xref: /linux/kernel/sched/sched.h (revision 6c7340a7a8d2b6ecad1ad108f6daa73ba1dc082f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/delayacct.h>
72 #include <linux/mmu_context.h>
73 
74 #include <trace/events/power.h>
75 #include <trace/events/sched.h>
76 
77 #include "../workqueue_internal.h"
78 
79 struct rq;
80 struct cfs_rq;
81 struct rt_rq;
82 struct sched_group;
83 struct cpuidle_state;
84 
85 #ifdef CONFIG_PARAVIRT
86 # include <asm/paravirt.h>
87 # include <asm/paravirt_api_clock.h>
88 #endif
89 
90 #include <asm/barrier.h>
91 
92 #include "cpupri.h"
93 #include "cpudeadline.h"
94 
95 /* task_struct::on_rq states: */
96 #define TASK_ON_RQ_QUEUED	1
97 #define TASK_ON_RQ_MIGRATING	2
98 
99 extern __read_mostly int scheduler_running;
100 
101 extern unsigned long calc_load_update;
102 extern atomic_long_t calc_load_tasks;
103 
104 extern void calc_global_load_tick(struct rq *this_rq);
105 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
106 
107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
108 
109 extern int sysctl_sched_rt_period;
110 extern int sysctl_sched_rt_runtime;
111 extern int sched_rr_timeslice;
112 
113 /*
114  * Asymmetric CPU capacity bits
115  */
116 struct asym_cap_data {
117 	struct list_head link;
118 	struct rcu_head rcu;
119 	unsigned long capacity;
120 	unsigned long cpus[];
121 };
122 
123 extern struct list_head asym_cap_list;
124 
125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
126 
127 /*
128  * Helpers for converting nanosecond timing to jiffy resolution
129  */
130 #define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
131 
132 /*
133  * Increase resolution of nice-level calculations for 64-bit architectures.
134  * The extra resolution improves shares distribution and load balancing of
135  * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
136  * hierarchies, especially on larger systems. This is not a user-visible change
137  * and does not change the user-interface for setting shares/weights.
138  *
139  * We increase resolution only if we have enough bits to allow this increased
140  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
141  * are pretty high and the returns do not justify the increased costs.
142  *
143  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
144  * increase coverage and consistency always enable it on 64-bit platforms.
145  */
146 #ifdef CONFIG_64BIT
147 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
148 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
149 # define scale_load_down(w)					\
150 ({								\
151 	unsigned long __w = (w);				\
152 								\
153 	if (__w)						\
154 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
155 	__w;							\
156 })
157 #else
158 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
159 # define scale_load(w)		(w)
160 # define scale_load_down(w)	(w)
161 #endif
162 
163 /*
164  * Task weight (visible to users) and its load (invisible to users) have
165  * independent resolution, but they should be well calibrated. We use
166  * scale_load() and scale_load_down(w) to convert between them. The
167  * following must be true:
168  *
169  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
170  *
171  */
172 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
173 
174 /*
175  * Single value that decides SCHED_DEADLINE internal math precision.
176  * 10 -> just above 1us
177  * 9  -> just above 0.5us
178  */
179 #define DL_SCALE		10
180 
181 /*
182  * Single value that denotes runtime == period, ie unlimited time.
183  */
184 #define RUNTIME_INF		((u64)~0ULL)
185 
idle_policy(int policy)186 static inline int idle_policy(int policy)
187 {
188 	return policy == SCHED_IDLE;
189 }
190 
normal_policy(int policy)191 static inline int normal_policy(int policy)
192 {
193 #ifdef CONFIG_SCHED_CLASS_EXT
194 	if (policy == SCHED_EXT)
195 		return true;
196 #endif
197 	return policy == SCHED_NORMAL;
198 }
199 
fair_policy(int policy)200 static inline int fair_policy(int policy)
201 {
202 	return normal_policy(policy) || policy == SCHED_BATCH;
203 }
204 
rt_policy(int policy)205 static inline int rt_policy(int policy)
206 {
207 	return policy == SCHED_FIFO || policy == SCHED_RR;
208 }
209 
dl_policy(int policy)210 static inline int dl_policy(int policy)
211 {
212 	return policy == SCHED_DEADLINE;
213 }
214 
valid_policy(int policy)215 static inline bool valid_policy(int policy)
216 {
217 	return idle_policy(policy) || fair_policy(policy) ||
218 		rt_policy(policy) || dl_policy(policy);
219 }
220 
task_has_idle_policy(struct task_struct * p)221 static inline int task_has_idle_policy(struct task_struct *p)
222 {
223 	return idle_policy(p->policy);
224 }
225 
task_has_rt_policy(struct task_struct * p)226 static inline int task_has_rt_policy(struct task_struct *p)
227 {
228 	return rt_policy(p->policy);
229 }
230 
task_has_dl_policy(struct task_struct * p)231 static inline int task_has_dl_policy(struct task_struct *p)
232 {
233 	return dl_policy(p->policy);
234 }
235 
236 #define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
237 
update_avg(u64 * avg,u64 sample)238 static inline void update_avg(u64 *avg, u64 sample)
239 {
240 	s64 diff = sample - *avg;
241 
242 	*avg += diff / 8;
243 }
244 
245 /*
246  * Shifting a value by an exponent greater *or equal* to the size of said value
247  * is UB; cap at size-1.
248  */
249 #define shr_bound(val, shift)							\
250 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
251 
252 /*
253  * cgroup weight knobs should use the common MIN, DFL and MAX values which are
254  * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
255  * maps pretty well onto the shares value used by scheduler and the round-trip
256  * conversions preserve the original value over the entire range.
257  */
sched_weight_from_cgroup(unsigned long cgrp_weight)258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
259 {
260 	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
261 }
262 
sched_weight_to_cgroup(unsigned long weight)263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
264 {
265 	return clamp_t(unsigned long,
266 		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
267 		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
268 }
269 
270 /*
271  * !! For sched_setattr_nocheck() (kernel) only !!
272  *
273  * This is actually gross. :(
274  *
275  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
276  * tasks, but still be able to sleep. We need this on platforms that cannot
277  * atomically change clock frequency. Remove once fast switching will be
278  * available on such platforms.
279  *
280  * SUGOV stands for SchedUtil GOVernor.
281  */
282 #define SCHED_FLAG_SUGOV	0x10000000
283 
284 #define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
285 
dl_entity_is_special(const struct sched_dl_entity * dl_se)286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
287 {
288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
289 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
290 #else
291 	return false;
292 #endif
293 }
294 
295 /*
296  * Tells if entity @a should preempt entity @b.
297  */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
299 				     const struct sched_dl_entity *b)
300 {
301 	return dl_entity_is_special(a) ||
302 	       dl_time_before(a->deadline, b->deadline);
303 }
304 
305 /*
306  * This is the priority-queue data structure of the RT scheduling class:
307  */
308 struct rt_prio_array {
309 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
310 	struct list_head queue[MAX_RT_PRIO];
311 };
312 
313 struct rt_bandwidth {
314 	/* nests inside the rq lock: */
315 	raw_spinlock_t		rt_runtime_lock;
316 	ktime_t			rt_period;
317 	u64			rt_runtime;
318 	struct hrtimer		rt_period_timer;
319 	unsigned int		rt_period_active;
320 };
321 
dl_bandwidth_enabled(void)322 static inline int dl_bandwidth_enabled(void)
323 {
324 	return sysctl_sched_rt_runtime >= 0;
325 }
326 
327 /*
328  * To keep the bandwidth of -deadline tasks under control
329  * we need some place where:
330  *  - store the maximum -deadline bandwidth of each cpu;
331  *  - cache the fraction of bandwidth that is currently allocated in
332  *    each root domain;
333  *
334  * This is all done in the data structure below. It is similar to the
335  * one used for RT-throttling (rt_bandwidth), with the main difference
336  * that, since here we are only interested in admission control, we
337  * do not decrease any runtime while the group "executes", neither we
338  * need a timer to replenish it.
339  *
340  * With respect to SMP, bandwidth is given on a per root domain basis,
341  * meaning that:
342  *  - bw (< 100%) is the deadline bandwidth of each CPU;
343  *  - total_bw is the currently allocated bandwidth in each root domain;
344  */
345 struct dl_bw {
346 	raw_spinlock_t		lock;
347 	u64			bw;
348 	u64			total_bw;
349 };
350 
351 extern void init_dl_bw(struct dl_bw *dl_b);
352 extern int  sched_dl_global_validate(void);
353 extern void sched_dl_do_global(void);
354 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
357 extern bool __checkparam_dl(const struct sched_attr *attr);
358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
359 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
360 extern int  dl_bw_deactivate(int cpu);
361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
362 /*
363  * SCHED_DEADLINE supports servers (nested scheduling) with the following
364  * interface:
365  *
366  *   dl_se::rq -- runqueue we belong to.
367  *
368  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
369  *                           returns NULL.
370  *
371  *   dl_server_update() -- called from update_curr_common(), propagates runtime
372  *                         to the server.
373  *
374  *   dl_server_start() -- start the server when it has tasks; it will stop
375  *			  automatically when there are no more tasks, per
376  *			  dl_se::server_pick() returning NULL.
377  *
378  *   dl_server_stop() -- (force) stop the server; use when updating
379  *                       parameters.
380  *
381  *   dl_server_init() -- initializes the server.
382  *
383  * When started the dl_server will (per dl_defer) schedule a timer for its
384  * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a
385  * server will run at the very end of its period.
386  *
387  * This is done such that any runtime from the target class can be accounted
388  * against the server -- through dl_server_update() above -- such that when it
389  * becomes time to run, it might already be out of runtime and get deferred
390  * until the next period. In this case dl_server_timer() will alternate
391  * between defer and replenish but never actually enqueue the server.
392  *
393  * Only when the target class does not manage to exhaust the server's runtime
394  * (there's actualy starvation in the given period), will the dl_server get on
395  * the runqueue. Once queued it will pick tasks from the target class and run
396  * them until either its runtime is exhaused, at which point its back to
397  * dl_server_timer, or until there are no more tasks to run, at which point
398  * the dl_server stops itself.
399  *
400  * By stopping at this point the dl_server retains bandwidth, which, if a new
401  * task wakes up imminently (starting the server again), can be used --
402  * subject to CBS wakeup rules -- without having to wait for the next period.
403  *
404  * Additionally, because of the dl_defer behaviour the start/stop behaviour is
405  * naturally thottled to once per period, avoiding high context switch
406  * workloads from spamming the hrtimer program/cancel paths.
407  */
408 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
409 extern void dl_server_start(struct sched_dl_entity *dl_se);
410 extern void dl_server_stop(struct sched_dl_entity *dl_se);
411 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
412 		    dl_server_pick_f pick_task);
413 extern void sched_init_dl_servers(void);
414 
415 extern void dl_server_update_idle_time(struct rq *rq,
416 		    struct task_struct *p);
417 extern void fair_server_init(struct rq *rq);
418 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
419 extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
420 		    u64 runtime, u64 period, bool init);
421 
dl_server_active(struct sched_dl_entity * dl_se)422 static inline bool dl_server_active(struct sched_dl_entity *dl_se)
423 {
424 	return dl_se->dl_server_active;
425 }
426 
427 #ifdef CONFIG_CGROUP_SCHED
428 
429 extern struct list_head task_groups;
430 
431 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
432 extern const u64 max_bw_quota_period_us;
433 
434 /*
435  * default period for group bandwidth.
436  * default: 0.1s, units: microseconds
437  */
default_bw_period_us(void)438 static inline u64 default_bw_period_us(void)
439 {
440 	return 100000ULL;
441 }
442 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */
443 
444 struct cfs_bandwidth {
445 #ifdef CONFIG_CFS_BANDWIDTH
446 	raw_spinlock_t		lock;
447 	ktime_t			period;
448 	u64			quota;
449 	u64			runtime;
450 	u64			burst;
451 	u64			runtime_snap;
452 	s64			hierarchical_quota;
453 
454 	u8			idle;
455 	u8			period_active;
456 	u8			slack_started;
457 	struct hrtimer		period_timer;
458 	struct hrtimer		slack_timer;
459 	struct list_head	throttled_cfs_rq;
460 
461 	/* Statistics: */
462 	int			nr_periods;
463 	int			nr_throttled;
464 	int			nr_burst;
465 	u64			throttled_time;
466 	u64			burst_time;
467 #endif /* CONFIG_CFS_BANDWIDTH */
468 };
469 
470 /* Task group related information */
471 struct task_group {
472 	struct cgroup_subsys_state css;
473 
474 #ifdef CONFIG_GROUP_SCHED_WEIGHT
475 	/* A positive value indicates that this is a SCHED_IDLE group. */
476 	int			idle;
477 #endif
478 
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 	/* schedulable entities of this group on each CPU */
481 	struct sched_entity	**se;
482 	/* runqueue "owned" by this group on each CPU */
483 	struct cfs_rq		**cfs_rq;
484 	unsigned long		shares;
485 	/*
486 	 * load_avg can be heavily contended at clock tick time, so put
487 	 * it in its own cache-line separated from the fields above which
488 	 * will also be accessed at each tick.
489 	 */
490 	atomic_long_t		load_avg ____cacheline_aligned;
491 #endif /* CONFIG_FAIR_GROUP_SCHED */
492 
493 #ifdef CONFIG_RT_GROUP_SCHED
494 	struct sched_rt_entity	**rt_se;
495 	struct rt_rq		**rt_rq;
496 
497 	struct rt_bandwidth	rt_bandwidth;
498 #endif
499 
500 	struct scx_task_group	scx;
501 
502 	struct rcu_head		rcu;
503 	struct list_head	list;
504 
505 	struct task_group	*parent;
506 	struct list_head	siblings;
507 	struct list_head	children;
508 
509 #ifdef CONFIG_SCHED_AUTOGROUP
510 	struct autogroup	*autogroup;
511 #endif
512 
513 	struct cfs_bandwidth	cfs_bandwidth;
514 
515 #ifdef CONFIG_UCLAMP_TASK_GROUP
516 	/* The two decimal precision [%] value requested from user-space */
517 	unsigned int		uclamp_pct[UCLAMP_CNT];
518 	/* Clamp values requested for a task group */
519 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
520 	/* Effective clamp values used for a task group */
521 	struct uclamp_se	uclamp[UCLAMP_CNT];
522 #endif
523 
524 };
525 
526 #ifdef CONFIG_GROUP_SCHED_WEIGHT
527 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
528 
529 /*
530  * A weight of 0 or 1 can cause arithmetics problems.
531  * A weight of a cfs_rq is the sum of weights of which entities
532  * are queued on this cfs_rq, so a weight of a entity should not be
533  * too large, so as the shares value of a task group.
534  * (The default weight is 1024 - so there's no practical
535  *  limitation from this.)
536  */
537 #define MIN_SHARES		(1UL <<  1)
538 #define MAX_SHARES		(1UL << 18)
539 #endif
540 
541 typedef int (*tg_visitor)(struct task_group *, void *);
542 
543 extern int walk_tg_tree_from(struct task_group *from,
544 			     tg_visitor down, tg_visitor up, void *data);
545 
546 /*
547  * Iterate the full tree, calling @down when first entering a node and @up when
548  * leaving it for the final time.
549  *
550  * Caller must hold rcu_lock or sufficient equivalent.
551  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)552 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
553 {
554 	return walk_tg_tree_from(&root_task_group, down, up, data);
555 }
556 
css_tg(struct cgroup_subsys_state * css)557 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
558 {
559 	return css ? container_of(css, struct task_group, css) : NULL;
560 }
561 
562 extern int tg_nop(struct task_group *tg, void *data);
563 
564 #ifdef CONFIG_FAIR_GROUP_SCHED
565 extern void free_fair_sched_group(struct task_group *tg);
566 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
567 extern void online_fair_sched_group(struct task_group *tg);
568 extern void unregister_fair_sched_group(struct task_group *tg);
569 #else /* !CONFIG_FAIR_GROUP_SCHED: */
free_fair_sched_group(struct task_group * tg)570 static inline void free_fair_sched_group(struct task_group *tg) { }
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)571 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
572 {
573        return 1;
574 }
online_fair_sched_group(struct task_group * tg)575 static inline void online_fair_sched_group(struct task_group *tg) { }
unregister_fair_sched_group(struct task_group * tg)576 static inline void unregister_fair_sched_group(struct task_group *tg) { }
577 #endif /* !CONFIG_FAIR_GROUP_SCHED */
578 
579 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
580 			struct sched_entity *se, int cpu,
581 			struct sched_entity *parent);
582 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
583 
584 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
585 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
586 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
587 extern bool cfs_task_bw_constrained(struct task_struct *p);
588 
589 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
590 		struct sched_rt_entity *rt_se, int cpu,
591 		struct sched_rt_entity *parent);
592 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
593 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
594 extern long sched_group_rt_runtime(struct task_group *tg);
595 extern long sched_group_rt_period(struct task_group *tg);
596 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
597 
598 extern struct task_group *sched_create_group(struct task_group *parent);
599 extern void sched_online_group(struct task_group *tg,
600 			       struct task_group *parent);
601 extern void sched_destroy_group(struct task_group *tg);
602 extern void sched_release_group(struct task_group *tg);
603 
604 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup);
605 
606 #ifdef CONFIG_FAIR_GROUP_SCHED
607 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
608 
609 extern int sched_group_set_idle(struct task_group *tg, long idle);
610 
611 extern void set_task_rq_fair(struct sched_entity *se,
612 			     struct cfs_rq *prev, struct cfs_rq *next);
613 #else /* !CONFIG_FAIR_GROUP_SCHED: */
sched_group_set_shares(struct task_group * tg,unsigned long shares)614 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
sched_group_set_idle(struct task_group * tg,long idle)615 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
616 #endif /* !CONFIG_FAIR_GROUP_SCHED */
617 
618 #else /* !CONFIG_CGROUP_SCHED: */
619 
620 struct cfs_bandwidth { };
621 
cfs_task_bw_constrained(struct task_struct * p)622 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
623 
624 #endif /* !CONFIG_CGROUP_SCHED */
625 
626 extern void unregister_rt_sched_group(struct task_group *tg);
627 extern void free_rt_sched_group(struct task_group *tg);
628 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
629 
630 /*
631  * u64_u32_load/u64_u32_store
632  *
633  * Use a copy of a u64 value to protect against data race. This is only
634  * applicable for 32-bits architectures.
635  */
636 #ifdef CONFIG_64BIT
637 # define u64_u32_load_copy(var, copy)		var
638 # define u64_u32_store_copy(var, copy, val)	(var = val)
639 #else
640 # define u64_u32_load_copy(var, copy)					\
641 ({									\
642 	u64 __val, __val_copy;						\
643 	do {								\
644 		__val_copy = copy;					\
645 		/*							\
646 		 * paired with u64_u32_store_copy(), ordering access	\
647 		 * to var and copy.					\
648 		 */							\
649 		smp_rmb();						\
650 		__val = var;						\
651 	} while (__val != __val_copy);					\
652 	__val;								\
653 })
654 # define u64_u32_store_copy(var, copy, val)				\
655 do {									\
656 	typeof(val) __val = (val);					\
657 	var = __val;							\
658 	/*								\
659 	 * paired with u64_u32_load_copy(), ordering access to var and	\
660 	 * copy.							\
661 	 */								\
662 	smp_wmb();							\
663 	copy = __val;							\
664 } while (0)
665 #endif
666 # define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
667 # define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
668 
669 struct balance_callback {
670 	struct balance_callback *next;
671 	void (*func)(struct rq *rq);
672 };
673 
674 /* CFS-related fields in a runqueue */
675 struct cfs_rq {
676 	struct load_weight	load;
677 	unsigned int		nr_queued;
678 	unsigned int		h_nr_queued;       /* SCHED_{NORMAL,BATCH,IDLE} */
679 	unsigned int		h_nr_runnable;     /* SCHED_{NORMAL,BATCH,IDLE} */
680 	unsigned int		h_nr_idle; /* SCHED_IDLE */
681 
682 	s64			avg_vruntime;
683 	u64			avg_load;
684 
685 	u64			min_vruntime;
686 #ifdef CONFIG_SCHED_CORE
687 	unsigned int		forceidle_seq;
688 	u64			min_vruntime_fi;
689 #endif
690 
691 	struct rb_root_cached	tasks_timeline;
692 
693 	/*
694 	 * 'curr' points to currently running entity on this cfs_rq.
695 	 * It is set to NULL otherwise (i.e when none are currently running).
696 	 */
697 	struct sched_entity	*curr;
698 	struct sched_entity	*next;
699 
700 	/*
701 	 * CFS load tracking
702 	 */
703 	struct sched_avg	avg;
704 #ifndef CONFIG_64BIT
705 	u64			last_update_time_copy;
706 #endif
707 	struct {
708 		raw_spinlock_t	lock ____cacheline_aligned;
709 		int		nr;
710 		unsigned long	load_avg;
711 		unsigned long	util_avg;
712 		unsigned long	runnable_avg;
713 	} removed;
714 
715 #ifdef CONFIG_FAIR_GROUP_SCHED
716 	u64			last_update_tg_load_avg;
717 	unsigned long		tg_load_avg_contrib;
718 	long			propagate;
719 	long			prop_runnable_sum;
720 
721 	/*
722 	 *   h_load = weight * f(tg)
723 	 *
724 	 * Where f(tg) is the recursive weight fraction assigned to
725 	 * this group.
726 	 */
727 	unsigned long		h_load;
728 	u64			last_h_load_update;
729 	struct sched_entity	*h_load_next;
730 #endif /* CONFIG_FAIR_GROUP_SCHED */
731 
732 #ifdef CONFIG_FAIR_GROUP_SCHED
733 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
734 
735 	/*
736 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
737 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
738 	 * (like users, containers etc.)
739 	 *
740 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
741 	 * This list is used during load balance.
742 	 */
743 	int			on_list;
744 	struct list_head	leaf_cfs_rq_list;
745 	struct task_group	*tg;	/* group that "owns" this runqueue */
746 
747 	/* Locally cached copy of our task_group's idle value */
748 	int			idle;
749 
750 #ifdef CONFIG_CFS_BANDWIDTH
751 	int			runtime_enabled;
752 	s64			runtime_remaining;
753 
754 	u64			throttled_pelt_idle;
755 #ifndef CONFIG_64BIT
756 	u64                     throttled_pelt_idle_copy;
757 #endif
758 	u64			throttled_clock;
759 	u64			throttled_clock_pelt;
760 	u64			throttled_clock_pelt_time;
761 	u64			throttled_clock_self;
762 	u64			throttled_clock_self_time;
763 	bool			throttled:1;
764 	bool			pelt_clock_throttled:1;
765 	int			throttle_count;
766 	struct list_head	throttled_list;
767 	struct list_head	throttled_csd_list;
768 	struct list_head        throttled_limbo_list;
769 #endif /* CONFIG_CFS_BANDWIDTH */
770 #endif /* CONFIG_FAIR_GROUP_SCHED */
771 };
772 
773 #ifdef CONFIG_SCHED_CLASS_EXT
774 /* scx_rq->flags, protected by the rq lock */
775 enum scx_rq_flags {
776 	/*
777 	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
778 	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
779 	 * only while the BPF scheduler considers the CPU to be online.
780 	 */
781 	SCX_RQ_ONLINE		= 1 << 0,
782 	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
783 	SCX_RQ_BAL_PENDING	= 1 << 2, /* balance hasn't run yet */
784 	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
785 	SCX_RQ_BYPASSING	= 1 << 4,
786 	SCX_RQ_CLK_VALID	= 1 << 5, /* RQ clock is fresh and valid */
787 
788 	SCX_RQ_IN_WAKEUP	= 1 << 16,
789 	SCX_RQ_IN_BALANCE	= 1 << 17,
790 };
791 
792 struct scx_rq {
793 	struct scx_dispatch_q	local_dsq;
794 	struct list_head	runnable_list;		/* runnable tasks on this rq */
795 	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
796 	unsigned long		ops_qseq;
797 	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
798 	u32			nr_running;
799 	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
800 	bool			cpu_released;
801 	u32			flags;
802 	u64			clock;			/* current per-rq clock -- see scx_bpf_now() */
803 	cpumask_var_t		cpus_to_kick;
804 	cpumask_var_t		cpus_to_kick_if_idle;
805 	cpumask_var_t		cpus_to_preempt;
806 	cpumask_var_t		cpus_to_wait;
807 	unsigned long		pnt_seq;
808 	struct balance_callback	deferred_bal_cb;
809 	struct irq_work		deferred_irq_work;
810 	struct irq_work		kick_cpus_irq_work;
811 };
812 #endif /* CONFIG_SCHED_CLASS_EXT */
813 
rt_bandwidth_enabled(void)814 static inline int rt_bandwidth_enabled(void)
815 {
816 	return sysctl_sched_rt_runtime >= 0;
817 }
818 
819 /* RT IPI pull logic requires IRQ_WORK */
820 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
821 # define HAVE_RT_PUSH_IPI
822 #endif
823 
824 /* Real-Time classes' related field in a runqueue: */
825 struct rt_rq {
826 	struct rt_prio_array	active;
827 	unsigned int		rt_nr_running;
828 	unsigned int		rr_nr_running;
829 	struct {
830 		int		curr; /* highest queued rt task prio */
831 		int		next; /* next highest */
832 	} highest_prio;
833 	bool			overloaded;
834 	struct plist_head	pushable_tasks;
835 
836 	int			rt_queued;
837 
838 #ifdef CONFIG_RT_GROUP_SCHED
839 	int			rt_throttled;
840 	u64			rt_time; /* consumed RT time, goes up in update_curr_rt */
841 	u64			rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */
842 	/* Nests inside the rq lock: */
843 	raw_spinlock_t		rt_runtime_lock;
844 
845 	unsigned int		rt_nr_boosted;
846 
847 	struct rq		*rq; /* this is always top-level rq, cache? */
848 #endif
849 #ifdef CONFIG_CGROUP_SCHED
850 	struct task_group	*tg; /* this tg has "this" rt_rq on given CPU for runnable entities */
851 #endif
852 };
853 
rt_rq_is_runnable(struct rt_rq * rt_rq)854 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
855 {
856 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
857 }
858 
859 /* Deadline class' related fields in a runqueue */
860 struct dl_rq {
861 	/* runqueue is an rbtree, ordered by deadline */
862 	struct rb_root_cached	root;
863 
864 	unsigned int		dl_nr_running;
865 
866 	/*
867 	 * Deadline values of the currently executing and the
868 	 * earliest ready task on this rq. Caching these facilitates
869 	 * the decision whether or not a ready but not running task
870 	 * should migrate somewhere else.
871 	 */
872 	struct {
873 		u64		curr;
874 		u64		next;
875 	} earliest_dl;
876 
877 	bool			overloaded;
878 
879 	/*
880 	 * Tasks on this rq that can be pushed away. They are kept in
881 	 * an rb-tree, ordered by tasks' deadlines, with caching
882 	 * of the leftmost (earliest deadline) element.
883 	 */
884 	struct rb_root_cached	pushable_dl_tasks_root;
885 
886 	/*
887 	 * "Active utilization" for this runqueue: increased when a
888 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
889 	 * task blocks
890 	 */
891 	u64			running_bw;
892 
893 	/*
894 	 * Utilization of the tasks "assigned" to this runqueue (including
895 	 * the tasks that are in runqueue and the tasks that executed on this
896 	 * CPU and blocked). Increased when a task moves to this runqueue, and
897 	 * decreased when the task moves away (migrates, changes scheduling
898 	 * policy, or terminates).
899 	 * This is needed to compute the "inactive utilization" for the
900 	 * runqueue (inactive utilization = this_bw - running_bw).
901 	 */
902 	u64			this_bw;
903 	u64			extra_bw;
904 
905 	/*
906 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
907 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
908 	 */
909 	u64			max_bw;
910 
911 	/*
912 	 * Inverse of the fraction of CPU utilization that can be reclaimed
913 	 * by the GRUB algorithm.
914 	 */
915 	u64			bw_ratio;
916 };
917 
918 #ifdef CONFIG_FAIR_GROUP_SCHED
919 
920 /* An entity is a task if it doesn't "own" a runqueue */
921 #define entity_is_task(se)	(!se->my_q)
922 
se_update_runnable(struct sched_entity * se)923 static inline void se_update_runnable(struct sched_entity *se)
924 {
925 	if (!entity_is_task(se))
926 		se->runnable_weight = se->my_q->h_nr_runnable;
927 }
928 
se_runnable(struct sched_entity * se)929 static inline long se_runnable(struct sched_entity *se)
930 {
931 	if (se->sched_delayed)
932 		return false;
933 
934 	if (entity_is_task(se))
935 		return !!se->on_rq;
936 	else
937 		return se->runnable_weight;
938 }
939 
940 #else /* !CONFIG_FAIR_GROUP_SCHED: */
941 
942 #define entity_is_task(se)	1
943 
se_update_runnable(struct sched_entity * se)944 static inline void se_update_runnable(struct sched_entity *se) { }
945 
se_runnable(struct sched_entity * se)946 static inline long se_runnable(struct sched_entity *se)
947 {
948 	if (se->sched_delayed)
949 		return false;
950 
951 	return !!se->on_rq;
952 }
953 
954 #endif /* !CONFIG_FAIR_GROUP_SCHED */
955 
956 /*
957  * XXX we want to get rid of these helpers and use the full load resolution.
958  */
se_weight(struct sched_entity * se)959 static inline long se_weight(struct sched_entity *se)
960 {
961 	return scale_load_down(se->load.weight);
962 }
963 
964 
sched_asym_prefer(int a,int b)965 static inline bool sched_asym_prefer(int a, int b)
966 {
967 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
968 }
969 
970 struct perf_domain {
971 	struct em_perf_domain *em_pd;
972 	struct perf_domain *next;
973 	struct rcu_head rcu;
974 };
975 
976 /*
977  * We add the notion of a root-domain which will be used to define per-domain
978  * variables. Each exclusive cpuset essentially defines an island domain by
979  * fully partitioning the member CPUs from any other cpuset. Whenever a new
980  * exclusive cpuset is created, we also create and attach a new root-domain
981  * object.
982  *
983  */
984 struct root_domain {
985 	atomic_t		refcount;
986 	atomic_t		rto_count;
987 	struct rcu_head		rcu;
988 	cpumask_var_t		span;
989 	cpumask_var_t		online;
990 
991 	/*
992 	 * Indicate pullable load on at least one CPU, e.g:
993 	 * - More than one runnable task
994 	 * - Running task is misfit
995 	 */
996 	bool			overloaded;
997 
998 	/* Indicate one or more CPUs over-utilized (tipping point) */
999 	bool			overutilized;
1000 
1001 	/*
1002 	 * The bit corresponding to a CPU gets set here if such CPU has more
1003 	 * than one runnable -deadline task (as it is below for RT tasks).
1004 	 */
1005 	cpumask_var_t		dlo_mask;
1006 	atomic_t		dlo_count;
1007 	struct dl_bw		dl_bw;
1008 	struct cpudl		cpudl;
1009 
1010 	/*
1011 	 * Indicate whether a root_domain's dl_bw has been checked or
1012 	 * updated. It's monotonously increasing value.
1013 	 *
1014 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
1015 	 * that u64 is 'big enough'. So that shouldn't be a concern.
1016 	 */
1017 	u64 visit_cookie;
1018 
1019 #ifdef HAVE_RT_PUSH_IPI
1020 	/*
1021 	 * For IPI pull requests, loop across the rto_mask.
1022 	 */
1023 	struct irq_work		rto_push_work;
1024 	raw_spinlock_t		rto_lock;
1025 	/* These are only updated and read within rto_lock */
1026 	int			rto_loop;
1027 	int			rto_cpu;
1028 	/* These atomics are updated outside of a lock */
1029 	atomic_t		rto_loop_next;
1030 	atomic_t		rto_loop_start;
1031 #endif /* HAVE_RT_PUSH_IPI */
1032 	/*
1033 	 * The "RT overload" flag: it gets set if a CPU has more than
1034 	 * one runnable RT task.
1035 	 */
1036 	cpumask_var_t		rto_mask;
1037 	struct cpupri		cpupri;
1038 
1039 	/*
1040 	 * NULL-terminated list of performance domains intersecting with the
1041 	 * CPUs of the rd. Protected by RCU.
1042 	 */
1043 	struct perf_domain __rcu *pd;
1044 };
1045 
1046 extern void init_defrootdomain(void);
1047 extern int sched_init_domains(const struct cpumask *cpu_map);
1048 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1049 extern void sched_get_rd(struct root_domain *rd);
1050 extern void sched_put_rd(struct root_domain *rd);
1051 
get_rd_overloaded(struct root_domain * rd)1052 static inline int get_rd_overloaded(struct root_domain *rd)
1053 {
1054 	return READ_ONCE(rd->overloaded);
1055 }
1056 
set_rd_overloaded(struct root_domain * rd,int status)1057 static inline void set_rd_overloaded(struct root_domain *rd, int status)
1058 {
1059 	if (get_rd_overloaded(rd) != status)
1060 		WRITE_ONCE(rd->overloaded, status);
1061 }
1062 
1063 #ifdef HAVE_RT_PUSH_IPI
1064 extern void rto_push_irq_work_func(struct irq_work *work);
1065 #endif
1066 
1067 #ifdef CONFIG_UCLAMP_TASK
1068 /*
1069  * struct uclamp_bucket - Utilization clamp bucket
1070  * @value: utilization clamp value for tasks on this clamp bucket
1071  * @tasks: number of RUNNABLE tasks on this clamp bucket
1072  *
1073  * Keep track of how many tasks are RUNNABLE for a given utilization
1074  * clamp value.
1075  */
1076 struct uclamp_bucket {
1077 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1078 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1079 };
1080 
1081 /*
1082  * struct uclamp_rq - rq's utilization clamp
1083  * @value: currently active clamp values for a rq
1084  * @bucket: utilization clamp buckets affecting a rq
1085  *
1086  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1087  * A clamp value is affecting a rq when there is at least one task RUNNABLE
1088  * (or actually running) with that value.
1089  *
1090  * There are up to UCLAMP_CNT possible different clamp values, currently there
1091  * are only two: minimum utilization and maximum utilization.
1092  *
1093  * All utilization clamping values are MAX aggregated, since:
1094  * - for util_min: we want to run the CPU at least at the max of the minimum
1095  *   utilization required by its currently RUNNABLE tasks.
1096  * - for util_max: we want to allow the CPU to run up to the max of the
1097  *   maximum utilization allowed by its currently RUNNABLE tasks.
1098  *
1099  * Since on each system we expect only a limited number of different
1100  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1101  * the metrics required to compute all the per-rq utilization clamp values.
1102  */
1103 struct uclamp_rq {
1104 	unsigned int value;
1105 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1106 };
1107 
1108 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1109 #endif /* CONFIG_UCLAMP_TASK */
1110 
1111 /*
1112  * This is the main, per-CPU runqueue data structure.
1113  *
1114  * Locking rule: those places that want to lock multiple runqueues
1115  * (such as the load balancing or the thread migration code), lock
1116  * acquire operations must be ordered by ascending &runqueue.
1117  */
1118 struct rq {
1119 	/* runqueue lock: */
1120 	raw_spinlock_t		__lock;
1121 
1122 	unsigned int		nr_running;
1123 #ifdef CONFIG_NUMA_BALANCING
1124 	unsigned int		nr_numa_running;
1125 	unsigned int		nr_preferred_running;
1126 	unsigned int		numa_migrate_on;
1127 #endif
1128 #ifdef CONFIG_NO_HZ_COMMON
1129 	unsigned long		last_blocked_load_update_tick;
1130 	unsigned int		has_blocked_load;
1131 	call_single_data_t	nohz_csd;
1132 	unsigned int		nohz_tick_stopped;
1133 	atomic_t		nohz_flags;
1134 #endif /* CONFIG_NO_HZ_COMMON */
1135 
1136 	unsigned int		ttwu_pending;
1137 	u64			nr_switches;
1138 
1139 #ifdef CONFIG_UCLAMP_TASK
1140 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1141 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1142 	unsigned int		uclamp_flags;
1143 #define UCLAMP_FLAG_IDLE 0x01
1144 #endif
1145 
1146 	struct cfs_rq		cfs;
1147 	struct rt_rq		rt;
1148 	struct dl_rq		dl;
1149 #ifdef CONFIG_SCHED_CLASS_EXT
1150 	struct scx_rq		scx;
1151 #endif
1152 
1153 	struct sched_dl_entity	fair_server;
1154 
1155 #ifdef CONFIG_FAIR_GROUP_SCHED
1156 	/* list of leaf cfs_rq on this CPU: */
1157 	struct list_head	leaf_cfs_rq_list;
1158 	struct list_head	*tmp_alone_branch;
1159 #endif /* CONFIG_FAIR_GROUP_SCHED */
1160 
1161 	/*
1162 	 * This is part of a global counter where only the total sum
1163 	 * over all CPUs matters. A task can increase this counter on
1164 	 * one CPU and if it got migrated afterwards it may decrease
1165 	 * it on another CPU. Always updated under the runqueue lock:
1166 	 */
1167 	unsigned long 		nr_uninterruptible;
1168 
1169 #ifdef CONFIG_SCHED_PROXY_EXEC
1170 	struct task_struct __rcu	*donor;  /* Scheduling context */
1171 	struct task_struct __rcu	*curr;   /* Execution context */
1172 #else
1173 	union {
1174 		struct task_struct __rcu *donor; /* Scheduler context */
1175 		struct task_struct __rcu *curr;  /* Execution context */
1176 	};
1177 #endif
1178 	struct sched_dl_entity	*dl_server;
1179 	struct task_struct	*idle;
1180 	struct task_struct	*stop;
1181 	unsigned long		next_balance;
1182 	struct mm_struct	*prev_mm;
1183 
1184 	unsigned int		clock_update_flags;
1185 	u64			clock;
1186 	/* Ensure that all clocks are in the same cache line */
1187 	u64			clock_task ____cacheline_aligned;
1188 	u64			clock_pelt;
1189 	unsigned long		lost_idle_time;
1190 	u64			clock_pelt_idle;
1191 	u64			clock_idle;
1192 #ifndef CONFIG_64BIT
1193 	u64			clock_pelt_idle_copy;
1194 	u64			clock_idle_copy;
1195 #endif
1196 
1197 	atomic_t		nr_iowait;
1198 
1199 	u64 last_seen_need_resched_ns;
1200 	int ticks_without_resched;
1201 
1202 #ifdef CONFIG_MEMBARRIER
1203 	int membarrier_state;
1204 #endif
1205 
1206 	struct root_domain		*rd;
1207 	struct sched_domain __rcu	*sd;
1208 
1209 	unsigned long		cpu_capacity;
1210 
1211 	struct balance_callback *balance_callback;
1212 
1213 	unsigned char		nohz_idle_balance;
1214 	unsigned char		idle_balance;
1215 
1216 	unsigned long		misfit_task_load;
1217 
1218 	/* For active balancing */
1219 	int			active_balance;
1220 	int			push_cpu;
1221 	struct cpu_stop_work	active_balance_work;
1222 
1223 	/* CPU of this runqueue: */
1224 	int			cpu;
1225 	int			online;
1226 
1227 	struct list_head cfs_tasks;
1228 
1229 	struct sched_avg	avg_rt;
1230 	struct sched_avg	avg_dl;
1231 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1232 	struct sched_avg	avg_irq;
1233 #endif
1234 #ifdef CONFIG_SCHED_HW_PRESSURE
1235 	struct sched_avg	avg_hw;
1236 #endif
1237 	u64			idle_stamp;
1238 	u64			avg_idle;
1239 
1240 	/* This is used to determine avg_idle's max value */
1241 	u64			max_idle_balance_cost;
1242 
1243 #ifdef CONFIG_HOTPLUG_CPU
1244 	struct rcuwait		hotplug_wait;
1245 #endif
1246 
1247 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1248 	u64			prev_irq_time;
1249 	u64			psi_irq_time;
1250 #endif
1251 #ifdef CONFIG_PARAVIRT
1252 	u64			prev_steal_time;
1253 #endif
1254 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1255 	u64			prev_steal_time_rq;
1256 #endif
1257 
1258 	/* calc_load related fields */
1259 	unsigned long		calc_load_update;
1260 	long			calc_load_active;
1261 
1262 #ifdef CONFIG_SCHED_HRTICK
1263 	call_single_data_t	hrtick_csd;
1264 	struct hrtimer		hrtick_timer;
1265 	ktime_t			hrtick_time;
1266 #endif
1267 
1268 #ifdef CONFIG_SCHEDSTATS
1269 	/* latency stats */
1270 	struct sched_info	rq_sched_info;
1271 	unsigned long long	rq_cpu_time;
1272 
1273 	/* sys_sched_yield() stats */
1274 	unsigned int		yld_count;
1275 
1276 	/* schedule() stats */
1277 	unsigned int		sched_count;
1278 	unsigned int		sched_goidle;
1279 
1280 	/* try_to_wake_up() stats */
1281 	unsigned int		ttwu_count;
1282 	unsigned int		ttwu_local;
1283 #endif
1284 
1285 #ifdef CONFIG_CPU_IDLE
1286 	/* Must be inspected within a RCU lock section */
1287 	struct cpuidle_state	*idle_state;
1288 #endif
1289 
1290 	unsigned int		nr_pinned;
1291 	unsigned int		push_busy;
1292 	struct cpu_stop_work	push_work;
1293 
1294 #ifdef CONFIG_SCHED_CORE
1295 	/* per rq */
1296 	struct rq		*core;
1297 	struct task_struct	*core_pick;
1298 	struct sched_dl_entity	*core_dl_server;
1299 	unsigned int		core_enabled;
1300 	unsigned int		core_sched_seq;
1301 	struct rb_root		core_tree;
1302 
1303 	/* shared state -- careful with sched_core_cpu_deactivate() */
1304 	unsigned int		core_task_seq;
1305 	unsigned int		core_pick_seq;
1306 	unsigned long		core_cookie;
1307 	unsigned int		core_forceidle_count;
1308 	unsigned int		core_forceidle_seq;
1309 	unsigned int		core_forceidle_occupation;
1310 	u64			core_forceidle_start;
1311 #endif /* CONFIG_SCHED_CORE */
1312 
1313 	/* Scratch cpumask to be temporarily used under rq_lock */
1314 	cpumask_var_t		scratch_mask;
1315 
1316 #ifdef CONFIG_CFS_BANDWIDTH
1317 	call_single_data_t	cfsb_csd;
1318 	struct list_head	cfsb_csd_list;
1319 #endif
1320 };
1321 
1322 #ifdef CONFIG_FAIR_GROUP_SCHED
1323 
1324 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1325 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1326 {
1327 	return cfs_rq->rq;
1328 }
1329 
1330 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1331 
rq_of(struct cfs_rq * cfs_rq)1332 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1333 {
1334 	return container_of(cfs_rq, struct rq, cfs);
1335 }
1336 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1337 
cpu_of(struct rq * rq)1338 static inline int cpu_of(struct rq *rq)
1339 {
1340 	return rq->cpu;
1341 }
1342 
1343 #define MDF_PUSH		0x01
1344 
is_migration_disabled(struct task_struct * p)1345 static inline bool is_migration_disabled(struct task_struct *p)
1346 {
1347 	return p->migration_disabled;
1348 }
1349 
1350 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1351 
1352 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1353 #define this_rq()		this_cpu_ptr(&runqueues)
1354 #define task_rq(p)		cpu_rq(task_cpu(p))
1355 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1356 #define raw_rq()		raw_cpu_ptr(&runqueues)
1357 
1358 #ifdef CONFIG_SCHED_PROXY_EXEC
rq_set_donor(struct rq * rq,struct task_struct * t)1359 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1360 {
1361 	rcu_assign_pointer(rq->donor, t);
1362 }
1363 #else
rq_set_donor(struct rq * rq,struct task_struct * t)1364 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1365 {
1366 	/* Do nothing */
1367 }
1368 #endif
1369 
1370 #ifdef CONFIG_SCHED_CORE
1371 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1372 
1373 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1374 
sched_core_enabled(struct rq * rq)1375 static inline bool sched_core_enabled(struct rq *rq)
1376 {
1377 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1378 }
1379 
sched_core_disabled(void)1380 static inline bool sched_core_disabled(void)
1381 {
1382 	return !static_branch_unlikely(&__sched_core_enabled);
1383 }
1384 
1385 /*
1386  * Be careful with this function; not for general use. The return value isn't
1387  * stable unless you actually hold a relevant rq->__lock.
1388  */
rq_lockp(struct rq * rq)1389 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1390 {
1391 	if (sched_core_enabled(rq))
1392 		return &rq->core->__lock;
1393 
1394 	return &rq->__lock;
1395 }
1396 
__rq_lockp(struct rq * rq)1397 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1398 {
1399 	if (rq->core_enabled)
1400 		return &rq->core->__lock;
1401 
1402 	return &rq->__lock;
1403 }
1404 
1405 extern bool
1406 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1407 
1408 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1409 
1410 /*
1411  * Helpers to check if the CPU's core cookie matches with the task's cookie
1412  * when core scheduling is enabled.
1413  * A special case is that the task's cookie always matches with CPU's core
1414  * cookie if the CPU is in an idle core.
1415  */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1416 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1417 {
1418 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1419 	if (!sched_core_enabled(rq))
1420 		return true;
1421 
1422 	return rq->core->core_cookie == p->core_cookie;
1423 }
1424 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1425 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1426 {
1427 	bool idle_core = true;
1428 	int cpu;
1429 
1430 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1431 	if (!sched_core_enabled(rq))
1432 		return true;
1433 
1434 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1435 		if (!available_idle_cpu(cpu)) {
1436 			idle_core = false;
1437 			break;
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * A CPU in an idle core is always the best choice for tasks with
1443 	 * cookies.
1444 	 */
1445 	return idle_core || rq->core->core_cookie == p->core_cookie;
1446 }
1447 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1448 static inline bool sched_group_cookie_match(struct rq *rq,
1449 					    struct task_struct *p,
1450 					    struct sched_group *group)
1451 {
1452 	int cpu;
1453 
1454 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1455 	if (!sched_core_enabled(rq))
1456 		return true;
1457 
1458 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1459 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1460 			return true;
1461 	}
1462 	return false;
1463 }
1464 
sched_core_enqueued(struct task_struct * p)1465 static inline bool sched_core_enqueued(struct task_struct *p)
1466 {
1467 	return !RB_EMPTY_NODE(&p->core_node);
1468 }
1469 
1470 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1471 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1472 
1473 extern void sched_core_get(void);
1474 extern void sched_core_put(void);
1475 
1476 #else /* !CONFIG_SCHED_CORE: */
1477 
sched_core_enabled(struct rq * rq)1478 static inline bool sched_core_enabled(struct rq *rq)
1479 {
1480 	return false;
1481 }
1482 
sched_core_disabled(void)1483 static inline bool sched_core_disabled(void)
1484 {
1485 	return true;
1486 }
1487 
rq_lockp(struct rq * rq)1488 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1489 {
1490 	return &rq->__lock;
1491 }
1492 
__rq_lockp(struct rq * rq)1493 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1494 {
1495 	return &rq->__lock;
1496 }
1497 
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1498 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1499 {
1500 	return true;
1501 }
1502 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1503 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1504 {
1505 	return true;
1506 }
1507 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1508 static inline bool sched_group_cookie_match(struct rq *rq,
1509 					    struct task_struct *p,
1510 					    struct sched_group *group)
1511 {
1512 	return true;
1513 }
1514 
1515 #endif /* !CONFIG_SCHED_CORE */
1516 
1517 #ifdef CONFIG_RT_GROUP_SCHED
1518 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
1519 DECLARE_STATIC_KEY_FALSE(rt_group_sched);
rt_group_sched_enabled(void)1520 static inline bool rt_group_sched_enabled(void)
1521 {
1522 	return static_branch_unlikely(&rt_group_sched);
1523 }
1524 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */
1525 DECLARE_STATIC_KEY_TRUE(rt_group_sched);
rt_group_sched_enabled(void)1526 static inline bool rt_group_sched_enabled(void)
1527 {
1528 	return static_branch_likely(&rt_group_sched);
1529 }
1530 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */
1531 #else /* !CONFIG_RT_GROUP_SCHED: */
1532 # define rt_group_sched_enabled()	false
1533 #endif /* !CONFIG_RT_GROUP_SCHED */
1534 
lockdep_assert_rq_held(struct rq * rq)1535 static inline void lockdep_assert_rq_held(struct rq *rq)
1536 {
1537 	lockdep_assert_held(__rq_lockp(rq));
1538 }
1539 
1540 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1541 extern bool raw_spin_rq_trylock(struct rq *rq);
1542 extern void raw_spin_rq_unlock(struct rq *rq);
1543 
raw_spin_rq_lock(struct rq * rq)1544 static inline void raw_spin_rq_lock(struct rq *rq)
1545 {
1546 	raw_spin_rq_lock_nested(rq, 0);
1547 }
1548 
raw_spin_rq_lock_irq(struct rq * rq)1549 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1550 {
1551 	local_irq_disable();
1552 	raw_spin_rq_lock(rq);
1553 }
1554 
raw_spin_rq_unlock_irq(struct rq * rq)1555 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1556 {
1557 	raw_spin_rq_unlock(rq);
1558 	local_irq_enable();
1559 }
1560 
_raw_spin_rq_lock_irqsave(struct rq * rq)1561 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1562 {
1563 	unsigned long flags;
1564 
1565 	local_irq_save(flags);
1566 	raw_spin_rq_lock(rq);
1567 
1568 	return flags;
1569 }
1570 
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1571 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1572 {
1573 	raw_spin_rq_unlock(rq);
1574 	local_irq_restore(flags);
1575 }
1576 
1577 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1578 do {						\
1579 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1580 } while (0)
1581 
1582 #ifdef CONFIG_SCHED_SMT
1583 extern void __update_idle_core(struct rq *rq);
1584 
update_idle_core(struct rq * rq)1585 static inline void update_idle_core(struct rq *rq)
1586 {
1587 	if (static_branch_unlikely(&sched_smt_present))
1588 		__update_idle_core(rq);
1589 }
1590 
1591 #else /* !CONFIG_SCHED_SMT: */
update_idle_core(struct rq * rq)1592 static inline void update_idle_core(struct rq *rq) { }
1593 #endif /* !CONFIG_SCHED_SMT */
1594 
1595 #ifdef CONFIG_FAIR_GROUP_SCHED
1596 
task_of(struct sched_entity * se)1597 static inline struct task_struct *task_of(struct sched_entity *se)
1598 {
1599 	WARN_ON_ONCE(!entity_is_task(se));
1600 	return container_of(se, struct task_struct, se);
1601 }
1602 
task_cfs_rq(struct task_struct * p)1603 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1604 {
1605 	return p->se.cfs_rq;
1606 }
1607 
1608 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1609 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1610 {
1611 	return se->cfs_rq;
1612 }
1613 
1614 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1615 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1616 {
1617 	return grp->my_q;
1618 }
1619 
1620 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1621 
1622 #define task_of(_se)		container_of(_se, struct task_struct, se)
1623 
task_cfs_rq(const struct task_struct * p)1624 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1625 {
1626 	return &task_rq(p)->cfs;
1627 }
1628 
cfs_rq_of(const struct sched_entity * se)1629 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1630 {
1631 	const struct task_struct *p = task_of(se);
1632 	struct rq *rq = task_rq(p);
1633 
1634 	return &rq->cfs;
1635 }
1636 
1637 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1638 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1639 {
1640 	return NULL;
1641 }
1642 
1643 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1644 
1645 extern void update_rq_clock(struct rq *rq);
1646 
1647 /*
1648  * rq::clock_update_flags bits
1649  *
1650  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1651  *  call to __schedule(). This is an optimisation to avoid
1652  *  neighbouring rq clock updates.
1653  *
1654  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1655  *  in effect and calls to update_rq_clock() are being ignored.
1656  *
1657  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1658  *  made to update_rq_clock() since the last time rq::lock was pinned.
1659  *
1660  * If inside of __schedule(), clock_update_flags will have been
1661  * shifted left (a left shift is a cheap operation for the fast path
1662  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1663  *
1664  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1665  *
1666  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1667  * one position though, because the next rq_unpin_lock() will shift it
1668  * back.
1669  */
1670 #define RQCF_REQ_SKIP		0x01
1671 #define RQCF_ACT_SKIP		0x02
1672 #define RQCF_UPDATED		0x04
1673 
assert_clock_updated(struct rq * rq)1674 static inline void assert_clock_updated(struct rq *rq)
1675 {
1676 	/*
1677 	 * The only reason for not seeing a clock update since the
1678 	 * last rq_pin_lock() is if we're currently skipping updates.
1679 	 */
1680 	WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP);
1681 }
1682 
rq_clock(struct rq * rq)1683 static inline u64 rq_clock(struct rq *rq)
1684 {
1685 	lockdep_assert_rq_held(rq);
1686 	assert_clock_updated(rq);
1687 
1688 	return rq->clock;
1689 }
1690 
rq_clock_task(struct rq * rq)1691 static inline u64 rq_clock_task(struct rq *rq)
1692 {
1693 	lockdep_assert_rq_held(rq);
1694 	assert_clock_updated(rq);
1695 
1696 	return rq->clock_task;
1697 }
1698 
rq_clock_skip_update(struct rq * rq)1699 static inline void rq_clock_skip_update(struct rq *rq)
1700 {
1701 	lockdep_assert_rq_held(rq);
1702 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1703 }
1704 
1705 /*
1706  * See rt task throttling, which is the only time a skip
1707  * request is canceled.
1708  */
rq_clock_cancel_skipupdate(struct rq * rq)1709 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1710 {
1711 	lockdep_assert_rq_held(rq);
1712 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1713 }
1714 
1715 /*
1716  * During cpu offlining and rq wide unthrottling, we can trigger
1717  * an update_rq_clock() for several cfs and rt runqueues (Typically
1718  * when using list_for_each_entry_*)
1719  * rq_clock_start_loop_update() can be called after updating the clock
1720  * once and before iterating over the list to prevent multiple update.
1721  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1722  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1723  */
rq_clock_start_loop_update(struct rq * rq)1724 static inline void rq_clock_start_loop_update(struct rq *rq)
1725 {
1726 	lockdep_assert_rq_held(rq);
1727 	WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP);
1728 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1729 }
1730 
rq_clock_stop_loop_update(struct rq * rq)1731 static inline void rq_clock_stop_loop_update(struct rq *rq)
1732 {
1733 	lockdep_assert_rq_held(rq);
1734 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1735 }
1736 
1737 struct rq_flags {
1738 	unsigned long flags;
1739 	struct pin_cookie cookie;
1740 	/*
1741 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1742 	 * current pin context is stashed here in case it needs to be
1743 	 * restored in rq_repin_lock().
1744 	 */
1745 	unsigned int clock_update_flags;
1746 };
1747 
1748 extern struct balance_callback balance_push_callback;
1749 
1750 #ifdef CONFIG_SCHED_CLASS_EXT
1751 extern const struct sched_class ext_sched_class;
1752 
1753 DECLARE_STATIC_KEY_FALSE(__scx_enabled);	/* SCX BPF scheduler loaded */
1754 DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
1755 
1756 #define scx_enabled()		static_branch_unlikely(&__scx_enabled)
1757 #define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
1758 
scx_rq_clock_update(struct rq * rq,u64 clock)1759 static inline void scx_rq_clock_update(struct rq *rq, u64 clock)
1760 {
1761 	if (!scx_enabled())
1762 		return;
1763 	WRITE_ONCE(rq->scx.clock, clock);
1764 	smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID);
1765 }
1766 
scx_rq_clock_invalidate(struct rq * rq)1767 static inline void scx_rq_clock_invalidate(struct rq *rq)
1768 {
1769 	if (!scx_enabled())
1770 		return;
1771 	WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID);
1772 }
1773 
1774 #else /* !CONFIG_SCHED_CLASS_EXT: */
1775 #define scx_enabled()		false
1776 #define scx_switched_all()	false
1777 
scx_rq_clock_update(struct rq * rq,u64 clock)1778 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {}
scx_rq_clock_invalidate(struct rq * rq)1779 static inline void scx_rq_clock_invalidate(struct rq *rq) {}
1780 #endif /* !CONFIG_SCHED_CLASS_EXT */
1781 
1782 /*
1783  * Lockdep annotation that avoids accidental unlocks; it's like a
1784  * sticky/continuous lockdep_assert_held().
1785  *
1786  * This avoids code that has access to 'struct rq *rq' (basically everything in
1787  * the scheduler) from accidentally unlocking the rq if they do not also have a
1788  * copy of the (on-stack) 'struct rq_flags rf'.
1789  *
1790  * Also see Documentation/locking/lockdep-design.rst.
1791  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1792 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1793 {
1794 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1795 
1796 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1797 	rf->clock_update_flags = 0;
1798 	WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1799 }
1800 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1801 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1802 {
1803 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1804 		rf->clock_update_flags = RQCF_UPDATED;
1805 
1806 	scx_rq_clock_invalidate(rq);
1807 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1808 }
1809 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1810 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1811 {
1812 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1813 
1814 	/*
1815 	 * Restore the value we stashed in @rf for this pin context.
1816 	 */
1817 	rq->clock_update_flags |= rf->clock_update_flags;
1818 }
1819 
1820 extern
1821 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1822 	__acquires(rq->lock);
1823 
1824 extern
1825 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1826 	__acquires(p->pi_lock)
1827 	__acquires(rq->lock);
1828 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1829 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1830 	__releases(rq->lock)
1831 {
1832 	rq_unpin_lock(rq, rf);
1833 	raw_spin_rq_unlock(rq);
1834 }
1835 
1836 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1837 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1838 	__releases(rq->lock)
1839 	__releases(p->pi_lock)
1840 {
1841 	rq_unpin_lock(rq, rf);
1842 	raw_spin_rq_unlock(rq);
1843 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1844 }
1845 
1846 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1847 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1848 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1849 		    struct rq *rq; struct rq_flags rf)
1850 
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1851 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1852 	__acquires(rq->lock)
1853 {
1854 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1855 	rq_pin_lock(rq, rf);
1856 }
1857 
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1858 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1859 	__acquires(rq->lock)
1860 {
1861 	raw_spin_rq_lock_irq(rq);
1862 	rq_pin_lock(rq, rf);
1863 }
1864 
rq_lock(struct rq * rq,struct rq_flags * rf)1865 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1866 	__acquires(rq->lock)
1867 {
1868 	raw_spin_rq_lock(rq);
1869 	rq_pin_lock(rq, rf);
1870 }
1871 
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1872 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1873 	__releases(rq->lock)
1874 {
1875 	rq_unpin_lock(rq, rf);
1876 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1877 }
1878 
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1879 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1880 	__releases(rq->lock)
1881 {
1882 	rq_unpin_lock(rq, rf);
1883 	raw_spin_rq_unlock_irq(rq);
1884 }
1885 
rq_unlock(struct rq * rq,struct rq_flags * rf)1886 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1887 	__releases(rq->lock)
1888 {
1889 	rq_unpin_lock(rq, rf);
1890 	raw_spin_rq_unlock(rq);
1891 }
1892 
1893 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1894 		    rq_lock(_T->lock, &_T->rf),
1895 		    rq_unlock(_T->lock, &_T->rf),
1896 		    struct rq_flags rf)
1897 
1898 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1899 		    rq_lock_irq(_T->lock, &_T->rf),
1900 		    rq_unlock_irq(_T->lock, &_T->rf),
1901 		    struct rq_flags rf)
1902 
1903 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1904 		    rq_lock_irqsave(_T->lock, &_T->rf),
1905 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1906 		    struct rq_flags rf)
1907 
this_rq_lock_irq(struct rq_flags * rf)1908 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1909 	__acquires(rq->lock)
1910 {
1911 	struct rq *rq;
1912 
1913 	local_irq_disable();
1914 	rq = this_rq();
1915 	rq_lock(rq, rf);
1916 
1917 	return rq;
1918 }
1919 
1920 #ifdef CONFIG_NUMA
1921 
1922 enum numa_topology_type {
1923 	NUMA_DIRECT,
1924 	NUMA_GLUELESS_MESH,
1925 	NUMA_BACKPLANE,
1926 };
1927 
1928 extern enum numa_topology_type sched_numa_topology_type;
1929 extern int sched_max_numa_distance;
1930 extern bool find_numa_distance(int distance);
1931 extern void sched_init_numa(int offline_node);
1932 extern void sched_update_numa(int cpu, bool online);
1933 extern void sched_domains_numa_masks_set(unsigned int cpu);
1934 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1935 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1936 
1937 #else /* !CONFIG_NUMA: */
1938 
sched_init_numa(int offline_node)1939 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1940 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1941 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1942 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1943 
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1944 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1945 {
1946 	return nr_cpu_ids;
1947 }
1948 
1949 #endif /* !CONFIG_NUMA */
1950 
1951 #ifdef CONFIG_NUMA_BALANCING
1952 
1953 /* The regions in numa_faults array from task_struct */
1954 enum numa_faults_stats {
1955 	NUMA_MEM = 0,
1956 	NUMA_CPU,
1957 	NUMA_MEMBUF,
1958 	NUMA_CPUBUF
1959 };
1960 
1961 extern void sched_setnuma(struct task_struct *p, int node);
1962 extern int migrate_task_to(struct task_struct *p, int cpu);
1963 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1964 			int cpu, int scpu);
1965 extern void init_numa_balancing(u64 clone_flags, struct task_struct *p);
1966 
1967 #else /* !CONFIG_NUMA_BALANCING: */
1968 
1969 static inline void
init_numa_balancing(u64 clone_flags,struct task_struct * p)1970 init_numa_balancing(u64 clone_flags, struct task_struct *p)
1971 {
1972 }
1973 
1974 #endif /* !CONFIG_NUMA_BALANCING */
1975 
1976 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1977 queue_balance_callback(struct rq *rq,
1978 		       struct balance_callback *head,
1979 		       void (*func)(struct rq *rq))
1980 {
1981 	lockdep_assert_rq_held(rq);
1982 
1983 	/*
1984 	 * Don't (re)queue an already queued item; nor queue anything when
1985 	 * balance_push() is active, see the comment with
1986 	 * balance_push_callback.
1987 	 */
1988 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1989 		return;
1990 
1991 	head->func = func;
1992 	head->next = rq->balance_callback;
1993 	rq->balance_callback = head;
1994 }
1995 
1996 #define rcu_dereference_check_sched_domain(p) \
1997 	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
1998 
1999 /*
2000  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
2001  * See destroy_sched_domains: call_rcu for details.
2002  *
2003  * The domain tree of any CPU may only be accessed from within
2004  * preempt-disabled sections.
2005  */
2006 #define for_each_domain(cpu, __sd) \
2007 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
2008 			__sd; __sd = __sd->parent)
2009 
2010 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
2011 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
2012 static const unsigned int SD_SHARED_CHILD_MASK =
2013 #include <linux/sched/sd_flags.h>
2014 0;
2015 #undef SD_FLAG
2016 
2017 /**
2018  * highest_flag_domain - Return highest sched_domain containing flag.
2019  * @cpu:	The CPU whose highest level of sched domain is to
2020  *		be returned.
2021  * @flag:	The flag to check for the highest sched_domain
2022  *		for the given CPU.
2023  *
2024  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
2025  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
2026  */
highest_flag_domain(int cpu,int flag)2027 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
2028 {
2029 	struct sched_domain *sd, *hsd = NULL;
2030 
2031 	for_each_domain(cpu, sd) {
2032 		if (sd->flags & flag) {
2033 			hsd = sd;
2034 			continue;
2035 		}
2036 
2037 		/*
2038 		 * Stop the search if @flag is known to be shared at lower
2039 		 * levels. It will not be found further up.
2040 		 */
2041 		if (flag & SD_SHARED_CHILD_MASK)
2042 			break;
2043 	}
2044 
2045 	return hsd;
2046 }
2047 
lowest_flag_domain(int cpu,int flag)2048 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2049 {
2050 	struct sched_domain *sd;
2051 
2052 	for_each_domain(cpu, sd) {
2053 		if (sd->flags & flag)
2054 			break;
2055 	}
2056 
2057 	return sd;
2058 }
2059 
2060 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2061 DECLARE_PER_CPU(int, sd_llc_size);
2062 DECLARE_PER_CPU(int, sd_llc_id);
2063 DECLARE_PER_CPU(int, sd_share_id);
2064 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2065 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2066 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2067 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2068 
2069 extern struct static_key_false sched_asym_cpucapacity;
2070 extern struct static_key_false sched_cluster_active;
2071 
sched_asym_cpucap_active(void)2072 static __always_inline bool sched_asym_cpucap_active(void)
2073 {
2074 	return static_branch_unlikely(&sched_asym_cpucapacity);
2075 }
2076 
2077 struct sched_group_capacity {
2078 	atomic_t		ref;
2079 	/*
2080 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2081 	 * for a single CPU.
2082 	 */
2083 	unsigned long		capacity;
2084 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2085 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2086 	unsigned long		next_update;
2087 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
2088 
2089 	int			id;
2090 
2091 	unsigned long		cpumask[];		/* Balance mask */
2092 };
2093 
2094 struct sched_group {
2095 	struct sched_group	*next;			/* Must be a circular list */
2096 	atomic_t		ref;
2097 
2098 	unsigned int		group_weight;
2099 	unsigned int		cores;
2100 	struct sched_group_capacity *sgc;
2101 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2102 	int			flags;
2103 
2104 	/*
2105 	 * The CPUs this group covers.
2106 	 *
2107 	 * NOTE: this field is variable length. (Allocated dynamically
2108 	 * by attaching extra space to the end of the structure,
2109 	 * depending on how many CPUs the kernel has booted up with)
2110 	 */
2111 	unsigned long		cpumask[];
2112 };
2113 
sched_group_span(struct sched_group * sg)2114 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2115 {
2116 	return to_cpumask(sg->cpumask);
2117 }
2118 
2119 /*
2120  * See build_balance_mask().
2121  */
group_balance_mask(struct sched_group * sg)2122 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2123 {
2124 	return to_cpumask(sg->sgc->cpumask);
2125 }
2126 
2127 extern int group_balance_cpu(struct sched_group *sg);
2128 
2129 extern void update_sched_domain_debugfs(void);
2130 extern void dirty_sched_domain_sysctl(int cpu);
2131 
2132 extern int sched_update_scaling(void);
2133 
task_user_cpus(struct task_struct * p)2134 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2135 {
2136 	if (!p->user_cpus_ptr)
2137 		return cpu_possible_mask; /* &init_task.cpus_mask */
2138 	return p->user_cpus_ptr;
2139 }
2140 
2141 #ifdef CONFIG_CGROUP_SCHED
2142 
2143 /*
2144  * Return the group to which this tasks belongs.
2145  *
2146  * We cannot use task_css() and friends because the cgroup subsystem
2147  * changes that value before the cgroup_subsys::attach() method is called,
2148  * therefore we cannot pin it and might observe the wrong value.
2149  *
2150  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2151  * core changes this before calling sched_move_task().
2152  *
2153  * Instead we use a 'copy' which is updated from sched_move_task() while
2154  * holding both task_struct::pi_lock and rq::lock.
2155  */
task_group(struct task_struct * p)2156 static inline struct task_group *task_group(struct task_struct *p)
2157 {
2158 	return p->sched_task_group;
2159 }
2160 
2161 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2162 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2163 {
2164 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2165 	struct task_group *tg = task_group(p);
2166 #endif
2167 
2168 #ifdef CONFIG_FAIR_GROUP_SCHED
2169 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2170 	p->se.cfs_rq = tg->cfs_rq[cpu];
2171 	p->se.parent = tg->se[cpu];
2172 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2173 #endif
2174 
2175 #ifdef CONFIG_RT_GROUP_SCHED
2176 	/*
2177 	 * p->rt.rt_rq is NULL initially and it is easier to assign
2178 	 * root_task_group's rt_rq than switching in rt_rq_of_se()
2179 	 * Clobbers tg(!)
2180 	 */
2181 	if (!rt_group_sched_enabled())
2182 		tg = &root_task_group;
2183 	p->rt.rt_rq  = tg->rt_rq[cpu];
2184 	p->rt.parent = tg->rt_se[cpu];
2185 #endif /* CONFIG_RT_GROUP_SCHED */
2186 }
2187 
2188 #else /* !CONFIG_CGROUP_SCHED: */
2189 
set_task_rq(struct task_struct * p,unsigned int cpu)2190 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2191 
task_group(struct task_struct * p)2192 static inline struct task_group *task_group(struct task_struct *p)
2193 {
2194 	return NULL;
2195 }
2196 
2197 #endif /* !CONFIG_CGROUP_SCHED */
2198 
__set_task_cpu(struct task_struct * p,unsigned int cpu)2199 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2200 {
2201 	set_task_rq(p, cpu);
2202 #ifdef CONFIG_SMP
2203 	/*
2204 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2205 	 * successfully executed on another CPU. We must ensure that updates of
2206 	 * per-task data have been completed by this moment.
2207 	 */
2208 	smp_wmb();
2209 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2210 	p->wake_cpu = cpu;
2211 #endif /* CONFIG_SMP */
2212 }
2213 
2214 /*
2215  * Tunables:
2216  */
2217 
2218 #define SCHED_FEAT(name, enabled)	\
2219 	__SCHED_FEAT_##name ,
2220 
2221 enum {
2222 #include "features.h"
2223 	__SCHED_FEAT_NR,
2224 };
2225 
2226 #undef SCHED_FEAT
2227 
2228 /*
2229  * To support run-time toggling of sched features, all the translation units
2230  * (but core.c) reference the sysctl_sched_features defined in core.c.
2231  */
2232 extern __read_mostly unsigned int sysctl_sched_features;
2233 
2234 #ifdef CONFIG_JUMP_LABEL
2235 
2236 #define SCHED_FEAT(name, enabled)					\
2237 static __always_inline bool static_branch_##name(struct static_key *key) \
2238 {									\
2239 	return static_key_##enabled(key);				\
2240 }
2241 
2242 #include "features.h"
2243 #undef SCHED_FEAT
2244 
2245 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2246 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2247 
2248 #else /* !CONFIG_JUMP_LABEL: */
2249 
2250 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2251 
2252 #endif /* !CONFIG_JUMP_LABEL */
2253 
2254 extern struct static_key_false sched_numa_balancing;
2255 extern struct static_key_false sched_schedstats;
2256 
global_rt_period(void)2257 static inline u64 global_rt_period(void)
2258 {
2259 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2260 }
2261 
global_rt_runtime(void)2262 static inline u64 global_rt_runtime(void)
2263 {
2264 	if (sysctl_sched_rt_runtime < 0)
2265 		return RUNTIME_INF;
2266 
2267 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2268 }
2269 
2270 /*
2271  * Is p the current execution context?
2272  */
task_current(struct rq * rq,struct task_struct * p)2273 static inline int task_current(struct rq *rq, struct task_struct *p)
2274 {
2275 	return rq->curr == p;
2276 }
2277 
2278 /*
2279  * Is p the current scheduling context?
2280  *
2281  * Note that it might be the current execution context at the same time if
2282  * rq->curr == rq->donor == p.
2283  */
task_current_donor(struct rq * rq,struct task_struct * p)2284 static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2285 {
2286 	return rq->donor == p;
2287 }
2288 
task_is_blocked(struct task_struct * p)2289 static inline bool task_is_blocked(struct task_struct *p)
2290 {
2291 	if (!sched_proxy_exec())
2292 		return false;
2293 
2294 	return !!p->blocked_on;
2295 }
2296 
task_on_cpu(struct rq * rq,struct task_struct * p)2297 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2298 {
2299 	return p->on_cpu;
2300 }
2301 
task_on_rq_queued(struct task_struct * p)2302 static inline int task_on_rq_queued(struct task_struct *p)
2303 {
2304 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED;
2305 }
2306 
task_on_rq_migrating(struct task_struct * p)2307 static inline int task_on_rq_migrating(struct task_struct *p)
2308 {
2309 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2310 }
2311 
2312 /* Wake flags. The first three directly map to some SD flag value */
2313 #define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2314 #define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2315 #define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2316 
2317 #define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2318 #define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2319 #define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2320 #define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
2321 
2322 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2323 static_assert(WF_FORK == SD_BALANCE_FORK);
2324 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2325 
2326 /*
2327  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2328  * of tasks with abnormal "nice" values across CPUs the contribution that
2329  * each task makes to its run queue's load is weighted according to its
2330  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2331  * scaled version of the new time slice allocation that they receive on time
2332  * slice expiry etc.
2333  */
2334 
2335 #define WEIGHT_IDLEPRIO		3
2336 #define WMULT_IDLEPRIO		1431655765
2337 
2338 extern const int		sched_prio_to_weight[40];
2339 extern const u32		sched_prio_to_wmult[40];
2340 
2341 /*
2342  * {de,en}queue flags:
2343  *
2344  * DEQUEUE_SLEEP  - task is no longer runnable
2345  * ENQUEUE_WAKEUP - task just became runnable
2346  *
2347  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2348  *                are in a known state which allows modification. Such pairs
2349  *                should preserve as much state as possible.
2350  *
2351  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2352  *        in the runqueue.
2353  *
2354  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2355  *
2356  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2357  *
2358  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2359  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2360  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2361  * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2362  *
2363  */
2364 
2365 #define DEQUEUE_SLEEP		0x01 /* Matches ENQUEUE_WAKEUP */
2366 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2367 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2368 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2369 #define DEQUEUE_SPECIAL		0x10
2370 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2371 #define DEQUEUE_DELAYED		0x200 /* Matches ENQUEUE_DELAYED */
2372 #define DEQUEUE_THROTTLE	0x800
2373 
2374 #define ENQUEUE_WAKEUP		0x01
2375 #define ENQUEUE_RESTORE		0x02
2376 #define ENQUEUE_MOVE		0x04
2377 #define ENQUEUE_NOCLOCK		0x08
2378 
2379 #define ENQUEUE_HEAD		0x10
2380 #define ENQUEUE_REPLENISH	0x20
2381 #define ENQUEUE_MIGRATED	0x40
2382 #define ENQUEUE_INITIAL		0x80
2383 #define ENQUEUE_MIGRATING	0x100
2384 #define ENQUEUE_DELAYED		0x200
2385 #define ENQUEUE_RQ_SELECTED	0x400
2386 
2387 #define RETRY_TASK		((void *)-1UL)
2388 
2389 struct affinity_context {
2390 	const struct cpumask	*new_mask;
2391 	struct cpumask		*user_mask;
2392 	unsigned int		flags;
2393 };
2394 
2395 extern s64 update_curr_common(struct rq *rq);
2396 
2397 struct sched_class {
2398 
2399 #ifdef CONFIG_UCLAMP_TASK
2400 	int uclamp_enabled;
2401 #endif
2402 
2403 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2404 	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2405 	void (*yield_task)   (struct rq *rq);
2406 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2407 
2408 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2409 
2410 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2411 	struct task_struct *(*pick_task)(struct rq *rq);
2412 	/*
2413 	 * Optional! When implemented pick_next_task() should be equivalent to:
2414 	 *
2415 	 *   next = pick_task();
2416 	 *   if (next) {
2417 	 *       put_prev_task(prev);
2418 	 *       set_next_task_first(next);
2419 	 *   }
2420 	 */
2421 	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2422 
2423 	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2424 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2425 
2426 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2427 
2428 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2429 
2430 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2431 
2432 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2433 
2434 	void (*rq_online)(struct rq *rq);
2435 	void (*rq_offline)(struct rq *rq);
2436 
2437 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2438 
2439 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2440 	void (*task_fork)(struct task_struct *p);
2441 	void (*task_dead)(struct task_struct *p);
2442 
2443 	/*
2444 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2445 	 * cannot assume the switched_from/switched_to pair is serialized by
2446 	 * rq->lock. They are however serialized by p->pi_lock.
2447 	 */
2448 	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2449 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2450 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2451 	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2452 			      const struct load_weight *lw);
2453 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2454 			      int oldprio);
2455 
2456 	unsigned int (*get_rr_interval)(struct rq *rq,
2457 					struct task_struct *task);
2458 
2459 	void (*update_curr)(struct rq *rq);
2460 
2461 #ifdef CONFIG_FAIR_GROUP_SCHED
2462 	void (*task_change_group)(struct task_struct *p);
2463 #endif
2464 
2465 #ifdef CONFIG_SCHED_CORE
2466 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2467 #endif
2468 };
2469 
put_prev_task(struct rq * rq,struct task_struct * prev)2470 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2471 {
2472 	WARN_ON_ONCE(rq->donor != prev);
2473 	prev->sched_class->put_prev_task(rq, prev, NULL);
2474 }
2475 
set_next_task(struct rq * rq,struct task_struct * next)2476 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2477 {
2478 	next->sched_class->set_next_task(rq, next, false);
2479 }
2480 
2481 static inline void
__put_prev_set_next_dl_server(struct rq * rq,struct task_struct * prev,struct task_struct * next)2482 __put_prev_set_next_dl_server(struct rq *rq,
2483 			      struct task_struct *prev,
2484 			      struct task_struct *next)
2485 {
2486 	prev->dl_server = NULL;
2487 	next->dl_server = rq->dl_server;
2488 	rq->dl_server = NULL;
2489 }
2490 
put_prev_set_next_task(struct rq * rq,struct task_struct * prev,struct task_struct * next)2491 static inline void put_prev_set_next_task(struct rq *rq,
2492 					  struct task_struct *prev,
2493 					  struct task_struct *next)
2494 {
2495 	WARN_ON_ONCE(rq->donor != prev);
2496 
2497 	__put_prev_set_next_dl_server(rq, prev, next);
2498 
2499 	if (next == prev)
2500 		return;
2501 
2502 	prev->sched_class->put_prev_task(rq, prev, next);
2503 	next->sched_class->set_next_task(rq, next, true);
2504 }
2505 
2506 /*
2507  * Helper to define a sched_class instance; each one is placed in a separate
2508  * section which is ordered by the linker script:
2509  *
2510  *   include/asm-generic/vmlinux.lds.h
2511  *
2512  * *CAREFUL* they are laid out in *REVERSE* order!!!
2513  *
2514  * Also enforce alignment on the instance, not the type, to guarantee layout.
2515  */
2516 #define DEFINE_SCHED_CLASS(name) \
2517 const struct sched_class name##_sched_class \
2518 	__aligned(__alignof__(struct sched_class)) \
2519 	__section("__" #name "_sched_class")
2520 
2521 /* Defined in include/asm-generic/vmlinux.lds.h */
2522 extern struct sched_class __sched_class_highest[];
2523 extern struct sched_class __sched_class_lowest[];
2524 
2525 extern const struct sched_class stop_sched_class;
2526 extern const struct sched_class dl_sched_class;
2527 extern const struct sched_class rt_sched_class;
2528 extern const struct sched_class fair_sched_class;
2529 extern const struct sched_class idle_sched_class;
2530 
2531 /*
2532  * Iterate only active classes. SCX can take over all fair tasks or be
2533  * completely disabled. If the former, skip fair. If the latter, skip SCX.
2534  */
next_active_class(const struct sched_class * class)2535 static inline const struct sched_class *next_active_class(const struct sched_class *class)
2536 {
2537 	class++;
2538 #ifdef CONFIG_SCHED_CLASS_EXT
2539 	if (scx_switched_all() && class == &fair_sched_class)
2540 		class++;
2541 	if (!scx_enabled() && class == &ext_sched_class)
2542 		class++;
2543 #endif
2544 	return class;
2545 }
2546 
2547 #define for_class_range(class, _from, _to) \
2548 	for (class = (_from); class < (_to); class++)
2549 
2550 #define for_each_class(class) \
2551 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2552 
2553 #define for_active_class_range(class, _from, _to)				\
2554 	for (class = (_from); class != (_to); class = next_active_class(class))
2555 
2556 #define for_each_active_class(class)						\
2557 	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2558 
2559 #define sched_class_above(_a, _b)	((_a) < (_b))
2560 
sched_stop_runnable(struct rq * rq)2561 static inline bool sched_stop_runnable(struct rq *rq)
2562 {
2563 	return rq->stop && task_on_rq_queued(rq->stop);
2564 }
2565 
sched_dl_runnable(struct rq * rq)2566 static inline bool sched_dl_runnable(struct rq *rq)
2567 {
2568 	return rq->dl.dl_nr_running > 0;
2569 }
2570 
sched_rt_runnable(struct rq * rq)2571 static inline bool sched_rt_runnable(struct rq *rq)
2572 {
2573 	return rq->rt.rt_queued > 0;
2574 }
2575 
sched_fair_runnable(struct rq * rq)2576 static inline bool sched_fair_runnable(struct rq *rq)
2577 {
2578 	return rq->cfs.nr_queued > 0;
2579 }
2580 
2581 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2582 extern struct task_struct *pick_task_idle(struct rq *rq);
2583 
2584 #define SCA_CHECK		0x01
2585 #define SCA_MIGRATE_DISABLE	0x02
2586 #define SCA_MIGRATE_ENABLE	0x04
2587 #define SCA_USER		0x08
2588 
2589 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2590 
2591 extern void sched_balance_trigger(struct rq *rq);
2592 
2593 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2594 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2595 
task_allowed_on_cpu(struct task_struct * p,int cpu)2596 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2597 {
2598 	/* When not in the task's cpumask, no point in looking further. */
2599 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2600 		return false;
2601 
2602 	/* Can @cpu run a user thread? */
2603 	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2604 		return false;
2605 
2606 	return true;
2607 }
2608 
alloc_user_cpus_ptr(int node)2609 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2610 {
2611 	/*
2612 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2613 	 */
2614 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2615 
2616 	return kmalloc_node(size, GFP_KERNEL, node);
2617 }
2618 
get_push_task(struct rq * rq)2619 static inline struct task_struct *get_push_task(struct rq *rq)
2620 {
2621 	struct task_struct *p = rq->donor;
2622 
2623 	lockdep_assert_rq_held(rq);
2624 
2625 	if (rq->push_busy)
2626 		return NULL;
2627 
2628 	if (p->nr_cpus_allowed == 1)
2629 		return NULL;
2630 
2631 	if (p->migration_disabled)
2632 		return NULL;
2633 
2634 	rq->push_busy = true;
2635 	return get_task_struct(p);
2636 }
2637 
2638 extern int push_cpu_stop(void *arg);
2639 
2640 #ifdef CONFIG_CPU_IDLE
2641 
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2642 static inline void idle_set_state(struct rq *rq,
2643 				  struct cpuidle_state *idle_state)
2644 {
2645 	rq->idle_state = idle_state;
2646 }
2647 
idle_get_state(struct rq * rq)2648 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2649 {
2650 	WARN_ON_ONCE(!rcu_read_lock_held());
2651 
2652 	return rq->idle_state;
2653 }
2654 
2655 #else /* !CONFIG_CPU_IDLE: */
2656 
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2657 static inline void idle_set_state(struct rq *rq,
2658 				  struct cpuidle_state *idle_state)
2659 {
2660 }
2661 
idle_get_state(struct rq * rq)2662 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2663 {
2664 	return NULL;
2665 }
2666 
2667 #endif /* !CONFIG_CPU_IDLE */
2668 
2669 extern void schedule_idle(void);
2670 asmlinkage void schedule_user(void);
2671 
2672 extern void sysrq_sched_debug_show(void);
2673 extern void sched_init_granularity(void);
2674 extern void update_max_interval(void);
2675 
2676 extern void init_sched_dl_class(void);
2677 extern void init_sched_rt_class(void);
2678 extern void init_sched_fair_class(void);
2679 
2680 extern void resched_curr(struct rq *rq);
2681 extern void resched_curr_lazy(struct rq *rq);
2682 extern void resched_cpu(int cpu);
2683 
2684 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2685 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2686 
2687 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2688 
2689 extern void init_cfs_throttle_work(struct task_struct *p);
2690 
2691 #define BW_SHIFT		20
2692 #define BW_UNIT			(1 << BW_SHIFT)
2693 #define RATIO_SHIFT		8
2694 #define MAX_BW_BITS		(64 - BW_SHIFT)
2695 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2696 
2697 extern unsigned long to_ratio(u64 period, u64 runtime);
2698 
2699 extern void init_entity_runnable_average(struct sched_entity *se);
2700 extern void post_init_entity_util_avg(struct task_struct *p);
2701 
2702 #ifdef CONFIG_NO_HZ_FULL
2703 extern bool sched_can_stop_tick(struct rq *rq);
2704 extern int __init sched_tick_offload_init(void);
2705 
2706 /*
2707  * Tick may be needed by tasks in the runqueue depending on their policy and
2708  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2709  * nohz mode if necessary.
2710  */
sched_update_tick_dependency(struct rq * rq)2711 static inline void sched_update_tick_dependency(struct rq *rq)
2712 {
2713 	int cpu = cpu_of(rq);
2714 
2715 	if (!tick_nohz_full_cpu(cpu))
2716 		return;
2717 
2718 	if (sched_can_stop_tick(rq))
2719 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2720 	else
2721 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2722 }
2723 #else /* !CONFIG_NO_HZ_FULL: */
sched_tick_offload_init(void)2724 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2725 static inline void sched_update_tick_dependency(struct rq *rq) { }
2726 #endif /* !CONFIG_NO_HZ_FULL */
2727 
add_nr_running(struct rq * rq,unsigned count)2728 static inline void add_nr_running(struct rq *rq, unsigned count)
2729 {
2730 	unsigned prev_nr = rq->nr_running;
2731 
2732 	rq->nr_running = prev_nr + count;
2733 	if (trace_sched_update_nr_running_tp_enabled()) {
2734 		call_trace_sched_update_nr_running(rq, count);
2735 	}
2736 
2737 	if (prev_nr < 2 && rq->nr_running >= 2)
2738 		set_rd_overloaded(rq->rd, 1);
2739 
2740 	sched_update_tick_dependency(rq);
2741 }
2742 
sub_nr_running(struct rq * rq,unsigned count)2743 static inline void sub_nr_running(struct rq *rq, unsigned count)
2744 {
2745 	rq->nr_running -= count;
2746 	if (trace_sched_update_nr_running_tp_enabled()) {
2747 		call_trace_sched_update_nr_running(rq, -count);
2748 	}
2749 
2750 	/* Check if we still need preemption */
2751 	sched_update_tick_dependency(rq);
2752 }
2753 
__block_task(struct rq * rq,struct task_struct * p)2754 static inline void __block_task(struct rq *rq, struct task_struct *p)
2755 {
2756 	if (p->sched_contributes_to_load)
2757 		rq->nr_uninterruptible++;
2758 
2759 	if (p->in_iowait) {
2760 		atomic_inc(&rq->nr_iowait);
2761 		delayacct_blkio_start();
2762 	}
2763 
2764 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2765 
2766 	/*
2767 	 * The moment this write goes through, ttwu() can swoop in and migrate
2768 	 * this task, rendering our rq->__lock ineffective.
2769 	 *
2770 	 * __schedule()				try_to_wake_up()
2771 	 *   LOCK rq->__lock			  LOCK p->pi_lock
2772 	 *   pick_next_task()
2773 	 *     pick_next_task_fair()
2774 	 *       pick_next_entity()
2775 	 *         dequeue_entities()
2776 	 *           __block_task()
2777 	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2778 	 *					    break;
2779 	 *
2780 	 *					  ACQUIRE (after ctrl-dep)
2781 	 *
2782 	 *					  cpu = select_task_rq();
2783 	 *					  set_task_cpu(p, cpu);
2784 	 *					  ttwu_queue()
2785 	 *					    ttwu_do_activate()
2786 	 *					      LOCK rq->__lock
2787 	 *					      activate_task()
2788 	 *					        STORE p->on_rq = 1
2789 	 *   UNLOCK rq->__lock
2790 	 *
2791 	 * Callers must ensure to not reference @p after this -- we no longer
2792 	 * own it.
2793 	 */
2794 	smp_store_release(&p->on_rq, 0);
2795 }
2796 
2797 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2798 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2799 
2800 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2801 
2802 #ifdef CONFIG_PREEMPT_RT
2803 # define SCHED_NR_MIGRATE_BREAK 8
2804 #else
2805 # define SCHED_NR_MIGRATE_BREAK 32
2806 #endif
2807 
2808 extern __read_mostly unsigned int sysctl_sched_nr_migrate;
2809 extern __read_mostly unsigned int sysctl_sched_migration_cost;
2810 
2811 extern unsigned int sysctl_sched_base_slice;
2812 
2813 extern int sysctl_resched_latency_warn_ms;
2814 extern int sysctl_resched_latency_warn_once;
2815 
2816 extern unsigned int sysctl_sched_tunable_scaling;
2817 
2818 extern unsigned int sysctl_numa_balancing_scan_delay;
2819 extern unsigned int sysctl_numa_balancing_scan_period_min;
2820 extern unsigned int sysctl_numa_balancing_scan_period_max;
2821 extern unsigned int sysctl_numa_balancing_scan_size;
2822 extern unsigned int sysctl_numa_balancing_hot_threshold;
2823 
2824 #ifdef CONFIG_SCHED_HRTICK
2825 
2826 /*
2827  * Use hrtick when:
2828  *  - enabled by features
2829  *  - hrtimer is actually high res
2830  */
hrtick_enabled(struct rq * rq)2831 static inline int hrtick_enabled(struct rq *rq)
2832 {
2833 	if (!cpu_active(cpu_of(rq)))
2834 		return 0;
2835 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2836 }
2837 
hrtick_enabled_fair(struct rq * rq)2838 static inline int hrtick_enabled_fair(struct rq *rq)
2839 {
2840 	if (!sched_feat(HRTICK))
2841 		return 0;
2842 	return hrtick_enabled(rq);
2843 }
2844 
hrtick_enabled_dl(struct rq * rq)2845 static inline int hrtick_enabled_dl(struct rq *rq)
2846 {
2847 	if (!sched_feat(HRTICK_DL))
2848 		return 0;
2849 	return hrtick_enabled(rq);
2850 }
2851 
2852 extern void hrtick_start(struct rq *rq, u64 delay);
2853 
2854 #else /* !CONFIG_SCHED_HRTICK: */
2855 
hrtick_enabled_fair(struct rq * rq)2856 static inline int hrtick_enabled_fair(struct rq *rq)
2857 {
2858 	return 0;
2859 }
2860 
hrtick_enabled_dl(struct rq * rq)2861 static inline int hrtick_enabled_dl(struct rq *rq)
2862 {
2863 	return 0;
2864 }
2865 
hrtick_enabled(struct rq * rq)2866 static inline int hrtick_enabled(struct rq *rq)
2867 {
2868 	return 0;
2869 }
2870 
2871 #endif /* !CONFIG_SCHED_HRTICK */
2872 
2873 #ifndef arch_scale_freq_tick
arch_scale_freq_tick(void)2874 static __always_inline void arch_scale_freq_tick(void) { }
2875 #endif
2876 
2877 #ifndef arch_scale_freq_capacity
2878 /**
2879  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2880  * @cpu: the CPU in question.
2881  *
2882  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2883  *
2884  *     f_curr
2885  *     ------ * SCHED_CAPACITY_SCALE
2886  *     f_max
2887  */
2888 static __always_inline
arch_scale_freq_capacity(int cpu)2889 unsigned long arch_scale_freq_capacity(int cpu)
2890 {
2891 	return SCHED_CAPACITY_SCALE;
2892 }
2893 #endif
2894 
2895 /*
2896  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2897  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2898  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2899  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2900  */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2901 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2902 {
2903 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2904 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2905 }
2906 
2907 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
2908 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
2909 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
2910 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
2911   _lock; return _t; }
2912 
rq_order_less(struct rq * rq1,struct rq * rq2)2913 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2914 {
2915 #ifdef CONFIG_SCHED_CORE
2916 	/*
2917 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2918 	 * order by core-id first and cpu-id second.
2919 	 *
2920 	 * Notably:
2921 	 *
2922 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2923 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2924 	 *
2925 	 * when only cpu-id is considered.
2926 	 */
2927 	if (rq1->core->cpu < rq2->core->cpu)
2928 		return true;
2929 	if (rq1->core->cpu > rq2->core->cpu)
2930 		return false;
2931 
2932 	/*
2933 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2934 	 */
2935 #endif /* CONFIG_SCHED_CORE */
2936 	return rq1->cpu < rq2->cpu;
2937 }
2938 
2939 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2940 
2941 #ifdef CONFIG_PREEMPTION
2942 
2943 /*
2944  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2945  * way at the expense of forcing extra atomic operations in all
2946  * invocations.  This assures that the double_lock is acquired using the
2947  * same underlying policy as the spinlock_t on this architecture, which
2948  * reduces latency compared to the unfair variant below.  However, it
2949  * also adds more overhead and therefore may reduce throughput.
2950  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2951 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2952 	__releases(this_rq->lock)
2953 	__acquires(busiest->lock)
2954 	__acquires(this_rq->lock)
2955 {
2956 	raw_spin_rq_unlock(this_rq);
2957 	double_rq_lock(this_rq, busiest);
2958 
2959 	return 1;
2960 }
2961 
2962 #else /* !CONFIG_PREEMPTION: */
2963 /*
2964  * Unfair double_lock_balance: Optimizes throughput at the expense of
2965  * latency by eliminating extra atomic operations when the locks are
2966  * already in proper order on entry.  This favors lower CPU-ids and will
2967  * grant the double lock to lower CPUs over higher ids under contention,
2968  * regardless of entry order into the function.
2969  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2970 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2971 	__releases(this_rq->lock)
2972 	__acquires(busiest->lock)
2973 	__acquires(this_rq->lock)
2974 {
2975 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2976 	    likely(raw_spin_rq_trylock(busiest))) {
2977 		double_rq_clock_clear_update(this_rq, busiest);
2978 		return 0;
2979 	}
2980 
2981 	if (rq_order_less(this_rq, busiest)) {
2982 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2983 		double_rq_clock_clear_update(this_rq, busiest);
2984 		return 0;
2985 	}
2986 
2987 	raw_spin_rq_unlock(this_rq);
2988 	double_rq_lock(this_rq, busiest);
2989 
2990 	return 1;
2991 }
2992 
2993 #endif /* !CONFIG_PREEMPTION */
2994 
2995 /*
2996  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2997  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2998 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2999 {
3000 	lockdep_assert_irqs_disabled();
3001 
3002 	return _double_lock_balance(this_rq, busiest);
3003 }
3004 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)3005 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
3006 	__releases(busiest->lock)
3007 {
3008 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
3009 		raw_spin_rq_unlock(busiest);
3010 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
3011 }
3012 
double_lock(spinlock_t * l1,spinlock_t * l2)3013 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
3014 {
3015 	if (l1 > l2)
3016 		swap(l1, l2);
3017 
3018 	spin_lock(l1);
3019 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3020 }
3021 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)3022 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
3023 {
3024 	if (l1 > l2)
3025 		swap(l1, l2);
3026 
3027 	spin_lock_irq(l1);
3028 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3029 }
3030 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)3031 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3032 {
3033 	if (l1 > l2)
3034 		swap(l1, l2);
3035 
3036 	raw_spin_lock(l1);
3037 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3038 }
3039 
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)3040 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3041 {
3042 	raw_spin_unlock(l1);
3043 	raw_spin_unlock(l2);
3044 }
3045 
3046 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3047 		    double_raw_lock(_T->lock, _T->lock2),
3048 		    double_raw_unlock(_T->lock, _T->lock2))
3049 
3050 /*
3051  * double_rq_unlock - safely unlock two runqueues
3052  *
3053  * Note this does not restore interrupts like task_rq_unlock,
3054  * you need to do so manually after calling.
3055  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)3056 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3057 	__releases(rq1->lock)
3058 	__releases(rq2->lock)
3059 {
3060 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3061 		raw_spin_rq_unlock(rq2);
3062 	else
3063 		__release(rq2->lock);
3064 	raw_spin_rq_unlock(rq1);
3065 }
3066 
3067 extern void set_rq_online (struct rq *rq);
3068 extern void set_rq_offline(struct rq *rq);
3069 
3070 extern bool sched_smp_initialized;
3071 
3072 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3073 		    double_rq_lock(_T->lock, _T->lock2),
3074 		    double_rq_unlock(_T->lock, _T->lock2))
3075 
3076 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3077 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3078 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3079 
3080 extern bool sched_debug_verbose;
3081 
3082 extern void print_cfs_stats(struct seq_file *m, int cpu);
3083 extern void print_rt_stats(struct seq_file *m, int cpu);
3084 extern void print_dl_stats(struct seq_file *m, int cpu);
3085 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3086 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3087 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3088 
3089 extern void resched_latency_warn(int cpu, u64 latency);
3090 
3091 #ifdef CONFIG_NUMA_BALANCING
3092 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3093 extern void
3094 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3095 		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3096 #endif /* CONFIG_NUMA_BALANCING */
3097 
3098 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3099 extern void init_rt_rq(struct rt_rq *rt_rq);
3100 extern void init_dl_rq(struct dl_rq *dl_rq);
3101 
3102 extern void cfs_bandwidth_usage_inc(void);
3103 extern void cfs_bandwidth_usage_dec(void);
3104 
3105 #ifdef CONFIG_NO_HZ_COMMON
3106 
3107 #define NOHZ_BALANCE_KICK_BIT	0
3108 #define NOHZ_STATS_KICK_BIT	1
3109 #define NOHZ_NEWILB_KICK_BIT	2
3110 #define NOHZ_NEXT_KICK_BIT	3
3111 
3112 /* Run sched_balance_domains() */
3113 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3114 /* Update blocked load */
3115 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3116 /* Update blocked load when entering idle */
3117 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3118 /* Update nohz.next_balance */
3119 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3120 
3121 #define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3122 
3123 #define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3124 
3125 extern void nohz_balance_exit_idle(struct rq *rq);
3126 #else /* !CONFIG_NO_HZ_COMMON: */
nohz_balance_exit_idle(struct rq * rq)3127 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3128 #endif /* !CONFIG_NO_HZ_COMMON */
3129 
3130 #ifdef CONFIG_NO_HZ_COMMON
3131 extern void nohz_run_idle_balance(int cpu);
3132 #else
nohz_run_idle_balance(int cpu)3133 static inline void nohz_run_idle_balance(int cpu) { }
3134 #endif
3135 
3136 #include "stats.h"
3137 
3138 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3139 
3140 extern void __sched_core_account_forceidle(struct rq *rq);
3141 
sched_core_account_forceidle(struct rq * rq)3142 static inline void sched_core_account_forceidle(struct rq *rq)
3143 {
3144 	if (schedstat_enabled())
3145 		__sched_core_account_forceidle(rq);
3146 }
3147 
3148 extern void __sched_core_tick(struct rq *rq);
3149 
sched_core_tick(struct rq * rq)3150 static inline void sched_core_tick(struct rq *rq)
3151 {
3152 	if (sched_core_enabled(rq) && schedstat_enabled())
3153 		__sched_core_tick(rq);
3154 }
3155 
3156 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3157 
sched_core_account_forceidle(struct rq * rq)3158 static inline void sched_core_account_forceidle(struct rq *rq) { }
3159 
sched_core_tick(struct rq * rq)3160 static inline void sched_core_tick(struct rq *rq) { }
3161 
3162 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3163 
3164 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3165 
3166 struct irqtime {
3167 	u64			total;
3168 	u64			tick_delta;
3169 	u64			irq_start_time;
3170 	struct u64_stats_sync	sync;
3171 };
3172 
3173 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3174 extern int sched_clock_irqtime;
3175 
irqtime_enabled(void)3176 static inline int irqtime_enabled(void)
3177 {
3178 	return sched_clock_irqtime;
3179 }
3180 
3181 /*
3182  * Returns the irqtime minus the softirq time computed by ksoftirqd.
3183  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3184  * and never move forward.
3185  */
irq_time_read(int cpu)3186 static inline u64 irq_time_read(int cpu)
3187 {
3188 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3189 	unsigned int seq;
3190 	u64 total;
3191 
3192 	do {
3193 		seq = __u64_stats_fetch_begin(&irqtime->sync);
3194 		total = irqtime->total;
3195 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3196 
3197 	return total;
3198 }
3199 
3200 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
3201 
irqtime_enabled(void)3202 static inline int irqtime_enabled(void)
3203 {
3204 	return 0;
3205 }
3206 
3207 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
3208 
3209 #ifdef CONFIG_CPU_FREQ
3210 
3211 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3212 
3213 /**
3214  * cpufreq_update_util - Take a note about CPU utilization changes.
3215  * @rq: Runqueue to carry out the update for.
3216  * @flags: Update reason flags.
3217  *
3218  * This function is called by the scheduler on the CPU whose utilization is
3219  * being updated.
3220  *
3221  * It can only be called from RCU-sched read-side critical sections.
3222  *
3223  * The way cpufreq is currently arranged requires it to evaluate the CPU
3224  * performance state (frequency/voltage) on a regular basis to prevent it from
3225  * being stuck in a completely inadequate performance level for too long.
3226  * That is not guaranteed to happen if the updates are only triggered from CFS
3227  * and DL, though, because they may not be coming in if only RT tasks are
3228  * active all the time (or there are RT tasks only).
3229  *
3230  * As a workaround for that issue, this function is called periodically by the
3231  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3232  * but that really is a band-aid.  Going forward it should be replaced with
3233  * solutions targeted more specifically at RT tasks.
3234  */
cpufreq_update_util(struct rq * rq,unsigned int flags)3235 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3236 {
3237 	struct update_util_data *data;
3238 
3239 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3240 						  cpu_of(rq)));
3241 	if (data)
3242 		data->func(data, rq_clock(rq), flags);
3243 }
3244 #else /* !CONFIG_CPU_FREQ: */
cpufreq_update_util(struct rq * rq,unsigned int flags)3245 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3246 #endif /* !CONFIG_CPU_FREQ */
3247 
3248 #ifdef arch_scale_freq_capacity
3249 # ifndef arch_scale_freq_invariant
3250 #  define arch_scale_freq_invariant()	true
3251 # endif
3252 #else
3253 # define arch_scale_freq_invariant()	false
3254 #endif
3255 
3256 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3257 				 unsigned long *min,
3258 				 unsigned long *max);
3259 
3260 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3261 				 unsigned long min,
3262 				 unsigned long max);
3263 
3264 
3265 /*
3266  * Verify the fitness of task @p to run on @cpu taking into account the
3267  * CPU original capacity and the runtime/deadline ratio of the task.
3268  *
3269  * The function will return true if the original capacity of @cpu is
3270  * greater than or equal to task's deadline density right shifted by
3271  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3272  */
dl_task_fits_capacity(struct task_struct * p,int cpu)3273 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3274 {
3275 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3276 
3277 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3278 }
3279 
cpu_bw_dl(struct rq * rq)3280 static inline unsigned long cpu_bw_dl(struct rq *rq)
3281 {
3282 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3283 }
3284 
cpu_util_dl(struct rq * rq)3285 static inline unsigned long cpu_util_dl(struct rq *rq)
3286 {
3287 	return READ_ONCE(rq->avg_dl.util_avg);
3288 }
3289 
3290 
3291 extern unsigned long cpu_util_cfs(int cpu);
3292 extern unsigned long cpu_util_cfs_boost(int cpu);
3293 
cpu_util_rt(struct rq * rq)3294 static inline unsigned long cpu_util_rt(struct rq *rq)
3295 {
3296 	return READ_ONCE(rq->avg_rt.util_avg);
3297 }
3298 
3299 #ifdef CONFIG_UCLAMP_TASK
3300 
3301 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3302 
3303 /*
3304  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3305  * by default in the fast path and only gets turned on once userspace performs
3306  * an operation that requires it.
3307  *
3308  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3309  * hence is active.
3310  */
uclamp_is_used(void)3311 static inline bool uclamp_is_used(void)
3312 {
3313 	return static_branch_likely(&sched_uclamp_used);
3314 }
3315 
3316 /*
3317  * Enabling static branches would get the cpus_read_lock(),
3318  * check whether uclamp_is_used before enable it to avoid always
3319  * calling cpus_read_lock(). Because we never disable this
3320  * static key once enable it.
3321  */
sched_uclamp_enable(void)3322 static inline void sched_uclamp_enable(void)
3323 {
3324 	if (!uclamp_is_used())
3325 		static_branch_enable(&sched_uclamp_used);
3326 }
3327 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3328 static inline unsigned long uclamp_rq_get(struct rq *rq,
3329 					  enum uclamp_id clamp_id)
3330 {
3331 	return READ_ONCE(rq->uclamp[clamp_id].value);
3332 }
3333 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3334 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3335 				 unsigned int value)
3336 {
3337 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3338 }
3339 
uclamp_rq_is_idle(struct rq * rq)3340 static inline bool uclamp_rq_is_idle(struct rq *rq)
3341 {
3342 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3343 }
3344 
3345 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3346 static inline bool uclamp_rq_is_capped(struct rq *rq)
3347 {
3348 	unsigned long rq_util;
3349 	unsigned long max_util;
3350 
3351 	if (!uclamp_is_used())
3352 		return false;
3353 
3354 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3355 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3356 
3357 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3358 }
3359 
3360 #define for_each_clamp_id(clamp_id) \
3361 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3362 
3363 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3364 
3365 
uclamp_none(enum uclamp_id clamp_id)3366 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3367 {
3368 	if (clamp_id == UCLAMP_MIN)
3369 		return 0;
3370 	return SCHED_CAPACITY_SCALE;
3371 }
3372 
3373 /* Integer rounded range for each bucket */
3374 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3375 
uclamp_bucket_id(unsigned int clamp_value)3376 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3377 {
3378 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3379 }
3380 
3381 static inline void
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)3382 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3383 {
3384 	uc_se->value = value;
3385 	uc_se->bucket_id = uclamp_bucket_id(value);
3386 	uc_se->user_defined = user_defined;
3387 }
3388 
3389 #else /* !CONFIG_UCLAMP_TASK: */
3390 
3391 static inline unsigned long
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3392 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3393 {
3394 	if (clamp_id == UCLAMP_MIN)
3395 		return 0;
3396 
3397 	return SCHED_CAPACITY_SCALE;
3398 }
3399 
uclamp_rq_is_capped(struct rq * rq)3400 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3401 
uclamp_is_used(void)3402 static inline bool uclamp_is_used(void)
3403 {
3404 	return false;
3405 }
3406 
sched_uclamp_enable(void)3407 static inline void sched_uclamp_enable(void) {}
3408 
3409 static inline unsigned long
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3410 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3411 {
3412 	if (clamp_id == UCLAMP_MIN)
3413 		return 0;
3414 
3415 	return SCHED_CAPACITY_SCALE;
3416 }
3417 
3418 static inline void
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3419 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3420 {
3421 }
3422 
uclamp_rq_is_idle(struct rq * rq)3423 static inline bool uclamp_rq_is_idle(struct rq *rq)
3424 {
3425 	return false;
3426 }
3427 
3428 #endif /* !CONFIG_UCLAMP_TASK */
3429 
3430 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3431 
cpu_util_irq(struct rq * rq)3432 static inline unsigned long cpu_util_irq(struct rq *rq)
3433 {
3434 	return READ_ONCE(rq->avg_irq.util_avg);
3435 }
3436 
3437 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3438 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3439 {
3440 	util *= (max - irq);
3441 	util /= max;
3442 
3443 	return util;
3444 
3445 }
3446 
3447 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3448 
cpu_util_irq(struct rq * rq)3449 static inline unsigned long cpu_util_irq(struct rq *rq)
3450 {
3451 	return 0;
3452 }
3453 
3454 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3455 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3456 {
3457 	return util;
3458 }
3459 
3460 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3461 
3462 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr);
3463 
3464 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3465 
3466 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3467 
3468 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3469 
sched_energy_enabled(void)3470 static inline bool sched_energy_enabled(void)
3471 {
3472 	return static_branch_unlikely(&sched_energy_present);
3473 }
3474 
3475 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */
3476 
3477 #define perf_domain_span(pd) NULL
3478 
sched_energy_enabled(void)3479 static inline bool sched_energy_enabled(void) { return false; }
3480 
3481 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3482 
3483 #ifdef CONFIG_MEMBARRIER
3484 
3485 /*
3486  * The scheduler provides memory barriers required by membarrier between:
3487  * - prior user-space memory accesses and store to rq->membarrier_state,
3488  * - store to rq->membarrier_state and following user-space memory accesses.
3489  * In the same way it provides those guarantees around store to rq->curr.
3490  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3491 static inline void membarrier_switch_mm(struct rq *rq,
3492 					struct mm_struct *prev_mm,
3493 					struct mm_struct *next_mm)
3494 {
3495 	int membarrier_state;
3496 
3497 	if (prev_mm == next_mm)
3498 		return;
3499 
3500 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3501 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3502 		return;
3503 
3504 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3505 }
3506 
3507 #else /* !CONFIG_MEMBARRIER: */
3508 
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3509 static inline void membarrier_switch_mm(struct rq *rq,
3510 					struct mm_struct *prev_mm,
3511 					struct mm_struct *next_mm)
3512 {
3513 }
3514 
3515 #endif /* !CONFIG_MEMBARRIER */
3516 
is_per_cpu_kthread(struct task_struct * p)3517 static inline bool is_per_cpu_kthread(struct task_struct *p)
3518 {
3519 	if (!(p->flags & PF_KTHREAD))
3520 		return false;
3521 
3522 	if (p->nr_cpus_allowed != 1)
3523 		return false;
3524 
3525 	return true;
3526 }
3527 
3528 extern void swake_up_all_locked(struct swait_queue_head *q);
3529 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3530 
3531 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3532 
3533 #ifdef CONFIG_PREEMPT_DYNAMIC
3534 extern int preempt_dynamic_mode;
3535 extern int sched_dynamic_mode(const char *str);
3536 extern void sched_dynamic_update(int mode);
3537 #endif
3538 extern const char *preempt_modes[];
3539 
3540 #ifdef CONFIG_SCHED_MM_CID
3541 
3542 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3543 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3544 
3545 extern raw_spinlock_t cid_lock;
3546 extern int use_cid_lock;
3547 
3548 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3549 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3550 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3551 extern void init_sched_mm_cid(struct task_struct *t);
3552 
__mm_cid_put(struct mm_struct * mm,int cid)3553 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3554 {
3555 	if (cid < 0)
3556 		return;
3557 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3558 }
3559 
3560 /*
3561  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3562  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3563  * be held to transition to other states.
3564  *
3565  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3566  * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3567  */
mm_cid_put_lazy(struct task_struct * t)3568 static inline void mm_cid_put_lazy(struct task_struct *t)
3569 {
3570 	struct mm_struct *mm = t->mm;
3571 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3572 	int cid;
3573 
3574 	lockdep_assert_irqs_disabled();
3575 	cid = __this_cpu_read(pcpu_cid->cid);
3576 	if (!mm_cid_is_lazy_put(cid) ||
3577 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3578 		return;
3579 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3580 }
3581 
mm_cid_pcpu_unset(struct mm_struct * mm)3582 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3583 {
3584 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3585 	int cid, res;
3586 
3587 	lockdep_assert_irqs_disabled();
3588 	cid = __this_cpu_read(pcpu_cid->cid);
3589 	for (;;) {
3590 		if (mm_cid_is_unset(cid))
3591 			return MM_CID_UNSET;
3592 		/*
3593 		 * Attempt transition from valid or lazy-put to unset.
3594 		 */
3595 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3596 		if (res == cid)
3597 			break;
3598 		cid = res;
3599 	}
3600 	return cid;
3601 }
3602 
mm_cid_put(struct mm_struct * mm)3603 static inline void mm_cid_put(struct mm_struct *mm)
3604 {
3605 	int cid;
3606 
3607 	lockdep_assert_irqs_disabled();
3608 	cid = mm_cid_pcpu_unset(mm);
3609 	if (cid == MM_CID_UNSET)
3610 		return;
3611 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3612 }
3613 
__mm_cid_try_get(struct task_struct * t,struct mm_struct * mm)3614 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
3615 {
3616 	struct cpumask *cidmask = mm_cidmask(mm);
3617 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3618 	int cid, max_nr_cid, allowed_max_nr_cid;
3619 
3620 	/*
3621 	 * After shrinking the number of threads or reducing the number
3622 	 * of allowed cpus, reduce the value of max_nr_cid so expansion
3623 	 * of cid allocation will preserve cache locality if the number
3624 	 * of threads or allowed cpus increase again.
3625 	 */
3626 	max_nr_cid = atomic_read(&mm->max_nr_cid);
3627 	while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed),
3628 					   atomic_read(&mm->mm_users))),
3629 	       max_nr_cid > allowed_max_nr_cid) {
3630 		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */
3631 		if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) {
3632 			max_nr_cid = allowed_max_nr_cid;
3633 			break;
3634 		}
3635 	}
3636 	/* Try to re-use recent cid. This improves cache locality. */
3637 	cid = __this_cpu_read(pcpu_cid->recent_cid);
3638 	if (!mm_cid_is_unset(cid) && cid < max_nr_cid &&
3639 	    !cpumask_test_and_set_cpu(cid, cidmask))
3640 		return cid;
3641 	/*
3642 	 * Expand cid allocation if the maximum number of concurrency
3643 	 * IDs allocated (max_nr_cid) is below the number cpus allowed
3644 	 * and number of threads. Expanding cid allocation as much as
3645 	 * possible improves cache locality.
3646 	 */
3647 	cid = max_nr_cid;
3648 	while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
3649 		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */
3650 		if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
3651 			continue;
3652 		if (!cpumask_test_and_set_cpu(cid, cidmask))
3653 			return cid;
3654 	}
3655 	/*
3656 	 * Find the first available concurrency id.
3657 	 * Retry finding first zero bit if the mask is temporarily
3658 	 * filled. This only happens during concurrent remote-clear
3659 	 * which owns a cid without holding a rq lock.
3660 	 */
3661 	for (;;) {
3662 		cid = cpumask_first_zero(cidmask);
3663 		if (cid < READ_ONCE(mm->nr_cpus_allowed))
3664 			break;
3665 		cpu_relax();
3666 	}
3667 	if (cpumask_test_and_set_cpu(cid, cidmask))
3668 		return -1;
3669 
3670 	return cid;
3671 }
3672 
3673 /*
3674  * Save a snapshot of the current runqueue time of this cpu
3675  * with the per-cpu cid value, allowing to estimate how recently it was used.
3676  */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3677 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3678 {
3679 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3680 
3681 	lockdep_assert_rq_held(rq);
3682 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3683 }
3684 
__mm_cid_get(struct rq * rq,struct task_struct * t,struct mm_struct * mm)3685 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
3686 			       struct mm_struct *mm)
3687 {
3688 	int cid;
3689 
3690 	/*
3691 	 * All allocations (even those using the cid_lock) are lock-free. If
3692 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3693 	 * guarantee forward progress.
3694 	 */
3695 	if (!READ_ONCE(use_cid_lock)) {
3696 		cid = __mm_cid_try_get(t, mm);
3697 		if (cid >= 0)
3698 			goto end;
3699 		raw_spin_lock(&cid_lock);
3700 	} else {
3701 		raw_spin_lock(&cid_lock);
3702 		cid = __mm_cid_try_get(t, mm);
3703 		if (cid >= 0)
3704 			goto unlock;
3705 	}
3706 
3707 	/*
3708 	 * cid concurrently allocated. Retry while forcing following
3709 	 * allocations to use the cid_lock to ensure forward progress.
3710 	 */
3711 	WRITE_ONCE(use_cid_lock, 1);
3712 	/*
3713 	 * Set use_cid_lock before allocation. Only care about program order
3714 	 * because this is only required for forward progress.
3715 	 */
3716 	barrier();
3717 	/*
3718 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3719 	 * all newcoming allocations observe the use_cid_lock flag set.
3720 	 */
3721 	do {
3722 		cid = __mm_cid_try_get(t, mm);
3723 		cpu_relax();
3724 	} while (cid < 0);
3725 	/*
3726 	 * Allocate before clearing use_cid_lock. Only care about
3727 	 * program order because this is for forward progress.
3728 	 */
3729 	barrier();
3730 	WRITE_ONCE(use_cid_lock, 0);
3731 unlock:
3732 	raw_spin_unlock(&cid_lock);
3733 end:
3734 	mm_cid_snapshot_time(rq, mm);
3735 
3736 	return cid;
3737 }
3738 
mm_cid_get(struct rq * rq,struct task_struct * t,struct mm_struct * mm)3739 static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
3740 			     struct mm_struct *mm)
3741 {
3742 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3743 	struct cpumask *cpumask;
3744 	int cid;
3745 
3746 	lockdep_assert_rq_held(rq);
3747 	cpumask = mm_cidmask(mm);
3748 	cid = __this_cpu_read(pcpu_cid->cid);
3749 	if (mm_cid_is_valid(cid)) {
3750 		mm_cid_snapshot_time(rq, mm);
3751 		return cid;
3752 	}
3753 	if (mm_cid_is_lazy_put(cid)) {
3754 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3755 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3756 	}
3757 	cid = __mm_cid_get(rq, t, mm);
3758 	__this_cpu_write(pcpu_cid->cid, cid);
3759 	__this_cpu_write(pcpu_cid->recent_cid, cid);
3760 
3761 	return cid;
3762 }
3763 
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3764 static inline void switch_mm_cid(struct rq *rq,
3765 				 struct task_struct *prev,
3766 				 struct task_struct *next)
3767 {
3768 	/*
3769 	 * Provide a memory barrier between rq->curr store and load of
3770 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3771 	 *
3772 	 * Should be adapted if context_switch() is modified.
3773 	 */
3774 	if (!next->mm) {                                // to kernel
3775 		/*
3776 		 * user -> kernel transition does not guarantee a barrier, but
3777 		 * we can use the fact that it performs an atomic operation in
3778 		 * mmgrab().
3779 		 */
3780 		if (prev->mm)                           // from user
3781 			smp_mb__after_mmgrab();
3782 		/*
3783 		 * kernel -> kernel transition does not change rq->curr->mm
3784 		 * state. It stays NULL.
3785 		 */
3786 	} else {                                        // to user
3787 		/*
3788 		 * kernel -> user transition does not provide a barrier
3789 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3790 		 * Provide it here.
3791 		 */
3792 		if (!prev->mm) {                        // from kernel
3793 			smp_mb();
3794 		} else {				// from user
3795 			/*
3796 			 * user->user transition relies on an implicit
3797 			 * memory barrier in switch_mm() when
3798 			 * current->mm changes. If the architecture
3799 			 * switch_mm() does not have an implicit memory
3800 			 * barrier, it is emitted here.  If current->mm
3801 			 * is unchanged, no barrier is needed.
3802 			 */
3803 			smp_mb__after_switch_mm();
3804 		}
3805 	}
3806 	if (prev->mm_cid_active) {
3807 		mm_cid_snapshot_time(rq, prev->mm);
3808 		mm_cid_put_lazy(prev);
3809 		prev->mm_cid = -1;
3810 	}
3811 	if (next->mm_cid_active)
3812 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
3813 }
3814 
3815 #else /* !CONFIG_SCHED_MM_CID: */
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3816 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3817 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3818 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3819 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3820 static inline void init_sched_mm_cid(struct task_struct *t) { }
3821 #endif /* !CONFIG_SCHED_MM_CID */
3822 
3823 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3824 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3825 static inline
move_queued_task_locked(struct rq * src_rq,struct rq * dst_rq,struct task_struct * task)3826 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3827 {
3828 	lockdep_assert_rq_held(src_rq);
3829 	lockdep_assert_rq_held(dst_rq);
3830 
3831 	deactivate_task(src_rq, task, 0);
3832 	set_task_cpu(task, dst_rq->cpu);
3833 	activate_task(dst_rq, task, 0);
3834 }
3835 
3836 static inline
task_is_pushable(struct rq * rq,struct task_struct * p,int cpu)3837 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3838 {
3839 	if (!task_on_cpu(rq, p) &&
3840 	    cpumask_test_cpu(cpu, &p->cpus_mask))
3841 		return true;
3842 
3843 	return false;
3844 }
3845 
3846 #ifdef CONFIG_RT_MUTEXES
3847 
__rt_effective_prio(struct task_struct * pi_task,int prio)3848 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3849 {
3850 	if (pi_task)
3851 		prio = min(prio, pi_task->prio);
3852 
3853 	return prio;
3854 }
3855 
rt_effective_prio(struct task_struct * p,int prio)3856 static inline int rt_effective_prio(struct task_struct *p, int prio)
3857 {
3858 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3859 
3860 	return __rt_effective_prio(pi_task, prio);
3861 }
3862 
3863 #else /* !CONFIG_RT_MUTEXES: */
3864 
rt_effective_prio(struct task_struct * p,int prio)3865 static inline int rt_effective_prio(struct task_struct *p, int prio)
3866 {
3867 	return prio;
3868 }
3869 
3870 #endif /* !CONFIG_RT_MUTEXES */
3871 
3872 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3873 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3874 extern const struct sched_class *__setscheduler_class(int policy, int prio);
3875 extern void set_load_weight(struct task_struct *p, bool update_load);
3876 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3877 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3878 
3879 extern void check_class_changing(struct rq *rq, struct task_struct *p,
3880 				 const struct sched_class *prev_class);
3881 extern void check_class_changed(struct rq *rq, struct task_struct *p,
3882 				const struct sched_class *prev_class,
3883 				int oldprio);
3884 
3885 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3886 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3887 
3888 #ifdef CONFIG_SCHED_CLASS_EXT
3889 /*
3890  * Used by SCX in the enable/disable paths to move tasks between sched_classes
3891  * and establish invariants.
3892  */
3893 struct sched_enq_and_set_ctx {
3894 	struct task_struct	*p;
3895 	int			queue_flags;
3896 	bool			queued;
3897 	bool			running;
3898 };
3899 
3900 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
3901 			    struct sched_enq_and_set_ctx *ctx);
3902 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
3903 
3904 #endif /* CONFIG_SCHED_CLASS_EXT */
3905 
3906 #include "ext.h"
3907 
3908 #endif /* _KERNEL_SCHED_SCHED_H */
3909