xref: /linux/kernel/time/hrtimer.c (revision c5448d46b3995c0b477f6bb04f313af3d57665c4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include <trace/events/timer.h>
49 
50 #include "tick-internal.h"
51 
52 /*
53  * Masks for selecting the soft and hard context timers from
54  * cpu_base->active
55  */
56 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
57 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
58 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60 
61 static void retrigger_next_event(void *arg);
62 static ktime_t __hrtimer_cb_get_time(clockid_t clock_id);
63 
64 /*
65  * The timer bases:
66  *
67  * There are more clockids than hrtimer bases. Thus, we index
68  * into the timer bases by the hrtimer_base_type enum. When trying
69  * to reach a base using a clockid, hrtimer_clockid_to_base()
70  * is used to convert from clockid to the proper hrtimer_base_type.
71  */
72 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
73 {
74 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
75 	.clock_base =
76 	{
77 		{
78 			.index = HRTIMER_BASE_MONOTONIC,
79 			.clockid = CLOCK_MONOTONIC,
80 		},
81 		{
82 			.index = HRTIMER_BASE_REALTIME,
83 			.clockid = CLOCK_REALTIME,
84 		},
85 		{
86 			.index = HRTIMER_BASE_BOOTTIME,
87 			.clockid = CLOCK_BOOTTIME,
88 		},
89 		{
90 			.index = HRTIMER_BASE_TAI,
91 			.clockid = CLOCK_TAI,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 		},
97 		{
98 			.index = HRTIMER_BASE_REALTIME_SOFT,
99 			.clockid = CLOCK_REALTIME,
100 		},
101 		{
102 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
103 			.clockid = CLOCK_BOOTTIME,
104 		},
105 		{
106 			.index = HRTIMER_BASE_TAI_SOFT,
107 			.clockid = CLOCK_TAI,
108 		},
109 	},
110 	.csd = CSD_INIT(retrigger_next_event, NULL)
111 };
112 
hrtimer_base_is_online(struct hrtimer_cpu_base * base)113 static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base)
114 {
115 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
116 		return true;
117 	else
118 		return likely(base->online);
119 }
120 
121 /*
122  * Functions and macros which are different for UP/SMP systems are kept in a
123  * single place
124  */
125 #ifdef CONFIG_SMP
126 
127 /*
128  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
129  * such that hrtimer_callback_running() can unconditionally dereference
130  * timer->base->cpu_base
131  */
132 static struct hrtimer_cpu_base migration_cpu_base = {
133 	.clock_base = { {
134 		.cpu_base = &migration_cpu_base,
135 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
136 						     &migration_cpu_base.lock),
137 	}, },
138 };
139 
140 #define migration_base	migration_cpu_base.clock_base[0]
141 
142 /*
143  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
144  * means that all timers which are tied to this base via timer->base are
145  * locked, and the base itself is locked too.
146  *
147  * So __run_timers/migrate_timers can safely modify all timers which could
148  * be found on the lists/queues.
149  *
150  * When the timer's base is locked, and the timer removed from list, it is
151  * possible to set timer->base = &migration_base and drop the lock: the timer
152  * remains locked.
153  */
154 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)155 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
156 					     unsigned long *flags)
157 	__acquires(&timer->base->lock)
158 {
159 	struct hrtimer_clock_base *base;
160 
161 	for (;;) {
162 		base = READ_ONCE(timer->base);
163 		if (likely(base != &migration_base)) {
164 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
165 			if (likely(base == timer->base))
166 				return base;
167 			/* The timer has migrated to another CPU: */
168 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
169 		}
170 		cpu_relax();
171 	}
172 }
173 
174 /*
175  * Check if the elected target is suitable considering its next
176  * event and the hotplug state of the current CPU.
177  *
178  * If the elected target is remote and its next event is after the timer
179  * to queue, then a remote reprogram is necessary. However there is no
180  * guarantee the IPI handling the operation would arrive in time to meet
181  * the high resolution deadline. In this case the local CPU becomes a
182  * preferred target, unless it is offline.
183  *
184  * High and low resolution modes are handled the same way for simplicity.
185  *
186  * Called with cpu_base->lock of target cpu held.
187  */
hrtimer_suitable_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base,struct hrtimer_cpu_base * new_cpu_base,struct hrtimer_cpu_base * this_cpu_base)188 static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base,
189 				    struct hrtimer_cpu_base *new_cpu_base,
190 				    struct hrtimer_cpu_base *this_cpu_base)
191 {
192 	ktime_t expires;
193 
194 	/*
195 	 * The local CPU clockevent can be reprogrammed. Also get_target_base()
196 	 * guarantees it is online.
197 	 */
198 	if (new_cpu_base == this_cpu_base)
199 		return true;
200 
201 	/*
202 	 * The offline local CPU can't be the default target if the
203 	 * next remote target event is after this timer. Keep the
204 	 * elected new base. An IPI will be issued to reprogram
205 	 * it as a last resort.
206 	 */
207 	if (!hrtimer_base_is_online(this_cpu_base))
208 		return true;
209 
210 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
211 
212 	return expires >= new_base->cpu_base->expires_next;
213 }
214 
get_target_base(struct hrtimer_cpu_base * base,int pinned)215 static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned)
216 {
217 	if (!hrtimer_base_is_online(base)) {
218 		int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER));
219 
220 		return &per_cpu(hrtimer_bases, cpu);
221 	}
222 
223 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
224 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
225 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
226 #endif
227 	return base;
228 }
229 
230 /*
231  * We switch the timer base to a power-optimized selected CPU target,
232  * if:
233  *	- NO_HZ_COMMON is enabled
234  *	- timer migration is enabled
235  *	- the timer callback is not running
236  *	- the timer is not the first expiring timer on the new target
237  *
238  * If one of the above requirements is not fulfilled we move the timer
239  * to the current CPU or leave it on the previously assigned CPU if
240  * the timer callback is currently running.
241  */
242 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)243 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
244 		    int pinned)
245 {
246 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
247 	struct hrtimer_clock_base *new_base;
248 	int basenum = base->index;
249 
250 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
251 	new_cpu_base = get_target_base(this_cpu_base, pinned);
252 again:
253 	new_base = &new_cpu_base->clock_base[basenum];
254 
255 	if (base != new_base) {
256 		/*
257 		 * We are trying to move timer to new_base.
258 		 * However we can't change timer's base while it is running,
259 		 * so we keep it on the same CPU. No hassle vs. reprogramming
260 		 * the event source in the high resolution case. The softirq
261 		 * code will take care of this when the timer function has
262 		 * completed. There is no conflict as we hold the lock until
263 		 * the timer is enqueued.
264 		 */
265 		if (unlikely(hrtimer_callback_running(timer)))
266 			return base;
267 
268 		/* See the comment in lock_hrtimer_base() */
269 		WRITE_ONCE(timer->base, &migration_base);
270 		raw_spin_unlock(&base->cpu_base->lock);
271 		raw_spin_lock(&new_base->cpu_base->lock);
272 
273 		if (!hrtimer_suitable_target(timer, new_base, new_cpu_base,
274 					     this_cpu_base)) {
275 			raw_spin_unlock(&new_base->cpu_base->lock);
276 			raw_spin_lock(&base->cpu_base->lock);
277 			new_cpu_base = this_cpu_base;
278 			WRITE_ONCE(timer->base, base);
279 			goto again;
280 		}
281 		WRITE_ONCE(timer->base, new_base);
282 	} else {
283 		if (!hrtimer_suitable_target(timer, new_base,  new_cpu_base, this_cpu_base)) {
284 			new_cpu_base = this_cpu_base;
285 			goto again;
286 		}
287 	}
288 	return new_base;
289 }
290 
291 #else /* CONFIG_SMP */
292 
293 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)294 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
295 	__acquires(&timer->base->cpu_base->lock)
296 {
297 	struct hrtimer_clock_base *base = timer->base;
298 
299 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
300 
301 	return base;
302 }
303 
304 # define switch_hrtimer_base(t, b, p)	(b)
305 
306 #endif	/* !CONFIG_SMP */
307 
308 /*
309  * Functions for the union type storage format of ktime_t which are
310  * too large for inlining:
311  */
312 #if BITS_PER_LONG < 64
313 /*
314  * Divide a ktime value by a nanosecond value
315  */
__ktime_divns(const ktime_t kt,s64 div)316 s64 __ktime_divns(const ktime_t kt, s64 div)
317 {
318 	int sft = 0;
319 	s64 dclc;
320 	u64 tmp;
321 
322 	dclc = ktime_to_ns(kt);
323 	tmp = dclc < 0 ? -dclc : dclc;
324 
325 	/* Make sure the divisor is less than 2^32: */
326 	while (div >> 32) {
327 		sft++;
328 		div >>= 1;
329 	}
330 	tmp >>= sft;
331 	do_div(tmp, (u32) div);
332 	return dclc < 0 ? -tmp : tmp;
333 }
334 EXPORT_SYMBOL_GPL(__ktime_divns);
335 #endif /* BITS_PER_LONG >= 64 */
336 
337 /*
338  * Add two ktime values and do a safety check for overflow:
339  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)340 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
341 {
342 	ktime_t res = ktime_add_unsafe(lhs, rhs);
343 
344 	/*
345 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
346 	 * return to user space in a timespec:
347 	 */
348 	if (res < 0 || res < lhs || res < rhs)
349 		res = ktime_set(KTIME_SEC_MAX, 0);
350 
351 	return res;
352 }
353 
354 EXPORT_SYMBOL_GPL(ktime_add_safe);
355 
356 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
357 
358 static const struct debug_obj_descr hrtimer_debug_descr;
359 
hrtimer_debug_hint(void * addr)360 static void *hrtimer_debug_hint(void *addr)
361 {
362 	return ACCESS_PRIVATE((struct hrtimer *)addr, function);
363 }
364 
365 /*
366  * fixup_init is called when:
367  * - an active object is initialized
368  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)369 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
370 {
371 	struct hrtimer *timer = addr;
372 
373 	switch (state) {
374 	case ODEBUG_STATE_ACTIVE:
375 		hrtimer_cancel(timer);
376 		debug_object_init(timer, &hrtimer_debug_descr);
377 		return true;
378 	default:
379 		return false;
380 	}
381 }
382 
383 /*
384  * fixup_activate is called when:
385  * - an active object is activated
386  * - an unknown non-static object is activated
387  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)388 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
389 {
390 	switch (state) {
391 	case ODEBUG_STATE_ACTIVE:
392 		WARN_ON(1);
393 		fallthrough;
394 	default:
395 		return false;
396 	}
397 }
398 
399 /*
400  * fixup_free is called when:
401  * - an active object is freed
402  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)403 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
404 {
405 	struct hrtimer *timer = addr;
406 
407 	switch (state) {
408 	case ODEBUG_STATE_ACTIVE:
409 		hrtimer_cancel(timer);
410 		debug_object_free(timer, &hrtimer_debug_descr);
411 		return true;
412 	default:
413 		return false;
414 	}
415 }
416 
417 static const struct debug_obj_descr hrtimer_debug_descr = {
418 	.name		= "hrtimer",
419 	.debug_hint	= hrtimer_debug_hint,
420 	.fixup_init	= hrtimer_fixup_init,
421 	.fixup_activate	= hrtimer_fixup_activate,
422 	.fixup_free	= hrtimer_fixup_free,
423 };
424 
debug_hrtimer_init(struct hrtimer * timer)425 static inline void debug_hrtimer_init(struct hrtimer *timer)
426 {
427 	debug_object_init(timer, &hrtimer_debug_descr);
428 }
429 
debug_hrtimer_init_on_stack(struct hrtimer * timer)430 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer)
431 {
432 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
433 }
434 
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)435 static inline void debug_hrtimer_activate(struct hrtimer *timer,
436 					  enum hrtimer_mode mode)
437 {
438 	debug_object_activate(timer, &hrtimer_debug_descr);
439 }
440 
debug_hrtimer_deactivate(struct hrtimer * timer)441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
442 {
443 	debug_object_deactivate(timer, &hrtimer_debug_descr);
444 }
445 
destroy_hrtimer_on_stack(struct hrtimer * timer)446 void destroy_hrtimer_on_stack(struct hrtimer *timer)
447 {
448 	debug_object_free(timer, &hrtimer_debug_descr);
449 }
450 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
451 
452 #else
453 
debug_hrtimer_init(struct hrtimer * timer)454 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_init_on_stack(struct hrtimer * timer)455 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)456 static inline void debug_hrtimer_activate(struct hrtimer *timer,
457 					  enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)458 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
459 #endif
460 
debug_setup(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)461 static inline void debug_setup(struct hrtimer *timer, clockid_t clockid, enum hrtimer_mode mode)
462 {
463 	debug_hrtimer_init(timer);
464 	trace_hrtimer_setup(timer, clockid, mode);
465 }
466 
debug_setup_on_stack(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)467 static inline void debug_setup_on_stack(struct hrtimer *timer, clockid_t clockid,
468 					enum hrtimer_mode mode)
469 {
470 	debug_hrtimer_init_on_stack(timer);
471 	trace_hrtimer_setup(timer, clockid, mode);
472 }
473 
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)474 static inline void debug_activate(struct hrtimer *timer,
475 				  enum hrtimer_mode mode)
476 {
477 	debug_hrtimer_activate(timer, mode);
478 	trace_hrtimer_start(timer, mode);
479 }
480 
debug_deactivate(struct hrtimer * timer)481 static inline void debug_deactivate(struct hrtimer *timer)
482 {
483 	debug_hrtimer_deactivate(timer);
484 	trace_hrtimer_cancel(timer);
485 }
486 
487 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)488 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
489 {
490 	unsigned int idx;
491 
492 	if (!*active)
493 		return NULL;
494 
495 	idx = __ffs(*active);
496 	*active &= ~(1U << idx);
497 
498 	return &cpu_base->clock_base[idx];
499 }
500 
501 #define for_each_active_base(base, cpu_base, active)	\
502 	while ((base = __next_base((cpu_base), &(active))))
503 
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)504 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
505 					 const struct hrtimer *exclude,
506 					 unsigned int active,
507 					 ktime_t expires_next)
508 {
509 	struct hrtimer_clock_base *base;
510 	ktime_t expires;
511 
512 	for_each_active_base(base, cpu_base, active) {
513 		struct timerqueue_node *next;
514 		struct hrtimer *timer;
515 
516 		next = timerqueue_getnext(&base->active);
517 		timer = container_of(next, struct hrtimer, node);
518 		if (timer == exclude) {
519 			/* Get to the next timer in the queue. */
520 			next = timerqueue_iterate_next(next);
521 			if (!next)
522 				continue;
523 
524 			timer = container_of(next, struct hrtimer, node);
525 		}
526 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
527 		if (expires < expires_next) {
528 			expires_next = expires;
529 
530 			/* Skip cpu_base update if a timer is being excluded. */
531 			if (exclude)
532 				continue;
533 
534 			if (timer->is_soft)
535 				cpu_base->softirq_next_timer = timer;
536 			else
537 				cpu_base->next_timer = timer;
538 		}
539 	}
540 	/*
541 	 * clock_was_set() might have changed base->offset of any of
542 	 * the clock bases so the result might be negative. Fix it up
543 	 * to prevent a false positive in clockevents_program_event().
544 	 */
545 	if (expires_next < 0)
546 		expires_next = 0;
547 	return expires_next;
548 }
549 
550 /*
551  * Recomputes cpu_base::*next_timer and returns the earliest expires_next
552  * but does not set cpu_base::*expires_next, that is done by
553  * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
554  * cpu_base::*expires_next right away, reprogramming logic would no longer
555  * work.
556  *
557  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
558  * those timers will get run whenever the softirq gets handled, at the end of
559  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
560  *
561  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
562  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
563  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
564  *
565  * @active_mask must be one of:
566  *  - HRTIMER_ACTIVE_ALL,
567  *  - HRTIMER_ACTIVE_SOFT, or
568  *  - HRTIMER_ACTIVE_HARD.
569  */
570 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)571 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
572 {
573 	unsigned int active;
574 	struct hrtimer *next_timer = NULL;
575 	ktime_t expires_next = KTIME_MAX;
576 
577 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
578 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
579 		cpu_base->softirq_next_timer = NULL;
580 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
581 							 active, KTIME_MAX);
582 
583 		next_timer = cpu_base->softirq_next_timer;
584 	}
585 
586 	if (active_mask & HRTIMER_ACTIVE_HARD) {
587 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
588 		cpu_base->next_timer = next_timer;
589 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
590 							 expires_next);
591 	}
592 
593 	return expires_next;
594 }
595 
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)596 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
597 {
598 	ktime_t expires_next, soft = KTIME_MAX;
599 
600 	/*
601 	 * If the soft interrupt has already been activated, ignore the
602 	 * soft bases. They will be handled in the already raised soft
603 	 * interrupt.
604 	 */
605 	if (!cpu_base->softirq_activated) {
606 		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
607 		/*
608 		 * Update the soft expiry time. clock_settime() might have
609 		 * affected it.
610 		 */
611 		cpu_base->softirq_expires_next = soft;
612 	}
613 
614 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
615 	/*
616 	 * If a softirq timer is expiring first, update cpu_base->next_timer
617 	 * and program the hardware with the soft expiry time.
618 	 */
619 	if (expires_next > soft) {
620 		cpu_base->next_timer = cpu_base->softirq_next_timer;
621 		expires_next = soft;
622 	}
623 
624 	return expires_next;
625 }
626 
hrtimer_update_base(struct hrtimer_cpu_base * base)627 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
628 {
629 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
630 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
631 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
632 
633 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
634 					    offs_real, offs_boot, offs_tai);
635 
636 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
637 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
638 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
639 
640 	return now;
641 }
642 
643 /*
644  * Is the high resolution mode active ?
645  */
hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)646 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
647 {
648 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
649 		cpu_base->hres_active : 0;
650 }
651 
__hrtimer_reprogram(struct hrtimer_cpu_base * cpu_base,struct hrtimer * next_timer,ktime_t expires_next)652 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
653 				struct hrtimer *next_timer,
654 				ktime_t expires_next)
655 {
656 	cpu_base->expires_next = expires_next;
657 
658 	/*
659 	 * If hres is not active, hardware does not have to be
660 	 * reprogrammed yet.
661 	 *
662 	 * If a hang was detected in the last timer interrupt then we
663 	 * leave the hang delay active in the hardware. We want the
664 	 * system to make progress. That also prevents the following
665 	 * scenario:
666 	 * T1 expires 50ms from now
667 	 * T2 expires 5s from now
668 	 *
669 	 * T1 is removed, so this code is called and would reprogram
670 	 * the hardware to 5s from now. Any hrtimer_start after that
671 	 * will not reprogram the hardware due to hang_detected being
672 	 * set. So we'd effectively block all timers until the T2 event
673 	 * fires.
674 	 */
675 	if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
676 		return;
677 
678 	tick_program_event(expires_next, 1);
679 }
680 
681 /*
682  * Reprogram the event source with checking both queues for the
683  * next event
684  * Called with interrupts disabled and base->lock held
685  */
686 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)687 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
688 {
689 	ktime_t expires_next;
690 
691 	expires_next = hrtimer_update_next_event(cpu_base);
692 
693 	if (skip_equal && expires_next == cpu_base->expires_next)
694 		return;
695 
696 	__hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
697 }
698 
699 /* High resolution timer related functions */
700 #ifdef CONFIG_HIGH_RES_TIMERS
701 
702 /*
703  * High resolution timer enabled ?
704  */
705 static bool hrtimer_hres_enabled __read_mostly  = true;
706 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
707 EXPORT_SYMBOL_GPL(hrtimer_resolution);
708 
709 /*
710  * Enable / Disable high resolution mode
711  */
setup_hrtimer_hres(char * str)712 static int __init setup_hrtimer_hres(char *str)
713 {
714 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
715 }
716 
717 __setup("highres=", setup_hrtimer_hres);
718 
719 /*
720  * hrtimer_high_res_enabled - query, if the highres mode is enabled
721  */
hrtimer_is_hres_enabled(void)722 static inline int hrtimer_is_hres_enabled(void)
723 {
724 	return hrtimer_hres_enabled;
725 }
726 
727 /*
728  * Switch to high resolution mode
729  */
hrtimer_switch_to_hres(void)730 static void hrtimer_switch_to_hres(void)
731 {
732 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
733 
734 	if (tick_init_highres()) {
735 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
736 			base->cpu);
737 		return;
738 	}
739 	base->hres_active = 1;
740 	hrtimer_resolution = HIGH_RES_NSEC;
741 
742 	tick_setup_sched_timer(true);
743 	/* "Retrigger" the interrupt to get things going */
744 	retrigger_next_event(NULL);
745 }
746 
747 #else
748 
hrtimer_is_hres_enabled(void)749 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)750 static inline void hrtimer_switch_to_hres(void) { }
751 
752 #endif /* CONFIG_HIGH_RES_TIMERS */
753 /*
754  * Retrigger next event is called after clock was set with interrupts
755  * disabled through an SMP function call or directly from low level
756  * resume code.
757  *
758  * This is only invoked when:
759  *	- CONFIG_HIGH_RES_TIMERS is enabled.
760  *	- CONFIG_NOHZ_COMMON is enabled
761  *
762  * For the other cases this function is empty and because the call sites
763  * are optimized out it vanishes as well, i.e. no need for lots of
764  * #ifdeffery.
765  */
retrigger_next_event(void * arg)766 static void retrigger_next_event(void *arg)
767 {
768 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
769 
770 	/*
771 	 * When high resolution mode or nohz is active, then the offsets of
772 	 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
773 	 * next tick will take care of that.
774 	 *
775 	 * If high resolution mode is active then the next expiring timer
776 	 * must be reevaluated and the clock event device reprogrammed if
777 	 * necessary.
778 	 *
779 	 * In the NOHZ case the update of the offset and the reevaluation
780 	 * of the next expiring timer is enough. The return from the SMP
781 	 * function call will take care of the reprogramming in case the
782 	 * CPU was in a NOHZ idle sleep.
783 	 *
784 	 * In periodic low resolution mode, the next softirq expiration
785 	 * must also be updated.
786 	 */
787 	raw_spin_lock(&base->lock);
788 	hrtimer_update_base(base);
789 	if (hrtimer_hres_active(base))
790 		hrtimer_force_reprogram(base, 0);
791 	else
792 		hrtimer_update_next_event(base);
793 	raw_spin_unlock(&base->lock);
794 }
795 
796 /*
797  * When a timer is enqueued and expires earlier than the already enqueued
798  * timers, we have to check, whether it expires earlier than the timer for
799  * which the clock event device was armed.
800  *
801  * Called with interrupts disabled and base->cpu_base.lock held
802  */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)803 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
804 {
805 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
806 	struct hrtimer_clock_base *base = timer->base;
807 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
808 
809 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
810 
811 	/*
812 	 * CLOCK_REALTIME timer might be requested with an absolute
813 	 * expiry time which is less than base->offset. Set it to 0.
814 	 */
815 	if (expires < 0)
816 		expires = 0;
817 
818 	if (timer->is_soft) {
819 		/*
820 		 * soft hrtimer could be started on a remote CPU. In this
821 		 * case softirq_expires_next needs to be updated on the
822 		 * remote CPU. The soft hrtimer will not expire before the
823 		 * first hard hrtimer on the remote CPU -
824 		 * hrtimer_check_target() prevents this case.
825 		 */
826 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
827 
828 		if (timer_cpu_base->softirq_activated)
829 			return;
830 
831 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
832 			return;
833 
834 		timer_cpu_base->softirq_next_timer = timer;
835 		timer_cpu_base->softirq_expires_next = expires;
836 
837 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
838 		    !reprogram)
839 			return;
840 	}
841 
842 	/*
843 	 * If the timer is not on the current cpu, we cannot reprogram
844 	 * the other cpus clock event device.
845 	 */
846 	if (base->cpu_base != cpu_base)
847 		return;
848 
849 	if (expires >= cpu_base->expires_next)
850 		return;
851 
852 	/*
853 	 * If the hrtimer interrupt is running, then it will reevaluate the
854 	 * clock bases and reprogram the clock event device.
855 	 */
856 	if (cpu_base->in_hrtirq)
857 		return;
858 
859 	cpu_base->next_timer = timer;
860 
861 	__hrtimer_reprogram(cpu_base, timer, expires);
862 }
863 
update_needs_ipi(struct hrtimer_cpu_base * cpu_base,unsigned int active)864 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
865 			     unsigned int active)
866 {
867 	struct hrtimer_clock_base *base;
868 	unsigned int seq;
869 	ktime_t expires;
870 
871 	/*
872 	 * Update the base offsets unconditionally so the following
873 	 * checks whether the SMP function call is required works.
874 	 *
875 	 * The update is safe even when the remote CPU is in the hrtimer
876 	 * interrupt or the hrtimer soft interrupt and expiring affected
877 	 * bases. Either it will see the update before handling a base or
878 	 * it will see it when it finishes the processing and reevaluates
879 	 * the next expiring timer.
880 	 */
881 	seq = cpu_base->clock_was_set_seq;
882 	hrtimer_update_base(cpu_base);
883 
884 	/*
885 	 * If the sequence did not change over the update then the
886 	 * remote CPU already handled it.
887 	 */
888 	if (seq == cpu_base->clock_was_set_seq)
889 		return false;
890 
891 	/*
892 	 * If the remote CPU is currently handling an hrtimer interrupt, it
893 	 * will reevaluate the first expiring timer of all clock bases
894 	 * before reprogramming. Nothing to do here.
895 	 */
896 	if (cpu_base->in_hrtirq)
897 		return false;
898 
899 	/*
900 	 * Walk the affected clock bases and check whether the first expiring
901 	 * timer in a clock base is moving ahead of the first expiring timer of
902 	 * @cpu_base. If so, the IPI must be invoked because per CPU clock
903 	 * event devices cannot be remotely reprogrammed.
904 	 */
905 	active &= cpu_base->active_bases;
906 
907 	for_each_active_base(base, cpu_base, active) {
908 		struct timerqueue_node *next;
909 
910 		next = timerqueue_getnext(&base->active);
911 		expires = ktime_sub(next->expires, base->offset);
912 		if (expires < cpu_base->expires_next)
913 			return true;
914 
915 		/* Extra check for softirq clock bases */
916 		if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
917 			continue;
918 		if (cpu_base->softirq_activated)
919 			continue;
920 		if (expires < cpu_base->softirq_expires_next)
921 			return true;
922 	}
923 	return false;
924 }
925 
926 /*
927  * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
928  * CLOCK_BOOTTIME (for late sleep time injection).
929  *
930  * This requires to update the offsets for these clocks
931  * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
932  * also requires to eventually reprogram the per CPU clock event devices
933  * when the change moves an affected timer ahead of the first expiring
934  * timer on that CPU. Obviously remote per CPU clock event devices cannot
935  * be reprogrammed. The other reason why an IPI has to be sent is when the
936  * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
937  * in the tick, which obviously might be stopped, so this has to bring out
938  * the remote CPU which might sleep in idle to get this sorted.
939  */
clock_was_set(unsigned int bases)940 void clock_was_set(unsigned int bases)
941 {
942 	struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
943 	cpumask_var_t mask;
944 	int cpu;
945 
946 	if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
947 		goto out_timerfd;
948 
949 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
950 		on_each_cpu(retrigger_next_event, NULL, 1);
951 		goto out_timerfd;
952 	}
953 
954 	/* Avoid interrupting CPUs if possible */
955 	cpus_read_lock();
956 	for_each_online_cpu(cpu) {
957 		unsigned long flags;
958 
959 		cpu_base = &per_cpu(hrtimer_bases, cpu);
960 		raw_spin_lock_irqsave(&cpu_base->lock, flags);
961 
962 		if (update_needs_ipi(cpu_base, bases))
963 			cpumask_set_cpu(cpu, mask);
964 
965 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
966 	}
967 
968 	preempt_disable();
969 	smp_call_function_many(mask, retrigger_next_event, NULL, 1);
970 	preempt_enable();
971 	cpus_read_unlock();
972 	free_cpumask_var(mask);
973 
974 out_timerfd:
975 	timerfd_clock_was_set();
976 }
977 
clock_was_set_work(struct work_struct * work)978 static void clock_was_set_work(struct work_struct *work)
979 {
980 	clock_was_set(CLOCK_SET_WALL);
981 }
982 
983 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
984 
985 /*
986  * Called from timekeeping code to reprogram the hrtimer interrupt device
987  * on all cpus and to notify timerfd.
988  */
clock_was_set_delayed(void)989 void clock_was_set_delayed(void)
990 {
991 	schedule_work(&hrtimer_work);
992 }
993 
994 /*
995  * Called during resume either directly from via timekeeping_resume()
996  * or in the case of s2idle from tick_unfreeze() to ensure that the
997  * hrtimers are up to date.
998  */
hrtimers_resume_local(void)999 void hrtimers_resume_local(void)
1000 {
1001 	lockdep_assert_irqs_disabled();
1002 	/* Retrigger on the local CPU */
1003 	retrigger_next_event(NULL);
1004 }
1005 
1006 /*
1007  * Counterpart to lock_hrtimer_base above:
1008  */
1009 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)1010 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1011 	__releases(&timer->base->cpu_base->lock)
1012 {
1013 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1014 }
1015 
1016 /**
1017  * hrtimer_forward() - forward the timer expiry
1018  * @timer:	hrtimer to forward
1019  * @now:	forward past this time
1020  * @interval:	the interval to forward
1021  *
1022  * Forward the timer expiry so it will expire in the future.
1023  *
1024  * .. note::
1025  *  This only updates the timer expiry value and does not requeue the timer.
1026  *
1027  * There is also a variant of the function hrtimer_forward_now().
1028  *
1029  * Context: Can be safely called from the callback function of @timer. If called
1030  *          from other contexts @timer must neither be enqueued nor running the
1031  *          callback and the caller needs to take care of serialization.
1032  *
1033  * Return: The number of overruns are returned.
1034  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)1035 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1036 {
1037 	u64 orun = 1;
1038 	ktime_t delta;
1039 
1040 	delta = ktime_sub(now, hrtimer_get_expires(timer));
1041 
1042 	if (delta < 0)
1043 		return 0;
1044 
1045 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1046 		return 0;
1047 
1048 	if (interval < hrtimer_resolution)
1049 		interval = hrtimer_resolution;
1050 
1051 	if (unlikely(delta >= interval)) {
1052 		s64 incr = ktime_to_ns(interval);
1053 
1054 		orun = ktime_divns(delta, incr);
1055 		hrtimer_add_expires_ns(timer, incr * orun);
1056 		if (hrtimer_get_expires_tv64(timer) > now)
1057 			return orun;
1058 		/*
1059 		 * This (and the ktime_add() below) is the
1060 		 * correction for exact:
1061 		 */
1062 		orun++;
1063 	}
1064 	hrtimer_add_expires(timer, interval);
1065 
1066 	return orun;
1067 }
1068 EXPORT_SYMBOL_GPL(hrtimer_forward);
1069 
1070 /*
1071  * enqueue_hrtimer - internal function to (re)start a timer
1072  *
1073  * The timer is inserted in expiry order. Insertion into the
1074  * red black tree is O(log(n)). Must hold the base lock.
1075  *
1076  * Returns true when the new timer is the leftmost timer in the tree.
1077  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)1078 static bool enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1079 			    enum hrtimer_mode mode)
1080 {
1081 	debug_activate(timer, mode);
1082 	WARN_ON_ONCE(!base->cpu_base->online);
1083 
1084 	base->cpu_base->active_bases |= 1 << base->index;
1085 
1086 	/* Pairs with the lockless read in hrtimer_is_queued() */
1087 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1088 
1089 	return timerqueue_add(&base->active, &timer->node);
1090 }
1091 
1092 /*
1093  * __remove_hrtimer - internal function to remove a timer
1094  *
1095  * Caller must hold the base lock.
1096  *
1097  * High resolution timer mode reprograms the clock event device when the
1098  * timer is the one which expires next. The caller can disable this by setting
1099  * reprogram to zero. This is useful, when the context does a reprogramming
1100  * anyway (e.g. timer interrupt)
1101  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1102 static void __remove_hrtimer(struct hrtimer *timer,
1103 			     struct hrtimer_clock_base *base,
1104 			     u8 newstate, int reprogram)
1105 {
1106 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1107 	u8 state = timer->state;
1108 
1109 	/* Pairs with the lockless read in hrtimer_is_queued() */
1110 	WRITE_ONCE(timer->state, newstate);
1111 	if (!(state & HRTIMER_STATE_ENQUEUED))
1112 		return;
1113 
1114 	if (!timerqueue_del(&base->active, &timer->node))
1115 		cpu_base->active_bases &= ~(1 << base->index);
1116 
1117 	/*
1118 	 * Note: If reprogram is false we do not update
1119 	 * cpu_base->next_timer. This happens when we remove the first
1120 	 * timer on a remote cpu. No harm as we never dereference
1121 	 * cpu_base->next_timer. So the worst thing what can happen is
1122 	 * an superfluous call to hrtimer_force_reprogram() on the
1123 	 * remote cpu later on if the same timer gets enqueued again.
1124 	 */
1125 	if (reprogram && timer == cpu_base->next_timer)
1126 		hrtimer_force_reprogram(cpu_base, 1);
1127 }
1128 
1129 /*
1130  * remove hrtimer, called with base lock held
1131  */
1132 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1133 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1134 	       bool restart, bool keep_local)
1135 {
1136 	u8 state = timer->state;
1137 
1138 	if (state & HRTIMER_STATE_ENQUEUED) {
1139 		bool reprogram;
1140 
1141 		/*
1142 		 * Remove the timer and force reprogramming when high
1143 		 * resolution mode is active and the timer is on the current
1144 		 * CPU. If we remove a timer on another CPU, reprogramming is
1145 		 * skipped. The interrupt event on this CPU is fired and
1146 		 * reprogramming happens in the interrupt handler. This is a
1147 		 * rare case and less expensive than a smp call.
1148 		 */
1149 		debug_deactivate(timer);
1150 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1151 
1152 		/*
1153 		 * If the timer is not restarted then reprogramming is
1154 		 * required if the timer is local. If it is local and about
1155 		 * to be restarted, avoid programming it twice (on removal
1156 		 * and a moment later when it's requeued).
1157 		 */
1158 		if (!restart)
1159 			state = HRTIMER_STATE_INACTIVE;
1160 		else
1161 			reprogram &= !keep_local;
1162 
1163 		__remove_hrtimer(timer, base, state, reprogram);
1164 		return 1;
1165 	}
1166 	return 0;
1167 }
1168 
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1169 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1170 					    const enum hrtimer_mode mode)
1171 {
1172 #ifdef CONFIG_TIME_LOW_RES
1173 	/*
1174 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1175 	 * granular time values. For relative timers we add hrtimer_resolution
1176 	 * (i.e. one jiffy) to prevent short timeouts.
1177 	 */
1178 	timer->is_rel = mode & HRTIMER_MODE_REL;
1179 	if (timer->is_rel)
1180 		tim = ktime_add_safe(tim, hrtimer_resolution);
1181 #endif
1182 	return tim;
1183 }
1184 
1185 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1186 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1187 {
1188 	ktime_t expires;
1189 
1190 	/*
1191 	 * Find the next SOFT expiration.
1192 	 */
1193 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1194 
1195 	/*
1196 	 * reprogramming needs to be triggered, even if the next soft
1197 	 * hrtimer expires at the same time than the next hard
1198 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1199 	 */
1200 	if (expires == KTIME_MAX)
1201 		return;
1202 
1203 	/*
1204 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1205 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1206 	 */
1207 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1208 }
1209 
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1210 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1211 				    u64 delta_ns, const enum hrtimer_mode mode,
1212 				    struct hrtimer_clock_base *base)
1213 {
1214 	struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases);
1215 	struct hrtimer_clock_base *new_base;
1216 	bool force_local, first;
1217 
1218 	/*
1219 	 * If the timer is on the local cpu base and is the first expiring
1220 	 * timer then this might end up reprogramming the hardware twice
1221 	 * (on removal and on enqueue). To avoid that by prevent the
1222 	 * reprogram on removal, keep the timer local to the current CPU
1223 	 * and enforce reprogramming after it is queued no matter whether
1224 	 * it is the new first expiring timer again or not.
1225 	 */
1226 	force_local = base->cpu_base == this_cpu_base;
1227 	force_local &= base->cpu_base->next_timer == timer;
1228 
1229 	/*
1230 	 * Don't force local queuing if this enqueue happens on a unplugged
1231 	 * CPU after hrtimer_cpu_dying() has been invoked.
1232 	 */
1233 	force_local &= this_cpu_base->online;
1234 
1235 	/*
1236 	 * Remove an active timer from the queue. In case it is not queued
1237 	 * on the current CPU, make sure that remove_hrtimer() updates the
1238 	 * remote data correctly.
1239 	 *
1240 	 * If it's on the current CPU and the first expiring timer, then
1241 	 * skip reprogramming, keep the timer local and enforce
1242 	 * reprogramming later if it was the first expiring timer.  This
1243 	 * avoids programming the underlying clock event twice (once at
1244 	 * removal and once after enqueue).
1245 	 */
1246 	remove_hrtimer(timer, base, true, force_local);
1247 
1248 	if (mode & HRTIMER_MODE_REL)
1249 		tim = ktime_add_safe(tim, __hrtimer_cb_get_time(base->clockid));
1250 
1251 	tim = hrtimer_update_lowres(timer, tim, mode);
1252 
1253 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1254 
1255 	/* Switch the timer base, if necessary: */
1256 	if (!force_local) {
1257 		new_base = switch_hrtimer_base(timer, base,
1258 					       mode & HRTIMER_MODE_PINNED);
1259 	} else {
1260 		new_base = base;
1261 	}
1262 
1263 	first = enqueue_hrtimer(timer, new_base, mode);
1264 	if (!force_local) {
1265 		/*
1266 		 * If the current CPU base is online, then the timer is
1267 		 * never queued on a remote CPU if it would be the first
1268 		 * expiring timer there.
1269 		 */
1270 		if (hrtimer_base_is_online(this_cpu_base))
1271 			return first;
1272 
1273 		/*
1274 		 * Timer was enqueued remote because the current base is
1275 		 * already offline. If the timer is the first to expire,
1276 		 * kick the remote CPU to reprogram the clock event.
1277 		 */
1278 		if (first) {
1279 			struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base;
1280 
1281 			smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd);
1282 		}
1283 		return 0;
1284 	}
1285 
1286 	/*
1287 	 * Timer was forced to stay on the current CPU to avoid
1288 	 * reprogramming on removal and enqueue. Force reprogram the
1289 	 * hardware by evaluating the new first expiring timer.
1290 	 */
1291 	hrtimer_force_reprogram(new_base->cpu_base, 1);
1292 	return 0;
1293 }
1294 
1295 /**
1296  * hrtimer_start_range_ns - (re)start an hrtimer
1297  * @timer:	the timer to be added
1298  * @tim:	expiry time
1299  * @delta_ns:	"slack" range for the timer
1300  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1301  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1302  *		softirq based mode is considered for debug purpose only!
1303  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1304 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1305 			    u64 delta_ns, const enum hrtimer_mode mode)
1306 {
1307 	struct hrtimer_clock_base *base;
1308 	unsigned long flags;
1309 
1310 	/*
1311 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1312 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1313 	 * expiry mode because unmarked timers are moved to softirq expiry.
1314 	 */
1315 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1316 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1317 	else
1318 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1319 
1320 	base = lock_hrtimer_base(timer, &flags);
1321 
1322 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1323 		hrtimer_reprogram(timer, true);
1324 
1325 	unlock_hrtimer_base(timer, &flags);
1326 }
1327 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1328 
1329 /**
1330  * hrtimer_try_to_cancel - try to deactivate a timer
1331  * @timer:	hrtimer to stop
1332  *
1333  * Returns:
1334  *
1335  *  *  0 when the timer was not active
1336  *  *  1 when the timer was active
1337  *  * -1 when the timer is currently executing the callback function and
1338  *    cannot be stopped
1339  */
hrtimer_try_to_cancel(struct hrtimer * timer)1340 int hrtimer_try_to_cancel(struct hrtimer *timer)
1341 {
1342 	struct hrtimer_clock_base *base;
1343 	unsigned long flags;
1344 	int ret = -1;
1345 
1346 	/*
1347 	 * Check lockless first. If the timer is not active (neither
1348 	 * enqueued nor running the callback, nothing to do here.  The
1349 	 * base lock does not serialize against a concurrent enqueue,
1350 	 * so we can avoid taking it.
1351 	 */
1352 	if (!hrtimer_active(timer))
1353 		return 0;
1354 
1355 	base = lock_hrtimer_base(timer, &flags);
1356 
1357 	if (!hrtimer_callback_running(timer))
1358 		ret = remove_hrtimer(timer, base, false, false);
1359 
1360 	unlock_hrtimer_base(timer, &flags);
1361 
1362 	return ret;
1363 
1364 }
1365 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1366 
1367 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1368 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1369 {
1370 	spin_lock_init(&base->softirq_expiry_lock);
1371 }
1372 
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1373 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1374 	__acquires(&base->softirq_expiry_lock)
1375 {
1376 	spin_lock(&base->softirq_expiry_lock);
1377 }
1378 
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1379 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1380 	__releases(&base->softirq_expiry_lock)
1381 {
1382 	spin_unlock(&base->softirq_expiry_lock);
1383 }
1384 
1385 /*
1386  * The counterpart to hrtimer_cancel_wait_running().
1387  *
1388  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1389  * the timer callback to finish. Drop expiry_lock and reacquire it. That
1390  * allows the waiter to acquire the lock and make progress.
1391  */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1392 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1393 				      unsigned long flags)
1394 {
1395 	if (atomic_read(&cpu_base->timer_waiters)) {
1396 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1397 		spin_unlock(&cpu_base->softirq_expiry_lock);
1398 		spin_lock(&cpu_base->softirq_expiry_lock);
1399 		raw_spin_lock_irq(&cpu_base->lock);
1400 	}
1401 }
1402 
1403 #ifdef CONFIG_SMP
is_migration_base(struct hrtimer_clock_base * base)1404 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1405 {
1406 	return base == &migration_base;
1407 }
1408 #else
is_migration_base(struct hrtimer_clock_base * base)1409 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1410 {
1411 	return false;
1412 }
1413 #endif
1414 
1415 /*
1416  * This function is called on PREEMPT_RT kernels when the fast path
1417  * deletion of a timer failed because the timer callback function was
1418  * running.
1419  *
1420  * This prevents priority inversion: if the soft irq thread is preempted
1421  * in the middle of a timer callback, then calling hrtimer_cancel() can
1422  * lead to two issues:
1423  *
1424  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1425  *    handler to complete. This can result in unbound priority inversion.
1426  *
1427  *  - If the caller originates from the task which preempted the timer
1428  *    handler on the same CPU, then spin waiting for the timer handler to
1429  *    complete is never going to end.
1430  */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1431 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1432 {
1433 	/* Lockless read. Prevent the compiler from reloading it below */
1434 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1435 
1436 	/*
1437 	 * Just relax if the timer expires in hard interrupt context or if
1438 	 * it is currently on the migration base.
1439 	 */
1440 	if (!timer->is_soft || is_migration_base(base)) {
1441 		cpu_relax();
1442 		return;
1443 	}
1444 
1445 	/*
1446 	 * Mark the base as contended and grab the expiry lock, which is
1447 	 * held by the softirq across the timer callback. Drop the lock
1448 	 * immediately so the softirq can expire the next timer. In theory
1449 	 * the timer could already be running again, but that's more than
1450 	 * unlikely and just causes another wait loop.
1451 	 */
1452 	atomic_inc(&base->cpu_base->timer_waiters);
1453 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1454 	atomic_dec(&base->cpu_base->timer_waiters);
1455 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1456 }
1457 #else
1458 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1459 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1460 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1461 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1462 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1463 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1464 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1465 					     unsigned long flags) { }
1466 #endif
1467 
1468 /**
1469  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1470  * @timer:	the timer to be cancelled
1471  *
1472  * Returns:
1473  *  0 when the timer was not active
1474  *  1 when the timer was active
1475  */
hrtimer_cancel(struct hrtimer * timer)1476 int hrtimer_cancel(struct hrtimer *timer)
1477 {
1478 	int ret;
1479 
1480 	do {
1481 		ret = hrtimer_try_to_cancel(timer);
1482 
1483 		if (ret < 0)
1484 			hrtimer_cancel_wait_running(timer);
1485 	} while (ret < 0);
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1489 
1490 /**
1491  * __hrtimer_get_remaining - get remaining time for the timer
1492  * @timer:	the timer to read
1493  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1494  */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1495 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1496 {
1497 	unsigned long flags;
1498 	ktime_t rem;
1499 
1500 	lock_hrtimer_base(timer, &flags);
1501 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1502 		rem = hrtimer_expires_remaining_adjusted(timer);
1503 	else
1504 		rem = hrtimer_expires_remaining(timer);
1505 	unlock_hrtimer_base(timer, &flags);
1506 
1507 	return rem;
1508 }
1509 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1510 
1511 #ifdef CONFIG_NO_HZ_COMMON
1512 /**
1513  * hrtimer_get_next_event - get the time until next expiry event
1514  *
1515  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1516  */
hrtimer_get_next_event(void)1517 u64 hrtimer_get_next_event(void)
1518 {
1519 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1520 	u64 expires = KTIME_MAX;
1521 	unsigned long flags;
1522 
1523 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1524 
1525 	if (!hrtimer_hres_active(cpu_base))
1526 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1527 
1528 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1529 
1530 	return expires;
1531 }
1532 
1533 /**
1534  * hrtimer_next_event_without - time until next expiry event w/o one timer
1535  * @exclude:	timer to exclude
1536  *
1537  * Returns the next expiry time over all timers except for the @exclude one or
1538  * KTIME_MAX if none of them is pending.
1539  */
hrtimer_next_event_without(const struct hrtimer * exclude)1540 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1541 {
1542 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1543 	u64 expires = KTIME_MAX;
1544 	unsigned long flags;
1545 
1546 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1547 
1548 	if (hrtimer_hres_active(cpu_base)) {
1549 		unsigned int active;
1550 
1551 		if (!cpu_base->softirq_activated) {
1552 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1553 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1554 							    active, KTIME_MAX);
1555 		}
1556 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1557 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1558 						    expires);
1559 	}
1560 
1561 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1562 
1563 	return expires;
1564 }
1565 #endif
1566 
hrtimer_clockid_to_base(clockid_t clock_id)1567 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1568 {
1569 	switch (clock_id) {
1570 	case CLOCK_MONOTONIC:
1571 		return HRTIMER_BASE_MONOTONIC;
1572 	case CLOCK_REALTIME:
1573 		return HRTIMER_BASE_REALTIME;
1574 	case CLOCK_BOOTTIME:
1575 		return HRTIMER_BASE_BOOTTIME;
1576 	case CLOCK_TAI:
1577 		return HRTIMER_BASE_TAI;
1578 	default:
1579 		WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1580 		return HRTIMER_BASE_MONOTONIC;
1581 	}
1582 }
1583 
__hrtimer_cb_get_time(clockid_t clock_id)1584 static ktime_t __hrtimer_cb_get_time(clockid_t clock_id)
1585 {
1586 	switch (clock_id) {
1587 	case CLOCK_MONOTONIC:
1588 		return ktime_get();
1589 	case CLOCK_REALTIME:
1590 		return ktime_get_real();
1591 	case CLOCK_BOOTTIME:
1592 		return ktime_get_boottime();
1593 	case CLOCK_TAI:
1594 		return ktime_get_clocktai();
1595 	default:
1596 		WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1597 		return ktime_get();
1598 	}
1599 }
1600 
hrtimer_cb_get_time(const struct hrtimer * timer)1601 ktime_t hrtimer_cb_get_time(const struct hrtimer *timer)
1602 {
1603 	return __hrtimer_cb_get_time(timer->base->clockid);
1604 }
1605 EXPORT_SYMBOL_GPL(hrtimer_cb_get_time);
1606 
__hrtimer_setup(struct hrtimer * timer,enum hrtimer_restart (* function)(struct hrtimer *),clockid_t clock_id,enum hrtimer_mode mode)1607 static void __hrtimer_setup(struct hrtimer *timer,
1608 			    enum hrtimer_restart (*function)(struct hrtimer *),
1609 			    clockid_t clock_id, enum hrtimer_mode mode)
1610 {
1611 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1612 	struct hrtimer_cpu_base *cpu_base;
1613 	int base;
1614 
1615 	/*
1616 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1617 	 * marked for hard interrupt expiry mode are moved into soft
1618 	 * interrupt context for latency reasons and because the callbacks
1619 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1620 	 */
1621 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1622 		softtimer = true;
1623 
1624 	memset(timer, 0, sizeof(struct hrtimer));
1625 
1626 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1627 
1628 	/*
1629 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1630 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1631 	 * ensure POSIX compliance.
1632 	 */
1633 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1634 		clock_id = CLOCK_MONOTONIC;
1635 
1636 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1637 	base += hrtimer_clockid_to_base(clock_id);
1638 	timer->is_soft = softtimer;
1639 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1640 	timer->base = &cpu_base->clock_base[base];
1641 	timerqueue_init(&timer->node);
1642 
1643 	if (WARN_ON_ONCE(!function))
1644 		ACCESS_PRIVATE(timer, function) = hrtimer_dummy_timeout;
1645 	else
1646 		ACCESS_PRIVATE(timer, function) = function;
1647 }
1648 
1649 /**
1650  * hrtimer_setup - initialize a timer to the given clock
1651  * @timer:	the timer to be initialized
1652  * @function:	the callback function
1653  * @clock_id:	the clock to be used
1654  * @mode:       The modes which are relevant for initialization:
1655  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1656  *              HRTIMER_MODE_REL_SOFT
1657  *
1658  *              The PINNED variants of the above can be handed in,
1659  *              but the PINNED bit is ignored as pinning happens
1660  *              when the hrtimer is started
1661  */
hrtimer_setup(struct hrtimer * timer,enum hrtimer_restart (* function)(struct hrtimer *),clockid_t clock_id,enum hrtimer_mode mode)1662 void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *),
1663 		   clockid_t clock_id, enum hrtimer_mode mode)
1664 {
1665 	debug_setup(timer, clock_id, mode);
1666 	__hrtimer_setup(timer, function, clock_id, mode);
1667 }
1668 EXPORT_SYMBOL_GPL(hrtimer_setup);
1669 
1670 /**
1671  * hrtimer_setup_on_stack - initialize a timer on stack memory
1672  * @timer:	The timer to be initialized
1673  * @function:	the callback function
1674  * @clock_id:	The clock to be used
1675  * @mode:       The timer mode
1676  *
1677  * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack
1678  * memory.
1679  */
hrtimer_setup_on_stack(struct hrtimer * timer,enum hrtimer_restart (* function)(struct hrtimer *),clockid_t clock_id,enum hrtimer_mode mode)1680 void hrtimer_setup_on_stack(struct hrtimer *timer,
1681 			    enum hrtimer_restart (*function)(struct hrtimer *),
1682 			    clockid_t clock_id, enum hrtimer_mode mode)
1683 {
1684 	debug_setup_on_stack(timer, clock_id, mode);
1685 	__hrtimer_setup(timer, function, clock_id, mode);
1686 }
1687 EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack);
1688 
1689 /*
1690  * A timer is active, when it is enqueued into the rbtree or the
1691  * callback function is running or it's in the state of being migrated
1692  * to another cpu.
1693  *
1694  * It is important for this function to not return a false negative.
1695  */
hrtimer_active(const struct hrtimer * timer)1696 bool hrtimer_active(const struct hrtimer *timer)
1697 {
1698 	struct hrtimer_clock_base *base;
1699 	unsigned int seq;
1700 
1701 	do {
1702 		base = READ_ONCE(timer->base);
1703 		seq = raw_read_seqcount_begin(&base->seq);
1704 
1705 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1706 		    base->running == timer)
1707 			return true;
1708 
1709 	} while (read_seqcount_retry(&base->seq, seq) ||
1710 		 base != READ_ONCE(timer->base));
1711 
1712 	return false;
1713 }
1714 EXPORT_SYMBOL_GPL(hrtimer_active);
1715 
1716 /*
1717  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1718  * distinct sections:
1719  *
1720  *  - queued:	the timer is queued
1721  *  - callback:	the timer is being ran
1722  *  - post:	the timer is inactive or (re)queued
1723  *
1724  * On the read side we ensure we observe timer->state and cpu_base->running
1725  * from the same section, if anything changed while we looked at it, we retry.
1726  * This includes timer->base changing because sequence numbers alone are
1727  * insufficient for that.
1728  *
1729  * The sequence numbers are required because otherwise we could still observe
1730  * a false negative if the read side got smeared over multiple consecutive
1731  * __run_hrtimer() invocations.
1732  */
1733 
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1734 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1735 			  struct hrtimer_clock_base *base,
1736 			  struct hrtimer *timer, ktime_t *now,
1737 			  unsigned long flags) __must_hold(&cpu_base->lock)
1738 {
1739 	enum hrtimer_restart (*fn)(struct hrtimer *);
1740 	bool expires_in_hardirq;
1741 	int restart;
1742 
1743 	lockdep_assert_held(&cpu_base->lock);
1744 
1745 	debug_deactivate(timer);
1746 	base->running = timer;
1747 
1748 	/*
1749 	 * Separate the ->running assignment from the ->state assignment.
1750 	 *
1751 	 * As with a regular write barrier, this ensures the read side in
1752 	 * hrtimer_active() cannot observe base->running == NULL &&
1753 	 * timer->state == INACTIVE.
1754 	 */
1755 	raw_write_seqcount_barrier(&base->seq);
1756 
1757 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1758 	fn = ACCESS_PRIVATE(timer, function);
1759 
1760 	/*
1761 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1762 	 * timer is restarted with a period then it becomes an absolute
1763 	 * timer. If its not restarted it does not matter.
1764 	 */
1765 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1766 		timer->is_rel = false;
1767 
1768 	/*
1769 	 * The timer is marked as running in the CPU base, so it is
1770 	 * protected against migration to a different CPU even if the lock
1771 	 * is dropped.
1772 	 */
1773 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1774 	trace_hrtimer_expire_entry(timer, now);
1775 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1776 
1777 	restart = fn(timer);
1778 
1779 	lockdep_hrtimer_exit(expires_in_hardirq);
1780 	trace_hrtimer_expire_exit(timer);
1781 	raw_spin_lock_irq(&cpu_base->lock);
1782 
1783 	/*
1784 	 * Note: We clear the running state after enqueue_hrtimer and
1785 	 * we do not reprogram the event hardware. Happens either in
1786 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1787 	 *
1788 	 * Note: Because we dropped the cpu_base->lock above,
1789 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1790 	 * for us already.
1791 	 */
1792 	if (restart != HRTIMER_NORESTART &&
1793 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1794 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1795 
1796 	/*
1797 	 * Separate the ->running assignment from the ->state assignment.
1798 	 *
1799 	 * As with a regular write barrier, this ensures the read side in
1800 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1801 	 * timer->state == INACTIVE.
1802 	 */
1803 	raw_write_seqcount_barrier(&base->seq);
1804 
1805 	WARN_ON_ONCE(base->running != timer);
1806 	base->running = NULL;
1807 }
1808 
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1809 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1810 				 unsigned long flags, unsigned int active_mask)
1811 {
1812 	struct hrtimer_clock_base *base;
1813 	unsigned int active = cpu_base->active_bases & active_mask;
1814 
1815 	for_each_active_base(base, cpu_base, active) {
1816 		struct timerqueue_node *node;
1817 		ktime_t basenow;
1818 
1819 		basenow = ktime_add(now, base->offset);
1820 
1821 		while ((node = timerqueue_getnext(&base->active))) {
1822 			struct hrtimer *timer;
1823 
1824 			timer = container_of(node, struct hrtimer, node);
1825 
1826 			/*
1827 			 * The immediate goal for using the softexpires is
1828 			 * minimizing wakeups, not running timers at the
1829 			 * earliest interrupt after their soft expiration.
1830 			 * This allows us to avoid using a Priority Search
1831 			 * Tree, which can answer a stabbing query for
1832 			 * overlapping intervals and instead use the simple
1833 			 * BST we already have.
1834 			 * We don't add extra wakeups by delaying timers that
1835 			 * are right-of a not yet expired timer, because that
1836 			 * timer will have to trigger a wakeup anyway.
1837 			 */
1838 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1839 				break;
1840 
1841 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1842 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1843 				hrtimer_sync_wait_running(cpu_base, flags);
1844 		}
1845 	}
1846 }
1847 
hrtimer_run_softirq(void)1848 static __latent_entropy void hrtimer_run_softirq(void)
1849 {
1850 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1851 	unsigned long flags;
1852 	ktime_t now;
1853 
1854 	hrtimer_cpu_base_lock_expiry(cpu_base);
1855 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1856 
1857 	now = hrtimer_update_base(cpu_base);
1858 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1859 
1860 	cpu_base->softirq_activated = 0;
1861 	hrtimer_update_softirq_timer(cpu_base, true);
1862 
1863 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1864 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1865 }
1866 
1867 #ifdef CONFIG_HIGH_RES_TIMERS
1868 
1869 /*
1870  * High resolution timer interrupt
1871  * Called with interrupts disabled
1872  */
hrtimer_interrupt(struct clock_event_device * dev)1873 void hrtimer_interrupt(struct clock_event_device *dev)
1874 {
1875 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1876 	ktime_t expires_next, now, entry_time, delta;
1877 	unsigned long flags;
1878 	int retries = 0;
1879 
1880 	BUG_ON(!cpu_base->hres_active);
1881 	cpu_base->nr_events++;
1882 	dev->next_event = KTIME_MAX;
1883 
1884 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1885 	entry_time = now = hrtimer_update_base(cpu_base);
1886 retry:
1887 	cpu_base->in_hrtirq = 1;
1888 	/*
1889 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1890 	 * held to prevent that a timer is enqueued in our queue via
1891 	 * the migration code. This does not affect enqueueing of
1892 	 * timers which run their callback and need to be requeued on
1893 	 * this CPU.
1894 	 */
1895 	cpu_base->expires_next = KTIME_MAX;
1896 
1897 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1898 		cpu_base->softirq_expires_next = KTIME_MAX;
1899 		cpu_base->softirq_activated = 1;
1900 		raise_timer_softirq(HRTIMER_SOFTIRQ);
1901 	}
1902 
1903 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1904 
1905 	/* Reevaluate the clock bases for the [soft] next expiry */
1906 	expires_next = hrtimer_update_next_event(cpu_base);
1907 	/*
1908 	 * Store the new expiry value so the migration code can verify
1909 	 * against it.
1910 	 */
1911 	cpu_base->expires_next = expires_next;
1912 	cpu_base->in_hrtirq = 0;
1913 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1914 
1915 	/* Reprogramming necessary ? */
1916 	if (!tick_program_event(expires_next, 0)) {
1917 		cpu_base->hang_detected = 0;
1918 		return;
1919 	}
1920 
1921 	/*
1922 	 * The next timer was already expired due to:
1923 	 * - tracing
1924 	 * - long lasting callbacks
1925 	 * - being scheduled away when running in a VM
1926 	 *
1927 	 * We need to prevent that we loop forever in the hrtimer
1928 	 * interrupt routine. We give it 3 attempts to avoid
1929 	 * overreacting on some spurious event.
1930 	 *
1931 	 * Acquire base lock for updating the offsets and retrieving
1932 	 * the current time.
1933 	 */
1934 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1935 	now = hrtimer_update_base(cpu_base);
1936 	cpu_base->nr_retries++;
1937 	if (++retries < 3)
1938 		goto retry;
1939 	/*
1940 	 * Give the system a chance to do something else than looping
1941 	 * here. We stored the entry time, so we know exactly how long
1942 	 * we spent here. We schedule the next event this amount of
1943 	 * time away.
1944 	 */
1945 	cpu_base->nr_hangs++;
1946 	cpu_base->hang_detected = 1;
1947 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1948 
1949 	delta = ktime_sub(now, entry_time);
1950 	if ((unsigned int)delta > cpu_base->max_hang_time)
1951 		cpu_base->max_hang_time = (unsigned int) delta;
1952 	/*
1953 	 * Limit it to a sensible value as we enforce a longer
1954 	 * delay. Give the CPU at least 100ms to catch up.
1955 	 */
1956 	if (delta > 100 * NSEC_PER_MSEC)
1957 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1958 	else
1959 		expires_next = ktime_add(now, delta);
1960 	tick_program_event(expires_next, 1);
1961 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1962 }
1963 #endif /* !CONFIG_HIGH_RES_TIMERS */
1964 
1965 /*
1966  * Called from run_local_timers in hardirq context every jiffy
1967  */
hrtimer_run_queues(void)1968 void hrtimer_run_queues(void)
1969 {
1970 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1971 	unsigned long flags;
1972 	ktime_t now;
1973 
1974 	if (hrtimer_hres_active(cpu_base))
1975 		return;
1976 
1977 	/*
1978 	 * This _is_ ugly: We have to check periodically, whether we
1979 	 * can switch to highres and / or nohz mode. The clocksource
1980 	 * switch happens with xtime_lock held. Notification from
1981 	 * there only sets the check bit in the tick_oneshot code,
1982 	 * otherwise we might deadlock vs. xtime_lock.
1983 	 */
1984 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1985 		hrtimer_switch_to_hres();
1986 		return;
1987 	}
1988 
1989 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1990 	now = hrtimer_update_base(cpu_base);
1991 
1992 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1993 		cpu_base->softirq_expires_next = KTIME_MAX;
1994 		cpu_base->softirq_activated = 1;
1995 		raise_timer_softirq(HRTIMER_SOFTIRQ);
1996 	}
1997 
1998 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1999 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
2000 }
2001 
2002 /*
2003  * Sleep related functions:
2004  */
hrtimer_wakeup(struct hrtimer * timer)2005 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
2006 {
2007 	struct hrtimer_sleeper *t =
2008 		container_of(timer, struct hrtimer_sleeper, timer);
2009 	struct task_struct *task = t->task;
2010 
2011 	t->task = NULL;
2012 	if (task)
2013 		wake_up_process(task);
2014 
2015 	return HRTIMER_NORESTART;
2016 }
2017 
2018 /**
2019  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
2020  * @sl:		sleeper to be started
2021  * @mode:	timer mode abs/rel
2022  *
2023  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
2024  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
2025  */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)2026 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
2027 				   enum hrtimer_mode mode)
2028 {
2029 	/*
2030 	 * Make the enqueue delivery mode check work on RT. If the sleeper
2031 	 * was initialized for hard interrupt delivery, force the mode bit.
2032 	 * This is a special case for hrtimer_sleepers because
2033 	 * __hrtimer_setup_sleeper() determines the delivery mode on RT so the
2034 	 * fiddling with this decision is avoided at the call sites.
2035 	 */
2036 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
2037 		mode |= HRTIMER_MODE_HARD;
2038 
2039 	hrtimer_start_expires(&sl->timer, mode);
2040 }
2041 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
2042 
__hrtimer_setup_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2043 static void __hrtimer_setup_sleeper(struct hrtimer_sleeper *sl,
2044 				    clockid_t clock_id, enum hrtimer_mode mode)
2045 {
2046 	/*
2047 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
2048 	 * marked for hard interrupt expiry mode are moved into soft
2049 	 * interrupt context either for latency reasons or because the
2050 	 * hrtimer callback takes regular spinlocks or invokes other
2051 	 * functions which are not suitable for hard interrupt context on
2052 	 * PREEMPT_RT.
2053 	 *
2054 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
2055 	 * context, but there is a latency concern: Untrusted userspace can
2056 	 * spawn many threads which arm timers for the same expiry time on
2057 	 * the same CPU. That causes a latency spike due to the wakeup of
2058 	 * a gazillion threads.
2059 	 *
2060 	 * OTOH, privileged real-time user space applications rely on the
2061 	 * low latency of hard interrupt wakeups. If the current task is in
2062 	 * a real-time scheduling class, mark the mode for hard interrupt
2063 	 * expiry.
2064 	 */
2065 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2066 		if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
2067 			mode |= HRTIMER_MODE_HARD;
2068 	}
2069 
2070 	__hrtimer_setup(&sl->timer, hrtimer_wakeup, clock_id, mode);
2071 	sl->task = current;
2072 }
2073 
2074 /**
2075  * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory
2076  * @sl:		sleeper to be initialized
2077  * @clock_id:	the clock to be used
2078  * @mode:	timer mode abs/rel
2079  */
hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2080 void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl,
2081 				    clockid_t clock_id, enum hrtimer_mode mode)
2082 {
2083 	debug_setup_on_stack(&sl->timer, clock_id, mode);
2084 	__hrtimer_setup_sleeper(sl, clock_id, mode);
2085 }
2086 EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack);
2087 
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)2088 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2089 {
2090 	switch(restart->nanosleep.type) {
2091 #ifdef CONFIG_COMPAT_32BIT_TIME
2092 	case TT_COMPAT:
2093 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2094 			return -EFAULT;
2095 		break;
2096 #endif
2097 	case TT_NATIVE:
2098 		if (put_timespec64(ts, restart->nanosleep.rmtp))
2099 			return -EFAULT;
2100 		break;
2101 	default:
2102 		BUG();
2103 	}
2104 	return -ERESTART_RESTARTBLOCK;
2105 }
2106 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)2107 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2108 {
2109 	struct restart_block *restart;
2110 
2111 	do {
2112 		set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2113 		hrtimer_sleeper_start_expires(t, mode);
2114 
2115 		if (likely(t->task))
2116 			schedule();
2117 
2118 		hrtimer_cancel(&t->timer);
2119 		mode = HRTIMER_MODE_ABS;
2120 
2121 	} while (t->task && !signal_pending(current));
2122 
2123 	__set_current_state(TASK_RUNNING);
2124 
2125 	if (!t->task)
2126 		return 0;
2127 
2128 	restart = &current->restart_block;
2129 	if (restart->nanosleep.type != TT_NONE) {
2130 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
2131 		struct timespec64 rmt;
2132 
2133 		if (rem <= 0)
2134 			return 0;
2135 		rmt = ktime_to_timespec64(rem);
2136 
2137 		return nanosleep_copyout(restart, &rmt);
2138 	}
2139 	return -ERESTART_RESTARTBLOCK;
2140 }
2141 
hrtimer_nanosleep_restart(struct restart_block * restart)2142 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2143 {
2144 	struct hrtimer_sleeper t;
2145 	int ret;
2146 
2147 	hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS);
2148 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2149 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2150 	destroy_hrtimer_on_stack(&t.timer);
2151 	return ret;
2152 }
2153 
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2154 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2155 		       const clockid_t clockid)
2156 {
2157 	struct restart_block *restart;
2158 	struct hrtimer_sleeper t;
2159 	int ret = 0;
2160 
2161 	hrtimer_setup_sleeper_on_stack(&t, clockid, mode);
2162 	hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2163 	ret = do_nanosleep(&t, mode);
2164 	if (ret != -ERESTART_RESTARTBLOCK)
2165 		goto out;
2166 
2167 	/* Absolute timers do not update the rmtp value and restart: */
2168 	if (mode == HRTIMER_MODE_ABS) {
2169 		ret = -ERESTARTNOHAND;
2170 		goto out;
2171 	}
2172 
2173 	restart = &current->restart_block;
2174 	restart->nanosleep.clockid = t.timer.base->clockid;
2175 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2176 	set_restart_fn(restart, hrtimer_nanosleep_restart);
2177 out:
2178 	destroy_hrtimer_on_stack(&t.timer);
2179 	return ret;
2180 }
2181 
2182 #ifdef CONFIG_64BIT
2183 
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2184 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2185 		struct __kernel_timespec __user *, rmtp)
2186 {
2187 	struct timespec64 tu;
2188 
2189 	if (get_timespec64(&tu, rqtp))
2190 		return -EFAULT;
2191 
2192 	if (!timespec64_valid(&tu))
2193 		return -EINVAL;
2194 
2195 	current->restart_block.fn = do_no_restart_syscall;
2196 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2197 	current->restart_block.nanosleep.rmtp = rmtp;
2198 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2199 				 CLOCK_MONOTONIC);
2200 }
2201 
2202 #endif
2203 
2204 #ifdef CONFIG_COMPAT_32BIT_TIME
2205 
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2206 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2207 		       struct old_timespec32 __user *, rmtp)
2208 {
2209 	struct timespec64 tu;
2210 
2211 	if (get_old_timespec32(&tu, rqtp))
2212 		return -EFAULT;
2213 
2214 	if (!timespec64_valid(&tu))
2215 		return -EINVAL;
2216 
2217 	current->restart_block.fn = do_no_restart_syscall;
2218 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2219 	current->restart_block.nanosleep.compat_rmtp = rmtp;
2220 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2221 				 CLOCK_MONOTONIC);
2222 }
2223 #endif
2224 
2225 /*
2226  * Functions related to boot-time initialization:
2227  */
hrtimers_prepare_cpu(unsigned int cpu)2228 int hrtimers_prepare_cpu(unsigned int cpu)
2229 {
2230 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2231 	int i;
2232 
2233 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2234 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2235 
2236 		clock_b->cpu_base = cpu_base;
2237 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2238 		timerqueue_init_head(&clock_b->active);
2239 	}
2240 
2241 	cpu_base->cpu = cpu;
2242 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2243 	return 0;
2244 }
2245 
hrtimers_cpu_starting(unsigned int cpu)2246 int hrtimers_cpu_starting(unsigned int cpu)
2247 {
2248 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2249 
2250 	/* Clear out any left over state from a CPU down operation */
2251 	cpu_base->active_bases = 0;
2252 	cpu_base->hres_active = 0;
2253 	cpu_base->hang_detected = 0;
2254 	cpu_base->next_timer = NULL;
2255 	cpu_base->softirq_next_timer = NULL;
2256 	cpu_base->expires_next = KTIME_MAX;
2257 	cpu_base->softirq_expires_next = KTIME_MAX;
2258 	cpu_base->online = 1;
2259 	return 0;
2260 }
2261 
2262 #ifdef CONFIG_HOTPLUG_CPU
2263 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2264 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2265 				struct hrtimer_clock_base *new_base)
2266 {
2267 	struct hrtimer *timer;
2268 	struct timerqueue_node *node;
2269 
2270 	while ((node = timerqueue_getnext(&old_base->active))) {
2271 		timer = container_of(node, struct hrtimer, node);
2272 		BUG_ON(hrtimer_callback_running(timer));
2273 		debug_deactivate(timer);
2274 
2275 		/*
2276 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2277 		 * timer could be seen as !active and just vanish away
2278 		 * under us on another CPU
2279 		 */
2280 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2281 		timer->base = new_base;
2282 		/*
2283 		 * Enqueue the timers on the new cpu. This does not
2284 		 * reprogram the event device in case the timer
2285 		 * expires before the earliest on this CPU, but we run
2286 		 * hrtimer_interrupt after we migrated everything to
2287 		 * sort out already expired timers and reprogram the
2288 		 * event device.
2289 		 */
2290 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2291 	}
2292 }
2293 
hrtimers_cpu_dying(unsigned int dying_cpu)2294 int hrtimers_cpu_dying(unsigned int dying_cpu)
2295 {
2296 	int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2297 	struct hrtimer_cpu_base *old_base, *new_base;
2298 
2299 	old_base = this_cpu_ptr(&hrtimer_bases);
2300 	new_base = &per_cpu(hrtimer_bases, ncpu);
2301 
2302 	/*
2303 	 * The caller is globally serialized and nobody else
2304 	 * takes two locks at once, deadlock is not possible.
2305 	 */
2306 	raw_spin_lock(&old_base->lock);
2307 	raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2308 
2309 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2310 		migrate_hrtimer_list(&old_base->clock_base[i],
2311 				     &new_base->clock_base[i]);
2312 	}
2313 
2314 	/* Tell the other CPU to retrigger the next event */
2315 	smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2316 
2317 	raw_spin_unlock(&new_base->lock);
2318 	old_base->online = 0;
2319 	raw_spin_unlock(&old_base->lock);
2320 
2321 	return 0;
2322 }
2323 
2324 #endif /* CONFIG_HOTPLUG_CPU */
2325 
hrtimers_init(void)2326 void __init hrtimers_init(void)
2327 {
2328 	hrtimers_prepare_cpu(smp_processor_id());
2329 	hrtimers_cpu_starting(smp_processor_id());
2330 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2331 }
2332