5937 if (x86_pmu.intel_cap.pebs_output_pt_available)
5938 x86_pmu.assign = intel_pmu_assign_event;
5939 }
5940
intel_pmu_aux_output_match(struct perf_event * event)5941 static int intel_pmu_aux_output_match(struct perf_event *event)
5942 {
5943 /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
5944 if (!x86_pmu.intel_cap.pebs_output_pt_available)
5945 return 0;
5946
5947 return is_intel_pt_event(event);
5948 }
5949
intel_pmu_filter(struct pmu * pmu,int cpu,bool * ret)5950 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
5951 {
5952 struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
5953
5954 *ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
5955 }
5956
5957 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
5958
5959 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
5960
5961 PMU_FORMAT_ATTR(frontend, "config1:0-23");
5962
5963 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
5964
5965 static struct attribute *intel_arch3_formats_attr[] = {
5966 &format_attr_event.attr,
5967 &format_attr_umask.attr,
5968 &format_attr_edge.attr,
5969 &format_attr_pc.attr,
5970 &format_attr_any.attr,
5971 &format_attr_inv.attr,
5972 &format_attr_cmask.attr,
5973 NULL,
5974 };
5975
5976 static struct attribute *hsw_format_attr[] = {
5977 &format_attr_in_tx.attr,
5978 &format_attr_in_tx_cp.attr,
5979 &format_attr_offcore_rsp.attr,
5980 &format_attr_ldlat.attr,
5981 NULL
5982 };
5983
5984 static struct attribute *nhm_format_attr[] = {
5985 &format_attr_offcore_rsp.attr,
5986 &format_attr_ldlat.attr,
5987 NULL
5988 };
5989
5990 static struct attribute *slm_format_attr[] = {
5991 &format_attr_offcore_rsp.attr,
5992 NULL
5993 };
5994
5995 static struct attribute *cmt_format_attr[] = {
5996 &format_attr_offcore_rsp.attr,
5997 &format_attr_ldlat.attr,
5998 &format_attr_snoop_rsp.attr,
5999 NULL
6000 };
6001
6002 static struct attribute *skl_format_attr[] = {
6003 &format_attr_frontend.attr,
6004 NULL,
6005 };
6006
6007 static __initconst const struct x86_pmu core_pmu = {
6008 .name = "core",
6009 .handle_irq = x86_pmu_handle_irq,
6010 .disable_all = x86_pmu_disable_all,
6011 .enable_all = core_pmu_enable_all,
6012 .enable = core_pmu_enable_event,
6013 .disable = x86_pmu_disable_event,
6014 .hw_config = core_pmu_hw_config,
6015 .schedule_events = x86_schedule_events,
6016 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
6017 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
6018 .fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
6019 .event_map = intel_pmu_event_map,
6020 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
6021 .apic = 1,
6022 .large_pebs_flags = LARGE_PEBS_FLAGS,
6023
6024 /*
6025 * Intel PMCs cannot be accessed sanely above 32-bit width,
6026 * so we install an artificial 1<<31 period regardless of
6027 * the generic event period:
6028 */
6029 .max_period = (1ULL<<31) - 1,
6030 .get_event_constraints = intel_get_event_constraints,
6031 .put_event_constraints = intel_put_event_constraints,
6032 .event_constraints = intel_core_event_constraints,
6033 .guest_get_msrs = core_guest_get_msrs,
6034 .format_attrs = intel_arch_formats_attr,
6035 .events_sysfs_show = intel_event_sysfs_show,
6036
6037 /*
6038 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
6039 * together with PMU version 1 and thus be using core_pmu with
6040 * shared_regs. We need following callbacks here to allocate
6041 * it properly.
6042 */
6043 .cpu_prepare = intel_pmu_cpu_prepare,
6044 .cpu_starting = intel_pmu_cpu_starting,
6045 .cpu_dying = intel_pmu_cpu_dying,
6046 .cpu_dead = intel_pmu_cpu_dead,
6047
6048 .check_period = intel_pmu_check_period,
6049
6050 .lbr_reset = intel_pmu_lbr_reset_64,
6051 .lbr_read = intel_pmu_lbr_read_64,
6052 .lbr_save = intel_pmu_lbr_save,
6053 .lbr_restore = intel_pmu_lbr_restore,
6054 };
6055
6056 static __initconst const struct x86_pmu intel_pmu = {
6057 .name = "Intel",
6058 .handle_irq = intel_pmu_handle_irq,
6059 .disable_all = intel_pmu_disable_all,
6060 .enable_all = intel_pmu_enable_all,
6061 .enable = intel_pmu_enable_event,
6062 .disable = intel_pmu_disable_event,
6063 .add = intel_pmu_add_event,
6064 .del = intel_pmu_del_event,
6065 .read = intel_pmu_read_event,
6066 .set_period = intel_pmu_set_period,
6067 .update = intel_pmu_update,
6068 .hw_config = intel_pmu_hw_config,
6069 .schedule_events = x86_schedule_events,
6070 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
6071 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
6072 .fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
6073 .event_map = intel_pmu_event_map,
6074 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
6075 .apic = 1,
6076 .large_pebs_flags = LARGE_PEBS_FLAGS,
6077 /*
6078 * Intel PMCs cannot be accessed sanely above 32 bit width,
6079 * so we install an artificial 1<<31 period regardless of
6080 * the generic event period:
6081 */
6082 .max_period = (1ULL << 31) - 1,
6083 .get_event_constraints = intel_get_event_constraints,
6084 .put_event_constraints = intel_put_event_constraints,
6085 .pebs_aliases = intel_pebs_aliases_core2,
6086
6087 .format_attrs = intel_arch3_formats_attr,
6088 .events_sysfs_show = intel_event_sysfs_show,
6089
6090 .cpu_prepare = intel_pmu_cpu_prepare,
6091 .cpu_starting = intel_pmu_cpu_starting,
6092 .cpu_dying = intel_pmu_cpu_dying,
6093 .cpu_dead = intel_pmu_cpu_dead,
6094
6095 .guest_get_msrs = intel_guest_get_msrs,
6096 .sched_task = intel_pmu_sched_task,
6097
6098 .check_period = intel_pmu_check_period,
6099
6100 .aux_output_match = intel_pmu_aux_output_match,
6101
6102 .lbr_reset = intel_pmu_lbr_reset_64,
6103 .lbr_read = intel_pmu_lbr_read_64,
6104 .lbr_save = intel_pmu_lbr_save,
6105 .lbr_restore = intel_pmu_lbr_restore,
6106
6107 /*
6108 * SMM has access to all 4 rings and while traditionally SMM code only
6109 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
6110 *
6111 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
6112 * between SMM or not, this results in what should be pure userspace
6113 * counters including SMM data.
6114 *
6115 * This is a clear privilege issue, therefore globally disable
6116 * counting SMM by default.
6117 */
6118 .attr_freeze_on_smi = 1,
6119 };
6120
intel_clovertown_quirk(void)6121 static __init void intel_clovertown_quirk(void)
6122 {
6123 /*
6124 * PEBS is unreliable due to:
6125 *
6126 * AJ67 - PEBS may experience CPL leaks
6127 * AJ68 - PEBS PMI may be delayed by one event
6128 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
6129 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
6130 *
6131 * AJ67 could be worked around by restricting the OS/USR flags.
6132 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
6133 *
6134 * AJ106 could possibly be worked around by not allowing LBR
6135 * usage from PEBS, including the fixup.
6136 * AJ68 could possibly be worked around by always programming
6137 * a pebs_event_reset[0] value and coping with the lost events.
6138 *
6139 * But taken together it might just make sense to not enable PEBS on
6140 * these chips.
6141 */
6142 pr_warn("PEBS disabled due to CPU errata\n");
6143 x86_pmu.ds_pebs = 0;
6144 x86_pmu.pebs_constraints = NULL;
6145 }
6146
6147 static const struct x86_cpu_id isolation_ucodes[] = {
6148 X86_MATCH_VFM_STEPS(INTEL_HASWELL, 3, 3, 0x0000001f),
6149 X86_MATCH_VFM_STEPS(INTEL_HASWELL_L, 1, 1, 0x0000001e),
6150 X86_MATCH_VFM_STEPS(INTEL_HASWELL_G, 1, 1, 0x00000015),
6151 X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 2, 2, 0x00000037),
6152 X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 4, 4, 0x0000000a),
6153 X86_MATCH_VFM_STEPS(INTEL_BROADWELL, 4, 4, 0x00000023),
6154 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_G, 1, 1, 0x00000014),
6155 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 2, 2, 0x00000010),
6156 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 3, 3, 0x07000009),
6157 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 4, 4, 0x0f000009),
6158 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 5, 5, 0x0e000002),
6159 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_X, 1, 1, 0x0b000014),
6160 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 3, 3, 0x00000021),
6161 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 4, 7, 0x00000000),
6162 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 11, 11, 0x00000000),
6163 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_L, 3, 3, 0x0000007c),
6164 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE, 3, 3, 0x0000007c),
6165 X86_MATCH_VFM_STEPS(INTEL_KABYLAKE, 9, 13, 0x0000004e),
6166 X86_MATCH_VFM_STEPS(INTEL_KABYLAKE_L, 9, 12, 0x0000004e),
6167 {}
6168 };
6169
intel_check_pebs_isolation(void)6170 static void intel_check_pebs_isolation(void)
6171 {
6172 x86_pmu.pebs_no_isolation = !x86_match_min_microcode_rev(isolation_ucodes);
6173 }
6174
intel_pebs_isolation_quirk(void)6175 static __init void intel_pebs_isolation_quirk(void)
6176 {
6177 WARN_ON_ONCE(x86_pmu.check_microcode);
6178 x86_pmu.check_microcode = intel_check_pebs_isolation;
6179 intel_check_pebs_isolation();
6180 }
6181
6182 static const struct x86_cpu_id pebs_ucodes[] = {
6183 X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE, 7, 7, 0x00000028),
6184 X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 6, 6, 0x00000618),
6185 X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 7, 7, 0x0000070c),
6186 {}
6187 };
6188
intel_snb_pebs_broken(void)6189 static bool intel_snb_pebs_broken(void)
6190 {
6191 return !x86_match_min_microcode_rev(pebs_ucodes);
6192 }
6193
intel_snb_check_microcode(void)6194 static void intel_snb_check_microcode(void)
6195 {
6196 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
6197 return;
6198
6199 /*
6200 * Serialized by the microcode lock..
6201 */
6202 if (x86_pmu.pebs_broken) {
6203 pr_info("PEBS enabled due to microcode update\n");
6204 x86_pmu.pebs_broken = 0;
6205 } else {
6206 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
6207 x86_pmu.pebs_broken = 1;
6208 }
6209 }
6210
is_lbr_from(unsigned long msr)6211 static bool is_lbr_from(unsigned long msr)
6212 {
6213 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
6214
6215 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
6216 }
6217
6218 /*
6219 * Under certain circumstances, access certain MSR may cause #GP.
6220 * The function tests if the input MSR can be safely accessed.
6221 */
check_msr(unsigned long msr,u64 mask)6222 static bool check_msr(unsigned long msr, u64 mask)
6223 {
6224 u64 val_old, val_new, val_tmp;
6225
6226 /*
6227 * Disable the check for real HW, so we don't
6228 * mess with potentially enabled registers:
6229 */
6230 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
6231 return true;
6232
6233 /*
6234 * Read the current value, change it and read it back to see if it
6235 * matches, this is needed to detect certain hardware emulators
6236 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
6237 */
6238 if (rdmsrq_safe(msr, &val_old))
6239 return false;
6240
6241 /*
6242 * Only change the bits which can be updated by wrmsrq.
6243 */
6244 val_tmp = val_old ^ mask;
6245
6246 if (is_lbr_from(msr))
6247 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
6248
6249 if (wrmsrq_safe(msr, val_tmp) ||
6250 rdmsrq_safe(msr, &val_new))
6251 return false;
6252
6253 /*
6254 * Quirk only affects validation in wrmsr(), so wrmsrq()'s value
6255 * should equal rdmsrq()'s even with the quirk.
6256 */
6257 if (val_new != val_tmp)
6258 return false;
6259
6260 if (is_lbr_from(msr))
6261 val_old = lbr_from_signext_quirk_wr(val_old);
6262
6263 /* Here it's sure that the MSR can be safely accessed.
6264 * Restore the old value and return.
6265 */
6266 wrmsrq(msr, val_old);
6267
6268 return true;
6269 }
6270
intel_sandybridge_quirk(void)6271 static __init void intel_sandybridge_quirk(void)
6272 {
6273 x86_pmu.check_microcode = intel_snb_check_microcode;
6274 cpus_read_lock();
6275 intel_snb_check_microcode();
6276 cpus_read_unlock();
6277 }
6278
6279 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
6280 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
6281 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
6282 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
6283 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
6284 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
6285 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
6286 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
6287 };
6288
intel_arch_events_quirk(void)6289 static __init void intel_arch_events_quirk(void)
6290 {
6291 int bit;
6292
6293 /* disable event that reported as not present by cpuid */
6294 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
6295 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
6296 pr_warn("CPUID marked event: \'%s\' unavailable\n",
6297 intel_arch_events_map[bit].name);
6298 }
6299 }
6300
intel_nehalem_quirk(void)6301 static __init void intel_nehalem_quirk(void)
6302 {
6303 union cpuid10_ebx ebx;
6304
6305 ebx.full = x86_pmu.events_maskl;
6306 if (ebx.split.no_branch_misses_retired) {
6307 /*
6308 * Erratum AAJ80 detected, we work it around by using
6309 * the BR_MISP_EXEC.ANY event. This will over-count
6310 * branch-misses, but it's still much better than the
6311 * architectural event which is often completely bogus:
6312 */
6313 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
6314 ebx.split.no_branch_misses_retired = 0;
6315 x86_pmu.events_maskl = ebx.full;
6316 pr_info("CPU erratum AAJ80 worked around\n");
6317 }
6318 }
6319
6320 /*
6321 * enable software workaround for errata:
6322 * SNB: BJ122
6323 * IVB: BV98
6324 * HSW: HSD29
6325 *
6326 * Only needed when HT is enabled. However detecting
6327 * if HT is enabled is difficult (model specific). So instead,
6328 * we enable the workaround in the early boot, and verify if
6329 * it is needed in a later initcall phase once we have valid
6330 * topology information to check if HT is actually enabled
6331 */
intel_ht_bug(void)6332 static __init void intel_ht_bug(void)
6333 {
6334 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
6335
6336 x86_pmu.start_scheduling = intel_start_scheduling;
6337 x86_pmu.commit_scheduling = intel_commit_scheduling;
6338 x86_pmu.stop_scheduling = intel_stop_scheduling;
6339 }
6340
6341 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
6342 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
6343
6344 /* Haswell special events */
6345 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
6346 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
6347 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
6348 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
6349 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
6350 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
6351 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
6352 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
6353 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
6354 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
6355 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
6356 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
6357
6358 static struct attribute *hsw_events_attrs[] = {
6359 EVENT_PTR(td_slots_issued),
6360 EVENT_PTR(td_slots_retired),
6361 EVENT_PTR(td_fetch_bubbles),
6362 EVENT_PTR(td_total_slots),
6363 EVENT_PTR(td_total_slots_scale),
6364 EVENT_PTR(td_recovery_bubbles),
6365 EVENT_PTR(td_recovery_bubbles_scale),
6366 NULL
6367 };
6368
6369 static struct attribute *hsw_mem_events_attrs[] = {
6370 EVENT_PTR(mem_ld_hsw),
6371 EVENT_PTR(mem_st_hsw),
6372 NULL,
6373 };
6374
6375 static struct attribute *hsw_tsx_events_attrs[] = {
6376 EVENT_PTR(tx_start),
6377 EVENT_PTR(tx_commit),
6378 EVENT_PTR(tx_abort),
6379 EVENT_PTR(tx_capacity),
6380 EVENT_PTR(tx_conflict),
6381 EVENT_PTR(el_start),
6382 EVENT_PTR(el_commit),
6383 EVENT_PTR(el_abort),
6384 EVENT_PTR(el_capacity),
6385 EVENT_PTR(el_conflict),
6386 EVENT_PTR(cycles_t),
6387 EVENT_PTR(cycles_ct),
6388 NULL
6389 };
6390
6391 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
6392 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
6393 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
6394 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
6395
6396 static struct attribute *icl_events_attrs[] = {
6397 EVENT_PTR(mem_ld_hsw),
6398 EVENT_PTR(mem_st_hsw),
6399 NULL,
6400 };
6401
6402 static struct attribute *icl_td_events_attrs[] = {
6403 EVENT_PTR(slots),
6404 EVENT_PTR(td_retiring),
6405 EVENT_PTR(td_bad_spec),
6406 EVENT_PTR(td_fe_bound),
6407 EVENT_PTR(td_be_bound),
6408 NULL,
6409 };
6410
6411 static struct attribute *icl_tsx_events_attrs[] = {
6412 EVENT_PTR(tx_start),
6413 EVENT_PTR(tx_abort),
6414 EVENT_PTR(tx_commit),
6415 EVENT_PTR(tx_capacity_read),
6416 EVENT_PTR(tx_capacity_write),
6417 EVENT_PTR(tx_conflict),
6418 EVENT_PTR(el_start),
6419 EVENT_PTR(el_abort),
6420 EVENT_PTR(el_commit),
6421 EVENT_PTR(el_capacity_read),
6422 EVENT_PTR(el_capacity_write),
6423 EVENT_PTR(el_conflict),
6424 EVENT_PTR(cycles_t),
6425 EVENT_PTR(cycles_ct),
6426 NULL,
6427 };
6428
6429
6430 EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
6431 EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
6432
6433 static struct attribute *glc_events_attrs[] = {
6434 EVENT_PTR(mem_ld_hsw),
6435 EVENT_PTR(mem_st_spr),
6436 EVENT_PTR(mem_ld_aux),
6437 NULL,
6438 };
6439
6440 static struct attribute *glc_td_events_attrs[] = {
6441 EVENT_PTR(slots),
6442 EVENT_PTR(td_retiring),
6443 EVENT_PTR(td_bad_spec),
6444 EVENT_PTR(td_fe_bound),
6445 EVENT_PTR(td_be_bound),
6446 EVENT_PTR(td_heavy_ops),
6447 EVENT_PTR(td_br_mispredict),
6448 EVENT_PTR(td_fetch_lat),
6449 EVENT_PTR(td_mem_bound),
6450 NULL,
6451 };
6452
6453 static struct attribute *glc_tsx_events_attrs[] = {
6454 EVENT_PTR(tx_start),
6455 EVENT_PTR(tx_abort),
6456 EVENT_PTR(tx_commit),
6457 EVENT_PTR(tx_capacity_read),
6458 EVENT_PTR(tx_capacity_write),
6459 EVENT_PTR(tx_conflict),
6460 EVENT_PTR(cycles_t),
6461 EVENT_PTR(cycles_ct),
6462 NULL,
6463 };
6464
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)6465 static ssize_t freeze_on_smi_show(struct device *cdev,
6466 struct device_attribute *attr,
6467 char *buf)
6468 {
6469 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
6470 }
6471
6472 static DEFINE_MUTEX(freeze_on_smi_mutex);
6473
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)6474 static ssize_t freeze_on_smi_store(struct device *cdev,
6475 struct device_attribute *attr,
6476 const char *buf, size_t count)
6477 {
6478 unsigned long val;
6479 ssize_t ret;
6480
6481 ret = kstrtoul(buf, 0, &val);
6482 if (ret)
6483 return ret;
6484
6485 if (val > 1)
6486 return -EINVAL;
6487
6488 mutex_lock(&freeze_on_smi_mutex);
6489
6490 if (x86_pmu.attr_freeze_on_smi == val)
6491 goto done;
6492
6493 x86_pmu.attr_freeze_on_smi = val;
6494
6495 cpus_read_lock();
6496 on_each_cpu(flip_smm_bit, &val, 1);
6497 cpus_read_unlock();
6498 done:
6499 mutex_unlock(&freeze_on_smi_mutex);
6500
6501 return count;
6502 }
6503
update_tfa_sched(void * ignored)6504 static void update_tfa_sched(void *ignored)
6505 {
6506 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
6507
6508 /*
6509 * check if PMC3 is used
6510 * and if so force schedule out for all event types all contexts
6511 */
6512 if (test_bit(3, cpuc->active_mask))
6513 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
6514 }
6515
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)6516 static ssize_t show_sysctl_tfa(struct device *cdev,
6517 struct device_attribute *attr,
6518 char *buf)
6519 {
6520 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
6521 }
6522
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)6523 static ssize_t set_sysctl_tfa(struct device *cdev,
6524 struct device_attribute *attr,
6525 const char *buf, size_t count)
6526 {
6527 bool val;
6528 ssize_t ret;
6529
6530 ret = kstrtobool(buf, &val);
6531 if (ret)
6532 return ret;
6533
6534 /* no change */
6535 if (val == allow_tsx_force_abort)
6536 return count;
6537
6538 allow_tsx_force_abort = val;
6539
6540 cpus_read_lock();
6541 on_each_cpu(update_tfa_sched, NULL, 1);
6542 cpus_read_unlock();
6543
6544 return count;
6545 }
6546
6547
6548 static DEVICE_ATTR_RW(freeze_on_smi);
6549
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)6550 static ssize_t branches_show(struct device *cdev,
6551 struct device_attribute *attr,
6552 char *buf)
6553 {
6554 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
6555 }
6556
6557 static DEVICE_ATTR_RO(branches);
6558
branch_counter_nr_show(struct device * cdev,struct device_attribute * attr,char * buf)6559 static ssize_t branch_counter_nr_show(struct device *cdev,
6560 struct device_attribute *attr,
6561 char *buf)
6562 {
6563 return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
6564 }
6565
6566 static DEVICE_ATTR_RO(branch_counter_nr);
6567
branch_counter_width_show(struct device * cdev,struct device_attribute * attr,char * buf)6568 static ssize_t branch_counter_width_show(struct device *cdev,
6569 struct device_attribute *attr,
6570 char *buf)
6571 {
6572 return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
6573 }
6574
6575 static DEVICE_ATTR_RO(branch_counter_width);
6576
6577 static struct attribute *lbr_attrs[] = {
6578 &dev_attr_branches.attr,
6579 &dev_attr_branch_counter_nr.attr,
6580 &dev_attr_branch_counter_width.attr,
6581 NULL
6582 };
6583
6584 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)6585 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6586 {
6587 /* branches */
6588 if (i == 0)
6589 return x86_pmu.lbr_nr ? attr->mode : 0;
6590
6591 return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
6592 }
6593
6594 static char pmu_name_str[30];
6595
6596 static DEVICE_STRING_ATTR_RO(pmu_name, 0444, pmu_name_str);
6597
6598 static struct attribute *intel_pmu_caps_attrs[] = {
6599 &dev_attr_pmu_name.attr.attr,
6600 NULL
6601 };
6602
6603 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
6604 show_sysctl_tfa,
6605 set_sysctl_tfa);
6606
6607 static struct attribute *intel_pmu_attrs[] = {
6608 &dev_attr_freeze_on_smi.attr,
6609 &dev_attr_allow_tsx_force_abort.attr,
6610 NULL,
6611 };
6612
6613 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)6614 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6615 {
6616 if (attr == &dev_attr_allow_tsx_force_abort.attr)
6617 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
6618
6619 return attr->mode;
6620 }
6621
6622 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)6623 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6624 {
6625 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
6626 }
6627
6628 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)6629 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6630 {
6631 return intel_pmu_has_pebs() ? attr->mode : 0;
6632 }
6633
6634 static umode_t
mem_is_visible(struct kobject * kobj,struct attribute * attr,int i)6635 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6636 {
6637 if (attr == &event_attr_mem_ld_aux.attr.attr)
6638 return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
6639
6640 return pebs_is_visible(kobj, attr, i);
6641 }
6642
6643 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)6644 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6645 {
6646 return x86_pmu.version >= 2 ? attr->mode : 0;
6647 }
6648
6649 static umode_t
td_is_visible(struct kobject * kobj,struct attribute * attr,int i)6650 td_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6651 {
6652 /*
6653 * Hide the perf metrics topdown events
6654 * if the feature is not enumerated.
6655 */
6656 if (x86_pmu.num_topdown_events)
6657 return x86_pmu.intel_cap.perf_metrics ? attr->mode : 0;
6658
6659 return attr->mode;
6660 }
6661
6662 PMU_FORMAT_ATTR(acr_mask, "config2:0-63");
6663
6664 static struct attribute *format_acr_attrs[] = {
6665 &format_attr_acr_mask.attr,
6666 NULL
6667 };
6668
6669 static umode_t
acr_is_visible(struct kobject * kobj,struct attribute * attr,int i)6670 acr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6671 {
6672 struct device *dev = kobj_to_dev(kobj);
6673
6674 return intel_pmu_has_acr(dev_get_drvdata(dev)) ? attr->mode : 0;
6675 }
6676
6677 static struct attribute_group group_events_td = {
6678 .name = "events",
6679 .is_visible = td_is_visible,
6680 };
6681
6682 static struct attribute_group group_events_mem = {
6683 .name = "events",
6684 .is_visible = mem_is_visible,
6685 };
6686
6687 static struct attribute_group group_events_tsx = {
6688 .name = "events",
6689 .is_visible = tsx_is_visible,
6690 };
6691
6692 static struct attribute_group group_caps_gen = {
6693 .name = "caps",
6694 .attrs = intel_pmu_caps_attrs,
6695 };
6696
6697 static struct attribute_group group_caps_lbr = {
6698 .name = "caps",
6699 .attrs = lbr_attrs,
6700 .is_visible = lbr_is_visible,
6701 };
6702
6703 static struct attribute_group group_format_extra = {
6704 .name = "format",
6705 .is_visible = exra_is_visible,
6706 };
6707
6708 static struct attribute_group group_format_extra_skl = {
6709 .name = "format",
6710 .is_visible = exra_is_visible,
6711 };
6712
6713 static struct attribute_group group_format_evtsel_ext = {
6714 .name = "format",
6715 .attrs = format_evtsel_ext_attrs,
6716 .is_visible = evtsel_ext_is_visible,
6717 };
6718
6719 static struct attribute_group group_format_acr = {
6720 .name = "format",
6721 .attrs = format_acr_attrs,
6722 .is_visible = acr_is_visible,
6723 };
6724
6725 static struct attribute_group group_default = {
6726 .attrs = intel_pmu_attrs,
6727 .is_visible = default_is_visible,
6728 };
6729
6730 static const struct attribute_group *attr_update[] = {
6731 &group_events_td,
6732 &group_events_mem,
6733 &group_events_tsx,
6734 &group_caps_gen,
6735 &group_caps_lbr,
6736 &group_format_extra,
6737 &group_format_extra_skl,
6738 &group_format_evtsel_ext,
6739 &group_format_acr,
6740 &group_default,
6741 NULL,
6742 };
6743
6744 EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
6745 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
6746 EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
6747 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
6748 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
6749 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
6750 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
6751 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
6752 EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
6753
6754 static struct attribute *adl_hybrid_events_attrs[] = {
6755 EVENT_PTR(slots_adl),
6756 EVENT_PTR(td_retiring_adl),
6757 EVENT_PTR(td_bad_spec_adl),
6758 EVENT_PTR(td_fe_bound_adl),
6759 EVENT_PTR(td_be_bound_adl),
6760 EVENT_PTR(td_heavy_ops_adl),
6761 EVENT_PTR(td_br_mis_adl),
6762 EVENT_PTR(td_fetch_lat_adl),
6763 EVENT_PTR(td_mem_bound_adl),
6764 NULL,
6765 };
6766
6767 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_lnl, "event=0xc2,umask=0x02;event=0x00,umask=0x80", hybrid_big_small);
6768 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_lnl, "event=0x9c,umask=0x01;event=0x00,umask=0x82", hybrid_big_small);
6769 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_lnl, "event=0xa4,umask=0x02;event=0x00,umask=0x83", hybrid_big_small);
6770
6771 static struct attribute *lnl_hybrid_events_attrs[] = {
6772 EVENT_PTR(slots_adl),
6773 EVENT_PTR(td_retiring_lnl),
6774 EVENT_PTR(td_bad_spec_adl),
6775 EVENT_PTR(td_fe_bound_lnl),
6776 EVENT_PTR(td_be_bound_lnl),
6777 EVENT_PTR(td_heavy_ops_adl),
6778 EVENT_PTR(td_br_mis_adl),
6779 EVENT_PTR(td_fetch_lat_adl),
6780 EVENT_PTR(td_mem_bound_adl),
6781 NULL
6782 };
6783
6784 /* The event string must be in PMU IDX order. */
6785 EVENT_ATTR_STR_HYBRID(topdown-retiring,
6786 td_retiring_arl_h,
6787 "event=0xc2,umask=0x02;event=0x00,umask=0x80;event=0xc2,umask=0x0",
6788 hybrid_big_small_tiny);
6789 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,
6790 td_bad_spec_arl_h,
6791 "event=0x73,umask=0x0;event=0x00,umask=0x81;event=0x73,umask=0x0",
6792 hybrid_big_small_tiny);
6793 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,
6794 td_fe_bound_arl_h,
6795 "event=0x9c,umask=0x01;event=0x00,umask=0x82;event=0x71,umask=0x0",
6796 hybrid_big_small_tiny);
6797 EVENT_ATTR_STR_HYBRID(topdown-be-bound,
6798 td_be_bound_arl_h,
6799 "event=0xa4,umask=0x02;event=0x00,umask=0x83;event=0x74,umask=0x0",
6800 hybrid_big_small_tiny);
6801
6802 static struct attribute *arl_h_hybrid_events_attrs[] = {
6803 EVENT_PTR(slots_adl),
6804 EVENT_PTR(td_retiring_arl_h),
6805 EVENT_PTR(td_bad_spec_arl_h),
6806 EVENT_PTR(td_fe_bound_arl_h),
6807 EVENT_PTR(td_be_bound_arl_h),
6808 EVENT_PTR(td_heavy_ops_adl),
6809 EVENT_PTR(td_br_mis_adl),
6810 EVENT_PTR(td_fetch_lat_adl),
6811 EVENT_PTR(td_mem_bound_adl),
6812 NULL,
6813 };
6814
6815 /* Must be in IDX order */
6816 EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
6817 EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
6818 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
6819
6820 static struct attribute *adl_hybrid_mem_attrs[] = {
6821 EVENT_PTR(mem_ld_adl),
6822 EVENT_PTR(mem_st_adl),
6823 EVENT_PTR(mem_ld_aux_adl),
6824 NULL,
6825 };
6826
6827 static struct attribute *mtl_hybrid_mem_attrs[] = {
6828 EVENT_PTR(mem_ld_adl),
6829 EVENT_PTR(mem_st_adl),
6830 NULL
6831 };
6832
6833 EVENT_ATTR_STR_HYBRID(mem-loads,
6834 mem_ld_arl_h,
6835 "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3;event=0xd0,umask=0x5,ldlat=3",
6836 hybrid_big_small_tiny);
6837 EVENT_ATTR_STR_HYBRID(mem-stores,
6838 mem_st_arl_h,
6839 "event=0xd0,umask=0x6;event=0xcd,umask=0x2;event=0xd0,umask=0x6",
6840 hybrid_big_small_tiny);
6841
6842 static struct attribute *arl_h_hybrid_mem_attrs[] = {
6843 EVENT_PTR(mem_ld_arl_h),
6844 EVENT_PTR(mem_st_arl_h),
6845 NULL,
6846 };
6847
6848 EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
6849 EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
6850 EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
6851 EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
6852 EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
6853 EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
6854 EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
6855 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
6856
6857 static struct attribute *adl_hybrid_tsx_attrs[] = {
6858 EVENT_PTR(tx_start_adl),
6859 EVENT_PTR(tx_abort_adl),
6860 EVENT_PTR(tx_commit_adl),
6861 EVENT_PTR(tx_capacity_read_adl),
6862 EVENT_PTR(tx_capacity_write_adl),
6863 EVENT_PTR(tx_conflict_adl),
6864 EVENT_PTR(cycles_t_adl),
6865 EVENT_PTR(cycles_ct_adl),
6866 NULL,
6867 };
6868
6869 FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
6870 FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
6871 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small_tiny);
6872 FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small_tiny);
6873 FORMAT_ATTR_HYBRID(frontend, hybrid_big);
6874
6875 #define ADL_HYBRID_RTM_FORMAT_ATTR \
6876 FORMAT_HYBRID_PTR(in_tx), \
6877 FORMAT_HYBRID_PTR(in_tx_cp)
6878
6879 #define ADL_HYBRID_FORMAT_ATTR \
6880 FORMAT_HYBRID_PTR(offcore_rsp), \
6881 FORMAT_HYBRID_PTR(ldlat), \
6882 FORMAT_HYBRID_PTR(frontend)
6883
6884 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
6885 ADL_HYBRID_RTM_FORMAT_ATTR,
6886 ADL_HYBRID_FORMAT_ATTR,
6887 NULL
6888 };
6889
6890 static struct attribute *adl_hybrid_extra_attr[] = {
6891 ADL_HYBRID_FORMAT_ATTR,
6892 NULL
6893 };
6894
6895 FORMAT_ATTR_HYBRID(snoop_rsp, hybrid_small_tiny);
6896
6897 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
6898 ADL_HYBRID_RTM_FORMAT_ATTR,
6899 ADL_HYBRID_FORMAT_ATTR,
6900 FORMAT_HYBRID_PTR(snoop_rsp),
6901 NULL
6902 };
6903
6904 static struct attribute *mtl_hybrid_extra_attr[] = {
6905 ADL_HYBRID_FORMAT_ATTR,
6906 FORMAT_HYBRID_PTR(snoop_rsp),
6907 NULL
6908 };
6909
is_attr_for_this_pmu(struct kobject * kobj,struct attribute * attr)6910 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
6911 {
6912 struct device *dev = kobj_to_dev(kobj);
6913 struct x86_hybrid_pmu *pmu =
6914 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6915 struct perf_pmu_events_hybrid_attr *pmu_attr =
6916 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
6917
6918 return pmu->pmu_type & pmu_attr->pmu_type;
6919 }
6920
hybrid_events_is_visible(struct kobject * kobj,struct attribute * attr,int i)6921 static umode_t hybrid_events_is_visible(struct kobject *kobj,
6922 struct attribute *attr, int i)
6923 {
6924 return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
6925 }
6926
hybrid_find_supported_cpu(struct x86_hybrid_pmu * pmu)6927 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
6928 {
6929 int cpu = cpumask_first(&pmu->supported_cpus);
6930
6931 return (cpu >= nr_cpu_ids) ? -1 : cpu;
6932 }
6933
hybrid_tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)6934 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
6935 struct attribute *attr, int i)
6936 {
6937 struct device *dev = kobj_to_dev(kobj);
6938 struct x86_hybrid_pmu *pmu =
6939 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6940 int cpu = hybrid_find_supported_cpu(pmu);
6941
6942 return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
6943 }
6944
hybrid_format_is_visible(struct kobject * kobj,struct attribute * attr,int i)6945 static umode_t hybrid_format_is_visible(struct kobject *kobj,
6946 struct attribute *attr, int i)
6947 {
6948 struct device *dev = kobj_to_dev(kobj);
6949 struct x86_hybrid_pmu *pmu =
6950 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6951 struct perf_pmu_format_hybrid_attr *pmu_attr =
6952 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
6953 int cpu = hybrid_find_supported_cpu(pmu);
6954
6955 return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
6956 }
6957
hybrid_td_is_visible(struct kobject * kobj,struct attribute * attr,int i)6958 static umode_t hybrid_td_is_visible(struct kobject *kobj,
6959 struct attribute *attr, int i)
6960 {
6961 struct device *dev = kobj_to_dev(kobj);
6962 struct x86_hybrid_pmu *pmu =
6963 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6964
6965 if (!is_attr_for_this_pmu(kobj, attr))
6966 return 0;
6967
6968
6969 /* Only the big core supports perf metrics */
6970 if (pmu->pmu_type == hybrid_big)
6971 return pmu->intel_cap.perf_metrics ? attr->mode : 0;
6972
6973 return attr->mode;
6974 }
6975
6976 static struct attribute_group hybrid_group_events_td = {
6977 .name = "events",
6978 .is_visible = hybrid_td_is_visible,
6979 };
6980
6981 static struct attribute_group hybrid_group_events_mem = {
6982 .name = "events",
6983 .is_visible = hybrid_events_is_visible,
6984 };
6985
6986 static struct attribute_group hybrid_group_events_tsx = {
6987 .name = "events",
6988 .is_visible = hybrid_tsx_is_visible,
6989 };
6990
6991 static struct attribute_group hybrid_group_format_extra = {
6992 .name = "format",
6993 .is_visible = hybrid_format_is_visible,
6994 };
6995
intel_hybrid_get_attr_cpus(struct device * dev,struct device_attribute * attr,char * buf)6996 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
6997 struct device_attribute *attr,
6998 char *buf)
6999 {
7000 struct x86_hybrid_pmu *pmu =
7001 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7002
7003 return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
7004 }
7005
7006 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
7007 static struct attribute *intel_hybrid_cpus_attrs[] = {
7008 &dev_attr_cpus.attr,
7009 NULL,
7010 };
7011
7012 static struct attribute_group hybrid_group_cpus = {
7013 .attrs = intel_hybrid_cpus_attrs,
7014 };
7015
7016 static const struct attribute_group *hybrid_attr_update[] = {
7017 &hybrid_group_events_td,
7018 &hybrid_group_events_mem,
7019 &hybrid_group_events_tsx,
7020 &group_caps_gen,
7021 &group_caps_lbr,
7022 &hybrid_group_format_extra,
7023 &group_format_evtsel_ext,
7024 &group_format_acr,
7025 &group_default,
7026 &hybrid_group_cpus,
7027 NULL,
7028 };
7029
7030 static struct attribute *empty_attrs;
7031
intel_pmu_check_event_constraints(struct event_constraint * event_constraints,u64 cntr_mask,u64 fixed_cntr_mask,u64 intel_ctrl)7032 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
7033 u64 cntr_mask,
7034 u64 fixed_cntr_mask,
7035 u64 intel_ctrl)
7036 {
7037 struct event_constraint *c;
7038
7039 if (!event_constraints)
7040 return;
7041
7042 /*
7043 * event on fixed counter2 (REF_CYCLES) only works on this
7044 * counter, so do not extend mask to generic counters
7045 */
7046 for_each_event_constraint(c, event_constraints) {
7047 /*
7048 * Don't extend the topdown slots and metrics
7049 * events to the generic counters.
7050 */
7051 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
7052 /*
7053 * Disable topdown slots and metrics events,
7054 * if slots event is not in CPUID.
7055 */
7056 if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
7057 c->idxmsk64 = 0;
7058 c->weight = hweight64(c->idxmsk64);
7059 continue;
7060 }
7061
7062 if (c->cmask == FIXED_EVENT_FLAGS) {
7063 /* Disabled fixed counters which are not in CPUID */
7064 c->idxmsk64 &= intel_ctrl;
7065
7066 /*
7067 * Don't extend the pseudo-encoding to the
7068 * generic counters
7069 */
7070 if (!use_fixed_pseudo_encoding(c->code))
7071 c->idxmsk64 |= cntr_mask;
7072 }
7073 c->idxmsk64 &= cntr_mask | (fixed_cntr_mask << INTEL_PMC_IDX_FIXED);
7074 c->weight = hweight64(c->idxmsk64);
7075 }
7076 }
7077
intel_pmu_check_extra_regs(struct extra_reg * extra_regs)7078 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
7079 {
7080 struct extra_reg *er;
7081
7082 /*
7083 * Access extra MSR may cause #GP under certain circumstances.
7084 * E.g. KVM doesn't support offcore event
7085 * Check all extra_regs here.
7086 */
7087 if (!extra_regs)
7088 return;
7089
7090 for (er = extra_regs; er->msr; er++) {
7091 er->extra_msr_access = check_msr(er->msr, 0x11UL);
7092 /* Disable LBR select mapping */
7093 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
7094 x86_pmu.lbr_sel_map = NULL;
7095 }
7096 }
7097
intel_pmu_v6_addr_offset(int index,bool eventsel)7098 static inline int intel_pmu_v6_addr_offset(int index, bool eventsel)
7099 {
7100 return MSR_IA32_PMC_V6_STEP * index;
7101 }
7102
7103 static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
7104 { hybrid_small, "cpu_atom" },
7105 { hybrid_big, "cpu_core" },
7106 { hybrid_tiny, "cpu_lowpower" },
7107 };
7108
intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)7109 static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
7110 {
7111 unsigned long pmus_mask = pmus;
7112 struct x86_hybrid_pmu *pmu;
7113 int idx = 0, bit;
7114
7115 x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
7116 x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
7117 sizeof(struct x86_hybrid_pmu),
7118 GFP_KERNEL);
7119 if (!x86_pmu.hybrid_pmu)
7120 return -ENOMEM;
7121
7122 static_branch_enable(&perf_is_hybrid);
7123 x86_pmu.filter = intel_pmu_filter;
7124
7125 for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
7126 pmu = &x86_pmu.hybrid_pmu[idx++];
7127 pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
7128 pmu->name = intel_hybrid_pmu_type_map[bit].name;
7129
7130 pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7131 pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7132 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
7133 pmu->config_mask = X86_RAW_EVENT_MASK;
7134 pmu->unconstrained = (struct event_constraint)
7135 __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
7136 0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
7137
7138 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
7139 if (pmu->pmu_type & hybrid_small_tiny) {
7140 pmu->intel_cap.perf_metrics = 0;
7141 pmu->mid_ack = true;
7142 } else if (pmu->pmu_type & hybrid_big) {
7143 pmu->intel_cap.perf_metrics = 1;
7144 pmu->late_ack = true;
7145 }
7146 }
7147
7148 return 0;
7149 }
7150
intel_pmu_ref_cycles_ext(void)7151 static __always_inline void intel_pmu_ref_cycles_ext(void)
7152 {
7153 if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
7154 intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
7155 }
7156
intel_pmu_init_glc(struct pmu * pmu)7157 static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
7158 {
7159 x86_pmu.late_ack = true;
7160 x86_pmu.limit_period = glc_limit_period;
7161 x86_pmu.pebs_aliases = NULL;
7162 x86_pmu.pebs_prec_dist = true;
7163 x86_pmu.pebs_block = true;
7164 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7165 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7166 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
7167 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
7168 x86_pmu.lbr_pt_coexist = true;
7169 x86_pmu.num_topdown_events = 8;
7170 static_call_update(intel_pmu_update_topdown_event,
7171 &icl_update_topdown_event);
7172 static_call_update(intel_pmu_set_topdown_event_period,
7173 &icl_set_topdown_event_period);
7174
7175 memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7176 memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7177 hybrid(pmu, event_constraints) = intel_glc_event_constraints;
7178 hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
7179
7180 intel_pmu_ref_cycles_ext();
7181 }
7182
intel_pmu_init_grt(struct pmu * pmu)7183 static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
7184 {
7185 x86_pmu.mid_ack = true;
7186 x86_pmu.limit_period = glc_limit_period;
7187 x86_pmu.pebs_aliases = NULL;
7188 x86_pmu.pebs_prec_dist = true;
7189 x86_pmu.pebs_block = true;
7190 x86_pmu.lbr_pt_coexist = true;
7191 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7192 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
7193
7194 memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7195 memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7196 hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7197 hybrid(pmu, event_constraints) = intel_grt_event_constraints;
7198 hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
7199 hybrid(pmu, extra_regs) = intel_grt_extra_regs;
7200
7201 intel_pmu_ref_cycles_ext();
7202 }
7203
intel_pmu_init_lnc(struct pmu * pmu)7204 static __always_inline void intel_pmu_init_lnc(struct pmu *pmu)
7205 {
7206 intel_pmu_init_glc(pmu);
7207 hybrid(pmu, event_constraints) = intel_lnc_event_constraints;
7208 hybrid(pmu, pebs_constraints) = intel_lnc_pebs_event_constraints;
7209 hybrid(pmu, extra_regs) = intel_lnc_extra_regs;
7210 }
7211
intel_pmu_init_skt(struct pmu * pmu)7212 static __always_inline void intel_pmu_init_skt(struct pmu *pmu)
7213 {
7214 intel_pmu_init_grt(pmu);
7215 hybrid(pmu, event_constraints) = intel_skt_event_constraints;
7216 hybrid(pmu, extra_regs) = intel_cmt_extra_regs;
7217 static_call_update(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
7218 }
7219
intel_pmu_init(void)7220 __init int intel_pmu_init(void)
7221 {
7222 struct attribute **extra_skl_attr = &empty_attrs;
7223 struct attribute **extra_attr = &empty_attrs;
7224 struct attribute **td_attr = &empty_attrs;
7225 struct attribute **mem_attr = &empty_attrs;
7226 struct attribute **tsx_attr = &empty_attrs;
7227 union cpuid10_edx edx;
7228 union cpuid10_eax eax;
7229 union cpuid10_ebx ebx;
7230 unsigned int fixed_mask;
7231 bool pmem = false;
7232 int version, i;
7233 char *name;
7234 struct x86_hybrid_pmu *pmu;
7235
7236 /* Architectural Perfmon was introduced starting with Core "Yonah" */
7237 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
7238 switch (boot_cpu_data.x86) {
7239 case 6:
7240 if (boot_cpu_data.x86_vfm < INTEL_CORE_YONAH)
7241 return p6_pmu_init();
7242 break;
7243 case 11:
7244 return knc_pmu_init();
7245 case 15:
7246 return p4_pmu_init();
7247 }
7248
7249 pr_cont("unsupported CPU family %d model %d ",
7250 boot_cpu_data.x86, boot_cpu_data.x86_model);
7251 return -ENODEV;
7252 }
7253
7254 /*
7255 * Check whether the Architectural PerfMon supports
7256 * Branch Misses Retired hw_event or not.
7257 */
7258 cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
7259 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
7260 return -ENODEV;
7261
7262 version = eax.split.version_id;
7263 if (version < 2)
7264 x86_pmu = core_pmu;
7265 else
7266 x86_pmu = intel_pmu;
7267
7268 x86_pmu.version = version;
7269 x86_pmu.cntr_mask64 = GENMASK_ULL(eax.split.num_counters - 1, 0);
7270 x86_pmu.cntval_bits = eax.split.bit_width;
7271 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
7272
7273 x86_pmu.events_maskl = ebx.full;
7274 x86_pmu.events_mask_len = eax.split.mask_length;
7275
7276 x86_pmu.pebs_events_mask = intel_pmu_pebs_mask(x86_pmu.cntr_mask64);
7277 x86_pmu.pebs_capable = PEBS_COUNTER_MASK;
7278 x86_pmu.config_mask = X86_RAW_EVENT_MASK;
7279
7280 /*
7281 * Quirk: v2 perfmon does not report fixed-purpose events, so
7282 * assume at least 3 events, when not running in a hypervisor:
7283 */
7284 if (version > 1 && version < 5) {
7285 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
7286
7287 x86_pmu.fixed_cntr_mask64 =
7288 GENMASK_ULL(max((int)edx.split.num_counters_fixed, assume) - 1, 0);
7289 } else if (version >= 5)
7290 x86_pmu.fixed_cntr_mask64 = fixed_mask;
7291
7292 if (boot_cpu_has(X86_FEATURE_PDCM)) {
7293 u64 capabilities;
7294
7295 rdmsrq(MSR_IA32_PERF_CAPABILITIES, capabilities);
7296 x86_pmu.intel_cap.capabilities = capabilities;
7297 }
7298
7299 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
7300 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
7301 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
7302 }
7303
7304 if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
7305 intel_pmu_arch_lbr_init();
7306
7307 intel_pebs_init();
7308
7309 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
7310
7311 if (version >= 5) {
7312 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
7313 if (x86_pmu.intel_cap.anythread_deprecated)
7314 pr_cont(" AnyThread deprecated, ");
7315 }
7316
7317 /*
7318 * Many features on and after V6 require dynamic constraint,
7319 * e.g., Arch PEBS, ACR.
7320 */
7321 if (version >= 6) {
7322 x86_pmu.flags |= PMU_FL_DYN_CONSTRAINT;
7323 x86_pmu.late_setup = intel_pmu_late_setup;
7324 }
7325
7326 /*
7327 * Install the hw-cache-events table:
7328 */
7329 switch (boot_cpu_data.x86_vfm) {
7330 case INTEL_CORE_YONAH:
7331 pr_cont("Core events, ");
7332 name = "core";
7333 break;
7334
7335 case INTEL_CORE2_MEROM:
7336 x86_add_quirk(intel_clovertown_quirk);
7337 fallthrough;
7338
7339 case INTEL_CORE2_MEROM_L:
7340 case INTEL_CORE2_PENRYN:
7341 case INTEL_CORE2_DUNNINGTON:
7342 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
7343 sizeof(hw_cache_event_ids));
7344
7345 intel_pmu_lbr_init_core();
7346
7347 x86_pmu.event_constraints = intel_core2_event_constraints;
7348 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
7349 pr_cont("Core2 events, ");
7350 name = "core2";
7351 break;
7352
7353 case INTEL_NEHALEM:
7354 case INTEL_NEHALEM_EP:
7355 case INTEL_NEHALEM_EX:
7356 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
7357 sizeof(hw_cache_event_ids));
7358 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
7359 sizeof(hw_cache_extra_regs));
7360
7361 intel_pmu_lbr_init_nhm();
7362
7363 x86_pmu.event_constraints = intel_nehalem_event_constraints;
7364 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
7365 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
7366 x86_pmu.extra_regs = intel_nehalem_extra_regs;
7367 x86_pmu.limit_period = nhm_limit_period;
7368
7369 mem_attr = nhm_mem_events_attrs;
7370
7371 /* UOPS_ISSUED.STALLED_CYCLES */
7372 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7373 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7374 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
7375 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7376 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
7377
7378 intel_pmu_pebs_data_source_nhm();
7379 x86_add_quirk(intel_nehalem_quirk);
7380 x86_pmu.pebs_no_tlb = 1;
7381 extra_attr = nhm_format_attr;
7382
7383 pr_cont("Nehalem events, ");
7384 name = "nehalem";
7385 break;
7386
7387 case INTEL_ATOM_BONNELL:
7388 case INTEL_ATOM_BONNELL_MID:
7389 case INTEL_ATOM_SALTWELL:
7390 case INTEL_ATOM_SALTWELL_MID:
7391 case INTEL_ATOM_SALTWELL_TABLET:
7392 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
7393 sizeof(hw_cache_event_ids));
7394
7395 intel_pmu_lbr_init_atom();
7396
7397 x86_pmu.event_constraints = intel_gen_event_constraints;
7398 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
7399 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
7400 pr_cont("Atom events, ");
7401 name = "bonnell";
7402 break;
7403
7404 case INTEL_ATOM_SILVERMONT:
7405 case INTEL_ATOM_SILVERMONT_D:
7406 case INTEL_ATOM_SILVERMONT_MID:
7407 case INTEL_ATOM_AIRMONT:
7408 case INTEL_ATOM_SILVERMONT_MID2:
7409 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
7410 sizeof(hw_cache_event_ids));
7411 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
7412 sizeof(hw_cache_extra_regs));
7413
7414 intel_pmu_lbr_init_slm();
7415
7416 x86_pmu.event_constraints = intel_slm_event_constraints;
7417 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
7418 x86_pmu.extra_regs = intel_slm_extra_regs;
7419 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7420 td_attr = slm_events_attrs;
7421 extra_attr = slm_format_attr;
7422 pr_cont("Silvermont events, ");
7423 name = "silvermont";
7424 break;
7425
7426 case INTEL_ATOM_GOLDMONT:
7427 case INTEL_ATOM_GOLDMONT_D:
7428 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
7429 sizeof(hw_cache_event_ids));
7430 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
7431 sizeof(hw_cache_extra_regs));
7432
7433 intel_pmu_lbr_init_skl();
7434
7435 x86_pmu.event_constraints = intel_slm_event_constraints;
7436 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
7437 x86_pmu.extra_regs = intel_glm_extra_regs;
7438 /*
7439 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7440 * for precise cycles.
7441 * :pp is identical to :ppp
7442 */
7443 x86_pmu.pebs_aliases = NULL;
7444 x86_pmu.pebs_prec_dist = true;
7445 x86_pmu.lbr_pt_coexist = true;
7446 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7447 td_attr = glm_events_attrs;
7448 extra_attr = slm_format_attr;
7449 pr_cont("Goldmont events, ");
7450 name = "goldmont";
7451 break;
7452
7453 case INTEL_ATOM_GOLDMONT_PLUS:
7454 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7455 sizeof(hw_cache_event_ids));
7456 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
7457 sizeof(hw_cache_extra_regs));
7458
7459 intel_pmu_lbr_init_skl();
7460
7461 x86_pmu.event_constraints = intel_slm_event_constraints;
7462 x86_pmu.extra_regs = intel_glm_extra_regs;
7463 /*
7464 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7465 * for precise cycles.
7466 */
7467 x86_pmu.pebs_aliases = NULL;
7468 x86_pmu.pebs_prec_dist = true;
7469 x86_pmu.lbr_pt_coexist = true;
7470 x86_pmu.pebs_capable = ~0ULL;
7471 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7472 x86_pmu.flags |= PMU_FL_PEBS_ALL;
7473 x86_pmu.get_event_constraints = glp_get_event_constraints;
7474 td_attr = glm_events_attrs;
7475 /* Goldmont Plus has 4-wide pipeline */
7476 event_attr_td_total_slots_scale_glm.event_str = "4";
7477 extra_attr = slm_format_attr;
7478 pr_cont("Goldmont plus events, ");
7479 name = "goldmont_plus";
7480 break;
7481
7482 case INTEL_ATOM_TREMONT_D:
7483 case INTEL_ATOM_TREMONT:
7484 case INTEL_ATOM_TREMONT_L:
7485 x86_pmu.late_ack = true;
7486 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7487 sizeof(hw_cache_event_ids));
7488 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
7489 sizeof(hw_cache_extra_regs));
7490 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7491
7492 intel_pmu_lbr_init_skl();
7493
7494 x86_pmu.event_constraints = intel_slm_event_constraints;
7495 x86_pmu.extra_regs = intel_tnt_extra_regs;
7496 /*
7497 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7498 * for precise cycles.
7499 */
7500 x86_pmu.pebs_aliases = NULL;
7501 x86_pmu.pebs_prec_dist = true;
7502 x86_pmu.lbr_pt_coexist = true;
7503 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7504 x86_pmu.get_event_constraints = tnt_get_event_constraints;
7505 td_attr = tnt_events_attrs;
7506 extra_attr = slm_format_attr;
7507 pr_cont("Tremont events, ");
7508 name = "Tremont";
7509 break;
7510
7511 case INTEL_ATOM_GRACEMONT:
7512 intel_pmu_init_grt(NULL);
7513 intel_pmu_pebs_data_source_grt();
7514 x86_pmu.pebs_latency_data = grt_latency_data;
7515 x86_pmu.get_event_constraints = tnt_get_event_constraints;
7516 td_attr = tnt_events_attrs;
7517 mem_attr = grt_mem_attrs;
7518 extra_attr = nhm_format_attr;
7519 pr_cont("Gracemont events, ");
7520 name = "gracemont";
7521 break;
7522
7523 case INTEL_ATOM_CRESTMONT:
7524 case INTEL_ATOM_CRESTMONT_X:
7525 intel_pmu_init_grt(NULL);
7526 x86_pmu.extra_regs = intel_cmt_extra_regs;
7527 intel_pmu_pebs_data_source_cmt();
7528 x86_pmu.pebs_latency_data = cmt_latency_data;
7529 x86_pmu.get_event_constraints = cmt_get_event_constraints;
7530 td_attr = cmt_events_attrs;
7531 mem_attr = grt_mem_attrs;
7532 extra_attr = cmt_format_attr;
7533 pr_cont("Crestmont events, ");
7534 name = "crestmont";
7535 break;
7536
7537 case INTEL_ATOM_DARKMONT_X:
7538 intel_pmu_init_skt(NULL);
7539 intel_pmu_pebs_data_source_cmt();
7540 x86_pmu.pebs_latency_data = cmt_latency_data;
7541 x86_pmu.get_event_constraints = cmt_get_event_constraints;
7542 td_attr = skt_events_attrs;
7543 mem_attr = grt_mem_attrs;
7544 extra_attr = cmt_format_attr;
7545 pr_cont("Darkmont events, ");
7546 name = "darkmont";
7547 break;
7548
7549 case INTEL_WESTMERE:
7550 case INTEL_WESTMERE_EP:
7551 case INTEL_WESTMERE_EX:
7552 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
7553 sizeof(hw_cache_event_ids));
7554 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
7555 sizeof(hw_cache_extra_regs));
7556
7557 intel_pmu_lbr_init_nhm();
7558
7559 x86_pmu.event_constraints = intel_westmere_event_constraints;
7560 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
7561 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
7562 x86_pmu.extra_regs = intel_westmere_extra_regs;
7563 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7564
7565 mem_attr = nhm_mem_events_attrs;
7566
7567 /* UOPS_ISSUED.STALLED_CYCLES */
7568 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7569 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7570 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
7571 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7572 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
7573
7574 intel_pmu_pebs_data_source_nhm();
7575 extra_attr = nhm_format_attr;
7576 pr_cont("Westmere events, ");
7577 name = "westmere";
7578 break;
7579
7580 case INTEL_SANDYBRIDGE:
7581 case INTEL_SANDYBRIDGE_X:
7582 x86_add_quirk(intel_sandybridge_quirk);
7583 x86_add_quirk(intel_ht_bug);
7584 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7585 sizeof(hw_cache_event_ids));
7586 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7587 sizeof(hw_cache_extra_regs));
7588
7589 intel_pmu_lbr_init_snb();
7590
7591 x86_pmu.event_constraints = intel_snb_event_constraints;
7592 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
7593 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
7594 if (boot_cpu_data.x86_vfm == INTEL_SANDYBRIDGE_X)
7595 x86_pmu.extra_regs = intel_snbep_extra_regs;
7596 else
7597 x86_pmu.extra_regs = intel_snb_extra_regs;
7598
7599
7600 /* all extra regs are per-cpu when HT is on */
7601 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7602 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7603
7604 td_attr = snb_events_attrs;
7605 mem_attr = snb_mem_events_attrs;
7606
7607 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7608 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7609 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7610 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
7611 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7612 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
7613
7614 extra_attr = nhm_format_attr;
7615
7616 pr_cont("SandyBridge events, ");
7617 name = "sandybridge";
7618 break;
7619
7620 case INTEL_IVYBRIDGE:
7621 case INTEL_IVYBRIDGE_X:
7622 x86_add_quirk(intel_ht_bug);
7623 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7624 sizeof(hw_cache_event_ids));
7625 /* dTLB-load-misses on IVB is different than SNB */
7626 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
7627
7628 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7629 sizeof(hw_cache_extra_regs));
7630
7631 intel_pmu_lbr_init_snb();
7632
7633 x86_pmu.event_constraints = intel_ivb_event_constraints;
7634 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
7635 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7636 x86_pmu.pebs_prec_dist = true;
7637 if (boot_cpu_data.x86_vfm == INTEL_IVYBRIDGE_X)
7638 x86_pmu.extra_regs = intel_snbep_extra_regs;
7639 else
7640 x86_pmu.extra_regs = intel_snb_extra_regs;
7641 /* all extra regs are per-cpu when HT is on */
7642 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7643 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7644
7645 td_attr = snb_events_attrs;
7646 mem_attr = snb_mem_events_attrs;
7647
7648 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7649 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7650 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7651
7652 extra_attr = nhm_format_attr;
7653
7654 pr_cont("IvyBridge events, ");
7655 name = "ivybridge";
7656 break;
7657
7658
7659 case INTEL_HASWELL:
7660 case INTEL_HASWELL_X:
7661 case INTEL_HASWELL_L:
7662 case INTEL_HASWELL_G:
7663 x86_add_quirk(intel_ht_bug);
7664 x86_add_quirk(intel_pebs_isolation_quirk);
7665 x86_pmu.late_ack = true;
7666 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7667 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7668
7669 intel_pmu_lbr_init_hsw();
7670
7671 x86_pmu.event_constraints = intel_hsw_event_constraints;
7672 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
7673 x86_pmu.extra_regs = intel_snbep_extra_regs;
7674 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7675 x86_pmu.pebs_prec_dist = true;
7676 /* all extra regs are per-cpu when HT is on */
7677 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7678 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7679
7680 x86_pmu.hw_config = hsw_hw_config;
7681 x86_pmu.get_event_constraints = hsw_get_event_constraints;
7682 x86_pmu.limit_period = hsw_limit_period;
7683 x86_pmu.lbr_double_abort = true;
7684 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7685 hsw_format_attr : nhm_format_attr;
7686 td_attr = hsw_events_attrs;
7687 mem_attr = hsw_mem_events_attrs;
7688 tsx_attr = hsw_tsx_events_attrs;
7689 pr_cont("Haswell events, ");
7690 name = "haswell";
7691 break;
7692
7693 case INTEL_BROADWELL:
7694 case INTEL_BROADWELL_D:
7695 case INTEL_BROADWELL_G:
7696 case INTEL_BROADWELL_X:
7697 x86_add_quirk(intel_pebs_isolation_quirk);
7698 x86_pmu.late_ack = true;
7699 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7700 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7701
7702 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
7703 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
7704 BDW_L3_MISS|HSW_SNOOP_DRAM;
7705 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
7706 HSW_SNOOP_DRAM;
7707 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
7708 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
7709 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
7710 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
7711
7712 intel_pmu_lbr_init_hsw();
7713
7714 x86_pmu.event_constraints = intel_bdw_event_constraints;
7715 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
7716 x86_pmu.extra_regs = intel_snbep_extra_regs;
7717 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7718 x86_pmu.pebs_prec_dist = true;
7719 /* all extra regs are per-cpu when HT is on */
7720 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7721 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7722
7723 x86_pmu.hw_config = hsw_hw_config;
7724 x86_pmu.get_event_constraints = hsw_get_event_constraints;
7725 x86_pmu.limit_period = bdw_limit_period;
7726 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7727 hsw_format_attr : nhm_format_attr;
7728 td_attr = hsw_events_attrs;
7729 mem_attr = hsw_mem_events_attrs;
7730 tsx_attr = hsw_tsx_events_attrs;
7731 pr_cont("Broadwell events, ");
7732 name = "broadwell";
7733 break;
7734
7735 case INTEL_XEON_PHI_KNL:
7736 case INTEL_XEON_PHI_KNM:
7737 memcpy(hw_cache_event_ids,
7738 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7739 memcpy(hw_cache_extra_regs,
7740 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7741 intel_pmu_lbr_init_knl();
7742
7743 x86_pmu.event_constraints = intel_slm_event_constraints;
7744 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
7745 x86_pmu.extra_regs = intel_knl_extra_regs;
7746
7747 /* all extra regs are per-cpu when HT is on */
7748 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7749 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7750 extra_attr = slm_format_attr;
7751 pr_cont("Knights Landing/Mill events, ");
7752 name = "knights-landing";
7753 break;
7754
7755 case INTEL_SKYLAKE_X:
7756 pmem = true;
7757 fallthrough;
7758 case INTEL_SKYLAKE_L:
7759 case INTEL_SKYLAKE:
7760 case INTEL_KABYLAKE_L:
7761 case INTEL_KABYLAKE:
7762 case INTEL_COMETLAKE_L:
7763 case INTEL_COMETLAKE:
7764 x86_add_quirk(intel_pebs_isolation_quirk);
7765 x86_pmu.late_ack = true;
7766 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7767 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7768 intel_pmu_lbr_init_skl();
7769
7770 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
7771 event_attr_td_recovery_bubbles.event_str_noht =
7772 "event=0xd,umask=0x1,cmask=1";
7773 event_attr_td_recovery_bubbles.event_str_ht =
7774 "event=0xd,umask=0x1,cmask=1,any=1";
7775
7776 x86_pmu.event_constraints = intel_skl_event_constraints;
7777 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
7778 x86_pmu.extra_regs = intel_skl_extra_regs;
7779 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
7780 x86_pmu.pebs_prec_dist = true;
7781 /* all extra regs are per-cpu when HT is on */
7782 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7783 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7784
7785 x86_pmu.hw_config = hsw_hw_config;
7786 x86_pmu.get_event_constraints = hsw_get_event_constraints;
7787 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7788 hsw_format_attr : nhm_format_attr;
7789 extra_skl_attr = skl_format_attr;
7790 td_attr = hsw_events_attrs;
7791 mem_attr = hsw_mem_events_attrs;
7792 tsx_attr = hsw_tsx_events_attrs;
7793 intel_pmu_pebs_data_source_skl(pmem);
7794
7795 /*
7796 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
7797 * TSX force abort hooks are not required on these systems. Only deploy
7798 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
7799 */
7800 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
7801 !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
7802 x86_pmu.flags |= PMU_FL_TFA;
7803 x86_pmu.get_event_constraints = tfa_get_event_constraints;
7804 x86_pmu.enable_all = intel_tfa_pmu_enable_all;
7805 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
7806 }
7807
7808 pr_cont("Skylake events, ");
7809 name = "skylake";
7810 break;
7811
7812 case INTEL_ICELAKE_X:
7813 case INTEL_ICELAKE_D:
7814 x86_pmu.pebs_ept = 1;
7815 pmem = true;
7816 fallthrough;
7817 case INTEL_ICELAKE_L:
7818 case INTEL_ICELAKE:
7819 case INTEL_TIGERLAKE_L:
7820 case INTEL_TIGERLAKE:
7821 case INTEL_ROCKETLAKE:
7822 x86_pmu.late_ack = true;
7823 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7824 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7825 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7826 intel_pmu_lbr_init_skl();
7827
7828 x86_pmu.event_constraints = intel_icl_event_constraints;
7829 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
7830 x86_pmu.extra_regs = intel_icl_extra_regs;
7831 x86_pmu.pebs_aliases = NULL;
7832 x86_pmu.pebs_prec_dist = true;
7833 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7834 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7835
7836 x86_pmu.hw_config = hsw_hw_config;
7837 x86_pmu.get_event_constraints = icl_get_event_constraints;
7838 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7839 hsw_format_attr : nhm_format_attr;
7840 extra_skl_attr = skl_format_attr;
7841 mem_attr = icl_events_attrs;
7842 td_attr = icl_td_events_attrs;
7843 tsx_attr = icl_tsx_events_attrs;
7844 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
7845 x86_pmu.lbr_pt_coexist = true;
7846 intel_pmu_pebs_data_source_skl(pmem);
7847 x86_pmu.num_topdown_events = 4;
7848 static_call_update(intel_pmu_update_topdown_event,
7849 &icl_update_topdown_event);
7850 static_call_update(intel_pmu_set_topdown_event_period,
7851 &icl_set_topdown_event_period);
7852 pr_cont("Icelake events, ");
7853 name = "icelake";
7854 break;
7855
7856 case INTEL_SAPPHIRERAPIDS_X:
7857 case INTEL_EMERALDRAPIDS_X:
7858 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7859 x86_pmu.extra_regs = intel_glc_extra_regs;
7860 pr_cont("Sapphire Rapids events, ");
7861 name = "sapphire_rapids";
7862 goto glc_common;
7863
7864 case INTEL_GRANITERAPIDS_X:
7865 case INTEL_GRANITERAPIDS_D:
7866 x86_pmu.extra_regs = intel_rwc_extra_regs;
7867 pr_cont("Granite Rapids events, ");
7868 name = "granite_rapids";
7869
7870 glc_common:
7871 intel_pmu_init_glc(NULL);
7872 x86_pmu.pebs_ept = 1;
7873 x86_pmu.hw_config = hsw_hw_config;
7874 x86_pmu.get_event_constraints = glc_get_event_constraints;
7875 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7876 hsw_format_attr : nhm_format_attr;
7877 extra_skl_attr = skl_format_attr;
7878 mem_attr = glc_events_attrs;
7879 td_attr = glc_td_events_attrs;
7880 tsx_attr = glc_tsx_events_attrs;
7881 intel_pmu_pebs_data_source_skl(true);
7882 break;
7883
7884 case INTEL_ALDERLAKE:
7885 case INTEL_ALDERLAKE_L:
7886 case INTEL_RAPTORLAKE:
7887 case INTEL_RAPTORLAKE_P:
7888 case INTEL_RAPTORLAKE_S:
7889 /*
7890 * Alder Lake has 2 types of CPU, core and atom.
7891 *
7892 * Initialize the common PerfMon capabilities here.
7893 */
7894 intel_pmu_init_hybrid(hybrid_big_small);
7895
7896 x86_pmu.pebs_latency_data = grt_latency_data;
7897 x86_pmu.get_event_constraints = adl_get_event_constraints;
7898 x86_pmu.hw_config = adl_hw_config;
7899 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
7900
7901 td_attr = adl_hybrid_events_attrs;
7902 mem_attr = adl_hybrid_mem_attrs;
7903 tsx_attr = adl_hybrid_tsx_attrs;
7904 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7905 adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
7906
7907 /* Initialize big core specific PerfMon capabilities.*/
7908 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7909 intel_pmu_init_glc(&pmu->pmu);
7910 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
7911 pmu->cntr_mask64 <<= 2;
7912 pmu->cntr_mask64 |= 0x3;
7913 pmu->fixed_cntr_mask64 <<= 1;
7914 pmu->fixed_cntr_mask64 |= 0x1;
7915 } else {
7916 pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7917 pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7918 }
7919
7920 /*
7921 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
7922 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
7923 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
7924 * mistakenly add extra counters for P-cores. Correct the number of
7925 * counters here.
7926 */
7927 if ((x86_pmu_num_counters(&pmu->pmu) > 8) || (x86_pmu_num_counters_fixed(&pmu->pmu) > 4)) {
7928 pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7929 pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7930 }
7931
7932 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
7933 pmu->unconstrained = (struct event_constraint)
7934 __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
7935 0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
7936
7937 pmu->extra_regs = intel_glc_extra_regs;
7938
7939 /* Initialize Atom core specific PerfMon capabilities.*/
7940 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7941 intel_pmu_init_grt(&pmu->pmu);
7942
7943 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7944 intel_pmu_pebs_data_source_adl();
7945 pr_cont("Alderlake Hybrid events, ");
7946 name = "alderlake_hybrid";
7947 break;
7948
7949 case INTEL_METEORLAKE:
7950 case INTEL_METEORLAKE_L:
7951 case INTEL_ARROWLAKE_U:
7952 intel_pmu_init_hybrid(hybrid_big_small);
7953
7954 x86_pmu.pebs_latency_data = cmt_latency_data;
7955 x86_pmu.get_event_constraints = mtl_get_event_constraints;
7956 x86_pmu.hw_config = adl_hw_config;
7957
7958 td_attr = adl_hybrid_events_attrs;
7959 mem_attr = mtl_hybrid_mem_attrs;
7960 tsx_attr = adl_hybrid_tsx_attrs;
7961 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7962 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7963
7964 /* Initialize big core specific PerfMon capabilities.*/
7965 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7966 intel_pmu_init_glc(&pmu->pmu);
7967 pmu->extra_regs = intel_rwc_extra_regs;
7968
7969 /* Initialize Atom core specific PerfMon capabilities.*/
7970 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7971 intel_pmu_init_grt(&pmu->pmu);
7972 pmu->extra_regs = intel_cmt_extra_regs;
7973
7974 intel_pmu_pebs_data_source_mtl();
7975 pr_cont("Meteorlake Hybrid events, ");
7976 name = "meteorlake_hybrid";
7977 break;
7978
7979 case INTEL_PANTHERLAKE_L:
7980 case INTEL_WILDCATLAKE_L:
7981 pr_cont("Pantherlake Hybrid events, ");
7982 name = "pantherlake_hybrid";
7983 goto lnl_common;
7984
7985 case INTEL_LUNARLAKE_M:
7986 case INTEL_ARROWLAKE:
7987 pr_cont("Lunarlake Hybrid events, ");
7988 name = "lunarlake_hybrid";
7989
7990 lnl_common:
7991 intel_pmu_init_hybrid(hybrid_big_small);
7992
7993 x86_pmu.pebs_latency_data = lnl_latency_data;
7994 x86_pmu.get_event_constraints = mtl_get_event_constraints;
7995 x86_pmu.hw_config = adl_hw_config;
7996
7997 td_attr = lnl_hybrid_events_attrs;
7998 mem_attr = mtl_hybrid_mem_attrs;
7999 tsx_attr = adl_hybrid_tsx_attrs;
8000 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8001 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
8002
8003 /* Initialize big core specific PerfMon capabilities.*/
8004 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8005 intel_pmu_init_lnc(&pmu->pmu);
8006
8007 /* Initialize Atom core specific PerfMon capabilities.*/
8008 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8009 intel_pmu_init_skt(&pmu->pmu);
8010
8011 intel_pmu_pebs_data_source_lnl();
8012 break;
8013
8014 case INTEL_ARROWLAKE_H:
8015 intel_pmu_init_hybrid(hybrid_big_small_tiny);
8016
8017 x86_pmu.pebs_latency_data = arl_h_latency_data;
8018 x86_pmu.get_event_constraints = arl_h_get_event_constraints;
8019 x86_pmu.hw_config = arl_h_hw_config;
8020
8021 td_attr = arl_h_hybrid_events_attrs;
8022 mem_attr = arl_h_hybrid_mem_attrs;
8023 tsx_attr = adl_hybrid_tsx_attrs;
8024 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8025 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
8026
8027 /* Initialize big core specific PerfMon capabilities. */
8028 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8029 intel_pmu_init_lnc(&pmu->pmu);
8030
8031 /* Initialize Atom core specific PerfMon capabilities. */
8032 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8033 intel_pmu_init_skt(&pmu->pmu);
8034
8035 /* Initialize Lower Power Atom specific PerfMon capabilities. */
8036 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX];
8037 intel_pmu_init_grt(&pmu->pmu);
8038 pmu->extra_regs = intel_cmt_extra_regs;
8039
8040 intel_pmu_pebs_data_source_arl_h();
8041 pr_cont("ArrowLake-H Hybrid events, ");
8042 name = "arrowlake_h_hybrid";
8043 break;
8044
8045 default:
8046 switch (x86_pmu.version) {
8047 case 1:
8048 x86_pmu.event_constraints = intel_v1_event_constraints;
8049 pr_cont("generic architected perfmon v1, ");
8050 name = "generic_arch_v1";
8051 break;
8052 case 2:
8053 case 3:
8054 case 4:
8055 /*
8056 * default constraints for v2 and up
8057 */
8058 x86_pmu.event_constraints = intel_gen_event_constraints;
8059 pr_cont("generic architected perfmon, ");
8060 name = "generic_arch_v2+";
8061 break;
8062 default:
8063 /*
8064 * The default constraints for v5 and up can support up to
8065 * 16 fixed counters. For the fixed counters 4 and later,
8066 * the pseudo-encoding is applied.
8067 * The constraints may be cut according to the CPUID enumeration
8068 * by inserting the EVENT_CONSTRAINT_END.
8069 */
8070 if (fls64(x86_pmu.fixed_cntr_mask64) > INTEL_PMC_MAX_FIXED)
8071 x86_pmu.fixed_cntr_mask64 &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
8072 intel_v5_gen_event_constraints[fls64(x86_pmu.fixed_cntr_mask64)].weight = -1;
8073 x86_pmu.event_constraints = intel_v5_gen_event_constraints;
8074 pr_cont("generic architected perfmon, ");
8075 name = "generic_arch_v5+";
8076 break;
8077 }
8078 }
8079
8080 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
8081
8082 if (!is_hybrid()) {
8083 group_events_td.attrs = td_attr;
8084 group_events_mem.attrs = mem_attr;
8085 group_events_tsx.attrs = tsx_attr;
8086 group_format_extra.attrs = extra_attr;
8087 group_format_extra_skl.attrs = extra_skl_attr;
8088
8089 x86_pmu.attr_update = attr_update;
8090 } else {
8091 hybrid_group_events_td.attrs = td_attr;
8092 hybrid_group_events_mem.attrs = mem_attr;
8093 hybrid_group_events_tsx.attrs = tsx_attr;
8094 hybrid_group_format_extra.attrs = extra_attr;
8095
8096 x86_pmu.attr_update = hybrid_attr_update;
8097 }
8098
8099 /*
8100 * The archPerfmonExt (0x23) includes an enhanced enumeration of
8101 * PMU architectural features with a per-core view. For non-hybrid,
8102 * each core has the same PMU capabilities. It's good enough to
8103 * update the x86_pmu from the booting CPU. For hybrid, the x86_pmu
8104 * is used to keep the common capabilities. Still keep the values
8105 * from the leaf 0xa. The core specific update will be done later
8106 * when a new type is online.
8107 */
8108 if (!is_hybrid() && boot_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
8109 update_pmu_cap(NULL);
8110
8111 if (x86_pmu.arch_pebs) {
8112 static_call_update(intel_pmu_disable_event_ext,
8113 intel_pmu_disable_event_ext);
8114 static_call_update(intel_pmu_enable_event_ext,
8115 intel_pmu_enable_event_ext);
8116 pr_cont("Architectural PEBS, ");
8117 }
8118
8119 intel_pmu_check_counters_mask(&x86_pmu.cntr_mask64,
8120 &x86_pmu.fixed_cntr_mask64,
8121 &x86_pmu.intel_ctrl);
8122
8123 /* AnyThread may be deprecated on arch perfmon v5 or later */
8124 if (x86_pmu.intel_cap.anythread_deprecated)
8125 x86_pmu.format_attrs = intel_arch_formats_attr;
8126
8127 intel_pmu_check_event_constraints_all(NULL);
8128
8129 /*
8130 * Access LBR MSR may cause #GP under certain circumstances.
8131 * Check all LBR MSR here.
8132 * Disable LBR access if any LBR MSRs can not be accessed.
8133 */
8134 if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
8135 x86_pmu.lbr_nr = 0;
8136 for (i = 0; i < x86_pmu.lbr_nr; i++) {
8137 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
8138 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
8139 x86_pmu.lbr_nr = 0;
8140 }
8141
8142 if (x86_pmu.lbr_nr) {
8143 intel_pmu_lbr_init();
8144
8145 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
8146
8147 /* only support branch_stack snapshot for perfmon >= v2 */
8148 if (x86_pmu.disable_all == intel_pmu_disable_all) {
8149 if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
8150 static_call_update(perf_snapshot_branch_stack,
8151 intel_pmu_snapshot_arch_branch_stack);
8152 } else {
8153 static_call_update(perf_snapshot_branch_stack,
8154 intel_pmu_snapshot_branch_stack);
8155 }
8156 }
8157 }
8158
8159 intel_pmu_check_extra_regs(x86_pmu.extra_regs);
8160
8161 /* Support full width counters using alternative MSR range */
8162 if (x86_pmu.intel_cap.full_width_write) {
8163 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
8164 x86_pmu.perfctr = MSR_IA32_PMC0;
8165 pr_cont("full-width counters, ");
8166 }
8167
8168 /* Support V6+ MSR Aliasing */
8169 if (x86_pmu.version >= 6) {
8170 x86_pmu.perfctr = MSR_IA32_PMC_V6_GP0_CTR;
8171 x86_pmu.eventsel = MSR_IA32_PMC_V6_GP0_CFG_A;
8172 x86_pmu.fixedctr = MSR_IA32_PMC_V6_FX0_CTR;
8173 x86_pmu.addr_offset = intel_pmu_v6_addr_offset;
8174 }
8175
8176 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
8177 x86_pmu.intel_ctrl |= GLOBAL_CTRL_EN_PERF_METRICS;
8178
8179 if (x86_pmu.intel_cap.pebs_timing_info)
8180 x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
8181
8182 intel_aux_output_init();
8183
8184 return 0;
8185 }
8186
8187 /*
8188 * HT bug: phase 2 init
8189 * Called once we have valid topology information to check
8190 * whether or not HT is enabled
8191 * If HT is off, then we disable the workaround
8192 */
fixup_ht_bug(void)8193 static __init int fixup_ht_bug(void)
8194 {
8195 int c;
8196 /*
8197 * problem not present on this CPU model, nothing to do
8198 */
8199 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
8200 return 0;
8201
8202 if (topology_max_smt_threads() > 1) {
8203 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
8204 return 0;
8205 }
8206
8207 cpus_read_lock();
8208
8209 hardlockup_detector_perf_stop();
8210
8211 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
8212
8213 x86_pmu.start_scheduling = NULL;
8214 x86_pmu.commit_scheduling = NULL;
8215 x86_pmu.stop_scheduling = NULL;
8216
8217 hardlockup_detector_perf_restart();
8218
8219 for_each_online_cpu(c)
8220 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
8221
8222 cpus_read_unlock();
8223 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
8224 return 0;
8225 }
8226 subsys_initcall(fixup_ht_bug)
8227