xref: /linux/drivers/net/ethernet/intel/idpf/idpf_txrx.h (revision cfa7029a25000f4e09e3a69bb9510f73dd1dbe3f)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #ifndef _IDPF_TXRX_H_
5 #define _IDPF_TXRX_H_
6 
7 #include <linux/dim.h>
8 
9 #include <net/libeth/cache.h>
10 #include <net/libeth/types.h>
11 #include <net/netdev_queues.h>
12 #include <net/tcp.h>
13 #include <net/xdp.h>
14 
15 #include "idpf_lan_txrx.h"
16 #include "virtchnl2_lan_desc.h"
17 
18 #define IDPF_LARGE_MAX_Q			256
19 #define IDPF_MAX_Q				16
20 #define IDPF_MIN_Q				2
21 /* Mailbox Queue */
22 #define IDPF_MAX_MBXQ				1
23 
24 #define IDPF_MIN_TXQ_DESC			64
25 #define IDPF_MIN_RXQ_DESC			64
26 #define IDPF_MIN_TXQ_COMPLQ_DESC		256
27 #define IDPF_MAX_QIDS				256
28 
29 /* Number of descriptors in a queue should be a multiple of 32. RX queue
30  * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE
31  * to achieve BufQ descriptors aligned to 32
32  */
33 #define IDPF_REQ_DESC_MULTIPLE			32
34 #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32)
35 #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6)
36 #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2)
37 
38 #define IDPF_MAX_DESCS				8160
39 #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE)
40 #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE)
41 #define MIN_SUPPORT_TXDID (\
42 	VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\
43 	VIRTCHNL2_TXDID_FLEX_TSO_CTX)
44 
45 #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS		1
46 #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS		1
47 #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP		4
48 #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP		4
49 
50 #define IDPF_COMPLQ_PER_GROUP			1
51 #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP		1
52 #define IDPF_MAX_BUFQS_PER_RXQ_GRP		2
53 #define IDPF_BUFQ2_ENA				1
54 #define IDPF_NUMQ_PER_CHUNK			1
55 
56 #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP		1
57 #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP		1
58 
59 /* Default vector sharing */
60 #define IDPF_MBX_Q_VEC		1
61 #define IDPF_MIN_Q_VEC		1
62 #define IDPF_MIN_RDMA_VEC	2
63 /* Data vector for NOIRQ queues */
64 #define IDPF_RESERVED_VECS			1
65 
66 #define IDPF_DFLT_TX_Q_DESC_COUNT		512
67 #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT		512
68 #define IDPF_DFLT_RX_Q_DESC_COUNT		512
69 
70 /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a
71  * given RX completion queue has descriptors. This includes _ALL_ buffer
72  * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers,
73  * you have a total of 1024 buffers so your RX queue _must_ have at least that
74  * many descriptors. This macro divides a given number of RX descriptors by
75  * number of buffer queues to calculate how many descriptors each buffer queue
76  * can have without overrunning the RX queue.
77  *
78  * If you give hardware more buffers than completion descriptors what will
79  * happen is that if hardware gets a chance to post more than ring wrap of
80  * descriptors before SW gets an interrupt and overwrites SW head, the gen bit
81  * in the descriptor will be wrong. Any overwritten descriptors' buffers will
82  * be gone forever and SW has no reasonable way to tell that this has happened.
83  * From SW perspective, when we finally get an interrupt, it looks like we're
84  * still waiting for descriptor to be done, stalling forever.
85  */
86 #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ)	((RXD) / (NUM_BUFQ))
87 
88 #define IDPF_RX_BUFQ_WORKING_SET(rxq)		((rxq)->desc_count - 1)
89 
90 #define IDPF_RX_BUMP_NTC(rxq, ntc)				\
91 do {								\
92 	if (unlikely(++(ntc) == (rxq)->desc_count)) {		\
93 		ntc = 0;					\
94 		idpf_queue_change(GEN_CHK, rxq);		\
95 	}							\
96 } while (0)
97 
98 #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx)			\
99 do {								\
100 	if (unlikely(++(idx) == (q)->desc_count))		\
101 		idx = 0;					\
102 } while (0)
103 
104 #define IDPF_RX_MAX_BUF_SZ			(16384 - 128)
105 #define IDPF_RX_BUF_STRIDE			32
106 #define IDPF_RX_BUF_POST_STRIDE			16
107 #define IDPF_LOW_WATERMARK			64
108 
109 #define IDPF_TX_TSO_MIN_MSS			88
110 
111 /* Minimum number of descriptors between 2 descriptors with the RE bit set;
112  * only relevant in flow scheduling mode
113  */
114 #define IDPF_TX_SPLITQ_RE_MIN_GAP	64
115 
116 #define IDPF_RFL_BI_GEN_M		BIT(16)
117 #define IDPF_RFL_BI_BUFID_M		GENMASK(15, 0)
118 
119 #define IDPF_RXD_EOF_SPLITQ		VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M
120 #define IDPF_RXD_EOF_SINGLEQ		VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M
121 
122 #define IDPF_DESC_UNUSED(txq)     \
123 	((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \
124 	(txq)->next_to_clean - (txq)->next_to_use - 1)
125 
126 #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq)	((txcq)->desc_count >> 1)
127 /* Determine the absolute number of completions pending, i.e. the number of
128  * completions that are expected to arrive on the TX completion queue.
129  */
130 #define IDPF_TX_COMPLQ_PENDING(txq)	\
131 	(((txq)->num_completions_pending >= (txq)->complq->num_completions ? \
132 	0 : U32_MAX) + \
133 	(txq)->num_completions_pending - (txq)->complq->num_completions)
134 
135 #define IDPF_TXBUF_NULL			U32_MAX
136 
137 #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS)
138 
139 #define IDPF_TX_FLAGS_TSO		BIT(0)
140 #define IDPF_TX_FLAGS_IPV4		BIT(1)
141 #define IDPF_TX_FLAGS_IPV6		BIT(2)
142 #define IDPF_TX_FLAGS_TUNNEL		BIT(3)
143 #define IDPF_TX_FLAGS_TSYN		BIT(4)
144 
145 struct libeth_rq_napi_stats;
146 
147 union idpf_tx_flex_desc {
148 	struct idpf_flex_tx_desc q; /* queue based scheduling */
149 	struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */
150 };
151 
152 #define idpf_tx_buf libeth_sqe
153 
154 /**
155  * struct idpf_tx_offload_params - Offload parameters for a given packet
156  * @tx_flags: Feature flags enabled for this packet
157  * @hdr_offsets: Offset parameter for single queue model
158  * @cd_tunneling: Type of tunneling enabled for single queue model
159  * @tso_len: Total length of payload to segment
160  * @mss: Segment size
161  * @tso_segs: Number of segments to be sent
162  * @tso_hdr_len: Length of headers to be duplicated
163  * @td_cmd: Command field to be inserted into descriptor
164  */
165 struct idpf_tx_offload_params {
166 	u32 tx_flags;
167 
168 	u32 hdr_offsets;
169 	u32 cd_tunneling;
170 
171 	u32 tso_len;
172 	u16 mss;
173 	u16 tso_segs;
174 	u16 tso_hdr_len;
175 
176 	u16 td_cmd;
177 };
178 
179 /**
180  * struct idpf_tx_splitq_params
181  * @dtype: General descriptor info
182  * @eop_cmd: Type of EOP
183  * @compl_tag: Associated tag for completion
184  * @td_tag: Descriptor tunneling tag
185  * @offload: Offload parameters
186  * @prev_ntu: stored TxQ next_to_use in case of rollback
187  * @prev_refill_ntc: stored refillq next_to_clean in case of packet rollback
188  * @prev_refill_gen: stored refillq generation bit in case of packet rollback
189  */
190 struct idpf_tx_splitq_params {
191 	enum idpf_tx_desc_dtype_value dtype;
192 	u16 eop_cmd;
193 	union {
194 		u16 compl_tag;
195 		u16 td_tag;
196 	};
197 
198 	struct idpf_tx_offload_params offload;
199 
200 	u16 prev_ntu;
201 	u16 prev_refill_ntc;
202 	bool prev_refill_gen;
203 };
204 
205 enum idpf_tx_ctx_desc_eipt_offload {
206 	IDPF_TX_CTX_EXT_IP_NONE         = 0x0,
207 	IDPF_TX_CTX_EXT_IP_IPV6         = 0x1,
208 	IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2,
209 	IDPF_TX_CTX_EXT_IP_IPV4         = 0x3
210 };
211 
212 #define IDPF_TX_COMPLQ_CLEAN_BUDGET	256
213 #define IDPF_TX_MIN_PKT_LEN		17
214 #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR	1
215 #define IDPF_TX_DESCS_PER_CACHE_LINE	(L1_CACHE_BYTES / \
216 					 sizeof(struct idpf_flex_tx_desc))
217 #define IDPF_TX_DESCS_FOR_CTX		1
218 /* TX descriptors needed, worst case */
219 #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \
220 			     IDPF_TX_DESCS_PER_CACHE_LINE + \
221 			     IDPF_TX_DESCS_FOR_SKB_DATA_PTR)
222 
223 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
224  * In order to align with the read requests we will align the value to
225  * the nearest 4K which represents our maximum read request size.
226  */
227 #define IDPF_TX_MAX_READ_REQ_SIZE	SZ_4K
228 #define IDPF_TX_MAX_DESC_DATA		(SZ_16K - 1)
229 #define IDPF_TX_MAX_DESC_DATA_ALIGNED \
230 	ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE)
231 
232 #define idpf_rx_buf libeth_fqe
233 
234 #define IDPF_RX_MAX_PTYPE_PROTO_IDS    32
235 #define IDPF_RX_MAX_PTYPE_SZ	(sizeof(struct virtchnl2_ptype) + \
236 				 (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS))
237 #define IDPF_RX_PTYPE_HDR_SZ	sizeof(struct virtchnl2_get_ptype_info)
238 #define IDPF_RX_MAX_PTYPES_PER_BUF	\
239 	DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \
240 			   IDPF_RX_MAX_PTYPE_SZ)
241 
242 #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count)
243 
244 #define IDPF_TUN_IP_GRE (\
245 	IDPF_PTYPE_TUNNEL_IP |\
246 	IDPF_PTYPE_TUNNEL_IP_GRENAT)
247 
248 #define IDPF_TUN_IP_GRE_MAC (\
249 	IDPF_TUN_IP_GRE |\
250 	IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC)
251 
252 #define IDPF_RX_MAX_PTYPE	1024
253 #define IDPF_RX_MAX_BASE_PTYPE	256
254 #define IDPF_INVALID_PTYPE_ID	0xFFFF
255 
256 enum idpf_tunnel_state {
257 	IDPF_PTYPE_TUNNEL_IP                    = BIT(0),
258 	IDPF_PTYPE_TUNNEL_IP_GRENAT             = BIT(1),
259 	IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC         = BIT(2),
260 };
261 
262 struct idpf_ptype_state {
263 	bool outer_ip:1;
264 	bool outer_frag:1;
265 	u8 tunnel_state:6;
266 };
267 
268 /**
269  * enum idpf_queue_flags_t
270  * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to
271  *		      identify new descriptor writebacks on the ring. HW sets
272  *		      the gen bit to 1 on the first writeback of any given
273  *		      descriptor. After the ring wraps, HW sets the gen bit of
274  *		      those descriptors to 0, and continues flipping
275  *		      0->1 or 1->0 on each ring wrap. SW maintains its own
276  *		      gen bit to know what value will indicate writebacks on
277  *		      the next pass around the ring. E.g. it is initialized
278  *		      to 1 and knows that reading a gen bit of 1 in any
279  *		      descriptor on the initial pass of the ring indicates a
280  *		      writeback. It also flips on every ring wrap.
281  * @__IDPF_Q_RFL_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW
282  *			  bit and Q_RFL_GEN is the SW bit.
283  * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling
284  * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions
285  * @__IDPF_Q_CRC_EN: enable CRC offload in singleq mode
286  * @__IDPF_Q_RSC_EN: enable Receive Side Coalescing on Rx (splitq)
287  * @__IDPF_Q_HSPLIT_EN: enable header split on Rx (splitq)
288  * @__IDPF_Q_PTP: indicates whether the Rx timestamping is enabled for the
289  *		  queue
290  * @__IDPF_Q_NOIRQ: queue is polling-driven and has no interrupt
291  * @__IDPF_Q_XDP: this is an XDP queue
292  * @__IDPF_Q_XSK: the queue has an XSk pool installed
293  * @__IDPF_Q_FLAGS_NBITS: Must be last
294  */
295 enum idpf_queue_flags_t {
296 	__IDPF_Q_GEN_CHK,
297 	__IDPF_Q_RFL_GEN_CHK,
298 	__IDPF_Q_FLOW_SCH_EN,
299 	__IDPF_Q_SW_MARKER,
300 	__IDPF_Q_CRC_EN,
301 	__IDPF_Q_RSC_EN,
302 	__IDPF_Q_HSPLIT_EN,
303 	__IDPF_Q_PTP,
304 	__IDPF_Q_NOIRQ,
305 	__IDPF_Q_XDP,
306 	__IDPF_Q_XSK,
307 
308 	__IDPF_Q_FLAGS_NBITS,
309 };
310 
311 #define idpf_queue_set(f, q)		__set_bit(__IDPF_Q_##f, (q)->flags)
312 #define idpf_queue_clear(f, q)		__clear_bit(__IDPF_Q_##f, (q)->flags)
313 #define idpf_queue_change(f, q)		__change_bit(__IDPF_Q_##f, (q)->flags)
314 #define idpf_queue_has(f, q)		test_bit(__IDPF_Q_##f, (q)->flags)
315 
316 #define idpf_queue_has_clear(f, q)			\
317 	__test_and_clear_bit(__IDPF_Q_##f, (q)->flags)
318 #define idpf_queue_assign(f, q, v)			\
319 	__assign_bit(__IDPF_Q_##f, (q)->flags, v)
320 
321 /**
322  * struct idpf_vec_regs
323  * @dyn_ctl_reg: Dynamic control interrupt register offset
324  * @itrn_reg: Interrupt Throttling Rate register offset
325  * @itrn_index_spacing: Register spacing between ITR registers of the same
326  *			vector
327  */
328 struct idpf_vec_regs {
329 	u32 dyn_ctl_reg;
330 	u32 itrn_reg;
331 	u32 itrn_index_spacing;
332 };
333 
334 /**
335  * struct idpf_intr_reg
336  * @dyn_ctl: Dynamic control interrupt register
337  * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable
338  * @dyn_ctl_intena_msk_m: Mask for dyn_ctl interrupt enable mask
339  * @dyn_ctl_itridx_s: Register bit offset for ITR index
340  * @dyn_ctl_itridx_m: Mask for ITR index
341  * @dyn_ctl_intrvl_s: Register bit offset for ITR interval
342  * @dyn_ctl_wb_on_itr_m: Mask for WB on ITR feature
343  * @dyn_ctl_sw_itridx_ena_m: Mask for SW ITR index
344  * @dyn_ctl_swint_trig_m: Mask for dyn_ctl SW triggered interrupt enable
345  * @rx_itr: RX ITR register
346  * @tx_itr: TX ITR register
347  * @icr_ena: Interrupt cause register offset
348  * @icr_ena_ctlq_m: Mask for ICR
349  */
350 struct idpf_intr_reg {
351 	void __iomem *dyn_ctl;
352 	u32 dyn_ctl_intena_m;
353 	u32 dyn_ctl_intena_msk_m;
354 	u32 dyn_ctl_itridx_s;
355 	u32 dyn_ctl_itridx_m;
356 	u32 dyn_ctl_intrvl_s;
357 	u32 dyn_ctl_wb_on_itr_m;
358 	u32 dyn_ctl_sw_itridx_ena_m;
359 	u32 dyn_ctl_swint_trig_m;
360 	void __iomem *rx_itr;
361 	void __iomem *tx_itr;
362 	void __iomem *icr_ena;
363 	u32 icr_ena_ctlq_m;
364 };
365 
366 /**
367  * struct idpf_q_vector
368  * @vport: Vport back pointer
369  * @num_rxq: Number of RX queues
370  * @num_txq: Number of TX queues
371  * @num_bufq: Number of buffer queues
372  * @num_complq: number of completion queues
373  * @num_xsksq: number of XSk send queues
374  * @rx: Array of RX queues to service
375  * @tx: Array of TX queues to service
376  * @bufq: Array of buffer queues to service
377  * @complq: array of completion queues
378  * @xsksq: array of XSk send queues
379  * @intr_reg: See struct idpf_intr_reg
380  * @csd: XSk wakeup CSD
381  * @total_events: Number of interrupts processed
382  * @wb_on_itr: whether WB on ITR is enabled
383  * @napi: napi handler
384  * @tx_dim: Data for TX net_dim algorithm
385  * @tx_itr_value: TX interrupt throttling rate
386  * @tx_intr_mode: Dynamic ITR or not
387  * @tx_itr_idx: TX ITR index
388  * @rx_dim: Data for RX net_dim algorithm
389  * @rx_itr_value: RX interrupt throttling rate
390  * @rx_intr_mode: Dynamic ITR or not
391  * @rx_itr_idx: RX ITR index
392  * @v_idx: Vector index
393  */
394 struct idpf_q_vector {
395 	__cacheline_group_begin_aligned(read_mostly);
396 	struct idpf_vport *vport;
397 
398 	u16 num_rxq;
399 	u16 num_txq;
400 	u16 num_bufq;
401 	u16 num_complq;
402 	u16 num_xsksq;
403 	struct idpf_rx_queue **rx;
404 	struct idpf_tx_queue **tx;
405 	struct idpf_buf_queue **bufq;
406 	struct idpf_compl_queue **complq;
407 	struct idpf_tx_queue **xsksq;
408 
409 	struct idpf_intr_reg intr_reg;
410 	__cacheline_group_end_aligned(read_mostly);
411 
412 	__cacheline_group_begin_aligned(read_write);
413 	call_single_data_t csd;
414 
415 	u16 total_events;
416 	bool wb_on_itr;
417 
418 	struct napi_struct napi;
419 
420 	struct dim tx_dim;
421 	u16 tx_itr_value;
422 	bool tx_intr_mode;
423 	u32 tx_itr_idx;
424 
425 	struct dim rx_dim;
426 	u16 rx_itr_value;
427 	bool rx_intr_mode;
428 	u32 rx_itr_idx;
429 	__cacheline_group_end_aligned(read_write);
430 
431 	__cacheline_group_begin_aligned(cold);
432 	u16 v_idx;
433 
434 	__cacheline_group_end_aligned(cold);
435 };
436 libeth_cacheline_set_assert(struct idpf_q_vector, 136,
437 			    56 + sizeof(struct napi_struct) +
438 			    2 * sizeof(struct dim),
439 			    8);
440 
441 struct idpf_rx_queue_stats {
442 	u64_stats_t packets;
443 	u64_stats_t bytes;
444 	u64_stats_t rsc_pkts;
445 	u64_stats_t hw_csum_err;
446 	u64_stats_t hsplit_pkts;
447 	u64_stats_t hsplit_buf_ovf;
448 	u64_stats_t bad_descs;
449 };
450 
451 struct idpf_tx_queue_stats {
452 	u64_stats_t packets;
453 	u64_stats_t bytes;
454 	u64_stats_t lso_pkts;
455 	u64_stats_t linearize;
456 	u64_stats_t q_busy;
457 	u64_stats_t skb_drops;
458 	u64_stats_t dma_map_errs;
459 	u64_stats_t tstamp_skipped;
460 };
461 
462 #define IDPF_ITR_DYNAMIC	1
463 #define IDPF_ITR_MAX		0x1FE0
464 #define IDPF_ITR_20K		0x0032
465 #define IDPF_ITR_GRAN_S		1	/* Assume ITR granularity is 2us */
466 #define IDPF_ITR_MASK		0x1FFE  /* ITR register value alignment mask */
467 #define ITR_REG_ALIGN(setting)	((setting) & IDPF_ITR_MASK)
468 #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode)
469 #define IDPF_ITR_TX_DEF		IDPF_ITR_20K
470 #define IDPF_ITR_RX_DEF		IDPF_ITR_20K
471 /* Index used for 'SW ITR' update in DYN_CTL register */
472 #define IDPF_SW_ITR_UPDATE_IDX	2
473 /* Index used for 'No ITR' update in DYN_CTL register */
474 #define IDPF_NO_ITR_UPDATE_IDX	3
475 #define IDPF_ITR_IDX_SPACING(spacing, dflt)	(spacing ? spacing : dflt)
476 #define IDPF_DIM_DEFAULT_PROFILE_IX		1
477 
478 /**
479  * struct idpf_rx_queue - software structure representing a receive queue
480  * @rx: universal receive descriptor array
481  * @single_buf: buffer descriptor array in singleq
482  * @desc_ring: virtual descriptor ring address
483  * @bufq_sets: Pointer to the array of buffer queues in splitq mode
484  * @napi: NAPI instance corresponding to this queue (splitq)
485  * @xdp_prog: attached XDP program
486  * @rx_buf: See struct &libeth_fqe
487  * @pp: Page pool pointer in singleq mode
488  * @tail: Tail offset. Used for both queue models single and split.
489  * @flags: See enum idpf_queue_flags_t
490  * @idx: For RX queue, it is used to index to total RX queue across groups and
491  *	 used for skb reporting.
492  * @desc_count: Number of descriptors
493  * @num_xdp_txq: total number of XDP Tx queues
494  * @xdpsqs: shortcut for XDP Tx queues array
495  * @rxdids: Supported RX descriptor ids
496  * @truesize: data buffer truesize in singleq
497  * @rx_ptype_lkup: LUT of Rx ptypes
498  * @xdp_rxq: XDP queue info
499  * @next_to_use: Next descriptor to use
500  * @next_to_clean: Next descriptor to clean
501  * @next_to_alloc: RX buffer to allocate at
502  * @xdp: XDP buffer with the current frame
503  * @xsk: current XDP buffer in XSk mode
504  * @pool: XSk pool if installed
505  * @cached_phc_time: Cached PHC time for the Rx queue
506  * @stats_sync: See struct u64_stats_sync
507  * @q_stats: See union idpf_rx_queue_stats
508  * @q_id: Queue id
509  * @size: Length of descriptor ring in bytes
510  * @dma: Physical address of ring
511  * @q_vector: Backreference to associated vector
512  * @rx_buffer_low_watermark: RX buffer low watermark
513  * @rx_hbuf_size: Header buffer size
514  * @rx_buf_size: Buffer size
515  * @rx_max_pkt_size: RX max packet size
516  */
517 struct idpf_rx_queue {
518 	__cacheline_group_begin_aligned(read_mostly);
519 	union {
520 		union virtchnl2_rx_desc *rx;
521 		struct virtchnl2_singleq_rx_buf_desc *single_buf;
522 
523 		void *desc_ring;
524 	};
525 	union {
526 		struct {
527 			struct idpf_bufq_set *bufq_sets;
528 			struct napi_struct *napi;
529 			struct bpf_prog __rcu *xdp_prog;
530 		};
531 		struct {
532 			struct libeth_fqe *rx_buf;
533 			struct page_pool *pp;
534 			void __iomem *tail;
535 		};
536 	};
537 
538 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
539 	u16 idx;
540 	u16 desc_count;
541 
542 	u32 num_xdp_txq;
543 	union {
544 		struct idpf_tx_queue **xdpsqs;
545 		struct {
546 			u32 rxdids;
547 			u32 truesize;
548 		};
549 	};
550 	const struct libeth_rx_pt *rx_ptype_lkup;
551 
552 	struct xdp_rxq_info xdp_rxq;
553 	__cacheline_group_end_aligned(read_mostly);
554 
555 	__cacheline_group_begin_aligned(read_write);
556 	u32 next_to_use;
557 	u32 next_to_clean;
558 	u32 next_to_alloc;
559 
560 	union {
561 		struct libeth_xdp_buff_stash xdp;
562 		struct {
563 			struct libeth_xdp_buff *xsk;
564 			struct xsk_buff_pool *pool;
565 		};
566 	};
567 	u64 cached_phc_time;
568 
569 	struct u64_stats_sync stats_sync;
570 	struct idpf_rx_queue_stats q_stats;
571 	__cacheline_group_end_aligned(read_write);
572 
573 	__cacheline_group_begin_aligned(cold);
574 	u32 q_id;
575 	u32 size;
576 	dma_addr_t dma;
577 
578 	struct idpf_q_vector *q_vector;
579 
580 	u16 rx_buffer_low_watermark;
581 	u16 rx_hbuf_size;
582 	u16 rx_buf_size;
583 	u16 rx_max_pkt_size;
584 	__cacheline_group_end_aligned(cold);
585 };
586 libeth_cacheline_set_assert(struct idpf_rx_queue,
587 			    ALIGN(64, __alignof(struct xdp_rxq_info)) +
588 			    sizeof(struct xdp_rxq_info),
589 			    96 + offsetof(struct idpf_rx_queue, q_stats) -
590 			    offsetofend(struct idpf_rx_queue, cached_phc_time),
591 			    32);
592 
593 /**
594  * struct idpf_tx_queue - software structure representing a transmit queue
595  * @base_tx: base Tx descriptor array
596  * @base_ctx: base Tx context descriptor array
597  * @flex_tx: flex Tx descriptor array
598  * @flex_ctx: flex Tx context descriptor array
599  * @desc_ring: virtual descriptor ring address
600  * @tx_buf: See struct idpf_tx_buf
601  * @txq_grp: See struct idpf_txq_group
602  * @complq: corresponding completion queue in XDP mode
603  * @dev: Device back pointer for DMA mapping
604  * @pool: corresponding XSk pool if installed
605  * @tail: Tail offset. Used for both queue models single and split
606  * @flags: See enum idpf_queue_flags_t
607  * @idx: For TX queue, it is used as index to map between TX queue group and
608  *	 hot path TX pointers stored in vport. Used in both singleq/splitq.
609  * @desc_count: Number of descriptors
610  * @tx_min_pkt_len: Min supported packet length
611  * @thresh: XDP queue cleaning threshold
612  * @netdev: &net_device corresponding to this queue
613  * @next_to_use: Next descriptor to use
614  * @next_to_clean: Next descriptor to clean
615  * @last_re: last descriptor index that RE bit was set
616  * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather
617  * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on
618  *		   the TX completion queue, it can be for any TXQ associated
619  *		   with that completion queue. This means we can clean up to
620  *		   N TXQs during a single call to clean the completion queue.
621  *		   cleaned_bytes|pkts tracks the clean stats per TXQ during
622  *		   that single call to clean the completion queue. By doing so,
623  *		   we can update BQL with aggregate cleaned stats for each TXQ
624  *		   only once at the end of the cleaning routine.
625  * @clean_budget: singleq only, queue cleaning budget
626  * @cleaned_pkts: Number of packets cleaned for the above said case
627  * @refillq: Pointer to refill queue
628  * @pending: number of pending descriptors to send in QB
629  * @xdp_tx: number of pending &xdp_buff or &xdp_frame buffers
630  * @timer: timer for XDP Tx queue cleanup
631  * @xdp_lock: lock for XDP Tx queues sharing
632  * @cached_tstamp_caps: Tx timestamp capabilities negotiated with the CP
633  * @tstamp_task: Work that handles Tx timestamp read
634  * @stats_sync: See struct u64_stats_sync
635  * @q_stats: See union idpf_tx_queue_stats
636  * @q_id: Queue id
637  * @size: Length of descriptor ring in bytes
638  * @dma: Physical address of ring
639  * @q_vector: Backreference to associated vector
640  * @buf_pool_size: Total number of idpf_tx_buf
641  * @rel_q_id: relative virtchnl queue index
642  */
643 struct idpf_tx_queue {
644 	__cacheline_group_begin_aligned(read_mostly);
645 	union {
646 		struct idpf_base_tx_desc *base_tx;
647 		struct idpf_base_tx_ctx_desc *base_ctx;
648 		union idpf_tx_flex_desc *flex_tx;
649 		union idpf_flex_tx_ctx_desc *flex_ctx;
650 
651 		void *desc_ring;
652 	};
653 	struct libeth_sqe *tx_buf;
654 	union {
655 		struct idpf_txq_group *txq_grp;
656 		struct idpf_compl_queue *complq;
657 	};
658 	union {
659 		struct device *dev;
660 		struct xsk_buff_pool *pool;
661 	};
662 	void __iomem *tail;
663 
664 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
665 	u16 idx;
666 	u16 desc_count;
667 
668 	union {
669 		u16 tx_min_pkt_len;
670 		u32 thresh;
671 	};
672 
673 	struct net_device *netdev;
674 	__cacheline_group_end_aligned(read_mostly);
675 
676 	__cacheline_group_begin_aligned(read_write);
677 	u32 next_to_use;
678 	u32 next_to_clean;
679 
680 	union {
681 		struct {
682 			u16 last_re;
683 			u16 tx_max_bufs;
684 
685 			union {
686 				u32 cleaned_bytes;
687 				u32 clean_budget;
688 			};
689 			u16 cleaned_pkts;
690 
691 			struct idpf_sw_queue *refillq;
692 		};
693 		struct {
694 			u32 pending;
695 			u32 xdp_tx;
696 
697 			struct libeth_xdpsq_timer *timer;
698 			struct libeth_xdpsq_lock xdp_lock;
699 		};
700 	};
701 
702 	struct idpf_ptp_vport_tx_tstamp_caps *cached_tstamp_caps;
703 	struct work_struct *tstamp_task;
704 
705 	struct u64_stats_sync stats_sync;
706 	struct idpf_tx_queue_stats q_stats;
707 	__cacheline_group_end_aligned(read_write);
708 
709 	__cacheline_group_begin_aligned(cold);
710 	u32 q_id;
711 	u32 size;
712 	dma_addr_t dma;
713 
714 	struct idpf_q_vector *q_vector;
715 
716 	u32 buf_pool_size;
717 	u32 rel_q_id;
718 	__cacheline_group_end_aligned(cold);
719 };
720 libeth_cacheline_set_assert(struct idpf_tx_queue, 64,
721 			    104 +
722 			    offsetof(struct idpf_tx_queue, cached_tstamp_caps) -
723 			    offsetofend(struct idpf_tx_queue, timer) +
724 			    offsetof(struct idpf_tx_queue, q_stats) -
725 			    offsetofend(struct idpf_tx_queue, tstamp_task),
726 			    32);
727 
728 /**
729  * struct idpf_buf_queue - software structure representing a buffer queue
730  * @split_buf: buffer descriptor array
731  * @buf: &libeth_fqe for data buffers
732  * @pp: &page_pool for data buffers
733  * @xsk_buf: &xdp_buff for XSk Rx buffers
734  * @pool: &xsk_buff_pool on XSk queues
735  * @hdr_buf: &libeth_fqe for header buffers
736  * @hdr_pp: &page_pool for header buffers
737  * @tail: Tail offset
738  * @flags: See enum idpf_queue_flags_t
739  * @desc_count: Number of descriptors
740  * @thresh: refill threshold in XSk
741  * @next_to_use: Next descriptor to use
742  * @next_to_clean: Next descriptor to clean
743  * @next_to_alloc: RX buffer to allocate at
744  * @pending: number of buffers to refill (Xsk)
745  * @hdr_truesize: truesize for buffer headers
746  * @truesize: truesize for data buffers
747  * @q_id: Queue id
748  * @size: Length of descriptor ring in bytes
749  * @dma: Physical address of ring
750  * @q_vector: Backreference to associated vector
751  * @rx_buffer_low_watermark: RX buffer low watermark
752  * @rx_hbuf_size: Header buffer size
753  * @rx_buf_size: Buffer size
754  */
755 struct idpf_buf_queue {
756 	__cacheline_group_begin_aligned(read_mostly);
757 	struct virtchnl2_splitq_rx_buf_desc *split_buf;
758 	union {
759 		struct {
760 			struct libeth_fqe *buf;
761 			struct page_pool *pp;
762 		};
763 		struct {
764 			struct libeth_xdp_buff **xsk_buf;
765 			struct xsk_buff_pool *pool;
766 		};
767 	};
768 	struct libeth_fqe *hdr_buf;
769 	struct page_pool *hdr_pp;
770 	void __iomem *tail;
771 
772 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
773 	u32 desc_count;
774 
775 	u32 thresh;
776 	__cacheline_group_end_aligned(read_mostly);
777 
778 	__cacheline_group_begin_aligned(read_write);
779 	u32 next_to_use;
780 	u32 next_to_clean;
781 	u32 next_to_alloc;
782 
783 	u32 pending;
784 	u32 hdr_truesize;
785 	u32 truesize;
786 	__cacheline_group_end_aligned(read_write);
787 
788 	__cacheline_group_begin_aligned(cold);
789 	u32 q_id;
790 	u32 size;
791 	dma_addr_t dma;
792 
793 	struct idpf_q_vector *q_vector;
794 
795 	u16 rx_buffer_low_watermark;
796 	u16 rx_hbuf_size;
797 	u16 rx_buf_size;
798 	__cacheline_group_end_aligned(cold);
799 };
800 libeth_cacheline_set_assert(struct idpf_buf_queue, 64, 24, 32);
801 
802 /**
803  * struct idpf_compl_queue - software structure representing a completion queue
804  * @comp: 8-byte completion descriptor array
805  * @comp_4b: 4-byte completion descriptor array
806  * @desc_ring: virtual descriptor ring address
807  * @txq_grp: See struct idpf_txq_group
808  * @flags: See enum idpf_queue_flags_t
809  * @desc_count: Number of descriptors
810  * @clean_budget: queue cleaning budget
811  * @netdev: &net_device corresponding to this queue
812  * @next_to_use: Next descriptor to use. Relevant in both split & single txq
813  *		 and bufq.
814  * @next_to_clean: Next descriptor to clean
815  * @num_completions: Only relevant for TX completion queue. It tracks the
816  *		     number of completions received to compare against the
817  *		     number of completions pending, as accumulated by the
818  *		     TX queues.
819  * @q_id: Queue id
820  * @size: Length of descriptor ring in bytes
821  * @dma: Physical address of ring
822  * @q_vector: Backreference to associated vector
823  */
824 struct idpf_compl_queue {
825 	__cacheline_group_begin_aligned(read_mostly);
826 	union {
827 		struct idpf_splitq_tx_compl_desc *comp;
828 		struct idpf_splitq_4b_tx_compl_desc *comp_4b;
829 
830 		void *desc_ring;
831 	};
832 	struct idpf_txq_group *txq_grp;
833 
834 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
835 	u32 desc_count;
836 
837 	u32 clean_budget;
838 	struct net_device *netdev;
839 	__cacheline_group_end_aligned(read_mostly);
840 
841 	__cacheline_group_begin_aligned(read_write);
842 	u32 next_to_use;
843 	u32 next_to_clean;
844 
845 	aligned_u64 num_completions;
846 	__cacheline_group_end_aligned(read_write);
847 
848 	__cacheline_group_begin_aligned(cold);
849 	u32 q_id;
850 	u32 size;
851 	dma_addr_t dma;
852 
853 	struct idpf_q_vector *q_vector;
854 	__cacheline_group_end_aligned(cold);
855 };
856 libeth_cacheline_set_assert(struct idpf_compl_queue, 40, 16, 24);
857 
858 /**
859  * struct idpf_sw_queue
860  * @ring: Pointer to the ring
861  * @flags: See enum idpf_queue_flags_t
862  * @desc_count: Descriptor count
863  * @next_to_use: Buffer to allocate at
864  * @next_to_clean: Next descriptor to clean
865  *
866  * Software queues are used in splitq mode to manage buffers between rxq
867  * producer and the bufq consumer.  These are required in order to maintain a
868  * lockless buffer management system and are strictly software only constructs.
869  */
870 struct idpf_sw_queue {
871 	__cacheline_group_begin_aligned(read_mostly);
872 	u32 *ring;
873 
874 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
875 	u32 desc_count;
876 	__cacheline_group_end_aligned(read_mostly);
877 
878 	__cacheline_group_begin_aligned(read_write);
879 	u32 next_to_use;
880 	u32 next_to_clean;
881 	__cacheline_group_end_aligned(read_write);
882 };
883 libeth_cacheline_group_assert(struct idpf_sw_queue, read_mostly, 24);
884 libeth_cacheline_group_assert(struct idpf_sw_queue, read_write, 8);
885 libeth_cacheline_struct_assert(struct idpf_sw_queue, 24, 8);
886 
887 /**
888  * struct idpf_rxq_set
889  * @rxq: RX queue
890  * @refillq: pointers to refill queues
891  *
892  * Splitq only.  idpf_rxq_set associates an rxq with at an array of refillqs.
893  * Each rxq needs a refillq to return used buffers back to the respective bufq.
894  * Bufqs then clean these refillqs for buffers to give to hardware.
895  */
896 struct idpf_rxq_set {
897 	struct idpf_rx_queue rxq;
898 	struct idpf_sw_queue *refillq[IDPF_MAX_BUFQS_PER_RXQ_GRP];
899 };
900 
901 /**
902  * struct idpf_bufq_set
903  * @bufq: Buffer queue
904  * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets
905  *		  in idpf_rxq_group.
906  * @refillqs: Pointer to refill queues array.
907  *
908  * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs.
909  * In this bufq_set, there will be one refillq for each rxq in this rxq_group.
910  * Used buffers received by rxqs will be put on refillqs which bufqs will
911  * clean to return new buffers back to hardware.
912  *
913  * Buffers needed by some number of rxqs associated in this rxq_group are
914  * managed by at most two bufqs (depending on performance configuration).
915  */
916 struct idpf_bufq_set {
917 	struct idpf_buf_queue bufq;
918 	int num_refillqs;
919 	struct idpf_sw_queue *refillqs;
920 };
921 
922 /**
923  * struct idpf_rxq_group
924  * @vport: Vport back pointer
925  * @singleq: Struct with single queue related members
926  * @singleq.num_rxq: Number of RX queues associated
927  * @singleq.rxqs: Array of RX queue pointers
928  * @splitq: Struct with split queue related members
929  * @splitq.num_rxq_sets: Number of RX queue sets
930  * @splitq.num_rxq_sets: Number of Buffer queue sets
931  * @splitq.rxq_sets: Array of RX queue sets
932  * @splitq.bufq_sets: Buffer queue set pointer
933  *
934  * In singleq mode, an rxq_group is simply an array of rxqs.  In splitq, a
935  * rxq_group contains all the rxqs, bufqs and refillqs needed to
936  * manage buffers in splitq mode.
937  */
938 struct idpf_rxq_group {
939 	struct idpf_vport *vport;
940 
941 	union {
942 		struct {
943 			u16 num_rxq;
944 			struct idpf_rx_queue *rxqs[IDPF_LARGE_MAX_Q];
945 		} singleq;
946 		struct {
947 			u16 num_rxq_sets;
948 			u16 num_bufq_sets;
949 			struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q];
950 			struct idpf_bufq_set *bufq_sets;
951 		} splitq;
952 	};
953 };
954 
955 /**
956  * struct idpf_txq_group
957  * @vport: Vport back pointer
958  * @num_txq: Number of TX queues associated
959  * @txqs: Array of TX queue pointers
960  * @complq: Associated completion queue pointer, split queue only
961  * @num_completions_pending: Total number of completions pending for the
962  *			     completion queue, acculumated for all TX queues
963  *			     associated with that completion queue.
964  *
965  * Between singleq and splitq, a txq_group is largely the same except for the
966  * complq. In splitq a single complq is responsible for handling completions
967  * for some number of txqs associated in this txq_group.
968  */
969 struct idpf_txq_group {
970 	struct idpf_vport *vport;
971 
972 	u16 num_txq;
973 	struct idpf_tx_queue *txqs[IDPF_LARGE_MAX_Q];
974 
975 	struct idpf_compl_queue *complq;
976 
977 	aligned_u64 num_completions_pending;
978 };
979 
980 static inline int idpf_q_vector_to_mem(const struct idpf_q_vector *q_vector)
981 {
982 	u32 cpu;
983 
984 	if (!q_vector)
985 		return NUMA_NO_NODE;
986 
987 	cpu = cpumask_first(&q_vector->napi.config->affinity_mask);
988 
989 	return cpu < nr_cpu_ids ? cpu_to_mem(cpu) : NUMA_NO_NODE;
990 }
991 
992 /**
993  * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag
994  * @size: transmit request size in bytes
995  *
996  * In the case where a large frag (>= 16K) needs to be split across multiple
997  * descriptors, we need to assume that we can have no more than 12K of data
998  * per descriptor due to hardware alignment restrictions (4K alignment).
999  */
1000 static inline u32 idpf_size_to_txd_count(unsigned int size)
1001 {
1002 	return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED);
1003 }
1004 
1005 /**
1006  * idpf_tx_singleq_build_ctob - populate command tag offset and size
1007  * @td_cmd: Command to be filled in desc
1008  * @td_offset: Offset to be filled in desc
1009  * @size: Size of the buffer
1010  * @td_tag: td tag to be filled
1011  *
1012  * Returns the 64 bit value populated with the input parameters
1013  */
1014 static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset,
1015 						unsigned int size, u64 td_tag)
1016 {
1017 	return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA |
1018 			   (td_cmd << IDPF_TXD_QW1_CMD_S) |
1019 			   (td_offset << IDPF_TXD_QW1_OFFSET_S) |
1020 			   ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) |
1021 			   (td_tag << IDPF_TXD_QW1_L2TAG1_S));
1022 }
1023 
1024 void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
1025 			      struct idpf_tx_splitq_params *params,
1026 			      u16 td_cmd, u16 size);
1027 void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
1028 				    struct idpf_tx_splitq_params *params,
1029 				    u16 td_cmd, u16 size);
1030 /**
1031  * idpf_tx_splitq_build_desc - determine which type of data descriptor to build
1032  * @desc: descriptor to populate
1033  * @params: pointer to tx params struct
1034  * @td_cmd: command to be filled in desc
1035  * @size: size of buffer
1036  */
1037 static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc,
1038 					     struct idpf_tx_splitq_params *params,
1039 					     u16 td_cmd, u16 size)
1040 {
1041 	if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2)
1042 		idpf_tx_splitq_build_ctb(desc, params, td_cmd, size);
1043 	else
1044 		idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size);
1045 }
1046 
1047 /**
1048  * idpf_vport_intr_set_wb_on_itr - enable descriptor writeback on disabled interrupts
1049  * @q_vector: pointer to queue vector struct
1050  */
1051 static inline void idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector *q_vector)
1052 {
1053 	struct idpf_intr_reg *reg;
1054 
1055 	if (q_vector->wb_on_itr)
1056 		return;
1057 
1058 	q_vector->wb_on_itr = true;
1059 	reg = &q_vector->intr_reg;
1060 
1061 	writel(reg->dyn_ctl_wb_on_itr_m | reg->dyn_ctl_intena_msk_m |
1062 	       (IDPF_NO_ITR_UPDATE_IDX << reg->dyn_ctl_itridx_s),
1063 	       reg->dyn_ctl);
1064 }
1065 
1066 /**
1067  * idpf_tx_splitq_get_free_bufs - get number of free buf_ids in refillq
1068  * @refillq: pointer to refillq containing buf_ids
1069  */
1070 static inline u32 idpf_tx_splitq_get_free_bufs(struct idpf_sw_queue *refillq)
1071 {
1072 	return (refillq->next_to_use > refillq->next_to_clean ?
1073 		0 : refillq->desc_count) +
1074 	       refillq->next_to_use - refillq->next_to_clean - 1;
1075 }
1076 
1077 int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget);
1078 void idpf_vport_init_num_qs(struct idpf_vport *vport,
1079 			    struct virtchnl2_create_vport *vport_msg,
1080 			    struct idpf_q_vec_rsrc *rsrc);
1081 void idpf_vport_calc_num_q_desc(struct idpf_vport *vport,
1082 				struct idpf_q_vec_rsrc *rsrc);
1083 int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index,
1084 			     struct virtchnl2_create_vport *vport_msg,
1085 			     struct idpf_vport_max_q *max_q);
1086 void idpf_vport_calc_num_q_groups(struct idpf_q_vec_rsrc *rsrc);
1087 int idpf_vport_queues_alloc(struct idpf_vport *vport,
1088 			    struct idpf_q_vec_rsrc *rsrc);
1089 void idpf_vport_queues_rel(struct idpf_vport *vport,
1090 			   struct idpf_q_vec_rsrc *rsrc);
1091 void idpf_vport_intr_rel(struct idpf_q_vec_rsrc *rsrc);
1092 int idpf_vport_intr_alloc(struct idpf_vport *vport,
1093 			  struct idpf_q_vec_rsrc *rsrc);
1094 void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector);
1095 void idpf_vport_intr_deinit(struct idpf_vport *vport,
1096 			    struct idpf_q_vec_rsrc *rsrc);
1097 int idpf_vport_intr_init(struct idpf_vport *vport,
1098 			 struct idpf_q_vec_rsrc *rsrc);
1099 void idpf_vport_intr_ena(struct idpf_vport *vport,
1100 			 struct idpf_q_vec_rsrc *rsrc);
1101 void idpf_fill_dflt_rss_lut(struct idpf_vport *vport,
1102 			    struct idpf_rss_data *rss_data);
1103 int idpf_config_rss(struct idpf_vport *vport, struct idpf_rss_data *rss_data);
1104 int idpf_init_rss_lut(struct idpf_vport *vport, struct idpf_rss_data *rss_data);
1105 void idpf_deinit_rss_lut(struct idpf_rss_data *rss_data);
1106 int idpf_rx_bufs_init_all(struct idpf_vport *vport,
1107 			  struct idpf_q_vec_rsrc *rsrc);
1108 
1109 struct idpf_q_vector *idpf_find_rxq_vec(const struct idpf_vport *vport,
1110 					u32 q_num);
1111 struct idpf_q_vector *idpf_find_txq_vec(const struct idpf_vport *vport,
1112 					u32 q_num);
1113 int idpf_qp_switch(struct idpf_vport *vport, u32 qid, bool en);
1114 
1115 void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val,
1116 			   bool xmit_more);
1117 unsigned int idpf_size_to_txd_count(unsigned int size);
1118 netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb);
1119 unsigned int idpf_tx_res_count_required(struct idpf_tx_queue *txq,
1120 					struct sk_buff *skb, u32 *buf_count);
1121 void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue);
1122 netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
1123 				  struct idpf_tx_queue *tx_q);
1124 netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev);
1125 bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rxq,
1126 				      u16 cleaned_count);
1127 bool idpf_rx_process_skb_fields(struct sk_buff *skb,
1128 				const struct libeth_xdp_buff *xdp,
1129 				struct libeth_rq_napi_stats *rs);
1130 int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off);
1131 
1132 void idpf_wait_for_sw_marker_completion(const struct idpf_tx_queue *txq);
1133 
1134 #endif /* !_IDPF_TXRX_H_ */
1135