1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45
46 #include <linux/uaccess.h>
47
48 #include <trace/events/timer.h>
49
50 #include "tick-internal.h"
51
52 /*
53 * Masks for selecting the soft and hard context timers from
54 * cpu_base->active
55 */
56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60
61 static void retrigger_next_event(void *arg);
62
63 /*
64 * The timer bases:
65 *
66 * There are more clockids than hrtimer bases. Thus, we index
67 * into the timer bases by the hrtimer_base_type enum. When trying
68 * to reach a base using a clockid, hrtimer_clockid_to_base()
69 * is used to convert from clockid to the proper hrtimer_base_type.
70 */
71 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
72 {
73 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
74 .clock_base =
75 {
76 {
77 .index = HRTIMER_BASE_MONOTONIC,
78 .clockid = CLOCK_MONOTONIC,
79 .get_time = &ktime_get,
80 },
81 {
82 .index = HRTIMER_BASE_REALTIME,
83 .clockid = CLOCK_REALTIME,
84 .get_time = &ktime_get_real,
85 },
86 {
87 .index = HRTIMER_BASE_BOOTTIME,
88 .clockid = CLOCK_BOOTTIME,
89 .get_time = &ktime_get_boottime,
90 },
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 },
96 {
97 .index = HRTIMER_BASE_MONOTONIC_SOFT,
98 .clockid = CLOCK_MONOTONIC,
99 .get_time = &ktime_get,
100 },
101 {
102 .index = HRTIMER_BASE_REALTIME_SOFT,
103 .clockid = CLOCK_REALTIME,
104 .get_time = &ktime_get_real,
105 },
106 {
107 .index = HRTIMER_BASE_BOOTTIME_SOFT,
108 .clockid = CLOCK_BOOTTIME,
109 .get_time = &ktime_get_boottime,
110 },
111 {
112 .index = HRTIMER_BASE_TAI_SOFT,
113 .clockid = CLOCK_TAI,
114 .get_time = &ktime_get_clocktai,
115 },
116 },
117 .csd = CSD_INIT(retrigger_next_event, NULL)
118 };
119
hrtimer_base_is_online(struct hrtimer_cpu_base * base)120 static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base)
121 {
122 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
123 return true;
124 else
125 return likely(base->online);
126 }
127
128 /*
129 * Functions and macros which are different for UP/SMP systems are kept in a
130 * single place
131 */
132 #ifdef CONFIG_SMP
133
134 /*
135 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
136 * such that hrtimer_callback_running() can unconditionally dereference
137 * timer->base->cpu_base
138 */
139 static struct hrtimer_cpu_base migration_cpu_base = {
140 .clock_base = { {
141 .cpu_base = &migration_cpu_base,
142 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
143 &migration_cpu_base.lock),
144 }, },
145 };
146
147 #define migration_base migration_cpu_base.clock_base[0]
148
149 /*
150 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
151 * means that all timers which are tied to this base via timer->base are
152 * locked, and the base itself is locked too.
153 *
154 * So __run_timers/migrate_timers can safely modify all timers which could
155 * be found on the lists/queues.
156 *
157 * When the timer's base is locked, and the timer removed from list, it is
158 * possible to set timer->base = &migration_base and drop the lock: the timer
159 * remains locked.
160 */
161 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)162 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
163 unsigned long *flags)
164 __acquires(&timer->base->lock)
165 {
166 struct hrtimer_clock_base *base;
167
168 for (;;) {
169 base = READ_ONCE(timer->base);
170 if (likely(base != &migration_base)) {
171 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
172 if (likely(base == timer->base))
173 return base;
174 /* The timer has migrated to another CPU: */
175 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
176 }
177 cpu_relax();
178 }
179 }
180
181 /*
182 * Check if the elected target is suitable considering its next
183 * event and the hotplug state of the current CPU.
184 *
185 * If the elected target is remote and its next event is after the timer
186 * to queue, then a remote reprogram is necessary. However there is no
187 * guarantee the IPI handling the operation would arrive in time to meet
188 * the high resolution deadline. In this case the local CPU becomes a
189 * preferred target, unless it is offline.
190 *
191 * High and low resolution modes are handled the same way for simplicity.
192 *
193 * Called with cpu_base->lock of target cpu held.
194 */
hrtimer_suitable_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base,struct hrtimer_cpu_base * new_cpu_base,struct hrtimer_cpu_base * this_cpu_base)195 static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base,
196 struct hrtimer_cpu_base *new_cpu_base,
197 struct hrtimer_cpu_base *this_cpu_base)
198 {
199 ktime_t expires;
200
201 /*
202 * The local CPU clockevent can be reprogrammed. Also get_target_base()
203 * guarantees it is online.
204 */
205 if (new_cpu_base == this_cpu_base)
206 return true;
207
208 /*
209 * The offline local CPU can't be the default target if the
210 * next remote target event is after this timer. Keep the
211 * elected new base. An IPI will we issued to reprogram
212 * it as a last resort.
213 */
214 if (!hrtimer_base_is_online(this_cpu_base))
215 return true;
216
217 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
218
219 return expires >= new_base->cpu_base->expires_next;
220 }
221
get_target_base(struct hrtimer_cpu_base * base,int pinned)222 static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned)
223 {
224 if (!hrtimer_base_is_online(base)) {
225 int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER));
226
227 return &per_cpu(hrtimer_bases, cpu);
228 }
229
230 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
231 if (static_branch_likely(&timers_migration_enabled) && !pinned)
232 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
233 #endif
234 return base;
235 }
236
237 /*
238 * We switch the timer base to a power-optimized selected CPU target,
239 * if:
240 * - NO_HZ_COMMON is enabled
241 * - timer migration is enabled
242 * - the timer callback is not running
243 * - the timer is not the first expiring timer on the new target
244 *
245 * If one of the above requirements is not fulfilled we move the timer
246 * to the current CPU or leave it on the previously assigned CPU if
247 * the timer callback is currently running.
248 */
249 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)250 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
251 int pinned)
252 {
253 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
254 struct hrtimer_clock_base *new_base;
255 int basenum = base->index;
256
257 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
258 new_cpu_base = get_target_base(this_cpu_base, pinned);
259 again:
260 new_base = &new_cpu_base->clock_base[basenum];
261
262 if (base != new_base) {
263 /*
264 * We are trying to move timer to new_base.
265 * However we can't change timer's base while it is running,
266 * so we keep it on the same CPU. No hassle vs. reprogramming
267 * the event source in the high resolution case. The softirq
268 * code will take care of this when the timer function has
269 * completed. There is no conflict as we hold the lock until
270 * the timer is enqueued.
271 */
272 if (unlikely(hrtimer_callback_running(timer)))
273 return base;
274
275 /* See the comment in lock_hrtimer_base() */
276 WRITE_ONCE(timer->base, &migration_base);
277 raw_spin_unlock(&base->cpu_base->lock);
278 raw_spin_lock(&new_base->cpu_base->lock);
279
280 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base,
281 this_cpu_base)) {
282 raw_spin_unlock(&new_base->cpu_base->lock);
283 raw_spin_lock(&base->cpu_base->lock);
284 new_cpu_base = this_cpu_base;
285 WRITE_ONCE(timer->base, base);
286 goto again;
287 }
288 WRITE_ONCE(timer->base, new_base);
289 } else {
290 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, this_cpu_base)) {
291 new_cpu_base = this_cpu_base;
292 goto again;
293 }
294 }
295 return new_base;
296 }
297
298 #else /* CONFIG_SMP */
299
300 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)301 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
302 __acquires(&timer->base->cpu_base->lock)
303 {
304 struct hrtimer_clock_base *base = timer->base;
305
306 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
307
308 return base;
309 }
310
311 # define switch_hrtimer_base(t, b, p) (b)
312
313 #endif /* !CONFIG_SMP */
314
315 /*
316 * Functions for the union type storage format of ktime_t which are
317 * too large for inlining:
318 */
319 #if BITS_PER_LONG < 64
320 /*
321 * Divide a ktime value by a nanosecond value
322 */
__ktime_divns(const ktime_t kt,s64 div)323 s64 __ktime_divns(const ktime_t kt, s64 div)
324 {
325 int sft = 0;
326 s64 dclc;
327 u64 tmp;
328
329 dclc = ktime_to_ns(kt);
330 tmp = dclc < 0 ? -dclc : dclc;
331
332 /* Make sure the divisor is less than 2^32: */
333 while (div >> 32) {
334 sft++;
335 div >>= 1;
336 }
337 tmp >>= sft;
338 do_div(tmp, (u32) div);
339 return dclc < 0 ? -tmp : tmp;
340 }
341 EXPORT_SYMBOL_GPL(__ktime_divns);
342 #endif /* BITS_PER_LONG >= 64 */
343
344 /*
345 * Add two ktime values and do a safety check for overflow:
346 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)347 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
348 {
349 ktime_t res = ktime_add_unsafe(lhs, rhs);
350
351 /*
352 * We use KTIME_SEC_MAX here, the maximum timeout which we can
353 * return to user space in a timespec:
354 */
355 if (res < 0 || res < lhs || res < rhs)
356 res = ktime_set(KTIME_SEC_MAX, 0);
357
358 return res;
359 }
360
361 EXPORT_SYMBOL_GPL(ktime_add_safe);
362
363 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
364
365 static const struct debug_obj_descr hrtimer_debug_descr;
366
hrtimer_debug_hint(void * addr)367 static void *hrtimer_debug_hint(void *addr)
368 {
369 return ((struct hrtimer *) addr)->function;
370 }
371
372 /*
373 * fixup_init is called when:
374 * - an active object is initialized
375 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)376 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
377 {
378 struct hrtimer *timer = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 hrtimer_cancel(timer);
383 debug_object_init(timer, &hrtimer_debug_descr);
384 return true;
385 default:
386 return false;
387 }
388 }
389
390 /*
391 * fixup_activate is called when:
392 * - an active object is activated
393 * - an unknown non-static object is activated
394 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)395 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
396 {
397 switch (state) {
398 case ODEBUG_STATE_ACTIVE:
399 WARN_ON(1);
400 fallthrough;
401 default:
402 return false;
403 }
404 }
405
406 /*
407 * fixup_free is called when:
408 * - an active object is freed
409 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)410 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
411 {
412 struct hrtimer *timer = addr;
413
414 switch (state) {
415 case ODEBUG_STATE_ACTIVE:
416 hrtimer_cancel(timer);
417 debug_object_free(timer, &hrtimer_debug_descr);
418 return true;
419 default:
420 return false;
421 }
422 }
423
424 static const struct debug_obj_descr hrtimer_debug_descr = {
425 .name = "hrtimer",
426 .debug_hint = hrtimer_debug_hint,
427 .fixup_init = hrtimer_fixup_init,
428 .fixup_activate = hrtimer_fixup_activate,
429 .fixup_free = hrtimer_fixup_free,
430 };
431
debug_hrtimer_init(struct hrtimer * timer)432 static inline void debug_hrtimer_init(struct hrtimer *timer)
433 {
434 debug_object_init(timer, &hrtimer_debug_descr);
435 }
436
debug_hrtimer_init_on_stack(struct hrtimer * timer)437 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer)
438 {
439 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
440 }
441
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)442 static inline void debug_hrtimer_activate(struct hrtimer *timer,
443 enum hrtimer_mode mode)
444 {
445 debug_object_activate(timer, &hrtimer_debug_descr);
446 }
447
debug_hrtimer_deactivate(struct hrtimer * timer)448 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
449 {
450 debug_object_deactivate(timer, &hrtimer_debug_descr);
451 }
452
destroy_hrtimer_on_stack(struct hrtimer * timer)453 void destroy_hrtimer_on_stack(struct hrtimer *timer)
454 {
455 debug_object_free(timer, &hrtimer_debug_descr);
456 }
457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
458
459 #else
460
debug_hrtimer_init(struct hrtimer * timer)461 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_init_on_stack(struct hrtimer * timer)462 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)463 static inline void debug_hrtimer_activate(struct hrtimer *timer,
464 enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)465 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
466 #endif
467
468 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)469 debug_init(struct hrtimer *timer, clockid_t clockid,
470 enum hrtimer_mode mode)
471 {
472 debug_hrtimer_init(timer);
473 trace_hrtimer_init(timer, clockid, mode);
474 }
475
debug_init_on_stack(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)476 static inline void debug_init_on_stack(struct hrtimer *timer, clockid_t clockid,
477 enum hrtimer_mode mode)
478 {
479 debug_hrtimer_init_on_stack(timer);
480 trace_hrtimer_init(timer, clockid, mode);
481 }
482
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)483 static inline void debug_activate(struct hrtimer *timer,
484 enum hrtimer_mode mode)
485 {
486 debug_hrtimer_activate(timer, mode);
487 trace_hrtimer_start(timer, mode);
488 }
489
debug_deactivate(struct hrtimer * timer)490 static inline void debug_deactivate(struct hrtimer *timer)
491 {
492 debug_hrtimer_deactivate(timer);
493 trace_hrtimer_cancel(timer);
494 }
495
496 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)497 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
498 {
499 unsigned int idx;
500
501 if (!*active)
502 return NULL;
503
504 idx = __ffs(*active);
505 *active &= ~(1U << idx);
506
507 return &cpu_base->clock_base[idx];
508 }
509
510 #define for_each_active_base(base, cpu_base, active) \
511 while ((base = __next_base((cpu_base), &(active))))
512
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)513 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
514 const struct hrtimer *exclude,
515 unsigned int active,
516 ktime_t expires_next)
517 {
518 struct hrtimer_clock_base *base;
519 ktime_t expires;
520
521 for_each_active_base(base, cpu_base, active) {
522 struct timerqueue_node *next;
523 struct hrtimer *timer;
524
525 next = timerqueue_getnext(&base->active);
526 timer = container_of(next, struct hrtimer, node);
527 if (timer == exclude) {
528 /* Get to the next timer in the queue. */
529 next = timerqueue_iterate_next(next);
530 if (!next)
531 continue;
532
533 timer = container_of(next, struct hrtimer, node);
534 }
535 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
536 if (expires < expires_next) {
537 expires_next = expires;
538
539 /* Skip cpu_base update if a timer is being excluded. */
540 if (exclude)
541 continue;
542
543 if (timer->is_soft)
544 cpu_base->softirq_next_timer = timer;
545 else
546 cpu_base->next_timer = timer;
547 }
548 }
549 /*
550 * clock_was_set() might have changed base->offset of any of
551 * the clock bases so the result might be negative. Fix it up
552 * to prevent a false positive in clockevents_program_event().
553 */
554 if (expires_next < 0)
555 expires_next = 0;
556 return expires_next;
557 }
558
559 /*
560 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
561 * but does not set cpu_base::*expires_next, that is done by
562 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
563 * cpu_base::*expires_next right away, reprogramming logic would no longer
564 * work.
565 *
566 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
567 * those timers will get run whenever the softirq gets handled, at the end of
568 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
569 *
570 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
571 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
572 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
573 *
574 * @active_mask must be one of:
575 * - HRTIMER_ACTIVE_ALL,
576 * - HRTIMER_ACTIVE_SOFT, or
577 * - HRTIMER_ACTIVE_HARD.
578 */
579 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)580 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
581 {
582 unsigned int active;
583 struct hrtimer *next_timer = NULL;
584 ktime_t expires_next = KTIME_MAX;
585
586 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
587 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
588 cpu_base->softirq_next_timer = NULL;
589 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
590 active, KTIME_MAX);
591
592 next_timer = cpu_base->softirq_next_timer;
593 }
594
595 if (active_mask & HRTIMER_ACTIVE_HARD) {
596 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
597 cpu_base->next_timer = next_timer;
598 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
599 expires_next);
600 }
601
602 return expires_next;
603 }
604
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)605 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
606 {
607 ktime_t expires_next, soft = KTIME_MAX;
608
609 /*
610 * If the soft interrupt has already been activated, ignore the
611 * soft bases. They will be handled in the already raised soft
612 * interrupt.
613 */
614 if (!cpu_base->softirq_activated) {
615 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
616 /*
617 * Update the soft expiry time. clock_settime() might have
618 * affected it.
619 */
620 cpu_base->softirq_expires_next = soft;
621 }
622
623 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
624 /*
625 * If a softirq timer is expiring first, update cpu_base->next_timer
626 * and program the hardware with the soft expiry time.
627 */
628 if (expires_next > soft) {
629 cpu_base->next_timer = cpu_base->softirq_next_timer;
630 expires_next = soft;
631 }
632
633 return expires_next;
634 }
635
hrtimer_update_base(struct hrtimer_cpu_base * base)636 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
637 {
638 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
639 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
640 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
641
642 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
643 offs_real, offs_boot, offs_tai);
644
645 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
646 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
647 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
648
649 return now;
650 }
651
652 /*
653 * Is the high resolution mode active ?
654 */
hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)655 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
656 {
657 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
658 cpu_base->hres_active : 0;
659 }
660
__hrtimer_reprogram(struct hrtimer_cpu_base * cpu_base,struct hrtimer * next_timer,ktime_t expires_next)661 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
662 struct hrtimer *next_timer,
663 ktime_t expires_next)
664 {
665 cpu_base->expires_next = expires_next;
666
667 /*
668 * If hres is not active, hardware does not have to be
669 * reprogrammed yet.
670 *
671 * If a hang was detected in the last timer interrupt then we
672 * leave the hang delay active in the hardware. We want the
673 * system to make progress. That also prevents the following
674 * scenario:
675 * T1 expires 50ms from now
676 * T2 expires 5s from now
677 *
678 * T1 is removed, so this code is called and would reprogram
679 * the hardware to 5s from now. Any hrtimer_start after that
680 * will not reprogram the hardware due to hang_detected being
681 * set. So we'd effectively block all timers until the T2 event
682 * fires.
683 */
684 if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
685 return;
686
687 tick_program_event(expires_next, 1);
688 }
689
690 /*
691 * Reprogram the event source with checking both queues for the
692 * next event
693 * Called with interrupts disabled and base->lock held
694 */
695 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)696 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
697 {
698 ktime_t expires_next;
699
700 expires_next = hrtimer_update_next_event(cpu_base);
701
702 if (skip_equal && expires_next == cpu_base->expires_next)
703 return;
704
705 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
706 }
707
708 /* High resolution timer related functions */
709 #ifdef CONFIG_HIGH_RES_TIMERS
710
711 /*
712 * High resolution timer enabled ?
713 */
714 static bool hrtimer_hres_enabled __read_mostly = true;
715 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
716 EXPORT_SYMBOL_GPL(hrtimer_resolution);
717
718 /*
719 * Enable / Disable high resolution mode
720 */
setup_hrtimer_hres(char * str)721 static int __init setup_hrtimer_hres(char *str)
722 {
723 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
724 }
725
726 __setup("highres=", setup_hrtimer_hres);
727
728 /*
729 * hrtimer_high_res_enabled - query, if the highres mode is enabled
730 */
hrtimer_is_hres_enabled(void)731 static inline int hrtimer_is_hres_enabled(void)
732 {
733 return hrtimer_hres_enabled;
734 }
735
736 /*
737 * Switch to high resolution mode
738 */
hrtimer_switch_to_hres(void)739 static void hrtimer_switch_to_hres(void)
740 {
741 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
742
743 if (tick_init_highres()) {
744 pr_warn("Could not switch to high resolution mode on CPU %u\n",
745 base->cpu);
746 return;
747 }
748 base->hres_active = 1;
749 hrtimer_resolution = HIGH_RES_NSEC;
750
751 tick_setup_sched_timer(true);
752 /* "Retrigger" the interrupt to get things going */
753 retrigger_next_event(NULL);
754 }
755
756 #else
757
hrtimer_is_hres_enabled(void)758 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)759 static inline void hrtimer_switch_to_hres(void) { }
760
761 #endif /* CONFIG_HIGH_RES_TIMERS */
762 /*
763 * Retrigger next event is called after clock was set with interrupts
764 * disabled through an SMP function call or directly from low level
765 * resume code.
766 *
767 * This is only invoked when:
768 * - CONFIG_HIGH_RES_TIMERS is enabled.
769 * - CONFIG_NOHZ_COMMON is enabled
770 *
771 * For the other cases this function is empty and because the call sites
772 * are optimized out it vanishes as well, i.e. no need for lots of
773 * #ifdeffery.
774 */
retrigger_next_event(void * arg)775 static void retrigger_next_event(void *arg)
776 {
777 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
778
779 /*
780 * When high resolution mode or nohz is active, then the offsets of
781 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
782 * next tick will take care of that.
783 *
784 * If high resolution mode is active then the next expiring timer
785 * must be reevaluated and the clock event device reprogrammed if
786 * necessary.
787 *
788 * In the NOHZ case the update of the offset and the reevaluation
789 * of the next expiring timer is enough. The return from the SMP
790 * function call will take care of the reprogramming in case the
791 * CPU was in a NOHZ idle sleep.
792 */
793 if (!hrtimer_hres_active(base) && !tick_nohz_active)
794 return;
795
796 raw_spin_lock(&base->lock);
797 hrtimer_update_base(base);
798 if (hrtimer_hres_active(base))
799 hrtimer_force_reprogram(base, 0);
800 else
801 hrtimer_update_next_event(base);
802 raw_spin_unlock(&base->lock);
803 }
804
805 /*
806 * When a timer is enqueued and expires earlier than the already enqueued
807 * timers, we have to check, whether it expires earlier than the timer for
808 * which the clock event device was armed.
809 *
810 * Called with interrupts disabled and base->cpu_base.lock held
811 */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)812 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
813 {
814 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
815 struct hrtimer_clock_base *base = timer->base;
816 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
817
818 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
819
820 /*
821 * CLOCK_REALTIME timer might be requested with an absolute
822 * expiry time which is less than base->offset. Set it to 0.
823 */
824 if (expires < 0)
825 expires = 0;
826
827 if (timer->is_soft) {
828 /*
829 * soft hrtimer could be started on a remote CPU. In this
830 * case softirq_expires_next needs to be updated on the
831 * remote CPU. The soft hrtimer will not expire before the
832 * first hard hrtimer on the remote CPU -
833 * hrtimer_check_target() prevents this case.
834 */
835 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
836
837 if (timer_cpu_base->softirq_activated)
838 return;
839
840 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
841 return;
842
843 timer_cpu_base->softirq_next_timer = timer;
844 timer_cpu_base->softirq_expires_next = expires;
845
846 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
847 !reprogram)
848 return;
849 }
850
851 /*
852 * If the timer is not on the current cpu, we cannot reprogram
853 * the other cpus clock event device.
854 */
855 if (base->cpu_base != cpu_base)
856 return;
857
858 if (expires >= cpu_base->expires_next)
859 return;
860
861 /*
862 * If the hrtimer interrupt is running, then it will reevaluate the
863 * clock bases and reprogram the clock event device.
864 */
865 if (cpu_base->in_hrtirq)
866 return;
867
868 cpu_base->next_timer = timer;
869
870 __hrtimer_reprogram(cpu_base, timer, expires);
871 }
872
update_needs_ipi(struct hrtimer_cpu_base * cpu_base,unsigned int active)873 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
874 unsigned int active)
875 {
876 struct hrtimer_clock_base *base;
877 unsigned int seq;
878 ktime_t expires;
879
880 /*
881 * Update the base offsets unconditionally so the following
882 * checks whether the SMP function call is required works.
883 *
884 * The update is safe even when the remote CPU is in the hrtimer
885 * interrupt or the hrtimer soft interrupt and expiring affected
886 * bases. Either it will see the update before handling a base or
887 * it will see it when it finishes the processing and reevaluates
888 * the next expiring timer.
889 */
890 seq = cpu_base->clock_was_set_seq;
891 hrtimer_update_base(cpu_base);
892
893 /*
894 * If the sequence did not change over the update then the
895 * remote CPU already handled it.
896 */
897 if (seq == cpu_base->clock_was_set_seq)
898 return false;
899
900 /*
901 * If the remote CPU is currently handling an hrtimer interrupt, it
902 * will reevaluate the first expiring timer of all clock bases
903 * before reprogramming. Nothing to do here.
904 */
905 if (cpu_base->in_hrtirq)
906 return false;
907
908 /*
909 * Walk the affected clock bases and check whether the first expiring
910 * timer in a clock base is moving ahead of the first expiring timer of
911 * @cpu_base. If so, the IPI must be invoked because per CPU clock
912 * event devices cannot be remotely reprogrammed.
913 */
914 active &= cpu_base->active_bases;
915
916 for_each_active_base(base, cpu_base, active) {
917 struct timerqueue_node *next;
918
919 next = timerqueue_getnext(&base->active);
920 expires = ktime_sub(next->expires, base->offset);
921 if (expires < cpu_base->expires_next)
922 return true;
923
924 /* Extra check for softirq clock bases */
925 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
926 continue;
927 if (cpu_base->softirq_activated)
928 continue;
929 if (expires < cpu_base->softirq_expires_next)
930 return true;
931 }
932 return false;
933 }
934
935 /*
936 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
937 * CLOCK_BOOTTIME (for late sleep time injection).
938 *
939 * This requires to update the offsets for these clocks
940 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
941 * also requires to eventually reprogram the per CPU clock event devices
942 * when the change moves an affected timer ahead of the first expiring
943 * timer on that CPU. Obviously remote per CPU clock event devices cannot
944 * be reprogrammed. The other reason why an IPI has to be sent is when the
945 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
946 * in the tick, which obviously might be stopped, so this has to bring out
947 * the remote CPU which might sleep in idle to get this sorted.
948 */
clock_was_set(unsigned int bases)949 void clock_was_set(unsigned int bases)
950 {
951 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
952 cpumask_var_t mask;
953 int cpu;
954
955 if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
956 goto out_timerfd;
957
958 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
959 on_each_cpu(retrigger_next_event, NULL, 1);
960 goto out_timerfd;
961 }
962
963 /* Avoid interrupting CPUs if possible */
964 cpus_read_lock();
965 for_each_online_cpu(cpu) {
966 unsigned long flags;
967
968 cpu_base = &per_cpu(hrtimer_bases, cpu);
969 raw_spin_lock_irqsave(&cpu_base->lock, flags);
970
971 if (update_needs_ipi(cpu_base, bases))
972 cpumask_set_cpu(cpu, mask);
973
974 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
975 }
976
977 preempt_disable();
978 smp_call_function_many(mask, retrigger_next_event, NULL, 1);
979 preempt_enable();
980 cpus_read_unlock();
981 free_cpumask_var(mask);
982
983 out_timerfd:
984 timerfd_clock_was_set();
985 }
986
clock_was_set_work(struct work_struct * work)987 static void clock_was_set_work(struct work_struct *work)
988 {
989 clock_was_set(CLOCK_SET_WALL);
990 }
991
992 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
993
994 /*
995 * Called from timekeeping code to reprogram the hrtimer interrupt device
996 * on all cpus and to notify timerfd.
997 */
clock_was_set_delayed(void)998 void clock_was_set_delayed(void)
999 {
1000 schedule_work(&hrtimer_work);
1001 }
1002
1003 /*
1004 * Called during resume either directly from via timekeeping_resume()
1005 * or in the case of s2idle from tick_unfreeze() to ensure that the
1006 * hrtimers are up to date.
1007 */
hrtimers_resume_local(void)1008 void hrtimers_resume_local(void)
1009 {
1010 lockdep_assert_irqs_disabled();
1011 /* Retrigger on the local CPU */
1012 retrigger_next_event(NULL);
1013 }
1014
1015 /*
1016 * Counterpart to lock_hrtimer_base above:
1017 */
1018 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)1019 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1020 __releases(&timer->base->cpu_base->lock)
1021 {
1022 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1023 }
1024
1025 /**
1026 * hrtimer_forward() - forward the timer expiry
1027 * @timer: hrtimer to forward
1028 * @now: forward past this time
1029 * @interval: the interval to forward
1030 *
1031 * Forward the timer expiry so it will expire in the future.
1032 *
1033 * .. note::
1034 * This only updates the timer expiry value and does not requeue the timer.
1035 *
1036 * There is also a variant of the function hrtimer_forward_now().
1037 *
1038 * Context: Can be safely called from the callback function of @timer. If called
1039 * from other contexts @timer must neither be enqueued nor running the
1040 * callback and the caller needs to take care of serialization.
1041 *
1042 * Return: The number of overruns are returned.
1043 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)1044 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1045 {
1046 u64 orun = 1;
1047 ktime_t delta;
1048
1049 delta = ktime_sub(now, hrtimer_get_expires(timer));
1050
1051 if (delta < 0)
1052 return 0;
1053
1054 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1055 return 0;
1056
1057 if (interval < hrtimer_resolution)
1058 interval = hrtimer_resolution;
1059
1060 if (unlikely(delta >= interval)) {
1061 s64 incr = ktime_to_ns(interval);
1062
1063 orun = ktime_divns(delta, incr);
1064 hrtimer_add_expires_ns(timer, incr * orun);
1065 if (hrtimer_get_expires_tv64(timer) > now)
1066 return orun;
1067 /*
1068 * This (and the ktime_add() below) is the
1069 * correction for exact:
1070 */
1071 orun++;
1072 }
1073 hrtimer_add_expires(timer, interval);
1074
1075 return orun;
1076 }
1077 EXPORT_SYMBOL_GPL(hrtimer_forward);
1078
1079 /*
1080 * enqueue_hrtimer - internal function to (re)start a timer
1081 *
1082 * The timer is inserted in expiry order. Insertion into the
1083 * red black tree is O(log(n)). Must hold the base lock.
1084 *
1085 * Returns true when the new timer is the leftmost timer in the tree.
1086 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)1087 static bool enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1088 enum hrtimer_mode mode)
1089 {
1090 debug_activate(timer, mode);
1091 WARN_ON_ONCE(!base->cpu_base->online);
1092
1093 base->cpu_base->active_bases |= 1 << base->index;
1094
1095 /* Pairs with the lockless read in hrtimer_is_queued() */
1096 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1097
1098 return timerqueue_add(&base->active, &timer->node);
1099 }
1100
1101 /*
1102 * __remove_hrtimer - internal function to remove a timer
1103 *
1104 * Caller must hold the base lock.
1105 *
1106 * High resolution timer mode reprograms the clock event device when the
1107 * timer is the one which expires next. The caller can disable this by setting
1108 * reprogram to zero. This is useful, when the context does a reprogramming
1109 * anyway (e.g. timer interrupt)
1110 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1111 static void __remove_hrtimer(struct hrtimer *timer,
1112 struct hrtimer_clock_base *base,
1113 u8 newstate, int reprogram)
1114 {
1115 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1116 u8 state = timer->state;
1117
1118 /* Pairs with the lockless read in hrtimer_is_queued() */
1119 WRITE_ONCE(timer->state, newstate);
1120 if (!(state & HRTIMER_STATE_ENQUEUED))
1121 return;
1122
1123 if (!timerqueue_del(&base->active, &timer->node))
1124 cpu_base->active_bases &= ~(1 << base->index);
1125
1126 /*
1127 * Note: If reprogram is false we do not update
1128 * cpu_base->next_timer. This happens when we remove the first
1129 * timer on a remote cpu. No harm as we never dereference
1130 * cpu_base->next_timer. So the worst thing what can happen is
1131 * an superfluous call to hrtimer_force_reprogram() on the
1132 * remote cpu later on if the same timer gets enqueued again.
1133 */
1134 if (reprogram && timer == cpu_base->next_timer)
1135 hrtimer_force_reprogram(cpu_base, 1);
1136 }
1137
1138 /*
1139 * remove hrtimer, called with base lock held
1140 */
1141 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1142 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1143 bool restart, bool keep_local)
1144 {
1145 u8 state = timer->state;
1146
1147 if (state & HRTIMER_STATE_ENQUEUED) {
1148 bool reprogram;
1149
1150 /*
1151 * Remove the timer and force reprogramming when high
1152 * resolution mode is active and the timer is on the current
1153 * CPU. If we remove a timer on another CPU, reprogramming is
1154 * skipped. The interrupt event on this CPU is fired and
1155 * reprogramming happens in the interrupt handler. This is a
1156 * rare case and less expensive than a smp call.
1157 */
1158 debug_deactivate(timer);
1159 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1160
1161 /*
1162 * If the timer is not restarted then reprogramming is
1163 * required if the timer is local. If it is local and about
1164 * to be restarted, avoid programming it twice (on removal
1165 * and a moment later when it's requeued).
1166 */
1167 if (!restart)
1168 state = HRTIMER_STATE_INACTIVE;
1169 else
1170 reprogram &= !keep_local;
1171
1172 __remove_hrtimer(timer, base, state, reprogram);
1173 return 1;
1174 }
1175 return 0;
1176 }
1177
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1178 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1179 const enum hrtimer_mode mode)
1180 {
1181 #ifdef CONFIG_TIME_LOW_RES
1182 /*
1183 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1184 * granular time values. For relative timers we add hrtimer_resolution
1185 * (i.e. one jiffy) to prevent short timeouts.
1186 */
1187 timer->is_rel = mode & HRTIMER_MODE_REL;
1188 if (timer->is_rel)
1189 tim = ktime_add_safe(tim, hrtimer_resolution);
1190 #endif
1191 return tim;
1192 }
1193
1194 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1195 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1196 {
1197 ktime_t expires;
1198
1199 /*
1200 * Find the next SOFT expiration.
1201 */
1202 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1203
1204 /*
1205 * reprogramming needs to be triggered, even if the next soft
1206 * hrtimer expires at the same time than the next hard
1207 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1208 */
1209 if (expires == KTIME_MAX)
1210 return;
1211
1212 /*
1213 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1214 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1215 */
1216 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1217 }
1218
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1219 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1220 u64 delta_ns, const enum hrtimer_mode mode,
1221 struct hrtimer_clock_base *base)
1222 {
1223 struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases);
1224 struct hrtimer_clock_base *new_base;
1225 bool force_local, first;
1226
1227 /*
1228 * If the timer is on the local cpu base and is the first expiring
1229 * timer then this might end up reprogramming the hardware twice
1230 * (on removal and on enqueue). To avoid that by prevent the
1231 * reprogram on removal, keep the timer local to the current CPU
1232 * and enforce reprogramming after it is queued no matter whether
1233 * it is the new first expiring timer again or not.
1234 */
1235 force_local = base->cpu_base == this_cpu_base;
1236 force_local &= base->cpu_base->next_timer == timer;
1237
1238 /*
1239 * Don't force local queuing if this enqueue happens on a unplugged
1240 * CPU after hrtimer_cpu_dying() has been invoked.
1241 */
1242 force_local &= this_cpu_base->online;
1243
1244 /*
1245 * Remove an active timer from the queue. In case it is not queued
1246 * on the current CPU, make sure that remove_hrtimer() updates the
1247 * remote data correctly.
1248 *
1249 * If it's on the current CPU and the first expiring timer, then
1250 * skip reprogramming, keep the timer local and enforce
1251 * reprogramming later if it was the first expiring timer. This
1252 * avoids programming the underlying clock event twice (once at
1253 * removal and once after enqueue).
1254 */
1255 remove_hrtimer(timer, base, true, force_local);
1256
1257 if (mode & HRTIMER_MODE_REL)
1258 tim = ktime_add_safe(tim, base->get_time());
1259
1260 tim = hrtimer_update_lowres(timer, tim, mode);
1261
1262 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1263
1264 /* Switch the timer base, if necessary: */
1265 if (!force_local) {
1266 new_base = switch_hrtimer_base(timer, base,
1267 mode & HRTIMER_MODE_PINNED);
1268 } else {
1269 new_base = base;
1270 }
1271
1272 first = enqueue_hrtimer(timer, new_base, mode);
1273 if (!force_local) {
1274 /*
1275 * If the current CPU base is online, then the timer is
1276 * never queued on a remote CPU if it would be the first
1277 * expiring timer there.
1278 */
1279 if (hrtimer_base_is_online(this_cpu_base))
1280 return first;
1281
1282 /*
1283 * Timer was enqueued remote because the current base is
1284 * already offline. If the timer is the first to expire,
1285 * kick the remote CPU to reprogram the clock event.
1286 */
1287 if (first) {
1288 struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base;
1289
1290 smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd);
1291 }
1292 return 0;
1293 }
1294
1295 /*
1296 * Timer was forced to stay on the current CPU to avoid
1297 * reprogramming on removal and enqueue. Force reprogram the
1298 * hardware by evaluating the new first expiring timer.
1299 */
1300 hrtimer_force_reprogram(new_base->cpu_base, 1);
1301 return 0;
1302 }
1303
1304 /**
1305 * hrtimer_start_range_ns - (re)start an hrtimer
1306 * @timer: the timer to be added
1307 * @tim: expiry time
1308 * @delta_ns: "slack" range for the timer
1309 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1310 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1311 * softirq based mode is considered for debug purpose only!
1312 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1313 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1314 u64 delta_ns, const enum hrtimer_mode mode)
1315 {
1316 struct hrtimer_clock_base *base;
1317 unsigned long flags;
1318
1319 if (WARN_ON_ONCE(!timer->function))
1320 return;
1321 /*
1322 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1323 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1324 * expiry mode because unmarked timers are moved to softirq expiry.
1325 */
1326 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1327 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1328 else
1329 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1330
1331 base = lock_hrtimer_base(timer, &flags);
1332
1333 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1334 hrtimer_reprogram(timer, true);
1335
1336 unlock_hrtimer_base(timer, &flags);
1337 }
1338 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1339
1340 /**
1341 * hrtimer_try_to_cancel - try to deactivate a timer
1342 * @timer: hrtimer to stop
1343 *
1344 * Returns:
1345 *
1346 * * 0 when the timer was not active
1347 * * 1 when the timer was active
1348 * * -1 when the timer is currently executing the callback function and
1349 * cannot be stopped
1350 */
hrtimer_try_to_cancel(struct hrtimer * timer)1351 int hrtimer_try_to_cancel(struct hrtimer *timer)
1352 {
1353 struct hrtimer_clock_base *base;
1354 unsigned long flags;
1355 int ret = -1;
1356
1357 /*
1358 * Check lockless first. If the timer is not active (neither
1359 * enqueued nor running the callback, nothing to do here. The
1360 * base lock does not serialize against a concurrent enqueue,
1361 * so we can avoid taking it.
1362 */
1363 if (!hrtimer_active(timer))
1364 return 0;
1365
1366 base = lock_hrtimer_base(timer, &flags);
1367
1368 if (!hrtimer_callback_running(timer))
1369 ret = remove_hrtimer(timer, base, false, false);
1370
1371 unlock_hrtimer_base(timer, &flags);
1372
1373 return ret;
1374
1375 }
1376 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1377
1378 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1379 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1380 {
1381 spin_lock_init(&base->softirq_expiry_lock);
1382 }
1383
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1384 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1385 __acquires(&base->softirq_expiry_lock)
1386 {
1387 spin_lock(&base->softirq_expiry_lock);
1388 }
1389
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1390 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1391 __releases(&base->softirq_expiry_lock)
1392 {
1393 spin_unlock(&base->softirq_expiry_lock);
1394 }
1395
1396 /*
1397 * The counterpart to hrtimer_cancel_wait_running().
1398 *
1399 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1400 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1401 * allows the waiter to acquire the lock and make progress.
1402 */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1403 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1404 unsigned long flags)
1405 {
1406 if (atomic_read(&cpu_base->timer_waiters)) {
1407 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1408 spin_unlock(&cpu_base->softirq_expiry_lock);
1409 spin_lock(&cpu_base->softirq_expiry_lock);
1410 raw_spin_lock_irq(&cpu_base->lock);
1411 }
1412 }
1413
1414 #ifdef CONFIG_SMP
is_migration_base(struct hrtimer_clock_base * base)1415 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1416 {
1417 return base == &migration_base;
1418 }
1419 #else
is_migration_base(struct hrtimer_clock_base * base)1420 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1421 {
1422 return false;
1423 }
1424 #endif
1425
1426 /*
1427 * This function is called on PREEMPT_RT kernels when the fast path
1428 * deletion of a timer failed because the timer callback function was
1429 * running.
1430 *
1431 * This prevents priority inversion: if the soft irq thread is preempted
1432 * in the middle of a timer callback, then calling del_timer_sync() can
1433 * lead to two issues:
1434 *
1435 * - If the caller is on a remote CPU then it has to spin wait for the timer
1436 * handler to complete. This can result in unbound priority inversion.
1437 *
1438 * - If the caller originates from the task which preempted the timer
1439 * handler on the same CPU, then spin waiting for the timer handler to
1440 * complete is never going to end.
1441 */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1442 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1443 {
1444 /* Lockless read. Prevent the compiler from reloading it below */
1445 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1446
1447 /*
1448 * Just relax if the timer expires in hard interrupt context or if
1449 * it is currently on the migration base.
1450 */
1451 if (!timer->is_soft || is_migration_base(base)) {
1452 cpu_relax();
1453 return;
1454 }
1455
1456 /*
1457 * Mark the base as contended and grab the expiry lock, which is
1458 * held by the softirq across the timer callback. Drop the lock
1459 * immediately so the softirq can expire the next timer. In theory
1460 * the timer could already be running again, but that's more than
1461 * unlikely and just causes another wait loop.
1462 */
1463 atomic_inc(&base->cpu_base->timer_waiters);
1464 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1465 atomic_dec(&base->cpu_base->timer_waiters);
1466 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1467 }
1468 #else
1469 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1470 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1471 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1472 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1473 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1474 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1475 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1476 unsigned long flags) { }
1477 #endif
1478
1479 /**
1480 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1481 * @timer: the timer to be cancelled
1482 *
1483 * Returns:
1484 * 0 when the timer was not active
1485 * 1 when the timer was active
1486 */
hrtimer_cancel(struct hrtimer * timer)1487 int hrtimer_cancel(struct hrtimer *timer)
1488 {
1489 int ret;
1490
1491 do {
1492 ret = hrtimer_try_to_cancel(timer);
1493
1494 if (ret < 0)
1495 hrtimer_cancel_wait_running(timer);
1496 } while (ret < 0);
1497 return ret;
1498 }
1499 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1500
1501 /**
1502 * __hrtimer_get_remaining - get remaining time for the timer
1503 * @timer: the timer to read
1504 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1505 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1506 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1507 {
1508 unsigned long flags;
1509 ktime_t rem;
1510
1511 lock_hrtimer_base(timer, &flags);
1512 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1513 rem = hrtimer_expires_remaining_adjusted(timer);
1514 else
1515 rem = hrtimer_expires_remaining(timer);
1516 unlock_hrtimer_base(timer, &flags);
1517
1518 return rem;
1519 }
1520 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1521
1522 #ifdef CONFIG_NO_HZ_COMMON
1523 /**
1524 * hrtimer_get_next_event - get the time until next expiry event
1525 *
1526 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1527 */
hrtimer_get_next_event(void)1528 u64 hrtimer_get_next_event(void)
1529 {
1530 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1531 u64 expires = KTIME_MAX;
1532 unsigned long flags;
1533
1534 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1535
1536 if (!hrtimer_hres_active(cpu_base))
1537 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1538
1539 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1540
1541 return expires;
1542 }
1543
1544 /**
1545 * hrtimer_next_event_without - time until next expiry event w/o one timer
1546 * @exclude: timer to exclude
1547 *
1548 * Returns the next expiry time over all timers except for the @exclude one or
1549 * KTIME_MAX if none of them is pending.
1550 */
hrtimer_next_event_without(const struct hrtimer * exclude)1551 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1552 {
1553 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1554 u64 expires = KTIME_MAX;
1555 unsigned long flags;
1556
1557 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1558
1559 if (hrtimer_hres_active(cpu_base)) {
1560 unsigned int active;
1561
1562 if (!cpu_base->softirq_activated) {
1563 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1564 expires = __hrtimer_next_event_base(cpu_base, exclude,
1565 active, KTIME_MAX);
1566 }
1567 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1568 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1569 expires);
1570 }
1571
1572 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1573
1574 return expires;
1575 }
1576 #endif
1577
hrtimer_clockid_to_base(clockid_t clock_id)1578 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1579 {
1580 switch (clock_id) {
1581 case CLOCK_REALTIME:
1582 return HRTIMER_BASE_REALTIME;
1583 case CLOCK_MONOTONIC:
1584 return HRTIMER_BASE_MONOTONIC;
1585 case CLOCK_BOOTTIME:
1586 return HRTIMER_BASE_BOOTTIME;
1587 case CLOCK_TAI:
1588 return HRTIMER_BASE_TAI;
1589 default:
1590 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1591 return HRTIMER_BASE_MONOTONIC;
1592 }
1593 }
1594
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1595 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1596 enum hrtimer_mode mode)
1597 {
1598 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1599 struct hrtimer_cpu_base *cpu_base;
1600 int base;
1601
1602 /*
1603 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1604 * marked for hard interrupt expiry mode are moved into soft
1605 * interrupt context for latency reasons and because the callbacks
1606 * can invoke functions which might sleep on RT, e.g. spin_lock().
1607 */
1608 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1609 softtimer = true;
1610
1611 memset(timer, 0, sizeof(struct hrtimer));
1612
1613 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1614
1615 /*
1616 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1617 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1618 * ensure POSIX compliance.
1619 */
1620 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1621 clock_id = CLOCK_MONOTONIC;
1622
1623 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1624 base += hrtimer_clockid_to_base(clock_id);
1625 timer->is_soft = softtimer;
1626 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1627 timer->base = &cpu_base->clock_base[base];
1628 timerqueue_init(&timer->node);
1629 }
1630
__hrtimer_setup(struct hrtimer * timer,enum hrtimer_restart (* function)(struct hrtimer *),clockid_t clock_id,enum hrtimer_mode mode)1631 static void __hrtimer_setup(struct hrtimer *timer,
1632 enum hrtimer_restart (*function)(struct hrtimer *),
1633 clockid_t clock_id, enum hrtimer_mode mode)
1634 {
1635 __hrtimer_init(timer, clock_id, mode);
1636
1637 if (WARN_ON_ONCE(!function))
1638 timer->function = hrtimer_dummy_timeout;
1639 else
1640 timer->function = function;
1641 }
1642
1643 /**
1644 * hrtimer_init - initialize a timer to the given clock
1645 * @timer: the timer to be initialized
1646 * @clock_id: the clock to be used
1647 * @mode: The modes which are relevant for initialization:
1648 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1649 * HRTIMER_MODE_REL_SOFT
1650 *
1651 * The PINNED variants of the above can be handed in,
1652 * but the PINNED bit is ignored as pinning happens
1653 * when the hrtimer is started
1654 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1655 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1656 enum hrtimer_mode mode)
1657 {
1658 debug_init(timer, clock_id, mode);
1659 __hrtimer_init(timer, clock_id, mode);
1660 }
1661 EXPORT_SYMBOL_GPL(hrtimer_init);
1662
1663 /**
1664 * hrtimer_setup - initialize a timer to the given clock
1665 * @timer: the timer to be initialized
1666 * @function: the callback function
1667 * @clock_id: the clock to be used
1668 * @mode: The modes which are relevant for initialization:
1669 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1670 * HRTIMER_MODE_REL_SOFT
1671 *
1672 * The PINNED variants of the above can be handed in,
1673 * but the PINNED bit is ignored as pinning happens
1674 * when the hrtimer is started
1675 */
hrtimer_setup(struct hrtimer * timer,enum hrtimer_restart (* function)(struct hrtimer *),clockid_t clock_id,enum hrtimer_mode mode)1676 void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *),
1677 clockid_t clock_id, enum hrtimer_mode mode)
1678 {
1679 debug_init(timer, clock_id, mode);
1680 __hrtimer_setup(timer, function, clock_id, mode);
1681 }
1682 EXPORT_SYMBOL_GPL(hrtimer_setup);
1683
1684 /**
1685 * hrtimer_setup_on_stack - initialize a timer on stack memory
1686 * @timer: The timer to be initialized
1687 * @function: the callback function
1688 * @clock_id: The clock to be used
1689 * @mode: The timer mode
1690 *
1691 * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack
1692 * memory.
1693 */
hrtimer_setup_on_stack(struct hrtimer * timer,enum hrtimer_restart (* function)(struct hrtimer *),clockid_t clock_id,enum hrtimer_mode mode)1694 void hrtimer_setup_on_stack(struct hrtimer *timer,
1695 enum hrtimer_restart (*function)(struct hrtimer *),
1696 clockid_t clock_id, enum hrtimer_mode mode)
1697 {
1698 debug_init_on_stack(timer, clock_id, mode);
1699 __hrtimer_setup(timer, function, clock_id, mode);
1700 }
1701 EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack);
1702
1703 /*
1704 * A timer is active, when it is enqueued into the rbtree or the
1705 * callback function is running or it's in the state of being migrated
1706 * to another cpu.
1707 *
1708 * It is important for this function to not return a false negative.
1709 */
hrtimer_active(const struct hrtimer * timer)1710 bool hrtimer_active(const struct hrtimer *timer)
1711 {
1712 struct hrtimer_clock_base *base;
1713 unsigned int seq;
1714
1715 do {
1716 base = READ_ONCE(timer->base);
1717 seq = raw_read_seqcount_begin(&base->seq);
1718
1719 if (timer->state != HRTIMER_STATE_INACTIVE ||
1720 base->running == timer)
1721 return true;
1722
1723 } while (read_seqcount_retry(&base->seq, seq) ||
1724 base != READ_ONCE(timer->base));
1725
1726 return false;
1727 }
1728 EXPORT_SYMBOL_GPL(hrtimer_active);
1729
1730 /*
1731 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1732 * distinct sections:
1733 *
1734 * - queued: the timer is queued
1735 * - callback: the timer is being ran
1736 * - post: the timer is inactive or (re)queued
1737 *
1738 * On the read side we ensure we observe timer->state and cpu_base->running
1739 * from the same section, if anything changed while we looked at it, we retry.
1740 * This includes timer->base changing because sequence numbers alone are
1741 * insufficient for that.
1742 *
1743 * The sequence numbers are required because otherwise we could still observe
1744 * a false negative if the read side got smeared over multiple consecutive
1745 * __run_hrtimer() invocations.
1746 */
1747
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1748 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1749 struct hrtimer_clock_base *base,
1750 struct hrtimer *timer, ktime_t *now,
1751 unsigned long flags) __must_hold(&cpu_base->lock)
1752 {
1753 enum hrtimer_restart (*fn)(struct hrtimer *);
1754 bool expires_in_hardirq;
1755 int restart;
1756
1757 lockdep_assert_held(&cpu_base->lock);
1758
1759 debug_deactivate(timer);
1760 base->running = timer;
1761
1762 /*
1763 * Separate the ->running assignment from the ->state assignment.
1764 *
1765 * As with a regular write barrier, this ensures the read side in
1766 * hrtimer_active() cannot observe base->running == NULL &&
1767 * timer->state == INACTIVE.
1768 */
1769 raw_write_seqcount_barrier(&base->seq);
1770
1771 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1772 fn = timer->function;
1773
1774 /*
1775 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1776 * timer is restarted with a period then it becomes an absolute
1777 * timer. If its not restarted it does not matter.
1778 */
1779 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1780 timer->is_rel = false;
1781
1782 /*
1783 * The timer is marked as running in the CPU base, so it is
1784 * protected against migration to a different CPU even if the lock
1785 * is dropped.
1786 */
1787 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1788 trace_hrtimer_expire_entry(timer, now);
1789 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1790
1791 restart = fn(timer);
1792
1793 lockdep_hrtimer_exit(expires_in_hardirq);
1794 trace_hrtimer_expire_exit(timer);
1795 raw_spin_lock_irq(&cpu_base->lock);
1796
1797 /*
1798 * Note: We clear the running state after enqueue_hrtimer and
1799 * we do not reprogram the event hardware. Happens either in
1800 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1801 *
1802 * Note: Because we dropped the cpu_base->lock above,
1803 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1804 * for us already.
1805 */
1806 if (restart != HRTIMER_NORESTART &&
1807 !(timer->state & HRTIMER_STATE_ENQUEUED))
1808 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1809
1810 /*
1811 * Separate the ->running assignment from the ->state assignment.
1812 *
1813 * As with a regular write barrier, this ensures the read side in
1814 * hrtimer_active() cannot observe base->running.timer == NULL &&
1815 * timer->state == INACTIVE.
1816 */
1817 raw_write_seqcount_barrier(&base->seq);
1818
1819 WARN_ON_ONCE(base->running != timer);
1820 base->running = NULL;
1821 }
1822
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1823 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1824 unsigned long flags, unsigned int active_mask)
1825 {
1826 struct hrtimer_clock_base *base;
1827 unsigned int active = cpu_base->active_bases & active_mask;
1828
1829 for_each_active_base(base, cpu_base, active) {
1830 struct timerqueue_node *node;
1831 ktime_t basenow;
1832
1833 basenow = ktime_add(now, base->offset);
1834
1835 while ((node = timerqueue_getnext(&base->active))) {
1836 struct hrtimer *timer;
1837
1838 timer = container_of(node, struct hrtimer, node);
1839
1840 /*
1841 * The immediate goal for using the softexpires is
1842 * minimizing wakeups, not running timers at the
1843 * earliest interrupt after their soft expiration.
1844 * This allows us to avoid using a Priority Search
1845 * Tree, which can answer a stabbing query for
1846 * overlapping intervals and instead use the simple
1847 * BST we already have.
1848 * We don't add extra wakeups by delaying timers that
1849 * are right-of a not yet expired timer, because that
1850 * timer will have to trigger a wakeup anyway.
1851 */
1852 if (basenow < hrtimer_get_softexpires_tv64(timer))
1853 break;
1854
1855 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1856 if (active_mask == HRTIMER_ACTIVE_SOFT)
1857 hrtimer_sync_wait_running(cpu_base, flags);
1858 }
1859 }
1860 }
1861
hrtimer_run_softirq(void)1862 static __latent_entropy void hrtimer_run_softirq(void)
1863 {
1864 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1865 unsigned long flags;
1866 ktime_t now;
1867
1868 hrtimer_cpu_base_lock_expiry(cpu_base);
1869 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1870
1871 now = hrtimer_update_base(cpu_base);
1872 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1873
1874 cpu_base->softirq_activated = 0;
1875 hrtimer_update_softirq_timer(cpu_base, true);
1876
1877 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1878 hrtimer_cpu_base_unlock_expiry(cpu_base);
1879 }
1880
1881 #ifdef CONFIG_HIGH_RES_TIMERS
1882
1883 /*
1884 * High resolution timer interrupt
1885 * Called with interrupts disabled
1886 */
hrtimer_interrupt(struct clock_event_device * dev)1887 void hrtimer_interrupt(struct clock_event_device *dev)
1888 {
1889 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1890 ktime_t expires_next, now, entry_time, delta;
1891 unsigned long flags;
1892 int retries = 0;
1893
1894 BUG_ON(!cpu_base->hres_active);
1895 cpu_base->nr_events++;
1896 dev->next_event = KTIME_MAX;
1897
1898 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1899 entry_time = now = hrtimer_update_base(cpu_base);
1900 retry:
1901 cpu_base->in_hrtirq = 1;
1902 /*
1903 * We set expires_next to KTIME_MAX here with cpu_base->lock
1904 * held to prevent that a timer is enqueued in our queue via
1905 * the migration code. This does not affect enqueueing of
1906 * timers which run their callback and need to be requeued on
1907 * this CPU.
1908 */
1909 cpu_base->expires_next = KTIME_MAX;
1910
1911 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1912 cpu_base->softirq_expires_next = KTIME_MAX;
1913 cpu_base->softirq_activated = 1;
1914 raise_timer_softirq(HRTIMER_SOFTIRQ);
1915 }
1916
1917 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1918
1919 /* Reevaluate the clock bases for the [soft] next expiry */
1920 expires_next = hrtimer_update_next_event(cpu_base);
1921 /*
1922 * Store the new expiry value so the migration code can verify
1923 * against it.
1924 */
1925 cpu_base->expires_next = expires_next;
1926 cpu_base->in_hrtirq = 0;
1927 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1928
1929 /* Reprogramming necessary ? */
1930 if (!tick_program_event(expires_next, 0)) {
1931 cpu_base->hang_detected = 0;
1932 return;
1933 }
1934
1935 /*
1936 * The next timer was already expired due to:
1937 * - tracing
1938 * - long lasting callbacks
1939 * - being scheduled away when running in a VM
1940 *
1941 * We need to prevent that we loop forever in the hrtimer
1942 * interrupt routine. We give it 3 attempts to avoid
1943 * overreacting on some spurious event.
1944 *
1945 * Acquire base lock for updating the offsets and retrieving
1946 * the current time.
1947 */
1948 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1949 now = hrtimer_update_base(cpu_base);
1950 cpu_base->nr_retries++;
1951 if (++retries < 3)
1952 goto retry;
1953 /*
1954 * Give the system a chance to do something else than looping
1955 * here. We stored the entry time, so we know exactly how long
1956 * we spent here. We schedule the next event this amount of
1957 * time away.
1958 */
1959 cpu_base->nr_hangs++;
1960 cpu_base->hang_detected = 1;
1961 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1962
1963 delta = ktime_sub(now, entry_time);
1964 if ((unsigned int)delta > cpu_base->max_hang_time)
1965 cpu_base->max_hang_time = (unsigned int) delta;
1966 /*
1967 * Limit it to a sensible value as we enforce a longer
1968 * delay. Give the CPU at least 100ms to catch up.
1969 */
1970 if (delta > 100 * NSEC_PER_MSEC)
1971 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1972 else
1973 expires_next = ktime_add(now, delta);
1974 tick_program_event(expires_next, 1);
1975 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1976 }
1977 #endif /* !CONFIG_HIGH_RES_TIMERS */
1978
1979 /*
1980 * Called from run_local_timers in hardirq context every jiffy
1981 */
hrtimer_run_queues(void)1982 void hrtimer_run_queues(void)
1983 {
1984 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1985 unsigned long flags;
1986 ktime_t now;
1987
1988 if (hrtimer_hres_active(cpu_base))
1989 return;
1990
1991 /*
1992 * This _is_ ugly: We have to check periodically, whether we
1993 * can switch to highres and / or nohz mode. The clocksource
1994 * switch happens with xtime_lock held. Notification from
1995 * there only sets the check bit in the tick_oneshot code,
1996 * otherwise we might deadlock vs. xtime_lock.
1997 */
1998 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1999 hrtimer_switch_to_hres();
2000 return;
2001 }
2002
2003 raw_spin_lock_irqsave(&cpu_base->lock, flags);
2004 now = hrtimer_update_base(cpu_base);
2005
2006 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
2007 cpu_base->softirq_expires_next = KTIME_MAX;
2008 cpu_base->softirq_activated = 1;
2009 raise_timer_softirq(HRTIMER_SOFTIRQ);
2010 }
2011
2012 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
2013 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
2014 }
2015
2016 /*
2017 * Sleep related functions:
2018 */
hrtimer_wakeup(struct hrtimer * timer)2019 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
2020 {
2021 struct hrtimer_sleeper *t =
2022 container_of(timer, struct hrtimer_sleeper, timer);
2023 struct task_struct *task = t->task;
2024
2025 t->task = NULL;
2026 if (task)
2027 wake_up_process(task);
2028
2029 return HRTIMER_NORESTART;
2030 }
2031
2032 /**
2033 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
2034 * @sl: sleeper to be started
2035 * @mode: timer mode abs/rel
2036 *
2037 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
2038 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
2039 */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)2040 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
2041 enum hrtimer_mode mode)
2042 {
2043 /*
2044 * Make the enqueue delivery mode check work on RT. If the sleeper
2045 * was initialized for hard interrupt delivery, force the mode bit.
2046 * This is a special case for hrtimer_sleepers because
2047 * __hrtimer_init_sleeper() determines the delivery mode on RT so the
2048 * fiddling with this decision is avoided at the call sites.
2049 */
2050 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
2051 mode |= HRTIMER_MODE_HARD;
2052
2053 hrtimer_start_expires(&sl->timer, mode);
2054 }
2055 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
2056
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2057 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
2058 clockid_t clock_id, enum hrtimer_mode mode)
2059 {
2060 /*
2061 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
2062 * marked for hard interrupt expiry mode are moved into soft
2063 * interrupt context either for latency reasons or because the
2064 * hrtimer callback takes regular spinlocks or invokes other
2065 * functions which are not suitable for hard interrupt context on
2066 * PREEMPT_RT.
2067 *
2068 * The hrtimer_sleeper callback is RT compatible in hard interrupt
2069 * context, but there is a latency concern: Untrusted userspace can
2070 * spawn many threads which arm timers for the same expiry time on
2071 * the same CPU. That causes a latency spike due to the wakeup of
2072 * a gazillion threads.
2073 *
2074 * OTOH, privileged real-time user space applications rely on the
2075 * low latency of hard interrupt wakeups. If the current task is in
2076 * a real-time scheduling class, mark the mode for hard interrupt
2077 * expiry.
2078 */
2079 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2080 if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
2081 mode |= HRTIMER_MODE_HARD;
2082 }
2083
2084 __hrtimer_init(&sl->timer, clock_id, mode);
2085 sl->timer.function = hrtimer_wakeup;
2086 sl->task = current;
2087 }
2088
2089 /**
2090 * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory
2091 * @sl: sleeper to be initialized
2092 * @clock_id: the clock to be used
2093 * @mode: timer mode abs/rel
2094 */
hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2095 void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl,
2096 clockid_t clock_id, enum hrtimer_mode mode)
2097 {
2098 debug_init_on_stack(&sl->timer, clock_id, mode);
2099 __hrtimer_init_sleeper(sl, clock_id, mode);
2100 }
2101 EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack);
2102
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)2103 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2104 {
2105 switch(restart->nanosleep.type) {
2106 #ifdef CONFIG_COMPAT_32BIT_TIME
2107 case TT_COMPAT:
2108 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2109 return -EFAULT;
2110 break;
2111 #endif
2112 case TT_NATIVE:
2113 if (put_timespec64(ts, restart->nanosleep.rmtp))
2114 return -EFAULT;
2115 break;
2116 default:
2117 BUG();
2118 }
2119 return -ERESTART_RESTARTBLOCK;
2120 }
2121
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)2122 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2123 {
2124 struct restart_block *restart;
2125
2126 do {
2127 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2128 hrtimer_sleeper_start_expires(t, mode);
2129
2130 if (likely(t->task))
2131 schedule();
2132
2133 hrtimer_cancel(&t->timer);
2134 mode = HRTIMER_MODE_ABS;
2135
2136 } while (t->task && !signal_pending(current));
2137
2138 __set_current_state(TASK_RUNNING);
2139
2140 if (!t->task)
2141 return 0;
2142
2143 restart = ¤t->restart_block;
2144 if (restart->nanosleep.type != TT_NONE) {
2145 ktime_t rem = hrtimer_expires_remaining(&t->timer);
2146 struct timespec64 rmt;
2147
2148 if (rem <= 0)
2149 return 0;
2150 rmt = ktime_to_timespec64(rem);
2151
2152 return nanosleep_copyout(restart, &rmt);
2153 }
2154 return -ERESTART_RESTARTBLOCK;
2155 }
2156
hrtimer_nanosleep_restart(struct restart_block * restart)2157 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2158 {
2159 struct hrtimer_sleeper t;
2160 int ret;
2161
2162 hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS);
2163 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2164 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2165 destroy_hrtimer_on_stack(&t.timer);
2166 return ret;
2167 }
2168
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2169 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2170 const clockid_t clockid)
2171 {
2172 struct restart_block *restart;
2173 struct hrtimer_sleeper t;
2174 int ret = 0;
2175
2176 hrtimer_setup_sleeper_on_stack(&t, clockid, mode);
2177 hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2178 ret = do_nanosleep(&t, mode);
2179 if (ret != -ERESTART_RESTARTBLOCK)
2180 goto out;
2181
2182 /* Absolute timers do not update the rmtp value and restart: */
2183 if (mode == HRTIMER_MODE_ABS) {
2184 ret = -ERESTARTNOHAND;
2185 goto out;
2186 }
2187
2188 restart = ¤t->restart_block;
2189 restart->nanosleep.clockid = t.timer.base->clockid;
2190 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2191 set_restart_fn(restart, hrtimer_nanosleep_restart);
2192 out:
2193 destroy_hrtimer_on_stack(&t.timer);
2194 return ret;
2195 }
2196
2197 #ifdef CONFIG_64BIT
2198
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2199 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2200 struct __kernel_timespec __user *, rmtp)
2201 {
2202 struct timespec64 tu;
2203
2204 if (get_timespec64(&tu, rqtp))
2205 return -EFAULT;
2206
2207 if (!timespec64_valid(&tu))
2208 return -EINVAL;
2209
2210 current->restart_block.fn = do_no_restart_syscall;
2211 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2212 current->restart_block.nanosleep.rmtp = rmtp;
2213 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2214 CLOCK_MONOTONIC);
2215 }
2216
2217 #endif
2218
2219 #ifdef CONFIG_COMPAT_32BIT_TIME
2220
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2221 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2222 struct old_timespec32 __user *, rmtp)
2223 {
2224 struct timespec64 tu;
2225
2226 if (get_old_timespec32(&tu, rqtp))
2227 return -EFAULT;
2228
2229 if (!timespec64_valid(&tu))
2230 return -EINVAL;
2231
2232 current->restart_block.fn = do_no_restart_syscall;
2233 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2234 current->restart_block.nanosleep.compat_rmtp = rmtp;
2235 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2236 CLOCK_MONOTONIC);
2237 }
2238 #endif
2239
2240 /*
2241 * Functions related to boot-time initialization:
2242 */
hrtimers_prepare_cpu(unsigned int cpu)2243 int hrtimers_prepare_cpu(unsigned int cpu)
2244 {
2245 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2246 int i;
2247
2248 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2249 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2250
2251 clock_b->cpu_base = cpu_base;
2252 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2253 timerqueue_init_head(&clock_b->active);
2254 }
2255
2256 cpu_base->cpu = cpu;
2257 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2258 return 0;
2259 }
2260
hrtimers_cpu_starting(unsigned int cpu)2261 int hrtimers_cpu_starting(unsigned int cpu)
2262 {
2263 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2264
2265 /* Clear out any left over state from a CPU down operation */
2266 cpu_base->active_bases = 0;
2267 cpu_base->hres_active = 0;
2268 cpu_base->hang_detected = 0;
2269 cpu_base->next_timer = NULL;
2270 cpu_base->softirq_next_timer = NULL;
2271 cpu_base->expires_next = KTIME_MAX;
2272 cpu_base->softirq_expires_next = KTIME_MAX;
2273 cpu_base->online = 1;
2274 return 0;
2275 }
2276
2277 #ifdef CONFIG_HOTPLUG_CPU
2278
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2279 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2280 struct hrtimer_clock_base *new_base)
2281 {
2282 struct hrtimer *timer;
2283 struct timerqueue_node *node;
2284
2285 while ((node = timerqueue_getnext(&old_base->active))) {
2286 timer = container_of(node, struct hrtimer, node);
2287 BUG_ON(hrtimer_callback_running(timer));
2288 debug_deactivate(timer);
2289
2290 /*
2291 * Mark it as ENQUEUED not INACTIVE otherwise the
2292 * timer could be seen as !active and just vanish away
2293 * under us on another CPU
2294 */
2295 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2296 timer->base = new_base;
2297 /*
2298 * Enqueue the timers on the new cpu. This does not
2299 * reprogram the event device in case the timer
2300 * expires before the earliest on this CPU, but we run
2301 * hrtimer_interrupt after we migrated everything to
2302 * sort out already expired timers and reprogram the
2303 * event device.
2304 */
2305 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2306 }
2307 }
2308
hrtimers_cpu_dying(unsigned int dying_cpu)2309 int hrtimers_cpu_dying(unsigned int dying_cpu)
2310 {
2311 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2312 struct hrtimer_cpu_base *old_base, *new_base;
2313
2314 old_base = this_cpu_ptr(&hrtimer_bases);
2315 new_base = &per_cpu(hrtimer_bases, ncpu);
2316
2317 /*
2318 * The caller is globally serialized and nobody else
2319 * takes two locks at once, deadlock is not possible.
2320 */
2321 raw_spin_lock(&old_base->lock);
2322 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2323
2324 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2325 migrate_hrtimer_list(&old_base->clock_base[i],
2326 &new_base->clock_base[i]);
2327 }
2328
2329 /*
2330 * The migration might have changed the first expiring softirq
2331 * timer on this CPU. Update it.
2332 */
2333 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2334 /* Tell the other CPU to retrigger the next event */
2335 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2336
2337 raw_spin_unlock(&new_base->lock);
2338 old_base->online = 0;
2339 raw_spin_unlock(&old_base->lock);
2340
2341 return 0;
2342 }
2343
2344 #endif /* CONFIG_HOTPLUG_CPU */
2345
hrtimers_init(void)2346 void __init hrtimers_init(void)
2347 {
2348 hrtimers_prepare_cpu(smp_processor_id());
2349 hrtimers_cpu_starting(smp_processor_id());
2350 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2351 }
2352