xref: /linux/drivers/scsi/hpsa.c (revision 2e3fcbcc3b0eb9b96d2912cdac920f0ae8d1c8f2)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <linux/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86 
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 	"Use 'simple mode' rather than 'performant mode'");
91 
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x40700E11, "Smart Array 5300", &SA5A_access},
162 	{0x40800E11, "Smart Array 5i", &SA5B_access},
163 	{0x40820E11, "Smart Array 532", &SA5B_access},
164 	{0x40830E11, "Smart Array 5312", &SA5B_access},
165 	{0x409A0E11, "Smart Array 641", &SA5A_access},
166 	{0x409B0E11, "Smart Array 642", &SA5A_access},
167 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
168 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 	{0x40910E11, "Smart Array 6i", &SA5A_access},
170 	{0x3225103C, "Smart Array P600", &SA5A_access},
171 	{0x3223103C, "Smart Array P800", &SA5A_access},
172 	{0x3234103C, "Smart Array P400", &SA5A_access},
173 	{0x3235103C, "Smart Array P400i", &SA5A_access},
174 	{0x3211103C, "Smart Array E200i", &SA5A_access},
175 	{0x3212103C, "Smart Array E200", &SA5A_access},
176 	{0x3213103C, "Smart Array E200i", &SA5A_access},
177 	{0x3214103C, "Smart Array E200i", &SA5A_access},
178 	{0x3215103C, "Smart Array E200i", &SA5A_access},
179 	{0x3237103C, "Smart Array E500", &SA5A_access},
180 	{0x323D103C, "Smart Array P700m", &SA5A_access},
181 	{0x3241103C, "Smart Array P212", &SA5_access},
182 	{0x3243103C, "Smart Array P410", &SA5_access},
183 	{0x3245103C, "Smart Array P410i", &SA5_access},
184 	{0x3247103C, "Smart Array P411", &SA5_access},
185 	{0x3249103C, "Smart Array P812", &SA5_access},
186 	{0x324A103C, "Smart Array P712m", &SA5_access},
187 	{0x324B103C, "Smart Array P711m", &SA5_access},
188 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 	{0x3350103C, "Smart Array P222", &SA5_access},
190 	{0x3351103C, "Smart Array P420", &SA5_access},
191 	{0x3352103C, "Smart Array P421", &SA5_access},
192 	{0x3353103C, "Smart Array P822", &SA5_access},
193 	{0x3354103C, "Smart Array P420i", &SA5_access},
194 	{0x3355103C, "Smart Array P220i", &SA5_access},
195 	{0x3356103C, "Smart Array P721m", &SA5_access},
196 	{0x1920103C, "Smart Array P430i", &SA5_access},
197 	{0x1921103C, "Smart Array P830i", &SA5_access},
198 	{0x1922103C, "Smart Array P430", &SA5_access},
199 	{0x1923103C, "Smart Array P431", &SA5_access},
200 	{0x1924103C, "Smart Array P830", &SA5_access},
201 	{0x1925103C, "Smart Array P831", &SA5_access},
202 	{0x1926103C, "Smart Array P731m", &SA5_access},
203 	{0x1928103C, "Smart Array P230i", &SA5_access},
204 	{0x1929103C, "Smart Array P530", &SA5_access},
205 	{0x21BD103C, "Smart Array P244br", &SA5_access},
206 	{0x21BE103C, "Smart Array P741m", &SA5_access},
207 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
209 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
210 	{0x21C2103C, "Smart Array P440", &SA5_access},
211 	{0x21C3103C, "Smart Array P441", &SA5_access},
212 	{0x21C4103C, "Smart Array", &SA5_access},
213 	{0x21C5103C, "Smart Array P841", &SA5_access},
214 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
215 	{0x21C7103C, "Smart HBA H240", &SA5_access},
216 	{0x21C8103C, "Smart HBA H241", &SA5_access},
217 	{0x21C9103C, "Smart Array", &SA5_access},
218 	{0x21CA103C, "Smart Array P246br", &SA5_access},
219 	{0x21CB103C, "Smart Array P840", &SA5_access},
220 	{0x21CC103C, "Smart Array", &SA5_access},
221 	{0x21CD103C, "Smart Array", &SA5_access},
222 	{0x21CE103C, "Smart HBA", &SA5_access},
223 	{0x05809005, "SmartHBA-SA", &SA5_access},
224 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236 
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 			struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 		struct sas_rphy *rphy);
246 
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252 
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 		      void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258 			       IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260 				   BIG_IOCTL_Command_struct *ioc);
261 
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264 	void __user *arg);
265 #endif
266 
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271 					    struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274 	int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278 
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282 	unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284 
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_sdev_init(struct scsi_device *sdev);
287 static int hpsa_sdev_configure(struct scsi_device *sdev,
288 			       struct queue_limits *lim);
289 static void hpsa_sdev_destroy(struct scsi_device *sdev);
290 
291 static void hpsa_update_scsi_devices(struct ctlr_info *h);
292 static int check_for_unit_attention(struct ctlr_info *h,
293 	struct CommandList *c);
294 static void check_ioctl_unit_attention(struct ctlr_info *h,
295 	struct CommandList *c);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket, int num_buckets,
298 	int nsgs, int min_blocks, u32 *bucket_map);
299 static void hpsa_free_performant_mode(struct ctlr_info *h);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
301 static inline u32 next_command(struct ctlr_info *h, u8 q);
302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
303 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
304 			       u64 *cfg_offset);
305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
306 				    unsigned long *memory_bar);
307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
308 				bool *legacy_board);
309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
310 					   unsigned char lunaddr[],
311 					   int reply_queue);
312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
313 				     int wait_for_ready);
314 static inline void finish_cmd(struct CommandList *c);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info *h);
319 static void hpsa_flush_cache(struct ctlr_info *h);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
321 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
322 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
323 static void hpsa_command_resubmit_worker(struct work_struct *work);
324 static u32 lockup_detected(struct ctlr_info *h);
325 static int detect_controller_lockup(struct ctlr_info *h);
326 static void hpsa_disable_rld_caching(struct ctlr_info *h);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
328 	struct ReportExtendedLUNdata *buf, int bufsize);
329 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
330 	unsigned char scsi3addr[], u8 page);
331 static int hpsa_luns_changed(struct ctlr_info *h);
332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
333 			       struct hpsa_scsi_dev_t *dev,
334 			       unsigned char *scsi3addr);
335 
sdev_to_hba(struct scsi_device * sdev)336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
337 {
338 	unsigned long *priv = shost_priv(sdev->host);
339 	return (struct ctlr_info *) *priv;
340 }
341 
shost_to_hba(struct Scsi_Host * sh)342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
343 {
344 	unsigned long *priv = shost_priv(sh);
345 	return (struct ctlr_info *) *priv;
346 }
347 
hpsa_is_cmd_idle(struct CommandList * c)348 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
349 {
350 	return c->scsi_cmd == SCSI_CMD_IDLE;
351 }
352 
353 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
decode_sense_data(const u8 * sense_data,int sense_data_len,u8 * sense_key,u8 * asc,u8 * ascq)354 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
355 			u8 *sense_key, u8 *asc, u8 *ascq)
356 {
357 	struct scsi_sense_hdr sshdr;
358 	bool rc;
359 
360 	*sense_key = -1;
361 	*asc = -1;
362 	*ascq = -1;
363 
364 	if (sense_data_len < 1)
365 		return;
366 
367 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
368 	if (rc) {
369 		*sense_key = sshdr.sense_key;
370 		*asc = sshdr.asc;
371 		*ascq = sshdr.ascq;
372 	}
373 }
374 
check_for_unit_attention(struct ctlr_info * h,struct CommandList * c)375 static int check_for_unit_attention(struct ctlr_info *h,
376 	struct CommandList *c)
377 {
378 	u8 sense_key, asc, ascq;
379 	int sense_len;
380 
381 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
382 		sense_len = sizeof(c->err_info->SenseInfo);
383 	else
384 		sense_len = c->err_info->SenseLen;
385 
386 	decode_sense_data(c->err_info->SenseInfo, sense_len,
387 				&sense_key, &asc, &ascq);
388 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
389 		return 0;
390 
391 	switch (asc) {
392 	case STATE_CHANGED:
393 		dev_warn(&h->pdev->dev,
394 			"%s: a state change detected, command retried\n",
395 			h->devname);
396 		break;
397 	case LUN_FAILED:
398 		dev_warn(&h->pdev->dev,
399 			"%s: LUN failure detected\n", h->devname);
400 		break;
401 	case REPORT_LUNS_CHANGED:
402 		dev_warn(&h->pdev->dev,
403 			"%s: report LUN data changed\n", h->devname);
404 	/*
405 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406 	 * target (array) devices.
407 	 */
408 		break;
409 	case POWER_OR_RESET:
410 		dev_warn(&h->pdev->dev,
411 			"%s: a power on or device reset detected\n",
412 			h->devname);
413 		break;
414 	case UNIT_ATTENTION_CLEARED:
415 		dev_warn(&h->pdev->dev,
416 			"%s: unit attention cleared by another initiator\n",
417 			h->devname);
418 		break;
419 	default:
420 		dev_warn(&h->pdev->dev,
421 			"%s: unknown unit attention detected\n",
422 			h->devname);
423 		break;
424 	}
425 	return 1;
426 }
427 
check_for_busy(struct ctlr_info * h,struct CommandList * c)428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 {
430 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
431 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
432 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
433 		return 0;
434 	dev_warn(&h->pdev->dev, HPSA "device busy");
435 	return 1;
436 }
437 
438 static u32 lockup_detected(struct ctlr_info *h);
host_show_lockup_detected(struct device * dev,struct device_attribute * attr,char * buf)439 static ssize_t host_show_lockup_detected(struct device *dev,
440 		struct device_attribute *attr, char *buf)
441 {
442 	int ld;
443 	struct ctlr_info *h;
444 	struct Scsi_Host *shost = class_to_shost(dev);
445 
446 	h = shost_to_hba(shost);
447 	ld = lockup_detected(h);
448 
449 	return sprintf(buf, "ld=%d\n", ld);
450 }
451 
host_store_hp_ssd_smart_path_status(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
453 					 struct device_attribute *attr,
454 					 const char *buf, size_t count)
455 {
456 	int status;
457 	struct ctlr_info *h;
458 	struct Scsi_Host *shost = class_to_shost(dev);
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	if (kstrtoint(buf, 10, &status))
463 		return -EINVAL;
464 	h = shost_to_hba(shost);
465 	h->acciopath_status = !!status;
466 	dev_warn(&h->pdev->dev,
467 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
468 		h->acciopath_status ? "enabled" : "disabled");
469 	return count;
470 }
471 
host_store_raid_offload_debug(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)472 static ssize_t host_store_raid_offload_debug(struct device *dev,
473 					 struct device_attribute *attr,
474 					 const char *buf, size_t count)
475 {
476 	int debug_level;
477 	struct ctlr_info *h;
478 	struct Scsi_Host *shost = class_to_shost(dev);
479 
480 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
481 		return -EACCES;
482 	if (kstrtoint(buf, 10, &debug_level))
483 		return -EINVAL;
484 	if (debug_level < 0)
485 		debug_level = 0;
486 	h = shost_to_hba(shost);
487 	h->raid_offload_debug = debug_level;
488 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
489 		h->raid_offload_debug);
490 	return count;
491 }
492 
host_store_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)493 static ssize_t host_store_rescan(struct device *dev,
494 				 struct device_attribute *attr,
495 				 const char *buf, size_t count)
496 {
497 	struct ctlr_info *h;
498 	struct Scsi_Host *shost = class_to_shost(dev);
499 	h = shost_to_hba(shost);
500 	hpsa_scan_start(h->scsi_host);
501 	return count;
502 }
503 
hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t * device)504 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
505 {
506 	device->offload_enabled = 0;
507 	device->offload_to_be_enabled = 0;
508 }
509 
host_show_firmware_revision(struct device * dev,struct device_attribute * attr,char * buf)510 static ssize_t host_show_firmware_revision(struct device *dev,
511 	     struct device_attribute *attr, char *buf)
512 {
513 	struct ctlr_info *h;
514 	struct Scsi_Host *shost = class_to_shost(dev);
515 	unsigned char *fwrev;
516 
517 	h = shost_to_hba(shost);
518 	if (!h->hba_inquiry_data)
519 		return 0;
520 	fwrev = &h->hba_inquiry_data[32];
521 	return snprintf(buf, 20, "%c%c%c%c\n",
522 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524 
host_show_commands_outstanding(struct device * dev,struct device_attribute * attr,char * buf)525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 	     struct device_attribute *attr, char *buf)
527 {
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 	struct ctlr_info *h = shost_to_hba(shost);
530 
531 	return snprintf(buf, 20, "%d\n",
532 			atomic_read(&h->commands_outstanding));
533 }
534 
host_show_transport_mode(struct device * dev,struct device_attribute * attr,char * buf)535 static ssize_t host_show_transport_mode(struct device *dev,
536 	struct device_attribute *attr, char *buf)
537 {
538 	struct ctlr_info *h;
539 	struct Scsi_Host *shost = class_to_shost(dev);
540 
541 	h = shost_to_hba(shost);
542 	return snprintf(buf, 20, "%s\n",
543 		h->transMethod & CFGTBL_Trans_Performant ?
544 			"performant" : "simple");
545 }
546 
host_show_hp_ssd_smart_path_status(struct device * dev,struct device_attribute * attr,char * buf)547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 	struct device_attribute *attr, char *buf)
549 {
550 	struct ctlr_info *h;
551 	struct Scsi_Host *shost = class_to_shost(dev);
552 
553 	h = shost_to_hba(shost);
554 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557 
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 	0x324a103C, /* Smart Array P712m */
561 	0x324b103C, /* Smart Array P711m */
562 	0x3223103C, /* Smart Array P800 */
563 	0x3234103C, /* Smart Array P400 */
564 	0x3235103C, /* Smart Array P400i */
565 	0x3211103C, /* Smart Array E200i */
566 	0x3212103C, /* Smart Array E200 */
567 	0x3213103C, /* Smart Array E200i */
568 	0x3214103C, /* Smart Array E200i */
569 	0x3215103C, /* Smart Array E200i */
570 	0x3237103C, /* Smart Array E500 */
571 	0x323D103C, /* Smart Array P700m */
572 	0x40800E11, /* Smart Array 5i */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 	0x40700E11, /* Smart Array 5300 */
576 	0x40820E11, /* Smart Array 532 */
577 	0x40830E11, /* Smart Array 5312 */
578 	0x409A0E11, /* Smart Array 641 */
579 	0x409B0E11, /* Smart Array 642 */
580 	0x40910E11, /* Smart Array 6i */
581 };
582 
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 	0x40800E11, /* Smart Array 5i */
586 	0x40700E11, /* Smart Array 5300 */
587 	0x40820E11, /* Smart Array 532 */
588 	0x40830E11, /* Smart Array 5312 */
589 	0x409A0E11, /* Smart Array 641 */
590 	0x409B0E11, /* Smart Array 642 */
591 	0x40910E11, /* Smart Array 6i */
592 	/* Exclude 640x boards.  These are two pci devices in one slot
593 	 * which share a battery backed cache module.  One controls the
594 	 * cache, the other accesses the cache through the one that controls
595 	 * it.  If we reset the one controlling the cache, the other will
596 	 * likely not be happy.  Just forbid resetting this conjoined mess.
597 	 * The 640x isn't really supported by hpsa anyway.
598 	 */
599 	0x409C0E11, /* Smart Array 6400 */
600 	0x409D0E11, /* Smart Array 6400 EM */
601 };
602 
board_id_in_array(u32 a[],int nelems,u32 board_id)603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 	int i;
606 
607 	for (i = 0; i < nelems; i++)
608 		if (a[i] == board_id)
609 			return 1;
610 	return 0;
611 }
612 
ctlr_is_hard_resettable(u32 board_id)613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 	return !board_id_in_array(unresettable_controller,
616 			ARRAY_SIZE(unresettable_controller), board_id);
617 }
618 
ctlr_is_soft_resettable(u32 board_id)619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 	return !board_id_in_array(soft_unresettable_controller,
622 			ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624 
ctlr_is_resettable(u32 board_id)625 static int ctlr_is_resettable(u32 board_id)
626 {
627 	return ctlr_is_hard_resettable(board_id) ||
628 		ctlr_is_soft_resettable(board_id);
629 }
630 
host_show_resettable(struct device * dev,struct device_attribute * attr,char * buf)631 static ssize_t host_show_resettable(struct device *dev,
632 	struct device_attribute *attr, char *buf)
633 {
634 	struct ctlr_info *h;
635 	struct Scsi_Host *shost = class_to_shost(dev);
636 
637 	h = shost_to_hba(shost);
638 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640 
is_logical_dev_addr_mode(unsigned char scsi3addr[])641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 	return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645 
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0	0
650 #define HPSA_RAID_4	1
651 #define HPSA_RAID_1	2	/* also used for RAID 10 */
652 #define HPSA_RAID_5	3	/* also used for RAID 50 */
653 #define HPSA_RAID_51	4
654 #define HPSA_RAID_6	5	/* also used for RAID 60 */
655 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658 
is_logical_device(struct hpsa_scsi_dev_t * device)659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 	return !device->physical_device;
662 }
663 
raid_level_show(struct device * dev,struct device_attribute * attr,char * buf)664 static ssize_t raid_level_show(struct device *dev,
665 	     struct device_attribute *attr, char *buf)
666 {
667 	ssize_t l = 0;
668 	unsigned char rlevel;
669 	struct ctlr_info *h;
670 	struct scsi_device *sdev;
671 	struct hpsa_scsi_dev_t *hdev;
672 	unsigned long flags;
673 
674 	sdev = to_scsi_device(dev);
675 	h = sdev_to_hba(sdev);
676 	spin_lock_irqsave(&h->lock, flags);
677 	hdev = sdev->hostdata;
678 	if (!hdev) {
679 		spin_unlock_irqrestore(&h->lock, flags);
680 		return -ENODEV;
681 	}
682 
683 	/* Is this even a logical drive? */
684 	if (!is_logical_device(hdev)) {
685 		spin_unlock_irqrestore(&h->lock, flags);
686 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 		return l;
688 	}
689 
690 	rlevel = hdev->raid_level;
691 	spin_unlock_irqrestore(&h->lock, flags);
692 	if (rlevel > RAID_UNKNOWN)
693 		rlevel = RAID_UNKNOWN;
694 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 	return l;
696 }
697 
lunid_show(struct device * dev,struct device_attribute * attr,char * buf)698 static ssize_t lunid_show(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	unsigned char lunid[8];
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719 
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)720 static ssize_t unique_id_show(struct device *dev,
721 	     struct device_attribute *attr, char *buf)
722 {
723 	struct ctlr_info *h;
724 	struct scsi_device *sdev;
725 	struct hpsa_scsi_dev_t *hdev;
726 	unsigned long flags;
727 	unsigned char sn[16];
728 
729 	sdev = to_scsi_device(dev);
730 	h = sdev_to_hba(sdev);
731 	spin_lock_irqsave(&h->lock, flags);
732 	hdev = sdev->hostdata;
733 	if (!hdev) {
734 		spin_unlock_irqrestore(&h->lock, flags);
735 		return -ENODEV;
736 	}
737 	memcpy(sn, hdev->device_id, sizeof(sn));
738 	spin_unlock_irqrestore(&h->lock, flags);
739 	return snprintf(buf, 16 * 2 + 2,
740 			"%02X%02X%02X%02X%02X%02X%02X%02X"
741 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 			sn[0], sn[1], sn[2], sn[3],
743 			sn[4], sn[5], sn[6], sn[7],
744 			sn[8], sn[9], sn[10], sn[11],
745 			sn[12], sn[13], sn[14], sn[15]);
746 }
747 
sas_address_show(struct device * dev,struct device_attribute * attr,char * buf)748 static ssize_t sas_address_show(struct device *dev,
749 	      struct device_attribute *attr, char *buf)
750 {
751 	struct ctlr_info *h;
752 	struct scsi_device *sdev;
753 	struct hpsa_scsi_dev_t *hdev;
754 	unsigned long flags;
755 	u64 sas_address;
756 
757 	sdev = to_scsi_device(dev);
758 	h = sdev_to_hba(sdev);
759 	spin_lock_irqsave(&h->lock, flags);
760 	hdev = sdev->hostdata;
761 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 		spin_unlock_irqrestore(&h->lock, flags);
763 		return -ENODEV;
764 	}
765 	sas_address = hdev->sas_address;
766 	spin_unlock_irqrestore(&h->lock, flags);
767 
768 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770 
host_show_hp_ssd_smart_path_enabled(struct device * dev,struct device_attribute * attr,char * buf)771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 	     struct device_attribute *attr, char *buf)
773 {
774 	struct ctlr_info *h;
775 	struct scsi_device *sdev;
776 	struct hpsa_scsi_dev_t *hdev;
777 	unsigned long flags;
778 	int offload_enabled;
779 
780 	sdev = to_scsi_device(dev);
781 	h = sdev_to_hba(sdev);
782 	spin_lock_irqsave(&h->lock, flags);
783 	hdev = sdev->hostdata;
784 	if (!hdev) {
785 		spin_unlock_irqrestore(&h->lock, flags);
786 		return -ENODEV;
787 	}
788 	offload_enabled = hdev->offload_enabled;
789 	spin_unlock_irqrestore(&h->lock, flags);
790 
791 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792 		return snprintf(buf, 20, "%d\n", offload_enabled);
793 	else
794 		return snprintf(buf, 40, "%s\n",
795 				"Not applicable for a controller");
796 }
797 
798 #define MAX_PATHS 8
path_info_show(struct device * dev,struct device_attribute * attr,char * buf)799 static ssize_t path_info_show(struct device *dev,
800 	     struct device_attribute *attr, char *buf)
801 {
802 	struct ctlr_info *h;
803 	struct scsi_device *sdev;
804 	struct hpsa_scsi_dev_t *hdev;
805 	unsigned long flags;
806 	int i;
807 	int output_len = 0;
808 	u8 box;
809 	u8 bay;
810 	u8 path_map_index = 0;
811 	char *active;
812 	unsigned char phys_connector[2];
813 
814 	sdev = to_scsi_device(dev);
815 	h = sdev_to_hba(sdev);
816 	spin_lock_irqsave(&h->devlock, flags);
817 	hdev = sdev->hostdata;
818 	if (!hdev) {
819 		spin_unlock_irqrestore(&h->devlock, flags);
820 		return -ENODEV;
821 	}
822 
823 	bay = hdev->bay;
824 	for (i = 0; i < MAX_PATHS; i++) {
825 		path_map_index = 1<<i;
826 		if (i == hdev->active_path_index)
827 			active = "Active";
828 		else if (hdev->path_map & path_map_index)
829 			active = "Inactive";
830 		else
831 			continue;
832 
833 		output_len += scnprintf(buf + output_len,
834 				PAGE_SIZE - output_len,
835 				"[%d:%d:%d:%d] %20.20s ",
836 				h->scsi_host->host_no,
837 				hdev->bus, hdev->target, hdev->lun,
838 				scsi_device_type(hdev->devtype));
839 
840 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841 			output_len += scnprintf(buf + output_len,
842 						PAGE_SIZE - output_len,
843 						"%s\n", active);
844 			continue;
845 		}
846 
847 		box = hdev->box[i];
848 		memcpy(&phys_connector, &hdev->phys_connector[i],
849 			sizeof(phys_connector));
850 		if (phys_connector[0] < '0')
851 			phys_connector[0] = '0';
852 		if (phys_connector[1] < '0')
853 			phys_connector[1] = '0';
854 		output_len += scnprintf(buf + output_len,
855 				PAGE_SIZE - output_len,
856 				"PORT: %.2s ",
857 				phys_connector);
858 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859 			hdev->expose_device) {
860 			if (box == 0 || box == 0xFF) {
861 				output_len += scnprintf(buf + output_len,
862 					PAGE_SIZE - output_len,
863 					"BAY: %hhu %s\n",
864 					bay, active);
865 			} else {
866 				output_len += scnprintf(buf + output_len,
867 					PAGE_SIZE - output_len,
868 					"BOX: %hhu BAY: %hhu %s\n",
869 					box, bay, active);
870 			}
871 		} else if (box != 0 && box != 0xFF) {
872 			output_len += scnprintf(buf + output_len,
873 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 				box, active);
875 		} else
876 			output_len += scnprintf(buf + output_len,
877 				PAGE_SIZE - output_len, "%s\n", active);
878 	}
879 
880 	spin_unlock_irqrestore(&h->devlock, flags);
881 	return output_len;
882 }
883 
host_show_ctlr_num(struct device * dev,struct device_attribute * attr,char * buf)884 static ssize_t host_show_ctlr_num(struct device *dev,
885 	struct device_attribute *attr, char *buf)
886 {
887 	struct ctlr_info *h;
888 	struct Scsi_Host *shost = class_to_shost(dev);
889 
890 	h = shost_to_hba(shost);
891 	return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893 
host_show_legacy_board(struct device * dev,struct device_attribute * attr,char * buf)894 static ssize_t host_show_legacy_board(struct device *dev,
895 	struct device_attribute *attr, char *buf)
896 {
897 	struct ctlr_info *h;
898 	struct Scsi_Host *shost = class_to_shost(dev);
899 
900 	h = shost_to_hba(shost);
901 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903 
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910 			host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913 		host_show_hp_ssd_smart_path_status,
914 		host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916 			host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918 	host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920 	host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922 	host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924 	host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926 	host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928 	host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930 	host_show_legacy_board, NULL);
931 
932 static struct attribute *hpsa_sdev_attrs[] = {
933 	&dev_attr_raid_level.attr,
934 	&dev_attr_lunid.attr,
935 	&dev_attr_unique_id.attr,
936 	&dev_attr_hp_ssd_smart_path_enabled.attr,
937 	&dev_attr_path_info.attr,
938 	&dev_attr_sas_address.attr,
939 	NULL,
940 };
941 
942 ATTRIBUTE_GROUPS(hpsa_sdev);
943 
944 static struct attribute *hpsa_shost_attrs[] = {
945 	&dev_attr_rescan.attr,
946 	&dev_attr_firmware_revision.attr,
947 	&dev_attr_commands_outstanding.attr,
948 	&dev_attr_transport_mode.attr,
949 	&dev_attr_resettable.attr,
950 	&dev_attr_hp_ssd_smart_path_status.attr,
951 	&dev_attr_raid_offload_debug.attr,
952 	&dev_attr_lockup_detected.attr,
953 	&dev_attr_ctlr_num.attr,
954 	&dev_attr_legacy_board.attr,
955 	NULL,
956 };
957 
958 ATTRIBUTE_GROUPS(hpsa_shost);
959 
960 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
961 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
962 
963 static const struct scsi_host_template hpsa_driver_template = {
964 	.module			= THIS_MODULE,
965 	.name			= HPSA,
966 	.proc_name		= HPSA,
967 	.queuecommand		= hpsa_scsi_queue_command,
968 	.scan_start		= hpsa_scan_start,
969 	.scan_finished		= hpsa_scan_finished,
970 	.change_queue_depth	= hpsa_change_queue_depth,
971 	.this_id		= -1,
972 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
973 	.ioctl			= hpsa_ioctl,
974 	.sdev_init		= hpsa_sdev_init,
975 	.sdev_configure		= hpsa_sdev_configure,
976 	.sdev_destroy		= hpsa_sdev_destroy,
977 #ifdef CONFIG_COMPAT
978 	.compat_ioctl		= hpsa_compat_ioctl,
979 #endif
980 	.sdev_groups = hpsa_sdev_groups,
981 	.shost_groups = hpsa_shost_groups,
982 	.max_sectors = 2048,
983 	.no_write_same = 1,
984 };
985 
next_command(struct ctlr_info * h,u8 q)986 static inline u32 next_command(struct ctlr_info *h, u8 q)
987 {
988 	u32 a;
989 	struct reply_queue_buffer *rq = &h->reply_queue[q];
990 
991 	if (h->transMethod & CFGTBL_Trans_io_accel1)
992 		return h->access.command_completed(h, q);
993 
994 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
995 		return h->access.command_completed(h, q);
996 
997 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
998 		a = rq->head[rq->current_entry];
999 		rq->current_entry++;
1000 		atomic_dec(&h->commands_outstanding);
1001 	} else {
1002 		a = FIFO_EMPTY;
1003 	}
1004 	/* Check for wraparound */
1005 	if (rq->current_entry == h->max_commands) {
1006 		rq->current_entry = 0;
1007 		rq->wraparound ^= 1;
1008 	}
1009 	return a;
1010 }
1011 
1012 /*
1013  * There are some special bits in the bus address of the
1014  * command that we have to set for the controller to know
1015  * how to process the command:
1016  *
1017  * Normal performant mode:
1018  * bit 0: 1 means performant mode, 0 means simple mode.
1019  * bits 1-3 = block fetch table entry
1020  * bits 4-6 = command type (== 0)
1021  *
1022  * ioaccel1 mode:
1023  * bit 0 = "performant mode" bit.
1024  * bits 1-3 = block fetch table entry
1025  * bits 4-6 = command type (== 110)
1026  * (command type is needed because ioaccel1 mode
1027  * commands are submitted through the same register as normal
1028  * mode commands, so this is how the controller knows whether
1029  * the command is normal mode or ioaccel1 mode.)
1030  *
1031  * ioaccel2 mode:
1032  * bit 0 = "performant mode" bit.
1033  * bits 1-4 = block fetch table entry (note extra bit)
1034  * bits 4-6 = not needed, because ioaccel2 mode has
1035  * a separate special register for submitting commands.
1036  */
1037 
1038 /*
1039  * set_performant_mode: Modify the tag for cciss performant
1040  * set bit 0 for pull model, bits 3-1 for block fetch
1041  * register number
1042  */
1043 #define DEFAULT_REPLY_QUEUE (-1)
set_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1044 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1045 					int reply_queue)
1046 {
1047 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1048 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1049 		if (unlikely(!h->msix_vectors))
1050 			return;
1051 		c->Header.ReplyQueue = reply_queue;
1052 	}
1053 }
1054 
set_ioaccel1_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1055 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1056 						struct CommandList *c,
1057 						int reply_queue)
1058 {
1059 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1060 
1061 	/*
1062 	 * Tell the controller to post the reply to the queue for this
1063 	 * processor.  This seems to give the best I/O throughput.
1064 	 */
1065 	cp->ReplyQueue = reply_queue;
1066 	/*
1067 	 * Set the bits in the address sent down to include:
1068 	 *  - performant mode bit (bit 0)
1069 	 *  - pull count (bits 1-3)
1070 	 *  - command type (bits 4-6)
1071 	 */
1072 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1073 					IOACCEL1_BUSADDR_CMDTYPE;
1074 }
1075 
set_ioaccel2_tmf_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1076 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1077 						struct CommandList *c,
1078 						int reply_queue)
1079 {
1080 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1081 		&h->ioaccel2_cmd_pool[c->cmdindex];
1082 
1083 	/* Tell the controller to post the reply to the queue for this
1084 	 * processor.  This seems to give the best I/O throughput.
1085 	 */
1086 	cp->reply_queue = reply_queue;
1087 	/* Set the bits in the address sent down to include:
1088 	 *  - performant mode bit not used in ioaccel mode 2
1089 	 *  - pull count (bits 0-3)
1090 	 *  - command type isn't needed for ioaccel2
1091 	 */
1092 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1093 }
1094 
set_ioaccel2_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1095 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1096 						struct CommandList *c,
1097 						int reply_queue)
1098 {
1099 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1100 
1101 	/*
1102 	 * Tell the controller to post the reply to the queue for this
1103 	 * processor.  This seems to give the best I/O throughput.
1104 	 */
1105 	cp->reply_queue = reply_queue;
1106 	/*
1107 	 * Set the bits in the address sent down to include:
1108 	 *  - performant mode bit not used in ioaccel mode 2
1109 	 *  - pull count (bits 0-3)
1110 	 *  - command type isn't needed for ioaccel2
1111 	 */
1112 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1113 }
1114 
is_firmware_flash_cmd(u8 * cdb)1115 static int is_firmware_flash_cmd(u8 *cdb)
1116 {
1117 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1118 }
1119 
1120 /*
1121  * During firmware flash, the heartbeat register may not update as frequently
1122  * as it should.  So we dial down lockup detection during firmware flash. and
1123  * dial it back up when firmware flash completes.
1124  */
1125 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1126 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1127 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
dial_down_lockup_detection_during_fw_flash(struct ctlr_info * h,struct CommandList * c)1128 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1129 		struct CommandList *c)
1130 {
1131 	if (!is_firmware_flash_cmd(c->Request.CDB))
1132 		return;
1133 	atomic_inc(&h->firmware_flash_in_progress);
1134 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1135 }
1136 
dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info * h,struct CommandList * c)1137 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1138 		struct CommandList *c)
1139 {
1140 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1141 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1142 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1143 }
1144 
__enqueue_cmd_and_start_io(struct ctlr_info * h,struct CommandList * c,int reply_queue)1145 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1146 	struct CommandList *c, int reply_queue)
1147 {
1148 	dial_down_lockup_detection_during_fw_flash(h, c);
1149 	atomic_inc(&h->commands_outstanding);
1150 	/*
1151 	 * Check to see if the command is being retried.
1152 	 */
1153 	if (c->device && !c->retry_pending)
1154 		atomic_inc(&c->device->commands_outstanding);
1155 
1156 	reply_queue = h->reply_map[raw_smp_processor_id()];
1157 	switch (c->cmd_type) {
1158 	case CMD_IOACCEL1:
1159 		set_ioaccel1_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1161 		break;
1162 	case CMD_IOACCEL2:
1163 		set_ioaccel2_performant_mode(h, c, reply_queue);
1164 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1165 		break;
1166 	case IOACCEL2_TMF:
1167 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1168 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1169 		break;
1170 	default:
1171 		set_performant_mode(h, c, reply_queue);
1172 		h->access.submit_command(h, c);
1173 	}
1174 }
1175 
enqueue_cmd_and_start_io(struct ctlr_info * h,struct CommandList * c)1176 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1177 {
1178 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1179 }
1180 
is_hba_lunid(unsigned char scsi3addr[])1181 static inline int is_hba_lunid(unsigned char scsi3addr[])
1182 {
1183 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1184 }
1185 
is_scsi_rev_5(struct ctlr_info * h)1186 static inline int is_scsi_rev_5(struct ctlr_info *h)
1187 {
1188 	if (!h->hba_inquiry_data)
1189 		return 0;
1190 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1191 		return 1;
1192 	return 0;
1193 }
1194 
hpsa_find_target_lun(struct ctlr_info * h,unsigned char scsi3addr[],int bus,int * target,int * lun)1195 static int hpsa_find_target_lun(struct ctlr_info *h,
1196 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1197 {
1198 	/* finds an unused bus, target, lun for a new physical device
1199 	 * assumes h->devlock is held
1200 	 */
1201 	int i, found = 0;
1202 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1203 
1204 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1205 
1206 	for (i = 0; i < h->ndevices; i++) {
1207 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1208 			__set_bit(h->dev[i]->target, lun_taken);
1209 	}
1210 
1211 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1212 	if (i < HPSA_MAX_DEVICES) {
1213 		/* *bus = 1; */
1214 		*target = i;
1215 		*lun = 0;
1216 		found = 1;
1217 	}
1218 	return !found;
1219 }
1220 
hpsa_show_dev_msg(const char * level,struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,char * description)1221 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1222 	struct hpsa_scsi_dev_t *dev, char *description)
1223 {
1224 #define LABEL_SIZE 25
1225 	char label[LABEL_SIZE];
1226 
1227 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1228 		return;
1229 
1230 	switch (dev->devtype) {
1231 	case TYPE_RAID:
1232 		snprintf(label, LABEL_SIZE, "controller");
1233 		break;
1234 	case TYPE_ENCLOSURE:
1235 		snprintf(label, LABEL_SIZE, "enclosure");
1236 		break;
1237 	case TYPE_DISK:
1238 	case TYPE_ZBC:
1239 		if (dev->external)
1240 			snprintf(label, LABEL_SIZE, "external");
1241 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1242 			snprintf(label, LABEL_SIZE, "%s",
1243 				raid_label[PHYSICAL_DRIVE]);
1244 		else
1245 			snprintf(label, LABEL_SIZE, "RAID-%s",
1246 				dev->raid_level > RAID_UNKNOWN ? "?" :
1247 				raid_label[dev->raid_level]);
1248 		break;
1249 	case TYPE_ROM:
1250 		snprintf(label, LABEL_SIZE, "rom");
1251 		break;
1252 	case TYPE_TAPE:
1253 		snprintf(label, LABEL_SIZE, "tape");
1254 		break;
1255 	case TYPE_MEDIUM_CHANGER:
1256 		snprintf(label, LABEL_SIZE, "changer");
1257 		break;
1258 	default:
1259 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1260 		break;
1261 	}
1262 
1263 	dev_printk(level, &h->pdev->dev,
1264 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1265 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1266 			description,
1267 			scsi_device_type(dev->devtype),
1268 			dev->vendor,
1269 			dev->model,
1270 			label,
1271 			dev->offload_config ? '+' : '-',
1272 			dev->offload_to_be_enabled ? '+' : '-',
1273 			dev->expose_device);
1274 }
1275 
1276 /* Add an entry into h->dev[] array. */
hpsa_scsi_add_entry(struct ctlr_info * h,struct hpsa_scsi_dev_t * device,struct hpsa_scsi_dev_t * added[],int * nadded)1277 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1278 		struct hpsa_scsi_dev_t *device,
1279 		struct hpsa_scsi_dev_t *added[], int *nadded)
1280 {
1281 	/* assumes h->devlock is held */
1282 	int n = h->ndevices;
1283 	int i;
1284 	unsigned char addr1[8], addr2[8];
1285 	struct hpsa_scsi_dev_t *sd;
1286 
1287 	if (n >= HPSA_MAX_DEVICES) {
1288 		dev_err(&h->pdev->dev, "too many devices, some will be "
1289 			"inaccessible.\n");
1290 		return -1;
1291 	}
1292 
1293 	/* physical devices do not have lun or target assigned until now. */
1294 	if (device->lun != -1)
1295 		/* Logical device, lun is already assigned. */
1296 		goto lun_assigned;
1297 
1298 	/* If this device a non-zero lun of a multi-lun device
1299 	 * byte 4 of the 8-byte LUN addr will contain the logical
1300 	 * unit no, zero otherwise.
1301 	 */
1302 	if (device->scsi3addr[4] == 0) {
1303 		/* This is not a non-zero lun of a multi-lun device */
1304 		if (hpsa_find_target_lun(h, device->scsi3addr,
1305 			device->bus, &device->target, &device->lun) != 0)
1306 			return -1;
1307 		goto lun_assigned;
1308 	}
1309 
1310 	/* This is a non-zero lun of a multi-lun device.
1311 	 * Search through our list and find the device which
1312 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1313 	 * Assign the same bus and target for this new LUN.
1314 	 * Use the logical unit number from the firmware.
1315 	 */
1316 	memcpy(addr1, device->scsi3addr, 8);
1317 	addr1[4] = 0;
1318 	addr1[5] = 0;
1319 	for (i = 0; i < n; i++) {
1320 		sd = h->dev[i];
1321 		memcpy(addr2, sd->scsi3addr, 8);
1322 		addr2[4] = 0;
1323 		addr2[5] = 0;
1324 		/* differ only in byte 4 and 5? */
1325 		if (memcmp(addr1, addr2, 8) == 0) {
1326 			device->bus = sd->bus;
1327 			device->target = sd->target;
1328 			device->lun = device->scsi3addr[4];
1329 			break;
1330 		}
1331 	}
1332 	if (device->lun == -1) {
1333 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1334 			" suspect firmware bug or unsupported hardware "
1335 			"configuration.\n");
1336 		return -1;
1337 	}
1338 
1339 lun_assigned:
1340 
1341 	h->dev[n] = device;
1342 	h->ndevices++;
1343 	added[*nadded] = device;
1344 	(*nadded)++;
1345 	hpsa_show_dev_msg(KERN_INFO, h, device,
1346 		device->expose_device ? "added" : "masked");
1347 	return 0;
1348 }
1349 
1350 /*
1351  * Called during a scan operation.
1352  *
1353  * Update an entry in h->dev[] array.
1354  */
hpsa_scsi_update_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * new_entry)1355 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1356 	int entry, struct hpsa_scsi_dev_t *new_entry)
1357 {
1358 	/* assumes h->devlock is held */
1359 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1360 
1361 	/* Raid level changed. */
1362 	h->dev[entry]->raid_level = new_entry->raid_level;
1363 
1364 	/*
1365 	 * ioacccel_handle may have changed for a dual domain disk
1366 	 */
1367 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1368 
1369 	/* Raid offload parameters changed.  Careful about the ordering. */
1370 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1371 		/*
1372 		 * if drive is newly offload_enabled, we want to copy the
1373 		 * raid map data first.  If previously offload_enabled and
1374 		 * offload_config were set, raid map data had better be
1375 		 * the same as it was before. If raid map data has changed
1376 		 * then it had better be the case that
1377 		 * h->dev[entry]->offload_enabled is currently 0.
1378 		 */
1379 		h->dev[entry]->raid_map = new_entry->raid_map;
1380 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1381 	}
1382 	if (new_entry->offload_to_be_enabled) {
1383 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1384 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1385 	}
1386 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1387 	h->dev[entry]->offload_config = new_entry->offload_config;
1388 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1389 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1390 
1391 	/*
1392 	 * We can turn off ioaccel offload now, but need to delay turning
1393 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1394 	 * can't do that until all the devices are updated.
1395 	 */
1396 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1397 
1398 	/*
1399 	 * turn ioaccel off immediately if told to do so.
1400 	 */
1401 	if (!new_entry->offload_to_be_enabled)
1402 		h->dev[entry]->offload_enabled = 0;
1403 
1404 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1405 }
1406 
1407 /* Replace an entry from h->dev[] array. */
hpsa_scsi_replace_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * new_entry,struct hpsa_scsi_dev_t * added[],int * nadded,struct hpsa_scsi_dev_t * removed[],int * nremoved)1408 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1409 	int entry, struct hpsa_scsi_dev_t *new_entry,
1410 	struct hpsa_scsi_dev_t *added[], int *nadded,
1411 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412 {
1413 	/* assumes h->devlock is held */
1414 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1415 	removed[*nremoved] = h->dev[entry];
1416 	(*nremoved)++;
1417 
1418 	/*
1419 	 * New physical devices won't have target/lun assigned yet
1420 	 * so we need to preserve the values in the slot we are replacing.
1421 	 */
1422 	if (new_entry->target == -1) {
1423 		new_entry->target = h->dev[entry]->target;
1424 		new_entry->lun = h->dev[entry]->lun;
1425 	}
1426 
1427 	h->dev[entry] = new_entry;
1428 	added[*nadded] = new_entry;
1429 	(*nadded)++;
1430 
1431 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1432 }
1433 
1434 /* Remove an entry from h->dev[] array. */
hpsa_scsi_remove_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * removed[],int * nremoved)1435 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1436 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1437 {
1438 	/* assumes h->devlock is held */
1439 	int i;
1440 	struct hpsa_scsi_dev_t *sd;
1441 
1442 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1443 
1444 	sd = h->dev[entry];
1445 	removed[*nremoved] = h->dev[entry];
1446 	(*nremoved)++;
1447 
1448 	for (i = entry; i < h->ndevices-1; i++)
1449 		h->dev[i] = h->dev[i+1];
1450 	h->ndevices--;
1451 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1452 }
1453 
1454 #define SCSI3ADDR_EQ(a, b) ( \
1455 	(a)[7] == (b)[7] && \
1456 	(a)[6] == (b)[6] && \
1457 	(a)[5] == (b)[5] && \
1458 	(a)[4] == (b)[4] && \
1459 	(a)[3] == (b)[3] && \
1460 	(a)[2] == (b)[2] && \
1461 	(a)[1] == (b)[1] && \
1462 	(a)[0] == (b)[0])
1463 
fixup_botched_add(struct ctlr_info * h,struct hpsa_scsi_dev_t * added)1464 static void fixup_botched_add(struct ctlr_info *h,
1465 	struct hpsa_scsi_dev_t *added)
1466 {
1467 	/* called when scsi_add_device fails in order to re-adjust
1468 	 * h->dev[] to match the mid layer's view.
1469 	 */
1470 	unsigned long flags;
1471 	int i, j;
1472 
1473 	spin_lock_irqsave(&h->lock, flags);
1474 	for (i = 0; i < h->ndevices; i++) {
1475 		if (h->dev[i] == added) {
1476 			for (j = i; j < h->ndevices-1; j++)
1477 				h->dev[j] = h->dev[j+1];
1478 			h->ndevices--;
1479 			break;
1480 		}
1481 	}
1482 	spin_unlock_irqrestore(&h->lock, flags);
1483 	kfree(added);
1484 }
1485 
device_is_the_same(struct hpsa_scsi_dev_t * dev1,struct hpsa_scsi_dev_t * dev2)1486 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1487 	struct hpsa_scsi_dev_t *dev2)
1488 {
1489 	/* we compare everything except lun and target as these
1490 	 * are not yet assigned.  Compare parts likely
1491 	 * to differ first
1492 	 */
1493 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1494 		sizeof(dev1->scsi3addr)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->device_id, dev2->device_id,
1497 		sizeof(dev1->device_id)) != 0)
1498 		return 0;
1499 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1500 		return 0;
1501 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1502 		return 0;
1503 	if (dev1->devtype != dev2->devtype)
1504 		return 0;
1505 	if (dev1->bus != dev2->bus)
1506 		return 0;
1507 	return 1;
1508 }
1509 
device_updated(struct hpsa_scsi_dev_t * dev1,struct hpsa_scsi_dev_t * dev2)1510 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1511 	struct hpsa_scsi_dev_t *dev2)
1512 {
1513 	/* Device attributes that can change, but don't mean
1514 	 * that the device is a different device, nor that the OS
1515 	 * needs to be told anything about the change.
1516 	 */
1517 	if (dev1->raid_level != dev2->raid_level)
1518 		return 1;
1519 	if (dev1->offload_config != dev2->offload_config)
1520 		return 1;
1521 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1522 		return 1;
1523 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1524 		if (dev1->queue_depth != dev2->queue_depth)
1525 			return 1;
1526 	/*
1527 	 * This can happen for dual domain devices. An active
1528 	 * path change causes the ioaccel handle to change
1529 	 *
1530 	 * for example note the handle differences between p0 and p1
1531 	 * Device                    WWN               ,WWN hash,Handle
1532 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1533 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1534 	 */
1535 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1536 		return 1;
1537 	return 0;
1538 }
1539 
1540 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1541  * and return needle location in *index.  If scsi3addr matches, but not
1542  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1543  * location in *index.
1544  * In the case of a minor device attribute change, such as RAID level, just
1545  * return DEVICE_UPDATED, along with the updated device's location in index.
1546  * If needle not found, return DEVICE_NOT_FOUND.
1547  */
hpsa_scsi_find_entry(struct hpsa_scsi_dev_t * needle,struct hpsa_scsi_dev_t * haystack[],int haystack_size,int * index)1548 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1549 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1550 	int *index)
1551 {
1552 	int i;
1553 #define DEVICE_NOT_FOUND 0
1554 #define DEVICE_CHANGED 1
1555 #define DEVICE_SAME 2
1556 #define DEVICE_UPDATED 3
1557 	if (needle == NULL)
1558 		return DEVICE_NOT_FOUND;
1559 
1560 	for (i = 0; i < haystack_size; i++) {
1561 		if (haystack[i] == NULL) /* previously removed. */
1562 			continue;
1563 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1564 			*index = i;
1565 			if (device_is_the_same(needle, haystack[i])) {
1566 				if (device_updated(needle, haystack[i]))
1567 					return DEVICE_UPDATED;
1568 				return DEVICE_SAME;
1569 			} else {
1570 				/* Keep offline devices offline */
1571 				if (needle->volume_offline)
1572 					return DEVICE_NOT_FOUND;
1573 				return DEVICE_CHANGED;
1574 			}
1575 		}
1576 	}
1577 	*index = -1;
1578 	return DEVICE_NOT_FOUND;
1579 }
1580 
hpsa_monitor_offline_device(struct ctlr_info * h,unsigned char scsi3addr[])1581 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1582 					unsigned char scsi3addr[])
1583 {
1584 	struct offline_device_entry *device;
1585 	unsigned long flags;
1586 
1587 	/* Check to see if device is already on the list */
1588 	spin_lock_irqsave(&h->offline_device_lock, flags);
1589 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1590 		if (memcmp(device->scsi3addr, scsi3addr,
1591 			sizeof(device->scsi3addr)) == 0) {
1592 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1593 			return;
1594 		}
1595 	}
1596 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597 
1598 	/* Device is not on the list, add it. */
1599 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1600 	if (!device)
1601 		return;
1602 
1603 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1604 	spin_lock_irqsave(&h->offline_device_lock, flags);
1605 	list_add_tail(&device->offline_list, &h->offline_device_list);
1606 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1607 }
1608 
1609 /* Print a message explaining various offline volume states */
hpsa_show_volume_status(struct ctlr_info * h,struct hpsa_scsi_dev_t * sd)1610 static void hpsa_show_volume_status(struct ctlr_info *h,
1611 	struct hpsa_scsi_dev_t *sd)
1612 {
1613 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1614 		dev_info(&h->pdev->dev,
1615 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1616 			h->scsi_host->host_no,
1617 			sd->bus, sd->target, sd->lun);
1618 	switch (sd->volume_offline) {
1619 	case HPSA_LV_OK:
1620 		break;
1621 	case HPSA_LV_UNDERGOING_ERASE:
1622 		dev_info(&h->pdev->dev,
1623 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1624 			h->scsi_host->host_no,
1625 			sd->bus, sd->target, sd->lun);
1626 		break;
1627 	case HPSA_LV_NOT_AVAILABLE:
1628 		dev_info(&h->pdev->dev,
1629 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1630 			h->scsi_host->host_no,
1631 			sd->bus, sd->target, sd->lun);
1632 		break;
1633 	case HPSA_LV_UNDERGOING_RPI:
1634 		dev_info(&h->pdev->dev,
1635 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1636 			h->scsi_host->host_no,
1637 			sd->bus, sd->target, sd->lun);
1638 		break;
1639 	case HPSA_LV_PENDING_RPI:
1640 		dev_info(&h->pdev->dev,
1641 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1642 			h->scsi_host->host_no,
1643 			sd->bus, sd->target, sd->lun);
1644 		break;
1645 	case HPSA_LV_ENCRYPTED_NO_KEY:
1646 		dev_info(&h->pdev->dev,
1647 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1648 			h->scsi_host->host_no,
1649 			sd->bus, sd->target, sd->lun);
1650 		break;
1651 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1652 		dev_info(&h->pdev->dev,
1653 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1654 			h->scsi_host->host_no,
1655 			sd->bus, sd->target, sd->lun);
1656 		break;
1657 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1658 		dev_info(&h->pdev->dev,
1659 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1660 			h->scsi_host->host_no,
1661 			sd->bus, sd->target, sd->lun);
1662 		break;
1663 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1664 		dev_info(&h->pdev->dev,
1665 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1666 			h->scsi_host->host_no,
1667 			sd->bus, sd->target, sd->lun);
1668 		break;
1669 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1670 		dev_info(&h->pdev->dev,
1671 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1672 			h->scsi_host->host_no,
1673 			sd->bus, sd->target, sd->lun);
1674 		break;
1675 	case HPSA_LV_PENDING_ENCRYPTION:
1676 		dev_info(&h->pdev->dev,
1677 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1678 			h->scsi_host->host_no,
1679 			sd->bus, sd->target, sd->lun);
1680 		break;
1681 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1682 		dev_info(&h->pdev->dev,
1683 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1684 			h->scsi_host->host_no,
1685 			sd->bus, sd->target, sd->lun);
1686 		break;
1687 	}
1688 }
1689 
1690 /*
1691  * Figure the list of physical drive pointers for a logical drive with
1692  * raid offload configured.
1693  */
hpsa_figure_phys_disk_ptrs(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev[],int ndevices,struct hpsa_scsi_dev_t * logical_drive)1694 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1695 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1696 				struct hpsa_scsi_dev_t *logical_drive)
1697 {
1698 	struct raid_map_data *map = &logical_drive->raid_map;
1699 	struct raid_map_disk_data *dd = &map->data[0];
1700 	int i, j;
1701 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1702 				le16_to_cpu(map->metadata_disks_per_row);
1703 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1704 				le16_to_cpu(map->layout_map_count) *
1705 				total_disks_per_row;
1706 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1707 				total_disks_per_row;
1708 	int qdepth;
1709 
1710 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1711 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1712 
1713 	logical_drive->nphysical_disks = nraid_map_entries;
1714 
1715 	qdepth = 0;
1716 	for (i = 0; i < nraid_map_entries; i++) {
1717 		logical_drive->phys_disk[i] = NULL;
1718 		if (!logical_drive->offload_config)
1719 			continue;
1720 		for (j = 0; j < ndevices; j++) {
1721 			if (dev[j] == NULL)
1722 				continue;
1723 			if (dev[j]->devtype != TYPE_DISK &&
1724 			    dev[j]->devtype != TYPE_ZBC)
1725 				continue;
1726 			if (is_logical_device(dev[j]))
1727 				continue;
1728 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1729 				continue;
1730 
1731 			logical_drive->phys_disk[i] = dev[j];
1732 			if (i < nphys_disk)
1733 				qdepth = min(h->nr_cmds, qdepth +
1734 				    logical_drive->phys_disk[i]->queue_depth);
1735 			break;
1736 		}
1737 
1738 		/*
1739 		 * This can happen if a physical drive is removed and
1740 		 * the logical drive is degraded.  In that case, the RAID
1741 		 * map data will refer to a physical disk which isn't actually
1742 		 * present.  And in that case offload_enabled should already
1743 		 * be 0, but we'll turn it off here just in case
1744 		 */
1745 		if (!logical_drive->phys_disk[i]) {
1746 			dev_warn(&h->pdev->dev,
1747 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1748 				__func__,
1749 				h->scsi_host->host_no, logical_drive->bus,
1750 				logical_drive->target, logical_drive->lun);
1751 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1752 			logical_drive->queue_depth = 8;
1753 		}
1754 	}
1755 	if (nraid_map_entries)
1756 		/*
1757 		 * This is correct for reads, too high for full stripe writes,
1758 		 * way too high for partial stripe writes
1759 		 */
1760 		logical_drive->queue_depth = qdepth;
1761 	else {
1762 		if (logical_drive->external)
1763 			logical_drive->queue_depth = EXTERNAL_QD;
1764 		else
1765 			logical_drive->queue_depth = h->nr_cmds;
1766 	}
1767 }
1768 
hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev[],int ndevices)1769 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1770 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1771 {
1772 	int i;
1773 
1774 	for (i = 0; i < ndevices; i++) {
1775 		if (dev[i] == NULL)
1776 			continue;
1777 		if (dev[i]->devtype != TYPE_DISK &&
1778 		    dev[i]->devtype != TYPE_ZBC)
1779 			continue;
1780 		if (!is_logical_device(dev[i]))
1781 			continue;
1782 
1783 		/*
1784 		 * If offload is currently enabled, the RAID map and
1785 		 * phys_disk[] assignment *better* not be changing
1786 		 * because we would be changing ioaccel phsy_disk[] pointers
1787 		 * on a ioaccel volume processing I/O requests.
1788 		 *
1789 		 * If an ioaccel volume status changed, initially because it was
1790 		 * re-configured and thus underwent a transformation, or
1791 		 * a drive failed, we would have received a state change
1792 		 * request and ioaccel should have been turned off. When the
1793 		 * transformation completes, we get another state change
1794 		 * request to turn ioaccel back on. In this case, we need
1795 		 * to update the ioaccel information.
1796 		 *
1797 		 * Thus: If it is not currently enabled, but will be after
1798 		 * the scan completes, make sure the ioaccel pointers
1799 		 * are up to date.
1800 		 */
1801 
1802 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1803 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1804 	}
1805 }
1806 
hpsa_add_device(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1807 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1808 {
1809 	int rc = 0;
1810 
1811 	if (!h->scsi_host)
1812 		return 1;
1813 
1814 	if (is_logical_device(device)) /* RAID */
1815 		rc = scsi_add_device(h->scsi_host, device->bus,
1816 					device->target, device->lun);
1817 	else /* HBA */
1818 		rc = hpsa_add_sas_device(h->sas_host, device);
1819 
1820 	return rc;
1821 }
1822 
hpsa_find_outstanding_commands_for_dev(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev)1823 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1824 						struct hpsa_scsi_dev_t *dev)
1825 {
1826 	int i;
1827 	int count = 0;
1828 
1829 	for (i = 0; i < h->nr_cmds; i++) {
1830 		struct CommandList *c = h->cmd_pool + i;
1831 		int refcount = atomic_inc_return(&c->refcount);
1832 
1833 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1834 				dev->scsi3addr)) {
1835 			unsigned long flags;
1836 
1837 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1838 			if (!hpsa_is_cmd_idle(c))
1839 				++count;
1840 			spin_unlock_irqrestore(&h->lock, flags);
1841 		}
1842 
1843 		cmd_free(h, c);
1844 	}
1845 
1846 	return count;
1847 }
1848 
1849 #define NUM_WAIT 20
hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1850 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1851 						struct hpsa_scsi_dev_t *device)
1852 {
1853 	int cmds = 0;
1854 	int waits = 0;
1855 	int num_wait = NUM_WAIT;
1856 
1857 	if (device->external)
1858 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1859 
1860 	while (1) {
1861 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1862 		if (cmds == 0)
1863 			break;
1864 		if (++waits > num_wait)
1865 			break;
1866 		msleep(1000);
1867 	}
1868 
1869 	if (waits > num_wait) {
1870 		dev_warn(&h->pdev->dev,
1871 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1872 			__func__,
1873 			h->scsi_host->host_no,
1874 			device->bus, device->target, device->lun, cmds);
1875 	}
1876 }
1877 
hpsa_remove_device(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1878 static void hpsa_remove_device(struct ctlr_info *h,
1879 			struct hpsa_scsi_dev_t *device)
1880 {
1881 	struct scsi_device *sdev = NULL;
1882 
1883 	if (!h->scsi_host)
1884 		return;
1885 
1886 	/*
1887 	 * Allow for commands to drain
1888 	 */
1889 	device->removed = 1;
1890 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1891 
1892 	if (is_logical_device(device)) { /* RAID */
1893 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1894 						device->target, device->lun);
1895 		if (sdev) {
1896 			scsi_remove_device(sdev);
1897 			scsi_device_put(sdev);
1898 		} else {
1899 			/*
1900 			 * We don't expect to get here.  Future commands
1901 			 * to this device will get a selection timeout as
1902 			 * if the device were gone.
1903 			 */
1904 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1905 					"didn't find device for removal.");
1906 		}
1907 	} else { /* HBA */
1908 
1909 		hpsa_remove_sas_device(device);
1910 	}
1911 }
1912 
adjust_hpsa_scsi_table(struct ctlr_info * h,struct hpsa_scsi_dev_t * sd[],int nsds)1913 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1914 	struct hpsa_scsi_dev_t *sd[], int nsds)
1915 {
1916 	/* sd contains scsi3 addresses and devtypes, and inquiry
1917 	 * data.  This function takes what's in sd to be the current
1918 	 * reality and updates h->dev[] to reflect that reality.
1919 	 */
1920 	int i, entry, device_change, changes = 0;
1921 	struct hpsa_scsi_dev_t *csd;
1922 	unsigned long flags;
1923 	struct hpsa_scsi_dev_t **added, **removed;
1924 	int nadded, nremoved;
1925 
1926 	/*
1927 	 * A reset can cause a device status to change
1928 	 * re-schedule the scan to see what happened.
1929 	 */
1930 	spin_lock_irqsave(&h->reset_lock, flags);
1931 	if (h->reset_in_progress) {
1932 		h->drv_req_rescan = 1;
1933 		spin_unlock_irqrestore(&h->reset_lock, flags);
1934 		return;
1935 	}
1936 	spin_unlock_irqrestore(&h->reset_lock, flags);
1937 
1938 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1939 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1940 
1941 	if (!added || !removed) {
1942 		dev_warn(&h->pdev->dev, "out of memory in "
1943 			"adjust_hpsa_scsi_table\n");
1944 		goto free_and_out;
1945 	}
1946 
1947 	spin_lock_irqsave(&h->devlock, flags);
1948 
1949 	/* find any devices in h->dev[] that are not in
1950 	 * sd[] and remove them from h->dev[], and for any
1951 	 * devices which have changed, remove the old device
1952 	 * info and add the new device info.
1953 	 * If minor device attributes change, just update
1954 	 * the existing device structure.
1955 	 */
1956 	i = 0;
1957 	nremoved = 0;
1958 	nadded = 0;
1959 	while (i < h->ndevices) {
1960 		csd = h->dev[i];
1961 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1962 		if (device_change == DEVICE_NOT_FOUND) {
1963 			changes++;
1964 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1965 			continue; /* remove ^^^, hence i not incremented */
1966 		} else if (device_change == DEVICE_CHANGED) {
1967 			changes++;
1968 			hpsa_scsi_replace_entry(h, i, sd[entry],
1969 				added, &nadded, removed, &nremoved);
1970 			/* Set it to NULL to prevent it from being freed
1971 			 * at the bottom of hpsa_update_scsi_devices()
1972 			 */
1973 			sd[entry] = NULL;
1974 		} else if (device_change == DEVICE_UPDATED) {
1975 			hpsa_scsi_update_entry(h, i, sd[entry]);
1976 		}
1977 		i++;
1978 	}
1979 
1980 	/* Now, make sure every device listed in sd[] is also
1981 	 * listed in h->dev[], adding them if they aren't found
1982 	 */
1983 
1984 	for (i = 0; i < nsds; i++) {
1985 		if (!sd[i]) /* if already added above. */
1986 			continue;
1987 
1988 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1989 		 * as the SCSI mid-layer does not handle such devices well.
1990 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1991 		 * at 160Hz, and prevents the system from coming up.
1992 		 */
1993 		if (sd[i]->volume_offline) {
1994 			hpsa_show_volume_status(h, sd[i]);
1995 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1996 			continue;
1997 		}
1998 
1999 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2000 					h->ndevices, &entry);
2001 		if (device_change == DEVICE_NOT_FOUND) {
2002 			changes++;
2003 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2004 				break;
2005 			sd[i] = NULL; /* prevent from being freed later. */
2006 		} else if (device_change == DEVICE_CHANGED) {
2007 			/* should never happen... */
2008 			changes++;
2009 			dev_warn(&h->pdev->dev,
2010 				"device unexpectedly changed.\n");
2011 			/* but if it does happen, we just ignore that device */
2012 		}
2013 	}
2014 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2015 
2016 	/*
2017 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2018 	 * any logical drives that need it enabled.
2019 	 *
2020 	 * The raid map should be current by now.
2021 	 *
2022 	 * We are updating the device list used for I/O requests.
2023 	 */
2024 	for (i = 0; i < h->ndevices; i++) {
2025 		if (h->dev[i] == NULL)
2026 			continue;
2027 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2028 	}
2029 
2030 	spin_unlock_irqrestore(&h->devlock, flags);
2031 
2032 	/* Monitor devices which are in one of several NOT READY states to be
2033 	 * brought online later. This must be done without holding h->devlock,
2034 	 * so don't touch h->dev[]
2035 	 */
2036 	for (i = 0; i < nsds; i++) {
2037 		if (!sd[i]) /* if already added above. */
2038 			continue;
2039 		if (sd[i]->volume_offline)
2040 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2041 	}
2042 
2043 	/* Don't notify scsi mid layer of any changes the first time through
2044 	 * (or if there are no changes) scsi_scan_host will do it later the
2045 	 * first time through.
2046 	 */
2047 	if (!changes)
2048 		goto free_and_out;
2049 
2050 	/* Notify scsi mid layer of any removed devices */
2051 	for (i = 0; i < nremoved; i++) {
2052 		if (removed[i] == NULL)
2053 			continue;
2054 		if (removed[i]->expose_device)
2055 			hpsa_remove_device(h, removed[i]);
2056 		kfree(removed[i]);
2057 		removed[i] = NULL;
2058 	}
2059 
2060 	/* Notify scsi mid layer of any added devices */
2061 	for (i = 0; i < nadded; i++) {
2062 		int rc = 0;
2063 
2064 		if (added[i] == NULL)
2065 			continue;
2066 		if (!(added[i]->expose_device))
2067 			continue;
2068 		rc = hpsa_add_device(h, added[i]);
2069 		if (!rc)
2070 			continue;
2071 		dev_warn(&h->pdev->dev,
2072 			"addition failed %d, device not added.", rc);
2073 		/* now we have to remove it from h->dev,
2074 		 * since it didn't get added to scsi mid layer
2075 		 */
2076 		fixup_botched_add(h, added[i]);
2077 		h->drv_req_rescan = 1;
2078 	}
2079 
2080 free_and_out:
2081 	kfree(added);
2082 	kfree(removed);
2083 }
2084 
2085 /*
2086  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2087  * Assume's h->devlock is held.
2088  */
lookup_hpsa_scsi_dev(struct ctlr_info * h,int bus,int target,int lun)2089 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2090 	int bus, int target, int lun)
2091 {
2092 	int i;
2093 	struct hpsa_scsi_dev_t *sd;
2094 
2095 	for (i = 0; i < h->ndevices; i++) {
2096 		sd = h->dev[i];
2097 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2098 			return sd;
2099 	}
2100 	return NULL;
2101 }
2102 
hpsa_sdev_init(struct scsi_device * sdev)2103 static int hpsa_sdev_init(struct scsi_device *sdev)
2104 {
2105 	struct hpsa_scsi_dev_t *sd = NULL;
2106 	unsigned long flags;
2107 	struct ctlr_info *h;
2108 
2109 	h = sdev_to_hba(sdev);
2110 	spin_lock_irqsave(&h->devlock, flags);
2111 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2112 		struct scsi_target *starget;
2113 		struct sas_rphy *rphy;
2114 
2115 		starget = scsi_target(sdev);
2116 		rphy = target_to_rphy(starget);
2117 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2118 		if (sd) {
2119 			sd->target = sdev_id(sdev);
2120 			sd->lun = sdev->lun;
2121 		}
2122 	}
2123 	if (!sd)
2124 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2125 					sdev_id(sdev), sdev->lun);
2126 
2127 	if (sd && sd->expose_device) {
2128 		atomic_set(&sd->ioaccel_cmds_out, 0);
2129 		sdev->hostdata = sd;
2130 	} else
2131 		sdev->hostdata = NULL;
2132 	spin_unlock_irqrestore(&h->devlock, flags);
2133 	return 0;
2134 }
2135 
2136 /* configure scsi device based on internal per-device structure */
2137 #define CTLR_TIMEOUT (120 * HZ)
hpsa_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)2138 static int hpsa_sdev_configure(struct scsi_device *sdev,
2139 			       struct queue_limits *lim)
2140 {
2141 	struct hpsa_scsi_dev_t *sd;
2142 	int queue_depth;
2143 
2144 	sd = sdev->hostdata;
2145 	sdev->no_uld_attach = !sd || !sd->expose_device;
2146 
2147 	if (sd) {
2148 		sd->was_removed = 0;
2149 		queue_depth = sd->queue_depth != 0 ?
2150 				sd->queue_depth : sdev->host->can_queue;
2151 		if (sd->external) {
2152 			queue_depth = EXTERNAL_QD;
2153 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2154 			blk_queue_rq_timeout(sdev->request_queue,
2155 						HPSA_EH_PTRAID_TIMEOUT);
2156 		}
2157 		if (is_hba_lunid(sd->scsi3addr)) {
2158 			sdev->eh_timeout = CTLR_TIMEOUT;
2159 			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2160 		}
2161 	} else {
2162 		queue_depth = sdev->host->can_queue;
2163 	}
2164 
2165 	scsi_change_queue_depth(sdev, queue_depth);
2166 
2167 	return 0;
2168 }
2169 
hpsa_sdev_destroy(struct scsi_device * sdev)2170 static void hpsa_sdev_destroy(struct scsi_device *sdev)
2171 {
2172 	struct hpsa_scsi_dev_t *hdev = NULL;
2173 
2174 	hdev = sdev->hostdata;
2175 
2176 	if (hdev)
2177 		hdev->was_removed = 1;
2178 }
2179 
hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info * h)2180 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182 	int i;
2183 
2184 	if (!h->ioaccel2_cmd_sg_list)
2185 		return;
2186 	for (i = 0; i < h->nr_cmds; i++) {
2187 		kfree(h->ioaccel2_cmd_sg_list[i]);
2188 		h->ioaccel2_cmd_sg_list[i] = NULL;
2189 	}
2190 	kfree(h->ioaccel2_cmd_sg_list);
2191 	h->ioaccel2_cmd_sg_list = NULL;
2192 }
2193 
hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info * h)2194 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2195 {
2196 	int i;
2197 
2198 	if (h->chainsize <= 0)
2199 		return 0;
2200 
2201 	h->ioaccel2_cmd_sg_list =
2202 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2203 					GFP_KERNEL);
2204 	if (!h->ioaccel2_cmd_sg_list)
2205 		return -ENOMEM;
2206 	for (i = 0; i < h->nr_cmds; i++) {
2207 		h->ioaccel2_cmd_sg_list[i] =
2208 			kmalloc_array(h->maxsgentries,
2209 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2210 				      GFP_KERNEL);
2211 		if (!h->ioaccel2_cmd_sg_list[i])
2212 			goto clean;
2213 	}
2214 	return 0;
2215 
2216 clean:
2217 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2218 	return -ENOMEM;
2219 }
2220 
hpsa_free_sg_chain_blocks(struct ctlr_info * h)2221 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223 	int i;
2224 
2225 	if (!h->cmd_sg_list)
2226 		return;
2227 	for (i = 0; i < h->nr_cmds; i++) {
2228 		kfree(h->cmd_sg_list[i]);
2229 		h->cmd_sg_list[i] = NULL;
2230 	}
2231 	kfree(h->cmd_sg_list);
2232 	h->cmd_sg_list = NULL;
2233 }
2234 
hpsa_alloc_sg_chain_blocks(struct ctlr_info * h)2235 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2236 {
2237 	int i;
2238 
2239 	if (h->chainsize <= 0)
2240 		return 0;
2241 
2242 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2243 				 GFP_KERNEL);
2244 	if (!h->cmd_sg_list)
2245 		return -ENOMEM;
2246 
2247 	for (i = 0; i < h->nr_cmds; i++) {
2248 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2249 						  sizeof(*h->cmd_sg_list[i]),
2250 						  GFP_KERNEL);
2251 		if (!h->cmd_sg_list[i])
2252 			goto clean;
2253 
2254 	}
2255 	return 0;
2256 
2257 clean:
2258 	hpsa_free_sg_chain_blocks(h);
2259 	return -ENOMEM;
2260 }
2261 
hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info * h,struct io_accel2_cmd * cp,struct CommandList * c)2262 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2263 	struct io_accel2_cmd *cp, struct CommandList *c)
2264 {
2265 	struct ioaccel2_sg_element *chain_block;
2266 	u64 temp64;
2267 	u32 chain_size;
2268 
2269 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2270 	chain_size = le32_to_cpu(cp->sg[0].length);
2271 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2272 				DMA_TO_DEVICE);
2273 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2274 		/* prevent subsequent unmapping */
2275 		cp->sg->address = 0;
2276 		return -1;
2277 	}
2278 	cp->sg->address = cpu_to_le64(temp64);
2279 	return 0;
2280 }
2281 
hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info * h,struct io_accel2_cmd * cp)2282 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2283 	struct io_accel2_cmd *cp)
2284 {
2285 	struct ioaccel2_sg_element *chain_sg;
2286 	u64 temp64;
2287 	u32 chain_size;
2288 
2289 	chain_sg = cp->sg;
2290 	temp64 = le64_to_cpu(chain_sg->address);
2291 	chain_size = le32_to_cpu(cp->sg[0].length);
2292 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2293 }
2294 
hpsa_map_sg_chain_block(struct ctlr_info * h,struct CommandList * c)2295 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2296 	struct CommandList *c)
2297 {
2298 	struct SGDescriptor *chain_sg, *chain_block;
2299 	u64 temp64;
2300 	u32 chain_len;
2301 
2302 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2303 	chain_block = h->cmd_sg_list[c->cmdindex];
2304 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2305 	chain_len = sizeof(*chain_sg) *
2306 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2307 	chain_sg->Len = cpu_to_le32(chain_len);
2308 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2309 				DMA_TO_DEVICE);
2310 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2311 		/* prevent subsequent unmapping */
2312 		chain_sg->Addr = cpu_to_le64(0);
2313 		return -1;
2314 	}
2315 	chain_sg->Addr = cpu_to_le64(temp64);
2316 	return 0;
2317 }
2318 
hpsa_unmap_sg_chain_block(struct ctlr_info * h,struct CommandList * c)2319 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2320 	struct CommandList *c)
2321 {
2322 	struct SGDescriptor *chain_sg;
2323 
2324 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2325 		return;
2326 
2327 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2328 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2329 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2330 }
2331 
2332 
2333 /* Decode the various types of errors on ioaccel2 path.
2334  * Return 1 for any error that should generate a RAID path retry.
2335  * Return 0 for errors that don't require a RAID path retry.
2336  */
handle_ioaccel_mode2_error(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct io_accel2_cmd * c2,struct hpsa_scsi_dev_t * dev)2337 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2338 					struct CommandList *c,
2339 					struct scsi_cmnd *cmd,
2340 					struct io_accel2_cmd *c2,
2341 					struct hpsa_scsi_dev_t *dev)
2342 {
2343 	int data_len;
2344 	int retry = 0;
2345 	u32 ioaccel2_resid = 0;
2346 
2347 	switch (c2->error_data.serv_response) {
2348 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2349 		switch (c2->error_data.status) {
2350 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2351 			if (cmd)
2352 				cmd->result = 0;
2353 			break;
2354 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2355 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2356 			if (c2->error_data.data_present !=
2357 					IOACCEL2_SENSE_DATA_PRESENT) {
2358 				memset(cmd->sense_buffer, 0,
2359 					SCSI_SENSE_BUFFERSIZE);
2360 				break;
2361 			}
2362 			/* copy the sense data */
2363 			data_len = c2->error_data.sense_data_len;
2364 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2365 				data_len = SCSI_SENSE_BUFFERSIZE;
2366 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2367 				data_len =
2368 					sizeof(c2->error_data.sense_data_buff);
2369 			memcpy(cmd->sense_buffer,
2370 				c2->error_data.sense_data_buff, data_len);
2371 			retry = 1;
2372 			break;
2373 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2374 			retry = 1;
2375 			break;
2376 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2377 			retry = 1;
2378 			break;
2379 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2380 			retry = 1;
2381 			break;
2382 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2383 			retry = 1;
2384 			break;
2385 		default:
2386 			retry = 1;
2387 			break;
2388 		}
2389 		break;
2390 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2391 		switch (c2->error_data.status) {
2392 		case IOACCEL2_STATUS_SR_IO_ERROR:
2393 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2394 		case IOACCEL2_STATUS_SR_OVERRUN:
2395 			retry = 1;
2396 			break;
2397 		case IOACCEL2_STATUS_SR_UNDERRUN:
2398 			cmd->result = (DID_OK << 16);		/* host byte */
2399 			ioaccel2_resid = get_unaligned_le32(
2400 						&c2->error_data.resid_cnt[0]);
2401 			scsi_set_resid(cmd, ioaccel2_resid);
2402 			break;
2403 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2404 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2405 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2406 			/*
2407 			 * Did an HBA disk disappear? We will eventually
2408 			 * get a state change event from the controller but
2409 			 * in the meantime, we need to tell the OS that the
2410 			 * HBA disk is no longer there and stop I/O
2411 			 * from going down. This allows the potential re-insert
2412 			 * of the disk to get the same device node.
2413 			 */
2414 			if (dev->physical_device && dev->expose_device) {
2415 				cmd->result = DID_NO_CONNECT << 16;
2416 				dev->removed = 1;
2417 				h->drv_req_rescan = 1;
2418 				dev_warn(&h->pdev->dev,
2419 					"%s: device is gone!\n", __func__);
2420 			} else
2421 				/*
2422 				 * Retry by sending down the RAID path.
2423 				 * We will get an event from ctlr to
2424 				 * trigger rescan regardless.
2425 				 */
2426 				retry = 1;
2427 			break;
2428 		default:
2429 			retry = 1;
2430 		}
2431 		break;
2432 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2433 		break;
2434 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2435 		break;
2436 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2437 		retry = 1;
2438 		break;
2439 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2440 		break;
2441 	default:
2442 		retry = 1;
2443 		break;
2444 	}
2445 
2446 	if (dev->in_reset)
2447 		retry = 0;
2448 
2449 	return retry;	/* retry on raid path? */
2450 }
2451 
hpsa_cmd_resolve_events(struct ctlr_info * h,struct CommandList * c)2452 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2453 		struct CommandList *c)
2454 {
2455 	struct hpsa_scsi_dev_t *dev = c->device;
2456 
2457 	/*
2458 	 * Reset c->scsi_cmd here so that the reset handler will know
2459 	 * this command has completed.  Then, check to see if the handler is
2460 	 * waiting for this command, and, if so, wake it.
2461 	 */
2462 	c->scsi_cmd = SCSI_CMD_IDLE;
2463 	mb();	/* Declare command idle before checking for pending events. */
2464 	if (dev) {
2465 		atomic_dec(&dev->commands_outstanding);
2466 		if (dev->in_reset &&
2467 			atomic_read(&dev->commands_outstanding) <= 0)
2468 			wake_up_all(&h->event_sync_wait_queue);
2469 	}
2470 }
2471 
hpsa_cmd_resolve_and_free(struct ctlr_info * h,struct CommandList * c)2472 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2473 				      struct CommandList *c)
2474 {
2475 	hpsa_cmd_resolve_events(h, c);
2476 	cmd_tagged_free(h, c);
2477 }
2478 
hpsa_cmd_free_and_done(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd)2479 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2480 		struct CommandList *c, struct scsi_cmnd *cmd)
2481 {
2482 	hpsa_cmd_resolve_and_free(h, c);
2483 	if (cmd)
2484 		scsi_done(cmd);
2485 }
2486 
hpsa_retry_cmd(struct ctlr_info * h,struct CommandList * c)2487 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2488 {
2489 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2490 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2491 }
2492 
process_ioaccel2_completion(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct hpsa_scsi_dev_t * dev)2493 static void process_ioaccel2_completion(struct ctlr_info *h,
2494 		struct CommandList *c, struct scsi_cmnd *cmd,
2495 		struct hpsa_scsi_dev_t *dev)
2496 {
2497 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2498 
2499 	/* check for good status */
2500 	if (likely(c2->error_data.serv_response == 0 &&
2501 			c2->error_data.status == 0)) {
2502 		cmd->result = 0;
2503 		return hpsa_cmd_free_and_done(h, c, cmd);
2504 	}
2505 
2506 	/*
2507 	 * Any RAID offload error results in retry which will use
2508 	 * the normal I/O path so the controller can handle whatever is
2509 	 * wrong.
2510 	 */
2511 	if (is_logical_device(dev) &&
2512 		c2->error_data.serv_response ==
2513 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2514 		if (c2->error_data.status ==
2515 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2516 			hpsa_turn_off_ioaccel_for_device(dev);
2517 		}
2518 
2519 		if (dev->in_reset) {
2520 			cmd->result = DID_RESET << 16;
2521 			return hpsa_cmd_free_and_done(h, c, cmd);
2522 		}
2523 
2524 		return hpsa_retry_cmd(h, c);
2525 	}
2526 
2527 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2528 		return hpsa_retry_cmd(h, c);
2529 
2530 	return hpsa_cmd_free_and_done(h, c, cmd);
2531 }
2532 
2533 /* Returns 0 on success, < 0 otherwise. */
hpsa_evaluate_tmf_status(struct ctlr_info * h,struct CommandList * cp)2534 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2535 					struct CommandList *cp)
2536 {
2537 	u8 tmf_status = cp->err_info->ScsiStatus;
2538 
2539 	switch (tmf_status) {
2540 	case CISS_TMF_COMPLETE:
2541 		/*
2542 		 * CISS_TMF_COMPLETE never happens, instead,
2543 		 * ei->CommandStatus == 0 for this case.
2544 		 */
2545 	case CISS_TMF_SUCCESS:
2546 		return 0;
2547 	case CISS_TMF_INVALID_FRAME:
2548 	case CISS_TMF_NOT_SUPPORTED:
2549 	case CISS_TMF_FAILED:
2550 	case CISS_TMF_WRONG_LUN:
2551 	case CISS_TMF_OVERLAPPED_TAG:
2552 		break;
2553 	default:
2554 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2555 				tmf_status);
2556 		break;
2557 	}
2558 	return -tmf_status;
2559 }
2560 
complete_scsi_command(struct CommandList * cp)2561 static void complete_scsi_command(struct CommandList *cp)
2562 {
2563 	struct scsi_cmnd *cmd;
2564 	struct ctlr_info *h;
2565 	struct ErrorInfo *ei;
2566 	struct hpsa_scsi_dev_t *dev;
2567 	struct io_accel2_cmd *c2;
2568 
2569 	u8 sense_key;
2570 	u8 asc;      /* additional sense code */
2571 	u8 ascq;     /* additional sense code qualifier */
2572 	unsigned long sense_data_size;
2573 
2574 	ei = cp->err_info;
2575 	cmd = cp->scsi_cmd;
2576 	h = cp->h;
2577 
2578 	if (!cmd->device) {
2579 		cmd->result = DID_NO_CONNECT << 16;
2580 		return hpsa_cmd_free_and_done(h, cp, cmd);
2581 	}
2582 
2583 	dev = cmd->device->hostdata;
2584 	if (!dev) {
2585 		cmd->result = DID_NO_CONNECT << 16;
2586 		return hpsa_cmd_free_and_done(h, cp, cmd);
2587 	}
2588 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2589 
2590 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2591 	if ((cp->cmd_type == CMD_SCSI) &&
2592 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2593 		hpsa_unmap_sg_chain_block(h, cp);
2594 
2595 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2596 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2597 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2598 
2599 	cmd->result = (DID_OK << 16);		/* host byte */
2600 
2601 	/* SCSI command has already been cleaned up in SML */
2602 	if (dev->was_removed) {
2603 		hpsa_cmd_resolve_and_free(h, cp);
2604 		return;
2605 	}
2606 
2607 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2608 		if (dev->physical_device && dev->expose_device &&
2609 			dev->removed) {
2610 			cmd->result = DID_NO_CONNECT << 16;
2611 			return hpsa_cmd_free_and_done(h, cp, cmd);
2612 		}
2613 		if (likely(cp->phys_disk != NULL))
2614 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2615 	}
2616 
2617 	/*
2618 	 * We check for lockup status here as it may be set for
2619 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2620 	 * fail_all_oustanding_cmds()
2621 	 */
2622 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2623 		/* DID_NO_CONNECT will prevent a retry */
2624 		cmd->result = DID_NO_CONNECT << 16;
2625 		return hpsa_cmd_free_and_done(h, cp, cmd);
2626 	}
2627 
2628 	if (cp->cmd_type == CMD_IOACCEL2)
2629 		return process_ioaccel2_completion(h, cp, cmd, dev);
2630 
2631 	scsi_set_resid(cmd, ei->ResidualCnt);
2632 	if (ei->CommandStatus == 0)
2633 		return hpsa_cmd_free_and_done(h, cp, cmd);
2634 
2635 	/* For I/O accelerator commands, copy over some fields to the normal
2636 	 * CISS header used below for error handling.
2637 	 */
2638 	if (cp->cmd_type == CMD_IOACCEL1) {
2639 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2640 		cp->Header.SGList = scsi_sg_count(cmd);
2641 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2642 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2643 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2644 		cp->Header.tag = c->tag;
2645 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2646 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2647 
2648 		/* Any RAID offload error results in retry which will use
2649 		 * the normal I/O path so the controller can handle whatever's
2650 		 * wrong.
2651 		 */
2652 		if (is_logical_device(dev)) {
2653 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2654 				dev->offload_enabled = 0;
2655 			return hpsa_retry_cmd(h, cp);
2656 		}
2657 	}
2658 
2659 	/* an error has occurred */
2660 	switch (ei->CommandStatus) {
2661 
2662 	case CMD_TARGET_STATUS:
2663 		cmd->result |= ei->ScsiStatus;
2664 		/* copy the sense data */
2665 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2666 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2667 		else
2668 			sense_data_size = sizeof(ei->SenseInfo);
2669 		if (ei->SenseLen < sense_data_size)
2670 			sense_data_size = ei->SenseLen;
2671 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2672 		if (ei->ScsiStatus)
2673 			decode_sense_data(ei->SenseInfo, sense_data_size,
2674 				&sense_key, &asc, &ascq);
2675 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2676 			switch (sense_key) {
2677 			case ABORTED_COMMAND:
2678 				cmd->result |= DID_SOFT_ERROR << 16;
2679 				break;
2680 			case UNIT_ATTENTION:
2681 				if (asc == 0x3F && ascq == 0x0E)
2682 					h->drv_req_rescan = 1;
2683 				break;
2684 			case ILLEGAL_REQUEST:
2685 				if (asc == 0x25 && ascq == 0x00) {
2686 					dev->removed = 1;
2687 					cmd->result = DID_NO_CONNECT << 16;
2688 				}
2689 				break;
2690 			}
2691 			break;
2692 		}
2693 		/* Problem was not a check condition
2694 		 * Pass it up to the upper layers...
2695 		 */
2696 		if (ei->ScsiStatus) {
2697 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2698 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2699 				"Returning result: 0x%x\n",
2700 				cp, ei->ScsiStatus,
2701 				sense_key, asc, ascq,
2702 				cmd->result);
2703 		} else {  /* scsi status is zero??? How??? */
2704 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2705 				"Returning no connection.\n", cp),
2706 
2707 			/* Ordinarily, this case should never happen,
2708 			 * but there is a bug in some released firmware
2709 			 * revisions that allows it to happen if, for
2710 			 * example, a 4100 backplane loses power and
2711 			 * the tape drive is in it.  We assume that
2712 			 * it's a fatal error of some kind because we
2713 			 * can't show that it wasn't. We will make it
2714 			 * look like selection timeout since that is
2715 			 * the most common reason for this to occur,
2716 			 * and it's severe enough.
2717 			 */
2718 
2719 			cmd->result = DID_NO_CONNECT << 16;
2720 		}
2721 		break;
2722 
2723 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2724 		break;
2725 	case CMD_DATA_OVERRUN:
2726 		dev_warn(&h->pdev->dev,
2727 			"CDB %16phN data overrun\n", cp->Request.CDB);
2728 		break;
2729 	case CMD_INVALID: {
2730 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2731 		print_cmd(cp); */
2732 		/* We get CMD_INVALID if you address a non-existent device
2733 		 * instead of a selection timeout (no response).  You will
2734 		 * see this if you yank out a drive, then try to access it.
2735 		 * This is kind of a shame because it means that any other
2736 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2737 		 * missing target. */
2738 		cmd->result = DID_NO_CONNECT << 16;
2739 	}
2740 		break;
2741 	case CMD_PROTOCOL_ERR:
2742 		cmd->result = DID_ERROR << 16;
2743 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2744 				cp->Request.CDB);
2745 		break;
2746 	case CMD_HARDWARE_ERR:
2747 		cmd->result = DID_ERROR << 16;
2748 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2749 			cp->Request.CDB);
2750 		break;
2751 	case CMD_CONNECTION_LOST:
2752 		cmd->result = DID_ERROR << 16;
2753 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2754 			cp->Request.CDB);
2755 		break;
2756 	case CMD_ABORTED:
2757 		cmd->result = DID_ABORT << 16;
2758 		break;
2759 	case CMD_ABORT_FAILED:
2760 		cmd->result = DID_ERROR << 16;
2761 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2762 			cp->Request.CDB);
2763 		break;
2764 	case CMD_UNSOLICITED_ABORT:
2765 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2766 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2767 			cp->Request.CDB);
2768 		break;
2769 	case CMD_TIMEOUT:
2770 		cmd->result = DID_TIME_OUT << 16;
2771 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2772 			cp->Request.CDB);
2773 		break;
2774 	case CMD_UNABORTABLE:
2775 		cmd->result = DID_ERROR << 16;
2776 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2777 		break;
2778 	case CMD_TMF_STATUS:
2779 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2780 			cmd->result = DID_ERROR << 16;
2781 		break;
2782 	case CMD_IOACCEL_DISABLED:
2783 		/* This only handles the direct pass-through case since RAID
2784 		 * offload is handled above.  Just attempt a retry.
2785 		 */
2786 		cmd->result = DID_SOFT_ERROR << 16;
2787 		dev_warn(&h->pdev->dev,
2788 				"cp %p had HP SSD Smart Path error\n", cp);
2789 		break;
2790 	default:
2791 		cmd->result = DID_ERROR << 16;
2792 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2793 				cp, ei->CommandStatus);
2794 	}
2795 
2796 	return hpsa_cmd_free_and_done(h, cp, cmd);
2797 }
2798 
hpsa_pci_unmap(struct pci_dev * pdev,struct CommandList * c,int sg_used,enum dma_data_direction data_direction)2799 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2800 		int sg_used, enum dma_data_direction data_direction)
2801 {
2802 	int i;
2803 
2804 	for (i = 0; i < sg_used; i++)
2805 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2806 				le32_to_cpu(c->SG[i].Len),
2807 				data_direction);
2808 }
2809 
hpsa_map_one(struct pci_dev * pdev,struct CommandList * cp,unsigned char * buf,size_t buflen,enum dma_data_direction data_direction)2810 static int hpsa_map_one(struct pci_dev *pdev,
2811 		struct CommandList *cp,
2812 		unsigned char *buf,
2813 		size_t buflen,
2814 		enum dma_data_direction data_direction)
2815 {
2816 	u64 addr64;
2817 
2818 	if (buflen == 0 || data_direction == DMA_NONE) {
2819 		cp->Header.SGList = 0;
2820 		cp->Header.SGTotal = cpu_to_le16(0);
2821 		return 0;
2822 	}
2823 
2824 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2825 	if (dma_mapping_error(&pdev->dev, addr64)) {
2826 		/* Prevent subsequent unmap of something never mapped */
2827 		cp->Header.SGList = 0;
2828 		cp->Header.SGTotal = cpu_to_le16(0);
2829 		return -1;
2830 	}
2831 	cp->SG[0].Addr = cpu_to_le64(addr64);
2832 	cp->SG[0].Len = cpu_to_le32(buflen);
2833 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2834 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2835 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2836 	return 0;
2837 }
2838 
2839 #define NO_TIMEOUT ((unsigned long) -1)
2840 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
hpsa_scsi_do_simple_cmd_core(struct ctlr_info * h,struct CommandList * c,int reply_queue,unsigned long timeout_msecs)2841 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2842 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2843 {
2844 	DECLARE_COMPLETION_ONSTACK(wait);
2845 
2846 	c->waiting = &wait;
2847 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2848 	if (timeout_msecs == NO_TIMEOUT) {
2849 		/* TODO: get rid of this no-timeout thing */
2850 		wait_for_completion_io(&wait);
2851 		return IO_OK;
2852 	}
2853 	if (!wait_for_completion_io_timeout(&wait,
2854 					msecs_to_jiffies(timeout_msecs))) {
2855 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2856 		return -ETIMEDOUT;
2857 	}
2858 	return IO_OK;
2859 }
2860 
hpsa_scsi_do_simple_cmd(struct ctlr_info * h,struct CommandList * c,int reply_queue,unsigned long timeout_msecs)2861 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2862 				   int reply_queue, unsigned long timeout_msecs)
2863 {
2864 	if (unlikely(lockup_detected(h))) {
2865 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2866 		return IO_OK;
2867 	}
2868 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2869 }
2870 
lockup_detected(struct ctlr_info * h)2871 static u32 lockup_detected(struct ctlr_info *h)
2872 {
2873 	int cpu;
2874 	u32 rc, *lockup_detected;
2875 
2876 	cpu = get_cpu();
2877 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2878 	rc = *lockup_detected;
2879 	put_cpu();
2880 	return rc;
2881 }
2882 
2883 #define MAX_DRIVER_CMD_RETRIES 25
hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info * h,struct CommandList * c,enum dma_data_direction data_direction,unsigned long timeout_msecs)2884 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2885 		struct CommandList *c, enum dma_data_direction data_direction,
2886 		unsigned long timeout_msecs)
2887 {
2888 	int backoff_time = 10, retry_count = 0;
2889 	int rc;
2890 
2891 	do {
2892 		memset(c->err_info, 0, sizeof(*c->err_info));
2893 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2894 						  timeout_msecs);
2895 		if (rc)
2896 			break;
2897 		retry_count++;
2898 		if (retry_count > 3) {
2899 			msleep(backoff_time);
2900 			if (backoff_time < 1000)
2901 				backoff_time *= 2;
2902 		}
2903 	} while ((check_for_unit_attention(h, c) ||
2904 			check_for_busy(h, c)) &&
2905 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2906 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2907 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2908 		rc = -EIO;
2909 	return rc;
2910 }
2911 
hpsa_print_cmd(struct ctlr_info * h,char * txt,struct CommandList * c)2912 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2913 				struct CommandList *c)
2914 {
2915 	const u8 *cdb = c->Request.CDB;
2916 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2917 
2918 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2919 		 txt, lun, cdb);
2920 }
2921 
hpsa_scsi_interpret_error(struct ctlr_info * h,struct CommandList * cp)2922 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2923 			struct CommandList *cp)
2924 {
2925 	const struct ErrorInfo *ei = cp->err_info;
2926 	struct device *d = &cp->h->pdev->dev;
2927 	u8 sense_key, asc, ascq;
2928 	int sense_len;
2929 
2930 	switch (ei->CommandStatus) {
2931 	case CMD_TARGET_STATUS:
2932 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2933 			sense_len = sizeof(ei->SenseInfo);
2934 		else
2935 			sense_len = ei->SenseLen;
2936 		decode_sense_data(ei->SenseInfo, sense_len,
2937 					&sense_key, &asc, &ascq);
2938 		hpsa_print_cmd(h, "SCSI status", cp);
2939 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2940 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2941 				sense_key, asc, ascq);
2942 		else
2943 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2944 		if (ei->ScsiStatus == 0)
2945 			dev_warn(d, "SCSI status is abnormally zero.  "
2946 			"(probably indicates selection timeout "
2947 			"reported incorrectly due to a known "
2948 			"firmware bug, circa July, 2001.)\n");
2949 		break;
2950 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2951 		break;
2952 	case CMD_DATA_OVERRUN:
2953 		hpsa_print_cmd(h, "overrun condition", cp);
2954 		break;
2955 	case CMD_INVALID: {
2956 		/* controller unfortunately reports SCSI passthru's
2957 		 * to non-existent targets as invalid commands.
2958 		 */
2959 		hpsa_print_cmd(h, "invalid command", cp);
2960 		dev_warn(d, "probably means device no longer present\n");
2961 		}
2962 		break;
2963 	case CMD_PROTOCOL_ERR:
2964 		hpsa_print_cmd(h, "protocol error", cp);
2965 		break;
2966 	case CMD_HARDWARE_ERR:
2967 		hpsa_print_cmd(h, "hardware error", cp);
2968 		break;
2969 	case CMD_CONNECTION_LOST:
2970 		hpsa_print_cmd(h, "connection lost", cp);
2971 		break;
2972 	case CMD_ABORTED:
2973 		hpsa_print_cmd(h, "aborted", cp);
2974 		break;
2975 	case CMD_ABORT_FAILED:
2976 		hpsa_print_cmd(h, "abort failed", cp);
2977 		break;
2978 	case CMD_UNSOLICITED_ABORT:
2979 		hpsa_print_cmd(h, "unsolicited abort", cp);
2980 		break;
2981 	case CMD_TIMEOUT:
2982 		hpsa_print_cmd(h, "timed out", cp);
2983 		break;
2984 	case CMD_UNABORTABLE:
2985 		hpsa_print_cmd(h, "unabortable", cp);
2986 		break;
2987 	case CMD_CTLR_LOCKUP:
2988 		hpsa_print_cmd(h, "controller lockup detected", cp);
2989 		break;
2990 	default:
2991 		hpsa_print_cmd(h, "unknown status", cp);
2992 		dev_warn(d, "Unknown command status %x\n",
2993 				ei->CommandStatus);
2994 	}
2995 }
2996 
hpsa_do_receive_diagnostic(struct ctlr_info * h,u8 * scsi3addr,u8 page,u8 * buf,size_t bufsize)2997 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2998 					u8 page, u8 *buf, size_t bufsize)
2999 {
3000 	int rc = IO_OK;
3001 	struct CommandList *c;
3002 	struct ErrorInfo *ei;
3003 
3004 	c = cmd_alloc(h);
3005 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3006 			page, scsi3addr, TYPE_CMD)) {
3007 		rc = -1;
3008 		goto out;
3009 	}
3010 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3011 			NO_TIMEOUT);
3012 	if (rc)
3013 		goto out;
3014 	ei = c->err_info;
3015 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3016 		hpsa_scsi_interpret_error(h, c);
3017 		rc = -1;
3018 	}
3019 out:
3020 	cmd_free(h, c);
3021 	return rc;
3022 }
3023 
hpsa_get_enclosure_logical_identifier(struct ctlr_info * h,u8 * scsi3addr)3024 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3025 						u8 *scsi3addr)
3026 {
3027 	u8 *buf;
3028 	u64 sa = 0;
3029 	int rc = 0;
3030 
3031 	buf = kzalloc(1024, GFP_KERNEL);
3032 	if (!buf)
3033 		return 0;
3034 
3035 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3036 					buf, 1024);
3037 
3038 	if (rc)
3039 		goto out;
3040 
3041 	sa = get_unaligned_be64(buf+12);
3042 
3043 out:
3044 	kfree(buf);
3045 	return sa;
3046 }
3047 
hpsa_scsi_do_inquiry(struct ctlr_info * h,unsigned char * scsi3addr,u16 page,unsigned char * buf,unsigned char bufsize)3048 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3049 			u16 page, unsigned char *buf,
3050 			unsigned char bufsize)
3051 {
3052 	int rc = IO_OK;
3053 	struct CommandList *c;
3054 	struct ErrorInfo *ei;
3055 
3056 	c = cmd_alloc(h);
3057 
3058 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3059 			page, scsi3addr, TYPE_CMD)) {
3060 		rc = -1;
3061 		goto out;
3062 	}
3063 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3064 			NO_TIMEOUT);
3065 	if (rc)
3066 		goto out;
3067 	ei = c->err_info;
3068 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3069 		hpsa_scsi_interpret_error(h, c);
3070 		rc = -1;
3071 	}
3072 out:
3073 	cmd_free(h, c);
3074 	return rc;
3075 }
3076 
hpsa_send_reset(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,u8 reset_type,int reply_queue)3077 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3078 	u8 reset_type, int reply_queue)
3079 {
3080 	int rc = IO_OK;
3081 	struct CommandList *c;
3082 	struct ErrorInfo *ei;
3083 
3084 	c = cmd_alloc(h);
3085 	c->device = dev;
3086 
3087 	/* fill_cmd can't fail here, no data buffer to map. */
3088 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3089 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3090 	if (rc) {
3091 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3092 		goto out;
3093 	}
3094 	/* no unmap needed here because no data xfer. */
3095 
3096 	ei = c->err_info;
3097 	if (ei->CommandStatus != 0) {
3098 		hpsa_scsi_interpret_error(h, c);
3099 		rc = -1;
3100 	}
3101 out:
3102 	cmd_free(h, c);
3103 	return rc;
3104 }
3105 
hpsa_cmd_dev_match(struct ctlr_info * h,struct CommandList * c,struct hpsa_scsi_dev_t * dev,unsigned char * scsi3addr)3106 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3107 			       struct hpsa_scsi_dev_t *dev,
3108 			       unsigned char *scsi3addr)
3109 {
3110 	int i;
3111 	bool match = false;
3112 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3113 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3114 
3115 	if (hpsa_is_cmd_idle(c))
3116 		return false;
3117 
3118 	switch (c->cmd_type) {
3119 	case CMD_SCSI:
3120 	case CMD_IOCTL_PEND:
3121 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3122 				sizeof(c->Header.LUN.LunAddrBytes));
3123 		break;
3124 
3125 	case CMD_IOACCEL1:
3126 	case CMD_IOACCEL2:
3127 		if (c->phys_disk == dev) {
3128 			/* HBA mode match */
3129 			match = true;
3130 		} else {
3131 			/* Possible RAID mode -- check each phys dev. */
3132 			/* FIXME:  Do we need to take out a lock here?  If
3133 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3134 			 * instead. */
3135 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3136 				/* FIXME: an alternate test might be
3137 				 *
3138 				 * match = dev->phys_disk[i]->ioaccel_handle
3139 				 *              == c2->scsi_nexus;      */
3140 				match = dev->phys_disk[i] == c->phys_disk;
3141 			}
3142 		}
3143 		break;
3144 
3145 	case IOACCEL2_TMF:
3146 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3147 			match = dev->phys_disk[i]->ioaccel_handle ==
3148 					le32_to_cpu(ac->it_nexus);
3149 		}
3150 		break;
3151 
3152 	case 0:		/* The command is in the middle of being initialized. */
3153 		match = false;
3154 		break;
3155 
3156 	default:
3157 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3158 			c->cmd_type);
3159 		BUG();
3160 	}
3161 
3162 	return match;
3163 }
3164 
hpsa_do_reset(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,u8 reset_type,int reply_queue)3165 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3166 	u8 reset_type, int reply_queue)
3167 {
3168 	int rc = 0;
3169 
3170 	/* We can really only handle one reset at a time */
3171 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3172 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3173 		return -EINTR;
3174 	}
3175 
3176 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3177 	if (!rc) {
3178 		/* incremented by sending the reset request */
3179 		atomic_dec(&dev->commands_outstanding);
3180 		wait_event(h->event_sync_wait_queue,
3181 			atomic_read(&dev->commands_outstanding) <= 0 ||
3182 			lockup_detected(h));
3183 	}
3184 
3185 	if (unlikely(lockup_detected(h))) {
3186 		dev_warn(&h->pdev->dev,
3187 			 "Controller lockup detected during reset wait\n");
3188 		rc = -ENODEV;
3189 	}
3190 
3191 	if (!rc)
3192 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3193 
3194 	mutex_unlock(&h->reset_mutex);
3195 	return rc;
3196 }
3197 
hpsa_get_raid_level(struct ctlr_info * h,unsigned char * scsi3addr,unsigned char * raid_level)3198 static void hpsa_get_raid_level(struct ctlr_info *h,
3199 	unsigned char *scsi3addr, unsigned char *raid_level)
3200 {
3201 	int rc;
3202 	unsigned char *buf;
3203 
3204 	*raid_level = RAID_UNKNOWN;
3205 	buf = kzalloc(64, GFP_KERNEL);
3206 	if (!buf)
3207 		return;
3208 
3209 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3210 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3211 		goto exit;
3212 
3213 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3214 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3215 
3216 	if (rc == 0)
3217 		*raid_level = buf[8];
3218 	if (*raid_level > RAID_UNKNOWN)
3219 		*raid_level = RAID_UNKNOWN;
3220 exit:
3221 	kfree(buf);
3222 	return;
3223 }
3224 
3225 #define HPSA_MAP_DEBUG
3226 #ifdef HPSA_MAP_DEBUG
hpsa_debug_map_buff(struct ctlr_info * h,int rc,struct raid_map_data * map_buff)3227 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3228 				struct raid_map_data *map_buff)
3229 {
3230 	struct raid_map_disk_data *dd = &map_buff->data[0];
3231 	int map, row, col;
3232 	u16 map_cnt, row_cnt, disks_per_row;
3233 
3234 	if (rc != 0)
3235 		return;
3236 
3237 	/* Show details only if debugging has been activated. */
3238 	if (h->raid_offload_debug < 2)
3239 		return;
3240 
3241 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3242 				le32_to_cpu(map_buff->structure_size));
3243 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3244 			le32_to_cpu(map_buff->volume_blk_size));
3245 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3246 			le64_to_cpu(map_buff->volume_blk_cnt));
3247 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3248 			map_buff->phys_blk_shift);
3249 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3250 			map_buff->parity_rotation_shift);
3251 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3252 			le16_to_cpu(map_buff->strip_size));
3253 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3254 			le64_to_cpu(map_buff->disk_starting_blk));
3255 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3256 			le64_to_cpu(map_buff->disk_blk_cnt));
3257 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3258 			le16_to_cpu(map_buff->data_disks_per_row));
3259 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3260 			le16_to_cpu(map_buff->metadata_disks_per_row));
3261 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3262 			le16_to_cpu(map_buff->row_cnt));
3263 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3264 			le16_to_cpu(map_buff->layout_map_count));
3265 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3266 			le16_to_cpu(map_buff->flags));
3267 	dev_info(&h->pdev->dev, "encryption = %s\n",
3268 			le16_to_cpu(map_buff->flags) &
3269 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3270 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3271 			le16_to_cpu(map_buff->dekindex));
3272 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3273 	for (map = 0; map < map_cnt; map++) {
3274 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3275 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3276 		for (row = 0; row < row_cnt; row++) {
3277 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3278 			disks_per_row =
3279 				le16_to_cpu(map_buff->data_disks_per_row);
3280 			for (col = 0; col < disks_per_row; col++, dd++)
3281 				dev_info(&h->pdev->dev,
3282 					"    D%02u: h=0x%04x xor=%u,%u\n",
3283 					col, dd->ioaccel_handle,
3284 					dd->xor_mult[0], dd->xor_mult[1]);
3285 			disks_per_row =
3286 				le16_to_cpu(map_buff->metadata_disks_per_row);
3287 			for (col = 0; col < disks_per_row; col++, dd++)
3288 				dev_info(&h->pdev->dev,
3289 					"    M%02u: h=0x%04x xor=%u,%u\n",
3290 					col, dd->ioaccel_handle,
3291 					dd->xor_mult[0], dd->xor_mult[1]);
3292 		}
3293 	}
3294 }
3295 #else
hpsa_debug_map_buff(struct ctlr_info * h,int rc,struct raid_map_data * map_buff)3296 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3297 			__attribute__((unused)) int rc,
3298 			__attribute__((unused)) struct raid_map_data *map_buff)
3299 {
3300 }
3301 #endif
3302 
hpsa_get_raid_map(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * this_device)3303 static int hpsa_get_raid_map(struct ctlr_info *h,
3304 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3305 {
3306 	int rc = 0;
3307 	struct CommandList *c;
3308 	struct ErrorInfo *ei;
3309 
3310 	c = cmd_alloc(h);
3311 
3312 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3313 			sizeof(this_device->raid_map), 0,
3314 			scsi3addr, TYPE_CMD)) {
3315 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3316 		cmd_free(h, c);
3317 		return -1;
3318 	}
3319 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3320 			NO_TIMEOUT);
3321 	if (rc)
3322 		goto out;
3323 	ei = c->err_info;
3324 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3325 		hpsa_scsi_interpret_error(h, c);
3326 		rc = -1;
3327 		goto out;
3328 	}
3329 	cmd_free(h, c);
3330 
3331 	/* @todo in the future, dynamically allocate RAID map memory */
3332 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3333 				sizeof(this_device->raid_map)) {
3334 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3335 		rc = -1;
3336 	}
3337 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3338 	return rc;
3339 out:
3340 	cmd_free(h, c);
3341 	return rc;
3342 }
3343 
hpsa_bmic_sense_subsystem_information(struct ctlr_info * h,unsigned char scsi3addr[],u16 bmic_device_index,struct bmic_sense_subsystem_info * buf,size_t bufsize)3344 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3345 		unsigned char scsi3addr[], u16 bmic_device_index,
3346 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3347 {
3348 	int rc = IO_OK;
3349 	struct CommandList *c;
3350 	struct ErrorInfo *ei;
3351 
3352 	c = cmd_alloc(h);
3353 
3354 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3355 		0, RAID_CTLR_LUNID, TYPE_CMD);
3356 	if (rc)
3357 		goto out;
3358 
3359 	c->Request.CDB[2] = bmic_device_index & 0xff;
3360 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3361 
3362 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3363 			NO_TIMEOUT);
3364 	if (rc)
3365 		goto out;
3366 	ei = c->err_info;
3367 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3368 		hpsa_scsi_interpret_error(h, c);
3369 		rc = -1;
3370 	}
3371 out:
3372 	cmd_free(h, c);
3373 	return rc;
3374 }
3375 
hpsa_bmic_id_controller(struct ctlr_info * h,struct bmic_identify_controller * buf,size_t bufsize)3376 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3377 	struct bmic_identify_controller *buf, size_t bufsize)
3378 {
3379 	int rc = IO_OK;
3380 	struct CommandList *c;
3381 	struct ErrorInfo *ei;
3382 
3383 	c = cmd_alloc(h);
3384 
3385 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3386 		0, RAID_CTLR_LUNID, TYPE_CMD);
3387 	if (rc)
3388 		goto out;
3389 
3390 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3391 			NO_TIMEOUT);
3392 	if (rc)
3393 		goto out;
3394 	ei = c->err_info;
3395 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3396 		hpsa_scsi_interpret_error(h, c);
3397 		rc = -1;
3398 	}
3399 out:
3400 	cmd_free(h, c);
3401 	return rc;
3402 }
3403 
hpsa_bmic_id_physical_device(struct ctlr_info * h,unsigned char scsi3addr[],u16 bmic_device_index,struct bmic_identify_physical_device * buf,size_t bufsize)3404 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3405 		unsigned char scsi3addr[], u16 bmic_device_index,
3406 		struct bmic_identify_physical_device *buf, size_t bufsize)
3407 {
3408 	int rc = IO_OK;
3409 	struct CommandList *c;
3410 	struct ErrorInfo *ei;
3411 
3412 	c = cmd_alloc(h);
3413 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3414 		0, RAID_CTLR_LUNID, TYPE_CMD);
3415 	if (rc)
3416 		goto out;
3417 
3418 	c->Request.CDB[2] = bmic_device_index & 0xff;
3419 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3420 
3421 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3422 						NO_TIMEOUT);
3423 	ei = c->err_info;
3424 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3425 		hpsa_scsi_interpret_error(h, c);
3426 		rc = -1;
3427 	}
3428 out:
3429 	cmd_free(h, c);
3430 
3431 	return rc;
3432 }
3433 
3434 /*
3435  * get enclosure information
3436  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3437  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3438  * Uses id_physical_device to determine the box_index.
3439  */
hpsa_get_enclosure_info(struct ctlr_info * h,unsigned char * scsi3addr,struct ReportExtendedLUNdata * rlep,int rle_index,struct hpsa_scsi_dev_t * encl_dev)3440 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3441 			unsigned char *scsi3addr,
3442 			struct ReportExtendedLUNdata *rlep, int rle_index,
3443 			struct hpsa_scsi_dev_t *encl_dev)
3444 {
3445 	int rc = -1;
3446 	struct CommandList *c = NULL;
3447 	struct ErrorInfo *ei = NULL;
3448 	struct bmic_sense_storage_box_params *bssbp = NULL;
3449 	struct bmic_identify_physical_device *id_phys = NULL;
3450 	struct ext_report_lun_entry *rle;
3451 	u16 bmic_device_index = 0;
3452 
3453 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3454 		return;
3455 
3456 	rle = &rlep->LUN[rle_index];
3457 
3458 	encl_dev->eli =
3459 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3460 
3461 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3462 
3463 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3464 		rc = IO_OK;
3465 		goto out;
3466 	}
3467 
3468 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3469 		rc = IO_OK;
3470 		goto out;
3471 	}
3472 
3473 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3474 	if (!bssbp)
3475 		goto out;
3476 
3477 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3478 	if (!id_phys)
3479 		goto out;
3480 
3481 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3482 						id_phys, sizeof(*id_phys));
3483 	if (rc) {
3484 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3485 			__func__, encl_dev->external, bmic_device_index);
3486 		goto out;
3487 	}
3488 
3489 	c = cmd_alloc(h);
3490 
3491 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3492 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3493 
3494 	if (rc)
3495 		goto out;
3496 
3497 	if (id_phys->phys_connector[1] == 'E')
3498 		c->Request.CDB[5] = id_phys->box_index;
3499 	else
3500 		c->Request.CDB[5] = 0;
3501 
3502 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3503 						NO_TIMEOUT);
3504 	if (rc)
3505 		goto out;
3506 
3507 	ei = c->err_info;
3508 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3509 		rc = -1;
3510 		goto out;
3511 	}
3512 
3513 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3514 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3515 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3516 
3517 	rc = IO_OK;
3518 out:
3519 	kfree(bssbp);
3520 	kfree(id_phys);
3521 
3522 	if (c)
3523 		cmd_free(h, c);
3524 
3525 	if (rc != IO_OK)
3526 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3527 			"Error, could not get enclosure information");
3528 }
3529 
hpsa_get_sas_address_from_report_physical(struct ctlr_info * h,unsigned char * scsi3addr)3530 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3531 						unsigned char *scsi3addr)
3532 {
3533 	struct ReportExtendedLUNdata *physdev;
3534 	u32 nphysicals;
3535 	u64 sa = 0;
3536 	int i;
3537 
3538 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3539 	if (!physdev)
3540 		return 0;
3541 
3542 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3543 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3544 		kfree(physdev);
3545 		return 0;
3546 	}
3547 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3548 
3549 	for (i = 0; i < nphysicals; i++)
3550 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3551 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3552 			break;
3553 		}
3554 
3555 	kfree(physdev);
3556 
3557 	return sa;
3558 }
3559 
hpsa_get_sas_address(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * dev)3560 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3561 					struct hpsa_scsi_dev_t *dev)
3562 {
3563 	int rc;
3564 	u64 sa = 0;
3565 
3566 	if (is_hba_lunid(scsi3addr)) {
3567 		struct bmic_sense_subsystem_info *ssi;
3568 
3569 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3570 		if (!ssi)
3571 			return;
3572 
3573 		rc = hpsa_bmic_sense_subsystem_information(h,
3574 					scsi3addr, 0, ssi, sizeof(*ssi));
3575 		if (rc == 0) {
3576 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3577 			h->sas_address = sa;
3578 		}
3579 
3580 		kfree(ssi);
3581 	} else
3582 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3583 
3584 	dev->sas_address = sa;
3585 }
3586 
hpsa_ext_ctrl_present(struct ctlr_info * h,struct ReportExtendedLUNdata * physdev)3587 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3588 	struct ReportExtendedLUNdata *physdev)
3589 {
3590 	u32 nphysicals;
3591 	int i;
3592 
3593 	if (h->discovery_polling)
3594 		return;
3595 
3596 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3597 
3598 	for (i = 0; i < nphysicals; i++) {
3599 		if (physdev->LUN[i].device_type ==
3600 			BMIC_DEVICE_TYPE_CONTROLLER
3601 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3602 			dev_info(&h->pdev->dev,
3603 				"External controller present, activate discovery polling and disable rld caching\n");
3604 			hpsa_disable_rld_caching(h);
3605 			h->discovery_polling = 1;
3606 			break;
3607 		}
3608 	}
3609 }
3610 
3611 /* Get a device id from inquiry page 0x83 */
hpsa_vpd_page_supported(struct ctlr_info * h,unsigned char scsi3addr[],u8 page)3612 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3613 	unsigned char scsi3addr[], u8 page)
3614 {
3615 	int rc;
3616 	int i;
3617 	int pages;
3618 	unsigned char *buf, bufsize;
3619 
3620 	buf = kzalloc(256, GFP_KERNEL);
3621 	if (!buf)
3622 		return false;
3623 
3624 	/* Get the size of the page list first */
3625 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3626 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3627 				buf, HPSA_VPD_HEADER_SZ);
3628 	if (rc != 0)
3629 		goto exit_unsupported;
3630 	pages = buf[3];
3631 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3632 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3633 	else
3634 		bufsize = 255;
3635 
3636 	/* Get the whole VPD page list */
3637 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3638 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3639 				buf, bufsize);
3640 	if (rc != 0)
3641 		goto exit_unsupported;
3642 
3643 	pages = buf[3];
3644 	for (i = 1; i <= pages; i++)
3645 		if (buf[3 + i] == page)
3646 			goto exit_supported;
3647 exit_unsupported:
3648 	kfree(buf);
3649 	return false;
3650 exit_supported:
3651 	kfree(buf);
3652 	return true;
3653 }
3654 
3655 /*
3656  * Called during a scan operation.
3657  * Sets ioaccel status on the new device list, not the existing device list
3658  *
3659  * The device list used during I/O will be updated later in
3660  * adjust_hpsa_scsi_table.
3661  */
hpsa_get_ioaccel_status(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * this_device)3662 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3663 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3664 {
3665 	int rc;
3666 	unsigned char *buf;
3667 	u8 ioaccel_status;
3668 
3669 	this_device->offload_config = 0;
3670 	this_device->offload_enabled = 0;
3671 	this_device->offload_to_be_enabled = 0;
3672 
3673 	buf = kzalloc(64, GFP_KERNEL);
3674 	if (!buf)
3675 		return;
3676 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3677 		goto out;
3678 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3679 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3680 	if (rc != 0)
3681 		goto out;
3682 
3683 #define IOACCEL_STATUS_BYTE 4
3684 #define OFFLOAD_CONFIGURED_BIT 0x01
3685 #define OFFLOAD_ENABLED_BIT 0x02
3686 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3687 	this_device->offload_config =
3688 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3689 	if (this_device->offload_config) {
3690 		bool offload_enabled =
3691 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3692 		/*
3693 		 * Check to see if offload can be enabled.
3694 		 */
3695 		if (offload_enabled) {
3696 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3697 			if (rc) /* could not load raid_map */
3698 				goto out;
3699 			this_device->offload_to_be_enabled = 1;
3700 		}
3701 	}
3702 
3703 out:
3704 	kfree(buf);
3705 	return;
3706 }
3707 
3708 /* Get the device id from inquiry page 0x83 */
hpsa_get_device_id(struct ctlr_info * h,unsigned char * scsi3addr,unsigned char * device_id,int index,int buflen)3709 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3710 	unsigned char *device_id, int index, int buflen)
3711 {
3712 	int rc;
3713 	unsigned char *buf;
3714 
3715 	/* Does controller have VPD for device id? */
3716 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3717 		return 1; /* not supported */
3718 
3719 	buf = kzalloc(64, GFP_KERNEL);
3720 	if (!buf)
3721 		return -ENOMEM;
3722 
3723 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3724 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3725 	if (rc == 0) {
3726 		if (buflen > 16)
3727 			buflen = 16;
3728 		memcpy(device_id, &buf[8], buflen);
3729 	}
3730 
3731 	kfree(buf);
3732 
3733 	return rc; /*0 - got id,  otherwise, didn't */
3734 }
3735 
hpsa_scsi_do_report_luns(struct ctlr_info * h,int logical,void * buf,int bufsize,int extended_response)3736 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3737 		void *buf, int bufsize,
3738 		int extended_response)
3739 {
3740 	int rc = IO_OK;
3741 	struct CommandList *c;
3742 	unsigned char scsi3addr[8];
3743 	struct ErrorInfo *ei;
3744 
3745 	c = cmd_alloc(h);
3746 
3747 	/* address the controller */
3748 	memset(scsi3addr, 0, sizeof(scsi3addr));
3749 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3750 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3751 		rc = -EAGAIN;
3752 		goto out;
3753 	}
3754 	if (extended_response)
3755 		c->Request.CDB[1] = extended_response;
3756 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3757 			NO_TIMEOUT);
3758 	if (rc)
3759 		goto out;
3760 	ei = c->err_info;
3761 	if (ei->CommandStatus != 0 &&
3762 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3763 		hpsa_scsi_interpret_error(h, c);
3764 		rc = -EIO;
3765 	} else {
3766 		struct ReportLUNdata *rld = buf;
3767 
3768 		if (rld->extended_response_flag != extended_response) {
3769 			if (!h->legacy_board) {
3770 				dev_err(&h->pdev->dev,
3771 					"report luns requested format %u, got %u\n",
3772 					extended_response,
3773 					rld->extended_response_flag);
3774 				rc = -EINVAL;
3775 			} else
3776 				rc = -EOPNOTSUPP;
3777 		}
3778 	}
3779 out:
3780 	cmd_free(h, c);
3781 	return rc;
3782 }
3783 
hpsa_scsi_do_report_phys_luns(struct ctlr_info * h,struct ReportExtendedLUNdata * buf,int bufsize)3784 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3785 		struct ReportExtendedLUNdata *buf, int bufsize)
3786 {
3787 	int rc;
3788 	struct ReportLUNdata *lbuf;
3789 
3790 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3791 				      HPSA_REPORT_PHYS_EXTENDED);
3792 	if (!rc || rc != -EOPNOTSUPP)
3793 		return rc;
3794 
3795 	/* REPORT PHYS EXTENDED is not supported */
3796 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3797 	if (!lbuf)
3798 		return -ENOMEM;
3799 
3800 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3801 	if (!rc) {
3802 		int i;
3803 		u32 nphys;
3804 
3805 		/* Copy ReportLUNdata header */
3806 		memcpy(buf, lbuf, 8);
3807 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3808 		for (i = 0; i < nphys; i++)
3809 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3810 	}
3811 	kfree(lbuf);
3812 	return rc;
3813 }
3814 
hpsa_scsi_do_report_log_luns(struct ctlr_info * h,struct ReportLUNdata * buf,int bufsize)3815 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3816 		struct ReportLUNdata *buf, int bufsize)
3817 {
3818 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3819 }
3820 
hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t * device,int bus,int target,int lun)3821 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3822 	int bus, int target, int lun)
3823 {
3824 	device->bus = bus;
3825 	device->target = target;
3826 	device->lun = lun;
3827 }
3828 
3829 /* Use VPD inquiry to get details of volume status */
hpsa_get_volume_status(struct ctlr_info * h,unsigned char scsi3addr[])3830 static int hpsa_get_volume_status(struct ctlr_info *h,
3831 					unsigned char scsi3addr[])
3832 {
3833 	int rc;
3834 	int status;
3835 	int size;
3836 	unsigned char *buf;
3837 
3838 	buf = kzalloc(64, GFP_KERNEL);
3839 	if (!buf)
3840 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841 
3842 	/* Does controller have VPD for logical volume status? */
3843 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3844 		goto exit_failed;
3845 
3846 	/* Get the size of the VPD return buffer */
3847 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3848 					buf, HPSA_VPD_HEADER_SZ);
3849 	if (rc != 0)
3850 		goto exit_failed;
3851 	size = buf[3];
3852 
3853 	/* Now get the whole VPD buffer */
3854 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3855 					buf, size + HPSA_VPD_HEADER_SZ);
3856 	if (rc != 0)
3857 		goto exit_failed;
3858 	status = buf[4]; /* status byte */
3859 
3860 	kfree(buf);
3861 	return status;
3862 exit_failed:
3863 	kfree(buf);
3864 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3865 }
3866 
3867 /* Determine offline status of a volume.
3868  * Return either:
3869  *  0 (not offline)
3870  *  0xff (offline for unknown reasons)
3871  *  # (integer code indicating one of several NOT READY states
3872  *     describing why a volume is to be kept offline)
3873  */
hpsa_volume_offline(struct ctlr_info * h,unsigned char scsi3addr[])3874 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3875 					unsigned char scsi3addr[])
3876 {
3877 	struct CommandList *c;
3878 	unsigned char *sense;
3879 	u8 sense_key, asc, ascq;
3880 	int sense_len;
3881 	int rc, ldstat = 0;
3882 #define ASC_LUN_NOT_READY 0x04
3883 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3884 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3885 
3886 	c = cmd_alloc(h);
3887 
3888 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3889 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3890 					NO_TIMEOUT);
3891 	if (rc) {
3892 		cmd_free(h, c);
3893 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3894 	}
3895 	sense = c->err_info->SenseInfo;
3896 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3897 		sense_len = sizeof(c->err_info->SenseInfo);
3898 	else
3899 		sense_len = c->err_info->SenseLen;
3900 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3901 	cmd_free(h, c);
3902 
3903 	/* Determine the reason for not ready state */
3904 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3905 
3906 	/* Keep volume offline in certain cases: */
3907 	switch (ldstat) {
3908 	case HPSA_LV_FAILED:
3909 	case HPSA_LV_UNDERGOING_ERASE:
3910 	case HPSA_LV_NOT_AVAILABLE:
3911 	case HPSA_LV_UNDERGOING_RPI:
3912 	case HPSA_LV_PENDING_RPI:
3913 	case HPSA_LV_ENCRYPTED_NO_KEY:
3914 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3915 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3916 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3917 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3918 		return ldstat;
3919 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3920 		/* If VPD status page isn't available,
3921 		 * use ASC/ASCQ to determine state
3922 		 */
3923 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3924 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3925 			return ldstat;
3926 		break;
3927 	default:
3928 		break;
3929 	}
3930 	return HPSA_LV_OK;
3931 }
3932 
hpsa_update_device_info(struct ctlr_info * h,unsigned char scsi3addr[],struct hpsa_scsi_dev_t * this_device,unsigned char * is_OBDR_device)3933 static int hpsa_update_device_info(struct ctlr_info *h,
3934 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3935 	unsigned char *is_OBDR_device)
3936 {
3937 
3938 #define OBDR_SIG_OFFSET 43
3939 #define OBDR_TAPE_SIG "$DR-10"
3940 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3941 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3942 
3943 	unsigned char *inq_buff;
3944 	unsigned char *obdr_sig;
3945 	int rc = 0;
3946 
3947 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3948 	if (!inq_buff) {
3949 		rc = -ENOMEM;
3950 		goto bail_out;
3951 	}
3952 
3953 	/* Do an inquiry to the device to see what it is. */
3954 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3955 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3956 		dev_err(&h->pdev->dev,
3957 			"%s: inquiry failed, device will be skipped.\n",
3958 			__func__);
3959 		rc = HPSA_INQUIRY_FAILED;
3960 		goto bail_out;
3961 	}
3962 
3963 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3964 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3965 
3966 	this_device->devtype = (inq_buff[0] & 0x1f);
3967 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3968 	memcpy(this_device->vendor, &inq_buff[8],
3969 		sizeof(this_device->vendor));
3970 	memcpy(this_device->model, &inq_buff[16],
3971 		sizeof(this_device->model));
3972 	this_device->rev = inq_buff[2];
3973 	memset(this_device->device_id, 0,
3974 		sizeof(this_device->device_id));
3975 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3976 		sizeof(this_device->device_id)) < 0) {
3977 		dev_err(&h->pdev->dev,
3978 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3979 			h->ctlr, __func__,
3980 			h->scsi_host->host_no,
3981 			this_device->bus, this_device->target,
3982 			this_device->lun,
3983 			scsi_device_type(this_device->devtype),
3984 			this_device->model);
3985 		rc = HPSA_LV_FAILED;
3986 		goto bail_out;
3987 	}
3988 
3989 	if ((this_device->devtype == TYPE_DISK ||
3990 		this_device->devtype == TYPE_ZBC) &&
3991 		is_logical_dev_addr_mode(scsi3addr)) {
3992 		unsigned char volume_offline;
3993 
3994 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3995 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3996 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3997 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3998 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3999 		    h->legacy_board) {
4000 			/*
4001 			 * Legacy boards might not support volume status
4002 			 */
4003 			dev_info(&h->pdev->dev,
4004 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4005 				 this_device->target, this_device->lun);
4006 			volume_offline = 0;
4007 		}
4008 		this_device->volume_offline = volume_offline;
4009 		if (volume_offline == HPSA_LV_FAILED) {
4010 			rc = HPSA_LV_FAILED;
4011 			dev_err(&h->pdev->dev,
4012 				"%s: LV failed, device will be skipped.\n",
4013 				__func__);
4014 			goto bail_out;
4015 		}
4016 	} else {
4017 		this_device->raid_level = RAID_UNKNOWN;
4018 		this_device->offload_config = 0;
4019 		hpsa_turn_off_ioaccel_for_device(this_device);
4020 		this_device->hba_ioaccel_enabled = 0;
4021 		this_device->volume_offline = 0;
4022 		this_device->queue_depth = h->nr_cmds;
4023 	}
4024 
4025 	if (this_device->external)
4026 		this_device->queue_depth = EXTERNAL_QD;
4027 
4028 	if (is_OBDR_device) {
4029 		/* See if this is a One-Button-Disaster-Recovery device
4030 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4031 		 */
4032 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4033 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4034 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4035 						OBDR_SIG_LEN) == 0);
4036 	}
4037 	kfree(inq_buff);
4038 	return 0;
4039 
4040 bail_out:
4041 	kfree(inq_buff);
4042 	return rc;
4043 }
4044 
4045 /*
4046  * Helper function to assign bus, target, lun mapping of devices.
4047  * Logical drive target and lun are assigned at this time, but
4048  * physical device lun and target assignment are deferred (assigned
4049  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4050 */
figure_bus_target_lun(struct ctlr_info * h,u8 * lunaddrbytes,struct hpsa_scsi_dev_t * device)4051 static void figure_bus_target_lun(struct ctlr_info *h,
4052 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4053 {
4054 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4055 
4056 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4057 		/* physical device, target and lun filled in later */
4058 		if (is_hba_lunid(lunaddrbytes)) {
4059 			int bus = HPSA_HBA_BUS;
4060 
4061 			if (!device->rev)
4062 				bus = HPSA_LEGACY_HBA_BUS;
4063 			hpsa_set_bus_target_lun(device,
4064 					bus, 0, lunid & 0x3fff);
4065 		} else
4066 			/* defer target, lun assignment for physical devices */
4067 			hpsa_set_bus_target_lun(device,
4068 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4069 		return;
4070 	}
4071 	/* It's a logical device */
4072 	if (device->external) {
4073 		hpsa_set_bus_target_lun(device,
4074 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4075 			lunid & 0x00ff);
4076 		return;
4077 	}
4078 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4079 				0, lunid & 0x3fff);
4080 }
4081 
figure_external_status(struct ctlr_info * h,int raid_ctlr_position,int i,int nphysicals,int nlocal_logicals)4082 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4083 	int i, int nphysicals, int nlocal_logicals)
4084 {
4085 	/* In report logicals, local logicals are listed first,
4086 	* then any externals.
4087 	*/
4088 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4089 
4090 	if (i == raid_ctlr_position)
4091 		return 0;
4092 
4093 	if (i < logicals_start)
4094 		return 0;
4095 
4096 	/* i is in logicals range, but still within local logicals */
4097 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4098 		return 0;
4099 
4100 	return 1; /* it's an external lun */
4101 }
4102 
4103 /*
4104  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4105  * logdev.  The number of luns in physdev and logdev are returned in
4106  * *nphysicals and *nlogicals, respectively.
4107  * Returns 0 on success, -1 otherwise.
4108  */
hpsa_gather_lun_info(struct ctlr_info * h,struct ReportExtendedLUNdata * physdev,u32 * nphysicals,struct ReportLUNdata * logdev,u32 * nlogicals)4109 static int hpsa_gather_lun_info(struct ctlr_info *h,
4110 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4111 	struct ReportLUNdata *logdev, u32 *nlogicals)
4112 {
4113 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4114 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4115 		return -1;
4116 	}
4117 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4118 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4119 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4120 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4121 		*nphysicals = HPSA_MAX_PHYS_LUN;
4122 	}
4123 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4124 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4125 		return -1;
4126 	}
4127 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4128 	/* Reject Logicals in excess of our max capability. */
4129 	if (*nlogicals > HPSA_MAX_LUN) {
4130 		dev_warn(&h->pdev->dev,
4131 			"maximum logical LUNs (%d) exceeded.  "
4132 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4133 			*nlogicals - HPSA_MAX_LUN);
4134 		*nlogicals = HPSA_MAX_LUN;
4135 	}
4136 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4137 		dev_warn(&h->pdev->dev,
4138 			"maximum logical + physical LUNs (%d) exceeded. "
4139 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4140 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4141 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4142 	}
4143 	return 0;
4144 }
4145 
figure_lunaddrbytes(struct ctlr_info * h,int raid_ctlr_position,int i,int nphysicals,int nlogicals,struct ReportExtendedLUNdata * physdev_list,struct ReportLUNdata * logdev_list)4146 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4147 	int i, int nphysicals, int nlogicals,
4148 	struct ReportExtendedLUNdata *physdev_list,
4149 	struct ReportLUNdata *logdev_list)
4150 {
4151 	/* Helper function, figure out where the LUN ID info is coming from
4152 	 * given index i, lists of physical and logical devices, where in
4153 	 * the list the raid controller is supposed to appear (first or last)
4154 	 */
4155 
4156 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4157 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4158 
4159 	if (i == raid_ctlr_position)
4160 		return RAID_CTLR_LUNID;
4161 
4162 	if (i < logicals_start)
4163 		return &physdev_list->LUN[i -
4164 				(raid_ctlr_position == 0)].lunid[0];
4165 
4166 	if (i < last_device)
4167 		return &logdev_list->LUN[i - nphysicals -
4168 			(raid_ctlr_position == 0)][0];
4169 	BUG();
4170 	return NULL;
4171 }
4172 
4173 /* get physical drive ioaccel handle and queue depth */
hpsa_get_ioaccel_drive_info(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,struct ReportExtendedLUNdata * rlep,int rle_index,struct bmic_identify_physical_device * id_phys)4174 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4175 		struct hpsa_scsi_dev_t *dev,
4176 		struct ReportExtendedLUNdata *rlep, int rle_index,
4177 		struct bmic_identify_physical_device *id_phys)
4178 {
4179 	int rc;
4180 	struct ext_report_lun_entry *rle;
4181 
4182 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4183 		return;
4184 
4185 	rle = &rlep->LUN[rle_index];
4186 
4187 	dev->ioaccel_handle = rle->ioaccel_handle;
4188 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4189 		dev->hba_ioaccel_enabled = 1;
4190 	memset(id_phys, 0, sizeof(*id_phys));
4191 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4192 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4193 			sizeof(*id_phys));
4194 	if (!rc)
4195 		/* Reserve space for FW operations */
4196 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4197 #define DRIVE_QUEUE_DEPTH 7
4198 		dev->queue_depth =
4199 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4200 				DRIVE_CMDS_RESERVED_FOR_FW;
4201 	else
4202 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4203 }
4204 
hpsa_get_path_info(struct hpsa_scsi_dev_t * this_device,struct ReportExtendedLUNdata * rlep,int rle_index,struct bmic_identify_physical_device * id_phys)4205 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4206 	struct ReportExtendedLUNdata *rlep, int rle_index,
4207 	struct bmic_identify_physical_device *id_phys)
4208 {
4209 	struct ext_report_lun_entry *rle;
4210 
4211 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4212 		return;
4213 
4214 	rle = &rlep->LUN[rle_index];
4215 
4216 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4217 		this_device->hba_ioaccel_enabled = 1;
4218 
4219 	memcpy(&this_device->active_path_index,
4220 		&id_phys->active_path_number,
4221 		sizeof(this_device->active_path_index));
4222 	memcpy(&this_device->path_map,
4223 		&id_phys->redundant_path_present_map,
4224 		sizeof(this_device->path_map));
4225 	memcpy(&this_device->box,
4226 		&id_phys->alternate_paths_phys_box_on_port,
4227 		sizeof(this_device->box));
4228 	memcpy(&this_device->phys_connector,
4229 		&id_phys->alternate_paths_phys_connector,
4230 		sizeof(this_device->phys_connector));
4231 	memcpy(&this_device->bay,
4232 		&id_phys->phys_bay_in_box,
4233 		sizeof(this_device->bay));
4234 }
4235 
4236 /* get number of local logical disks. */
hpsa_set_local_logical_count(struct ctlr_info * h,struct bmic_identify_controller * id_ctlr,u32 * nlocals)4237 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4238 	struct bmic_identify_controller *id_ctlr,
4239 	u32 *nlocals)
4240 {
4241 	int rc;
4242 
4243 	if (!id_ctlr) {
4244 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4245 			__func__);
4246 		return -ENOMEM;
4247 	}
4248 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4249 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4250 	if (!rc)
4251 		if (id_ctlr->configured_logical_drive_count < 255)
4252 			*nlocals = id_ctlr->configured_logical_drive_count;
4253 		else
4254 			*nlocals = le16_to_cpu(
4255 					id_ctlr->extended_logical_unit_count);
4256 	else
4257 		*nlocals = -1;
4258 	return rc;
4259 }
4260 
hpsa_is_disk_spare(struct ctlr_info * h,u8 * lunaddrbytes)4261 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4262 {
4263 	struct bmic_identify_physical_device *id_phys;
4264 	bool is_spare = false;
4265 	int rc;
4266 
4267 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4268 	if (!id_phys)
4269 		return false;
4270 
4271 	rc = hpsa_bmic_id_physical_device(h,
4272 					lunaddrbytes,
4273 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4274 					id_phys, sizeof(*id_phys));
4275 	if (rc == 0)
4276 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4277 
4278 	kfree(id_phys);
4279 	return is_spare;
4280 }
4281 
4282 #define RPL_DEV_FLAG_NON_DISK                           0x1
4283 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4284 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4285 
4286 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4287 
hpsa_skip_device(struct ctlr_info * h,u8 * lunaddrbytes,struct ext_report_lun_entry * rle)4288 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4289 				struct ext_report_lun_entry *rle)
4290 {
4291 	u8 device_flags;
4292 	u8 device_type;
4293 
4294 	if (!MASKED_DEVICE(lunaddrbytes))
4295 		return false;
4296 
4297 	device_flags = rle->device_flags;
4298 	device_type = rle->device_type;
4299 
4300 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4301 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4302 			return false;
4303 		return true;
4304 	}
4305 
4306 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4307 		return false;
4308 
4309 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4310 		return false;
4311 
4312 	/*
4313 	 * Spares may be spun down, we do not want to
4314 	 * do an Inquiry to a RAID set spare drive as
4315 	 * that would have them spun up, that is a
4316 	 * performance hit because I/O to the RAID device
4317 	 * stops while the spin up occurs which can take
4318 	 * over 50 seconds.
4319 	 */
4320 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4321 		return true;
4322 
4323 	return false;
4324 }
4325 
hpsa_update_scsi_devices(struct ctlr_info * h)4326 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4327 {
4328 	/* the idea here is we could get notified
4329 	 * that some devices have changed, so we do a report
4330 	 * physical luns and report logical luns cmd, and adjust
4331 	 * our list of devices accordingly.
4332 	 *
4333 	 * The scsi3addr's of devices won't change so long as the
4334 	 * adapter is not reset.  That means we can rescan and
4335 	 * tell which devices we already know about, vs. new
4336 	 * devices, vs.  disappearing devices.
4337 	 */
4338 	struct ReportExtendedLUNdata *physdev_list = NULL;
4339 	struct ReportLUNdata *logdev_list = NULL;
4340 	struct bmic_identify_physical_device *id_phys = NULL;
4341 	struct bmic_identify_controller *id_ctlr = NULL;
4342 	u32 nphysicals = 0;
4343 	u32 nlogicals = 0;
4344 	u32 nlocal_logicals = 0;
4345 	u32 ndev_allocated = 0;
4346 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4347 	int ncurrent = 0;
4348 	int i, ndevs_to_allocate;
4349 	int raid_ctlr_position;
4350 	bool physical_device;
4351 
4352 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4353 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4354 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4355 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4356 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4357 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4358 
4359 	if (!currentsd || !physdev_list || !logdev_list ||
4360 		!tmpdevice || !id_phys || !id_ctlr) {
4361 		dev_err(&h->pdev->dev, "out of memory\n");
4362 		goto out;
4363 	}
4364 
4365 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4366 
4367 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4368 			logdev_list, &nlogicals)) {
4369 		h->drv_req_rescan = 1;
4370 		goto out;
4371 	}
4372 
4373 	/* Set number of local logicals (non PTRAID) */
4374 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4375 		dev_warn(&h->pdev->dev,
4376 			"%s: Can't determine number of local logical devices.\n",
4377 			__func__);
4378 	}
4379 
4380 	/* We might see up to the maximum number of logical and physical disks
4381 	 * plus external target devices, and a device for the local RAID
4382 	 * controller.
4383 	 */
4384 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4385 
4386 	hpsa_ext_ctrl_present(h, physdev_list);
4387 
4388 	/* Allocate the per device structures */
4389 	for (i = 0; i < ndevs_to_allocate; i++) {
4390 		if (i >= HPSA_MAX_DEVICES) {
4391 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4392 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4393 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4394 			break;
4395 		}
4396 
4397 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4398 		if (!currentsd[i]) {
4399 			h->drv_req_rescan = 1;
4400 			goto out;
4401 		}
4402 		ndev_allocated++;
4403 	}
4404 
4405 	if (is_scsi_rev_5(h))
4406 		raid_ctlr_position = 0;
4407 	else
4408 		raid_ctlr_position = nphysicals + nlogicals;
4409 
4410 	/* adjust our table of devices */
4411 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4412 		u8 *lunaddrbytes, is_OBDR = 0;
4413 		int rc = 0;
4414 		int phys_dev_index = i - (raid_ctlr_position == 0);
4415 		bool skip_device = false;
4416 
4417 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4418 
4419 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4420 
4421 		/* Figure out where the LUN ID info is coming from */
4422 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4423 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4424 
4425 		/* Determine if this is a lun from an external target array */
4426 		tmpdevice->external =
4427 			figure_external_status(h, raid_ctlr_position, i,
4428 						nphysicals, nlocal_logicals);
4429 
4430 		/*
4431 		 * Skip over some devices such as a spare.
4432 		 */
4433 		if (phys_dev_index >= 0 && !tmpdevice->external &&
4434 			physical_device) {
4435 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4436 					&physdev_list->LUN[phys_dev_index]);
4437 			if (skip_device)
4438 				continue;
4439 		}
4440 
4441 		/* Get device type, vendor, model, device id, raid_map */
4442 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4443 							&is_OBDR);
4444 		if (rc == -ENOMEM) {
4445 			dev_warn(&h->pdev->dev,
4446 				"Out of memory, rescan deferred.\n");
4447 			h->drv_req_rescan = 1;
4448 			goto out;
4449 		}
4450 		if (rc) {
4451 			h->drv_req_rescan = 1;
4452 			continue;
4453 		}
4454 
4455 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4456 		this_device = currentsd[ncurrent];
4457 
4458 		*this_device = *tmpdevice;
4459 		this_device->physical_device = physical_device;
4460 
4461 		/*
4462 		 * Expose all devices except for physical devices that
4463 		 * are masked.
4464 		 */
4465 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4466 			this_device->expose_device = 0;
4467 		else
4468 			this_device->expose_device = 1;
4469 
4470 
4471 		/*
4472 		 * Get the SAS address for physical devices that are exposed.
4473 		 */
4474 		if (this_device->physical_device && this_device->expose_device)
4475 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4476 
4477 		switch (this_device->devtype) {
4478 		case TYPE_ROM:
4479 			/* We don't *really* support actual CD-ROM devices,
4480 			 * just "One Button Disaster Recovery" tape drive
4481 			 * which temporarily pretends to be a CD-ROM drive.
4482 			 * So we check that the device is really an OBDR tape
4483 			 * device by checking for "$DR-10" in bytes 43-48 of
4484 			 * the inquiry data.
4485 			 */
4486 			if (is_OBDR)
4487 				ncurrent++;
4488 			break;
4489 		case TYPE_DISK:
4490 		case TYPE_ZBC:
4491 			if (this_device->physical_device) {
4492 				/* The disk is in HBA mode. */
4493 				/* Never use RAID mapper in HBA mode. */
4494 				this_device->offload_enabled = 0;
4495 				hpsa_get_ioaccel_drive_info(h, this_device,
4496 					physdev_list, phys_dev_index, id_phys);
4497 				hpsa_get_path_info(this_device,
4498 					physdev_list, phys_dev_index, id_phys);
4499 			}
4500 			ncurrent++;
4501 			break;
4502 		case TYPE_TAPE:
4503 		case TYPE_MEDIUM_CHANGER:
4504 			ncurrent++;
4505 			break;
4506 		case TYPE_ENCLOSURE:
4507 			if (!this_device->external)
4508 				hpsa_get_enclosure_info(h, lunaddrbytes,
4509 						physdev_list, phys_dev_index,
4510 						this_device);
4511 			ncurrent++;
4512 			break;
4513 		case TYPE_RAID:
4514 			/* Only present the Smartarray HBA as a RAID controller.
4515 			 * If it's a RAID controller other than the HBA itself
4516 			 * (an external RAID controller, MSA500 or similar)
4517 			 * don't present it.
4518 			 */
4519 			if (!is_hba_lunid(lunaddrbytes))
4520 				break;
4521 			ncurrent++;
4522 			break;
4523 		default:
4524 			break;
4525 		}
4526 		if (ncurrent >= HPSA_MAX_DEVICES)
4527 			break;
4528 	}
4529 
4530 	if (h->sas_host == NULL) {
4531 		int rc = 0;
4532 
4533 		rc = hpsa_add_sas_host(h);
4534 		if (rc) {
4535 			dev_warn(&h->pdev->dev,
4536 				"Could not add sas host %d\n", rc);
4537 			goto out;
4538 		}
4539 	}
4540 
4541 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4542 out:
4543 	kfree(tmpdevice);
4544 	for (i = 0; i < ndev_allocated; i++)
4545 		kfree(currentsd[i]);
4546 	kfree(currentsd);
4547 	kfree(physdev_list);
4548 	kfree(logdev_list);
4549 	kfree(id_ctlr);
4550 	kfree(id_phys);
4551 }
4552 
hpsa_set_sg_descriptor(struct SGDescriptor * desc,struct scatterlist * sg)4553 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4554 				   struct scatterlist *sg)
4555 {
4556 	u64 addr64 = (u64) sg_dma_address(sg);
4557 	unsigned int len = sg_dma_len(sg);
4558 
4559 	desc->Addr = cpu_to_le64(addr64);
4560 	desc->Len = cpu_to_le32(len);
4561 	desc->Ext = 0;
4562 }
4563 
4564 /*
4565  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4566  * dma mapping  and fills in the scatter gather entries of the
4567  * hpsa command, cp.
4568  */
hpsa_scatter_gather(struct ctlr_info * h,struct CommandList * cp,struct scsi_cmnd * cmd)4569 static int hpsa_scatter_gather(struct ctlr_info *h,
4570 		struct CommandList *cp,
4571 		struct scsi_cmnd *cmd)
4572 {
4573 	struct scatterlist *sg;
4574 	int use_sg, i, sg_limit, chained;
4575 	struct SGDescriptor *curr_sg;
4576 
4577 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4578 
4579 	use_sg = scsi_dma_map(cmd);
4580 	if (use_sg < 0)
4581 		return use_sg;
4582 
4583 	if (!use_sg)
4584 		goto sglist_finished;
4585 
4586 	/*
4587 	 * If the number of entries is greater than the max for a single list,
4588 	 * then we have a chained list; we will set up all but one entry in the
4589 	 * first list (the last entry is saved for link information);
4590 	 * otherwise, we don't have a chained list and we'll set up at each of
4591 	 * the entries in the one list.
4592 	 */
4593 	curr_sg = cp->SG;
4594 	chained = use_sg > h->max_cmd_sg_entries;
4595 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4596 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4597 		hpsa_set_sg_descriptor(curr_sg, sg);
4598 		curr_sg++;
4599 	}
4600 
4601 	if (chained) {
4602 		/*
4603 		 * Continue with the chained list.  Set curr_sg to the chained
4604 		 * list.  Modify the limit to the total count less the entries
4605 		 * we've already set up.  Resume the scan at the list entry
4606 		 * where the previous loop left off.
4607 		 */
4608 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4609 		sg_limit = use_sg - sg_limit;
4610 		for_each_sg(sg, sg, sg_limit, i) {
4611 			hpsa_set_sg_descriptor(curr_sg, sg);
4612 			curr_sg++;
4613 		}
4614 	}
4615 
4616 	/* Back the pointer up to the last entry and mark it as "last". */
4617 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4618 
4619 	if (use_sg + chained > h->maxSG)
4620 		h->maxSG = use_sg + chained;
4621 
4622 	if (chained) {
4623 		cp->Header.SGList = h->max_cmd_sg_entries;
4624 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4625 		if (hpsa_map_sg_chain_block(h, cp)) {
4626 			scsi_dma_unmap(cmd);
4627 			return -1;
4628 		}
4629 		return 0;
4630 	}
4631 
4632 sglist_finished:
4633 
4634 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4635 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4636 	return 0;
4637 }
4638 
warn_zero_length_transfer(struct ctlr_info * h,u8 * cdb,int cdb_len,const char * func)4639 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4640 						u8 *cdb, int cdb_len,
4641 						const char *func)
4642 {
4643 	dev_warn(&h->pdev->dev,
4644 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4645 		 func, cdb_len, cdb);
4646 }
4647 
4648 #define IO_ACCEL_INELIGIBLE 1
4649 /* zero-length transfers trigger hardware errors. */
is_zero_length_transfer(u8 * cdb)4650 static bool is_zero_length_transfer(u8 *cdb)
4651 {
4652 	u32 block_cnt;
4653 
4654 	/* Block zero-length transfer sizes on certain commands. */
4655 	switch (cdb[0]) {
4656 	case READ_10:
4657 	case WRITE_10:
4658 	case VERIFY:		/* 0x2F */
4659 	case WRITE_VERIFY:	/* 0x2E */
4660 		block_cnt = get_unaligned_be16(&cdb[7]);
4661 		break;
4662 	case READ_12:
4663 	case WRITE_12:
4664 	case VERIFY_12: /* 0xAF */
4665 	case WRITE_VERIFY_12:	/* 0xAE */
4666 		block_cnt = get_unaligned_be32(&cdb[6]);
4667 		break;
4668 	case READ_16:
4669 	case WRITE_16:
4670 	case VERIFY_16:		/* 0x8F */
4671 		block_cnt = get_unaligned_be32(&cdb[10]);
4672 		break;
4673 	default:
4674 		return false;
4675 	}
4676 
4677 	return block_cnt == 0;
4678 }
4679 
fixup_ioaccel_cdb(u8 * cdb,int * cdb_len)4680 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4681 {
4682 	int is_write = 0;
4683 	u32 block;
4684 	u32 block_cnt;
4685 
4686 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4687 	switch (cdb[0]) {
4688 	case WRITE_6:
4689 	case WRITE_12:
4690 		is_write = 1;
4691 		fallthrough;
4692 	case READ_6:
4693 	case READ_12:
4694 		if (*cdb_len == 6) {
4695 			block = (((cdb[1] & 0x1F) << 16) |
4696 				(cdb[2] << 8) |
4697 				cdb[3]);
4698 			block_cnt = cdb[4];
4699 			if (block_cnt == 0)
4700 				block_cnt = 256;
4701 		} else {
4702 			BUG_ON(*cdb_len != 12);
4703 			block = get_unaligned_be32(&cdb[2]);
4704 			block_cnt = get_unaligned_be32(&cdb[6]);
4705 		}
4706 		if (block_cnt > 0xffff)
4707 			return IO_ACCEL_INELIGIBLE;
4708 
4709 		cdb[0] = is_write ? WRITE_10 : READ_10;
4710 		cdb[1] = 0;
4711 		cdb[2] = (u8) (block >> 24);
4712 		cdb[3] = (u8) (block >> 16);
4713 		cdb[4] = (u8) (block >> 8);
4714 		cdb[5] = (u8) (block);
4715 		cdb[6] = 0;
4716 		cdb[7] = (u8) (block_cnt >> 8);
4717 		cdb[8] = (u8) (block_cnt);
4718 		cdb[9] = 0;
4719 		*cdb_len = 10;
4720 		break;
4721 	}
4722 	return 0;
4723 }
4724 
hpsa_scsi_ioaccel1_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)4725 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4726 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4727 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4728 {
4729 	struct scsi_cmnd *cmd = c->scsi_cmd;
4730 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4731 	unsigned int len;
4732 	unsigned int total_len = 0;
4733 	struct scatterlist *sg;
4734 	u64 addr64;
4735 	int use_sg, i;
4736 	struct SGDescriptor *curr_sg;
4737 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4738 
4739 	/* TODO: implement chaining support */
4740 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4741 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4742 		return IO_ACCEL_INELIGIBLE;
4743 	}
4744 
4745 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4746 
4747 	if (is_zero_length_transfer(cdb)) {
4748 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4749 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4750 		return IO_ACCEL_INELIGIBLE;
4751 	}
4752 
4753 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4754 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4755 		return IO_ACCEL_INELIGIBLE;
4756 	}
4757 
4758 	c->cmd_type = CMD_IOACCEL1;
4759 
4760 	/* Adjust the DMA address to point to the accelerated command buffer */
4761 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4762 				(c->cmdindex * sizeof(*cp));
4763 	BUG_ON(c->busaddr & 0x0000007F);
4764 
4765 	use_sg = scsi_dma_map(cmd);
4766 	if (use_sg < 0) {
4767 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4768 		return use_sg;
4769 	}
4770 
4771 	if (use_sg) {
4772 		curr_sg = cp->SG;
4773 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4774 			addr64 = (u64) sg_dma_address(sg);
4775 			len  = sg_dma_len(sg);
4776 			total_len += len;
4777 			curr_sg->Addr = cpu_to_le64(addr64);
4778 			curr_sg->Len = cpu_to_le32(len);
4779 			curr_sg->Ext = cpu_to_le32(0);
4780 			curr_sg++;
4781 		}
4782 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4783 
4784 		switch (cmd->sc_data_direction) {
4785 		case DMA_TO_DEVICE:
4786 			control |= IOACCEL1_CONTROL_DATA_OUT;
4787 			break;
4788 		case DMA_FROM_DEVICE:
4789 			control |= IOACCEL1_CONTROL_DATA_IN;
4790 			break;
4791 		case DMA_NONE:
4792 			control |= IOACCEL1_CONTROL_NODATAXFER;
4793 			break;
4794 		default:
4795 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4796 			cmd->sc_data_direction);
4797 			BUG();
4798 			break;
4799 		}
4800 	} else {
4801 		control |= IOACCEL1_CONTROL_NODATAXFER;
4802 	}
4803 
4804 	c->Header.SGList = use_sg;
4805 	/* Fill out the command structure to submit */
4806 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4807 	cp->transfer_len = cpu_to_le32(total_len);
4808 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4809 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4810 	cp->control = cpu_to_le32(control);
4811 	memcpy(cp->CDB, cdb, cdb_len);
4812 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4813 	/* Tag was already set at init time. */
4814 	enqueue_cmd_and_start_io(h, c);
4815 	return 0;
4816 }
4817 
4818 /*
4819  * Queue a command directly to a device behind the controller using the
4820  * I/O accelerator path.
4821  */
hpsa_scsi_ioaccel_direct_map(struct ctlr_info * h,struct CommandList * c)4822 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4823 	struct CommandList *c)
4824 {
4825 	struct scsi_cmnd *cmd = c->scsi_cmd;
4826 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4827 
4828 	if (!dev)
4829 		return -1;
4830 
4831 	c->phys_disk = dev;
4832 
4833 	if (dev->in_reset)
4834 		return -1;
4835 
4836 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4837 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4838 }
4839 
4840 /*
4841  * Set encryption parameters for the ioaccel2 request
4842  */
set_encrypt_ioaccel2(struct ctlr_info * h,struct CommandList * c,struct io_accel2_cmd * cp)4843 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4844 	struct CommandList *c, struct io_accel2_cmd *cp)
4845 {
4846 	struct scsi_cmnd *cmd = c->scsi_cmd;
4847 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4848 	struct raid_map_data *map = &dev->raid_map;
4849 	u64 first_block;
4850 
4851 	/* Are we doing encryption on this device */
4852 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4853 		return;
4854 	/* Set the data encryption key index. */
4855 	cp->dekindex = map->dekindex;
4856 
4857 	/* Set the encryption enable flag, encoded into direction field. */
4858 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4859 
4860 	/* Set encryption tweak values based on logical block address
4861 	 * If block size is 512, tweak value is LBA.
4862 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4863 	 */
4864 	switch (cmd->cmnd[0]) {
4865 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4866 	case READ_6:
4867 	case WRITE_6:
4868 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4869 				(cmd->cmnd[2] << 8) |
4870 				cmd->cmnd[3]);
4871 		break;
4872 	case WRITE_10:
4873 	case READ_10:
4874 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4875 	case WRITE_12:
4876 	case READ_12:
4877 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4878 		break;
4879 	case WRITE_16:
4880 	case READ_16:
4881 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4882 		break;
4883 	default:
4884 		dev_err(&h->pdev->dev,
4885 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4886 			__func__, cmd->cmnd[0]);
4887 		BUG();
4888 		break;
4889 	}
4890 
4891 	if (le32_to_cpu(map->volume_blk_size) != 512)
4892 		first_block = first_block *
4893 				le32_to_cpu(map->volume_blk_size)/512;
4894 
4895 	cp->tweak_lower = cpu_to_le32(first_block);
4896 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4897 }
4898 
hpsa_scsi_ioaccel2_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)4899 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4900 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4901 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4902 {
4903 	struct scsi_cmnd *cmd = c->scsi_cmd;
4904 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4905 	struct ioaccel2_sg_element *curr_sg;
4906 	int use_sg, i;
4907 	struct scatterlist *sg;
4908 	u64 addr64;
4909 	u32 len;
4910 	u32 total_len = 0;
4911 
4912 	if (!cmd->device)
4913 		return -1;
4914 
4915 	if (!cmd->device->hostdata)
4916 		return -1;
4917 
4918 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4919 
4920 	if (is_zero_length_transfer(cdb)) {
4921 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4922 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4923 		return IO_ACCEL_INELIGIBLE;
4924 	}
4925 
4926 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4927 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4928 		return IO_ACCEL_INELIGIBLE;
4929 	}
4930 
4931 	c->cmd_type = CMD_IOACCEL2;
4932 	/* Adjust the DMA address to point to the accelerated command buffer */
4933 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4934 				(c->cmdindex * sizeof(*cp));
4935 	BUG_ON(c->busaddr & 0x0000007F);
4936 
4937 	memset(cp, 0, sizeof(*cp));
4938 	cp->IU_type = IOACCEL2_IU_TYPE;
4939 
4940 	use_sg = scsi_dma_map(cmd);
4941 	if (use_sg < 0) {
4942 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4943 		return use_sg;
4944 	}
4945 
4946 	if (use_sg) {
4947 		curr_sg = cp->sg;
4948 		if (use_sg > h->ioaccel_maxsg) {
4949 			addr64 = le64_to_cpu(
4950 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4951 			curr_sg->address = cpu_to_le64(addr64);
4952 			curr_sg->length = 0;
4953 			curr_sg->reserved[0] = 0;
4954 			curr_sg->reserved[1] = 0;
4955 			curr_sg->reserved[2] = 0;
4956 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4957 
4958 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4959 		}
4960 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4961 			addr64 = (u64) sg_dma_address(sg);
4962 			len  = sg_dma_len(sg);
4963 			total_len += len;
4964 			curr_sg->address = cpu_to_le64(addr64);
4965 			curr_sg->length = cpu_to_le32(len);
4966 			curr_sg->reserved[0] = 0;
4967 			curr_sg->reserved[1] = 0;
4968 			curr_sg->reserved[2] = 0;
4969 			curr_sg->chain_indicator = 0;
4970 			curr_sg++;
4971 		}
4972 
4973 		/*
4974 		 * Set the last s/g element bit
4975 		 */
4976 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4977 
4978 		switch (cmd->sc_data_direction) {
4979 		case DMA_TO_DEVICE:
4980 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4981 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4982 			break;
4983 		case DMA_FROM_DEVICE:
4984 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4985 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4986 			break;
4987 		case DMA_NONE:
4988 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4990 			break;
4991 		default:
4992 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4993 				cmd->sc_data_direction);
4994 			BUG();
4995 			break;
4996 		}
4997 	} else {
4998 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4999 		cp->direction |= IOACCEL2_DIR_NO_DATA;
5000 	}
5001 
5002 	/* Set encryption parameters, if necessary */
5003 	set_encrypt_ioaccel2(h, c, cp);
5004 
5005 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5006 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5007 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5008 
5009 	cp->data_len = cpu_to_le32(total_len);
5010 	cp->err_ptr = cpu_to_le64(c->busaddr +
5011 			offsetof(struct io_accel2_cmd, error_data));
5012 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5013 
5014 	/* fill in sg elements */
5015 	if (use_sg > h->ioaccel_maxsg) {
5016 		cp->sg_count = 1;
5017 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5018 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5019 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5020 			scsi_dma_unmap(cmd);
5021 			return -1;
5022 		}
5023 	} else
5024 		cp->sg_count = (u8) use_sg;
5025 
5026 	if (phys_disk->in_reset) {
5027 		cmd->result = DID_RESET << 16;
5028 		return -1;
5029 	}
5030 
5031 	enqueue_cmd_and_start_io(h, c);
5032 	return 0;
5033 }
5034 
5035 /*
5036  * Queue a command to the correct I/O accelerator path.
5037  */
hpsa_scsi_ioaccel_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)5038 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5039 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5040 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5041 {
5042 	if (!c->scsi_cmd->device)
5043 		return -1;
5044 
5045 	if (!c->scsi_cmd->device->hostdata)
5046 		return -1;
5047 
5048 	if (phys_disk->in_reset)
5049 		return -1;
5050 
5051 	/* Try to honor the device's queue depth */
5052 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5053 					phys_disk->queue_depth) {
5054 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5055 		return IO_ACCEL_INELIGIBLE;
5056 	}
5057 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5058 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5059 						cdb, cdb_len, scsi3addr,
5060 						phys_disk);
5061 	else
5062 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5063 						cdb, cdb_len, scsi3addr,
5064 						phys_disk);
5065 }
5066 
raid_map_helper(struct raid_map_data * map,int offload_to_mirror,u32 * map_index,u32 * current_group)5067 static void raid_map_helper(struct raid_map_data *map,
5068 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5069 {
5070 	if (offload_to_mirror == 0)  {
5071 		/* use physical disk in the first mirrored group. */
5072 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5073 		return;
5074 	}
5075 	do {
5076 		/* determine mirror group that *map_index indicates */
5077 		*current_group = *map_index /
5078 			le16_to_cpu(map->data_disks_per_row);
5079 		if (offload_to_mirror == *current_group)
5080 			continue;
5081 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5082 			/* select map index from next group */
5083 			*map_index += le16_to_cpu(map->data_disks_per_row);
5084 			(*current_group)++;
5085 		} else {
5086 			/* select map index from first group */
5087 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5088 			*current_group = 0;
5089 		}
5090 	} while (offload_to_mirror != *current_group);
5091 }
5092 
5093 /*
5094  * Attempt to perform offload RAID mapping for a logical volume I/O.
5095  */
hpsa_scsi_ioaccel_raid_map(struct ctlr_info * h,struct CommandList * c)5096 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5097 	struct CommandList *c)
5098 {
5099 	struct scsi_cmnd *cmd = c->scsi_cmd;
5100 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5101 	struct raid_map_data *map = &dev->raid_map;
5102 	struct raid_map_disk_data *dd = &map->data[0];
5103 	int is_write = 0;
5104 	u32 map_index;
5105 	u64 first_block, last_block;
5106 	u32 block_cnt;
5107 	u32 blocks_per_row;
5108 	u64 first_row, last_row;
5109 	u32 first_row_offset, last_row_offset;
5110 	u32 first_column, last_column;
5111 	u64 r0_first_row, r0_last_row;
5112 	u32 r5or6_blocks_per_row;
5113 	u64 r5or6_first_row, r5or6_last_row;
5114 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5115 	u32 r5or6_first_column, r5or6_last_column;
5116 	u32 total_disks_per_row;
5117 	u32 stripesize;
5118 	u32 first_group, last_group, current_group;
5119 	u32 map_row;
5120 	u32 disk_handle;
5121 	u64 disk_block;
5122 	u32 disk_block_cnt;
5123 	u8 cdb[16];
5124 	u8 cdb_len;
5125 	u16 strip_size;
5126 #if BITS_PER_LONG == 32
5127 	u64 tmpdiv;
5128 #endif
5129 	int offload_to_mirror;
5130 
5131 	if (!dev)
5132 		return -1;
5133 
5134 	if (dev->in_reset)
5135 		return -1;
5136 
5137 	/* check for valid opcode, get LBA and block count */
5138 	switch (cmd->cmnd[0]) {
5139 	case WRITE_6:
5140 		is_write = 1;
5141 		fallthrough;
5142 	case READ_6:
5143 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5144 				(cmd->cmnd[2] << 8) |
5145 				cmd->cmnd[3]);
5146 		block_cnt = cmd->cmnd[4];
5147 		if (block_cnt == 0)
5148 			block_cnt = 256;
5149 		break;
5150 	case WRITE_10:
5151 		is_write = 1;
5152 		fallthrough;
5153 	case READ_10:
5154 		first_block =
5155 			(((u64) cmd->cmnd[2]) << 24) |
5156 			(((u64) cmd->cmnd[3]) << 16) |
5157 			(((u64) cmd->cmnd[4]) << 8) |
5158 			cmd->cmnd[5];
5159 		block_cnt =
5160 			(((u32) cmd->cmnd[7]) << 8) |
5161 			cmd->cmnd[8];
5162 		break;
5163 	case WRITE_12:
5164 		is_write = 1;
5165 		fallthrough;
5166 	case READ_12:
5167 		first_block =
5168 			(((u64) cmd->cmnd[2]) << 24) |
5169 			(((u64) cmd->cmnd[3]) << 16) |
5170 			(((u64) cmd->cmnd[4]) << 8) |
5171 			cmd->cmnd[5];
5172 		block_cnt =
5173 			(((u32) cmd->cmnd[6]) << 24) |
5174 			(((u32) cmd->cmnd[7]) << 16) |
5175 			(((u32) cmd->cmnd[8]) << 8) |
5176 		cmd->cmnd[9];
5177 		break;
5178 	case WRITE_16:
5179 		is_write = 1;
5180 		fallthrough;
5181 	case READ_16:
5182 		first_block =
5183 			(((u64) cmd->cmnd[2]) << 56) |
5184 			(((u64) cmd->cmnd[3]) << 48) |
5185 			(((u64) cmd->cmnd[4]) << 40) |
5186 			(((u64) cmd->cmnd[5]) << 32) |
5187 			(((u64) cmd->cmnd[6]) << 24) |
5188 			(((u64) cmd->cmnd[7]) << 16) |
5189 			(((u64) cmd->cmnd[8]) << 8) |
5190 			cmd->cmnd[9];
5191 		block_cnt =
5192 			(((u32) cmd->cmnd[10]) << 24) |
5193 			(((u32) cmd->cmnd[11]) << 16) |
5194 			(((u32) cmd->cmnd[12]) << 8) |
5195 			cmd->cmnd[13];
5196 		break;
5197 	default:
5198 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5199 	}
5200 	last_block = first_block + block_cnt - 1;
5201 
5202 	/* check for write to non-RAID-0 */
5203 	if (is_write && dev->raid_level != 0)
5204 		return IO_ACCEL_INELIGIBLE;
5205 
5206 	/* check for invalid block or wraparound */
5207 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5208 		last_block < first_block)
5209 		return IO_ACCEL_INELIGIBLE;
5210 
5211 	/* calculate stripe information for the request */
5212 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5213 				le16_to_cpu(map->strip_size);
5214 	strip_size = le16_to_cpu(map->strip_size);
5215 #if BITS_PER_LONG == 32
5216 	tmpdiv = first_block;
5217 	(void) do_div(tmpdiv, blocks_per_row);
5218 	first_row = tmpdiv;
5219 	tmpdiv = last_block;
5220 	(void) do_div(tmpdiv, blocks_per_row);
5221 	last_row = tmpdiv;
5222 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5223 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5224 	tmpdiv = first_row_offset;
5225 	(void) do_div(tmpdiv, strip_size);
5226 	first_column = tmpdiv;
5227 	tmpdiv = last_row_offset;
5228 	(void) do_div(tmpdiv, strip_size);
5229 	last_column = tmpdiv;
5230 #else
5231 	first_row = first_block / blocks_per_row;
5232 	last_row = last_block / blocks_per_row;
5233 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5234 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5235 	first_column = first_row_offset / strip_size;
5236 	last_column = last_row_offset / strip_size;
5237 #endif
5238 
5239 	/* if this isn't a single row/column then give to the controller */
5240 	if ((first_row != last_row) || (first_column != last_column))
5241 		return IO_ACCEL_INELIGIBLE;
5242 
5243 	/* proceeding with driver mapping */
5244 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5245 				le16_to_cpu(map->metadata_disks_per_row);
5246 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5247 				le16_to_cpu(map->row_cnt);
5248 	map_index = (map_row * total_disks_per_row) + first_column;
5249 
5250 	switch (dev->raid_level) {
5251 	case HPSA_RAID_0:
5252 		break; /* nothing special to do */
5253 	case HPSA_RAID_1:
5254 		/* Handles load balance across RAID 1 members.
5255 		 * (2-drive R1 and R10 with even # of drives.)
5256 		 * Appropriate for SSDs, not optimal for HDDs
5257 		 * Ensure we have the correct raid_map.
5258 		 */
5259 		if (le16_to_cpu(map->layout_map_count) != 2) {
5260 			hpsa_turn_off_ioaccel_for_device(dev);
5261 			return IO_ACCEL_INELIGIBLE;
5262 		}
5263 		if (dev->offload_to_mirror)
5264 			map_index += le16_to_cpu(map->data_disks_per_row);
5265 		dev->offload_to_mirror = !dev->offload_to_mirror;
5266 		break;
5267 	case HPSA_RAID_ADM:
5268 		/* Handles N-way mirrors  (R1-ADM)
5269 		 * and R10 with # of drives divisible by 3.)
5270 		 * Ensure we have the correct raid_map.
5271 		 */
5272 		if (le16_to_cpu(map->layout_map_count) != 3) {
5273 			hpsa_turn_off_ioaccel_for_device(dev);
5274 			return IO_ACCEL_INELIGIBLE;
5275 		}
5276 
5277 		offload_to_mirror = dev->offload_to_mirror;
5278 		raid_map_helper(map, offload_to_mirror,
5279 				&map_index, &current_group);
5280 		/* set mirror group to use next time */
5281 		offload_to_mirror =
5282 			(offload_to_mirror >=
5283 			le16_to_cpu(map->layout_map_count) - 1)
5284 			? 0 : offload_to_mirror + 1;
5285 		dev->offload_to_mirror = offload_to_mirror;
5286 		/* Avoid direct use of dev->offload_to_mirror within this
5287 		 * function since multiple threads might simultaneously
5288 		 * increment it beyond the range of dev->layout_map_count -1.
5289 		 */
5290 		break;
5291 	case HPSA_RAID_5:
5292 	case HPSA_RAID_6:
5293 		if (le16_to_cpu(map->layout_map_count) <= 1)
5294 			break;
5295 
5296 		/* Verify first and last block are in same RAID group */
5297 		r5or6_blocks_per_row =
5298 			le16_to_cpu(map->strip_size) *
5299 			le16_to_cpu(map->data_disks_per_row);
5300 		if (r5or6_blocks_per_row == 0) {
5301 			hpsa_turn_off_ioaccel_for_device(dev);
5302 			return IO_ACCEL_INELIGIBLE;
5303 		}
5304 		stripesize = r5or6_blocks_per_row *
5305 			le16_to_cpu(map->layout_map_count);
5306 #if BITS_PER_LONG == 32
5307 		tmpdiv = first_block;
5308 		first_group = do_div(tmpdiv, stripesize);
5309 		tmpdiv = first_group;
5310 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5311 		first_group = tmpdiv;
5312 		tmpdiv = last_block;
5313 		last_group = do_div(tmpdiv, stripesize);
5314 		tmpdiv = last_group;
5315 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5316 		last_group = tmpdiv;
5317 #else
5318 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5319 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5320 #endif
5321 		if (first_group != last_group)
5322 			return IO_ACCEL_INELIGIBLE;
5323 
5324 		/* Verify request is in a single row of RAID 5/6 */
5325 #if BITS_PER_LONG == 32
5326 		tmpdiv = first_block;
5327 		(void) do_div(tmpdiv, stripesize);
5328 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5329 		tmpdiv = last_block;
5330 		(void) do_div(tmpdiv, stripesize);
5331 		r5or6_last_row = r0_last_row = tmpdiv;
5332 #else
5333 		first_row = r5or6_first_row = r0_first_row =
5334 						first_block / stripesize;
5335 		r5or6_last_row = r0_last_row = last_block / stripesize;
5336 #endif
5337 		if (r5or6_first_row != r5or6_last_row)
5338 			return IO_ACCEL_INELIGIBLE;
5339 
5340 
5341 		/* Verify request is in a single column */
5342 #if BITS_PER_LONG == 32
5343 		tmpdiv = first_block;
5344 		first_row_offset = do_div(tmpdiv, stripesize);
5345 		tmpdiv = first_row_offset;
5346 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5347 		r5or6_first_row_offset = first_row_offset;
5348 		tmpdiv = last_block;
5349 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5350 		tmpdiv = r5or6_last_row_offset;
5351 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5352 		tmpdiv = r5or6_first_row_offset;
5353 		(void) do_div(tmpdiv, map->strip_size);
5354 		first_column = r5or6_first_column = tmpdiv;
5355 		tmpdiv = r5or6_last_row_offset;
5356 		(void) do_div(tmpdiv, map->strip_size);
5357 		r5or6_last_column = tmpdiv;
5358 #else
5359 		first_row_offset = r5or6_first_row_offset =
5360 			(u32)((first_block % stripesize) %
5361 						r5or6_blocks_per_row);
5362 
5363 		r5or6_last_row_offset =
5364 			(u32)((last_block % stripesize) %
5365 						r5or6_blocks_per_row);
5366 
5367 		first_column = r5or6_first_column =
5368 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5369 		r5or6_last_column =
5370 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5371 #endif
5372 		if (r5or6_first_column != r5or6_last_column)
5373 			return IO_ACCEL_INELIGIBLE;
5374 
5375 		/* Request is eligible */
5376 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5377 			le16_to_cpu(map->row_cnt);
5378 
5379 		map_index = (first_group *
5380 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5381 			(map_row * total_disks_per_row) + first_column;
5382 		break;
5383 	default:
5384 		return IO_ACCEL_INELIGIBLE;
5385 	}
5386 
5387 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5388 		return IO_ACCEL_INELIGIBLE;
5389 
5390 	c->phys_disk = dev->phys_disk[map_index];
5391 	if (!c->phys_disk)
5392 		return IO_ACCEL_INELIGIBLE;
5393 
5394 	disk_handle = dd[map_index].ioaccel_handle;
5395 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5396 			first_row * le16_to_cpu(map->strip_size) +
5397 			(first_row_offset - first_column *
5398 			le16_to_cpu(map->strip_size));
5399 	disk_block_cnt = block_cnt;
5400 
5401 	/* handle differing logical/physical block sizes */
5402 	if (map->phys_blk_shift) {
5403 		disk_block <<= map->phys_blk_shift;
5404 		disk_block_cnt <<= map->phys_blk_shift;
5405 	}
5406 	BUG_ON(disk_block_cnt > 0xffff);
5407 
5408 	/* build the new CDB for the physical disk I/O */
5409 	if (disk_block > 0xffffffff) {
5410 		cdb[0] = is_write ? WRITE_16 : READ_16;
5411 		cdb[1] = 0;
5412 		cdb[2] = (u8) (disk_block >> 56);
5413 		cdb[3] = (u8) (disk_block >> 48);
5414 		cdb[4] = (u8) (disk_block >> 40);
5415 		cdb[5] = (u8) (disk_block >> 32);
5416 		cdb[6] = (u8) (disk_block >> 24);
5417 		cdb[7] = (u8) (disk_block >> 16);
5418 		cdb[8] = (u8) (disk_block >> 8);
5419 		cdb[9] = (u8) (disk_block);
5420 		cdb[10] = (u8) (disk_block_cnt >> 24);
5421 		cdb[11] = (u8) (disk_block_cnt >> 16);
5422 		cdb[12] = (u8) (disk_block_cnt >> 8);
5423 		cdb[13] = (u8) (disk_block_cnt);
5424 		cdb[14] = 0;
5425 		cdb[15] = 0;
5426 		cdb_len = 16;
5427 	} else {
5428 		cdb[0] = is_write ? WRITE_10 : READ_10;
5429 		cdb[1] = 0;
5430 		cdb[2] = (u8) (disk_block >> 24);
5431 		cdb[3] = (u8) (disk_block >> 16);
5432 		cdb[4] = (u8) (disk_block >> 8);
5433 		cdb[5] = (u8) (disk_block);
5434 		cdb[6] = 0;
5435 		cdb[7] = (u8) (disk_block_cnt >> 8);
5436 		cdb[8] = (u8) (disk_block_cnt);
5437 		cdb[9] = 0;
5438 		cdb_len = 10;
5439 	}
5440 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5441 						dev->scsi3addr,
5442 						dev->phys_disk[map_index]);
5443 }
5444 
5445 /*
5446  * Submit commands down the "normal" RAID stack path
5447  * All callers to hpsa_ciss_submit must check lockup_detected
5448  * beforehand, before (opt.) and after calling cmd_alloc
5449  */
hpsa_ciss_submit(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct hpsa_scsi_dev_t * dev)5450 static int hpsa_ciss_submit(struct ctlr_info *h,
5451 	struct CommandList *c, struct scsi_cmnd *cmd,
5452 	struct hpsa_scsi_dev_t *dev)
5453 {
5454 	cmd->host_scribble = (unsigned char *) c;
5455 	c->cmd_type = CMD_SCSI;
5456 	c->scsi_cmd = cmd;
5457 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5458 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5459 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5460 
5461 	/* Fill in the request block... */
5462 
5463 	c->Request.Timeout = 0;
5464 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5465 	c->Request.CDBLen = cmd->cmd_len;
5466 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5467 	switch (cmd->sc_data_direction) {
5468 	case DMA_TO_DEVICE:
5469 		c->Request.type_attr_dir =
5470 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5471 		break;
5472 	case DMA_FROM_DEVICE:
5473 		c->Request.type_attr_dir =
5474 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5475 		break;
5476 	case DMA_NONE:
5477 		c->Request.type_attr_dir =
5478 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5479 		break;
5480 	case DMA_BIDIRECTIONAL:
5481 		/* This can happen if a buggy application does a scsi passthru
5482 		 * and sets both inlen and outlen to non-zero. ( see
5483 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5484 		 */
5485 
5486 		c->Request.type_attr_dir =
5487 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5488 		/* This is technically wrong, and hpsa controllers should
5489 		 * reject it with CMD_INVALID, which is the most correct
5490 		 * response, but non-fibre backends appear to let it
5491 		 * slide by, and give the same results as if this field
5492 		 * were set correctly.  Either way is acceptable for
5493 		 * our purposes here.
5494 		 */
5495 
5496 		break;
5497 
5498 	default:
5499 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5500 			cmd->sc_data_direction);
5501 		BUG();
5502 		break;
5503 	}
5504 
5505 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5506 		hpsa_cmd_resolve_and_free(h, c);
5507 		return SCSI_MLQUEUE_HOST_BUSY;
5508 	}
5509 
5510 	if (dev->in_reset) {
5511 		hpsa_cmd_resolve_and_free(h, c);
5512 		return SCSI_MLQUEUE_HOST_BUSY;
5513 	}
5514 
5515 	c->device = dev;
5516 
5517 	enqueue_cmd_and_start_io(h, c);
5518 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5519 	return 0;
5520 }
5521 
hpsa_cmd_init(struct ctlr_info * h,int index,struct CommandList * c)5522 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5523 				struct CommandList *c)
5524 {
5525 	dma_addr_t cmd_dma_handle, err_dma_handle;
5526 
5527 	/* Zero out all of commandlist except the last field, refcount */
5528 	memset(c, 0, offsetof(struct CommandList, refcount));
5529 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5530 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5531 	c->err_info = h->errinfo_pool + index;
5532 	memset(c->err_info, 0, sizeof(*c->err_info));
5533 	err_dma_handle = h->errinfo_pool_dhandle
5534 	    + index * sizeof(*c->err_info);
5535 	c->cmdindex = index;
5536 	c->busaddr = (u32) cmd_dma_handle;
5537 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5538 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5539 	c->h = h;
5540 	c->scsi_cmd = SCSI_CMD_IDLE;
5541 }
5542 
hpsa_preinitialize_commands(struct ctlr_info * h)5543 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5544 {
5545 	int i;
5546 
5547 	for (i = 0; i < h->nr_cmds; i++) {
5548 		struct CommandList *c = h->cmd_pool + i;
5549 
5550 		hpsa_cmd_init(h, i, c);
5551 		atomic_set(&c->refcount, 0);
5552 	}
5553 }
5554 
hpsa_cmd_partial_init(struct ctlr_info * h,int index,struct CommandList * c)5555 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5556 				struct CommandList *c)
5557 {
5558 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5559 
5560 	BUG_ON(c->cmdindex != index);
5561 
5562 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5563 	memset(c->err_info, 0, sizeof(*c->err_info));
5564 	c->busaddr = (u32) cmd_dma_handle;
5565 }
5566 
hpsa_ioaccel_submit(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,bool retry)5567 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5568 		struct CommandList *c, struct scsi_cmnd *cmd,
5569 		bool retry)
5570 {
5571 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5572 	int rc = IO_ACCEL_INELIGIBLE;
5573 
5574 	if (!dev)
5575 		return SCSI_MLQUEUE_HOST_BUSY;
5576 
5577 	if (dev->in_reset)
5578 		return SCSI_MLQUEUE_HOST_BUSY;
5579 
5580 	if (hpsa_simple_mode)
5581 		return IO_ACCEL_INELIGIBLE;
5582 
5583 	cmd->host_scribble = (unsigned char *) c;
5584 
5585 	if (dev->offload_enabled) {
5586 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5587 		c->cmd_type = CMD_SCSI;
5588 		c->scsi_cmd = cmd;
5589 		c->device = dev;
5590 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5591 			c->retry_pending = true;
5592 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5593 		if (rc < 0)     /* scsi_dma_map failed. */
5594 			rc = SCSI_MLQUEUE_HOST_BUSY;
5595 	} else if (dev->hba_ioaccel_enabled) {
5596 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5597 		c->cmd_type = CMD_SCSI;
5598 		c->scsi_cmd = cmd;
5599 		c->device = dev;
5600 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5601 			c->retry_pending = true;
5602 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5603 		if (rc < 0)     /* scsi_dma_map failed. */
5604 			rc = SCSI_MLQUEUE_HOST_BUSY;
5605 	}
5606 	return rc;
5607 }
5608 
hpsa_command_resubmit_worker(struct work_struct * work)5609 static void hpsa_command_resubmit_worker(struct work_struct *work)
5610 {
5611 	struct scsi_cmnd *cmd;
5612 	struct hpsa_scsi_dev_t *dev;
5613 	struct CommandList *c = container_of(work, struct CommandList, work);
5614 
5615 	cmd = c->scsi_cmd;
5616 	dev = cmd->device->hostdata;
5617 	if (!dev) {
5618 		cmd->result = DID_NO_CONNECT << 16;
5619 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5620 	}
5621 
5622 	if (dev->in_reset) {
5623 		cmd->result = DID_RESET << 16;
5624 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5625 	}
5626 
5627 	if (c->cmd_type == CMD_IOACCEL2) {
5628 		struct ctlr_info *h = c->h;
5629 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5630 		int rc;
5631 
5632 		if (c2->error_data.serv_response ==
5633 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5634 			/* Resubmit with the retry_pending flag set. */
5635 			rc = hpsa_ioaccel_submit(h, c, cmd, true);
5636 			if (rc == 0)
5637 				return;
5638 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5639 				/*
5640 				 * If we get here, it means dma mapping failed.
5641 				 * Try again via scsi mid layer, which will
5642 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5643 				 */
5644 				cmd->result = DID_IMM_RETRY << 16;
5645 				return hpsa_cmd_free_and_done(h, c, cmd);
5646 			}
5647 			/* else, fall thru and resubmit down CISS path */
5648 		}
5649 	}
5650 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5651 	/*
5652 	 * Here we have not come in though queue_command, so we
5653 	 * can set the retry_pending flag to true for a driver initiated
5654 	 * retry attempt (I.E. not a SML retry).
5655 	 * I.E. We are submitting a driver initiated retry.
5656 	 * Note: hpsa_ciss_submit does not zero out the command fields like
5657 	 *       ioaccel submit does.
5658 	 */
5659 	c->retry_pending = true;
5660 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5661 		/*
5662 		 * If we get here, it means dma mapping failed. Try
5663 		 * again via scsi mid layer, which will then get
5664 		 * SCSI_MLQUEUE_HOST_BUSY.
5665 		 *
5666 		 * hpsa_ciss_submit will have already freed c
5667 		 * if it encountered a dma mapping failure.
5668 		 */
5669 		cmd->result = DID_IMM_RETRY << 16;
5670 		scsi_done(cmd);
5671 	}
5672 }
5673 
5674 /* Running in struct Scsi_Host->host_lock less mode */
hpsa_scsi_queue_command(struct Scsi_Host * sh,struct scsi_cmnd * cmd)5675 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5676 {
5677 	struct ctlr_info *h;
5678 	struct hpsa_scsi_dev_t *dev;
5679 	struct CommandList *c;
5680 	int rc = 0;
5681 
5682 	/* Get the ptr to our adapter structure out of cmd->host. */
5683 	h = sdev_to_hba(cmd->device);
5684 
5685 	BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5686 
5687 	dev = cmd->device->hostdata;
5688 	if (!dev) {
5689 		cmd->result = DID_NO_CONNECT << 16;
5690 		scsi_done(cmd);
5691 		return 0;
5692 	}
5693 
5694 	if (dev->removed) {
5695 		cmd->result = DID_NO_CONNECT << 16;
5696 		scsi_done(cmd);
5697 		return 0;
5698 	}
5699 
5700 	if (unlikely(lockup_detected(h))) {
5701 		cmd->result = DID_NO_CONNECT << 16;
5702 		scsi_done(cmd);
5703 		return 0;
5704 	}
5705 
5706 	if (dev->in_reset)
5707 		return SCSI_MLQUEUE_DEVICE_BUSY;
5708 
5709 	c = cmd_tagged_alloc(h, cmd);
5710 	if (c == NULL)
5711 		return SCSI_MLQUEUE_DEVICE_BUSY;
5712 
5713 	/*
5714 	 * This is necessary because the SML doesn't zero out this field during
5715 	 * error recovery.
5716 	 */
5717 	cmd->result = 0;
5718 
5719 	/*
5720 	 * Call alternate submit routine for I/O accelerated commands.
5721 	 * Retries always go down the normal I/O path.
5722 	 * Note: If cmd->retries is non-zero, then this is a SML
5723 	 *       initiated retry and not a driver initiated retry.
5724 	 *       This command has been obtained from cmd_tagged_alloc
5725 	 *       and is therefore a brand-new command.
5726 	 */
5727 	if (likely(cmd->retries == 0 &&
5728 			!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5729 			h->acciopath_status)) {
5730 		/* Submit with the retry_pending flag unset. */
5731 		rc = hpsa_ioaccel_submit(h, c, cmd, false);
5732 		if (rc == 0)
5733 			return 0;
5734 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5735 			hpsa_cmd_resolve_and_free(h, c);
5736 			return SCSI_MLQUEUE_HOST_BUSY;
5737 		}
5738 	}
5739 	return hpsa_ciss_submit(h, c, cmd, dev);
5740 }
5741 
hpsa_scan_complete(struct ctlr_info * h)5742 static void hpsa_scan_complete(struct ctlr_info *h)
5743 {
5744 	unsigned long flags;
5745 
5746 	spin_lock_irqsave(&h->scan_lock, flags);
5747 	h->scan_finished = 1;
5748 	wake_up(&h->scan_wait_queue);
5749 	spin_unlock_irqrestore(&h->scan_lock, flags);
5750 }
5751 
hpsa_scan_start(struct Scsi_Host * sh)5752 static void hpsa_scan_start(struct Scsi_Host *sh)
5753 {
5754 	struct ctlr_info *h = shost_to_hba(sh);
5755 	unsigned long flags;
5756 
5757 	/*
5758 	 * Don't let rescans be initiated on a controller known to be locked
5759 	 * up.  If the controller locks up *during* a rescan, that thread is
5760 	 * probably hosed, but at least we can prevent new rescan threads from
5761 	 * piling up on a locked up controller.
5762 	 */
5763 	if (unlikely(lockup_detected(h)))
5764 		return hpsa_scan_complete(h);
5765 
5766 	/*
5767 	 * If a scan is already waiting to run, no need to add another
5768 	 */
5769 	spin_lock_irqsave(&h->scan_lock, flags);
5770 	if (h->scan_waiting) {
5771 		spin_unlock_irqrestore(&h->scan_lock, flags);
5772 		return;
5773 	}
5774 
5775 	spin_unlock_irqrestore(&h->scan_lock, flags);
5776 
5777 	/* wait until any scan already in progress is finished. */
5778 	while (1) {
5779 		spin_lock_irqsave(&h->scan_lock, flags);
5780 		if (h->scan_finished)
5781 			break;
5782 		h->scan_waiting = 1;
5783 		spin_unlock_irqrestore(&h->scan_lock, flags);
5784 		wait_event(h->scan_wait_queue, h->scan_finished);
5785 		/* Note: We don't need to worry about a race between this
5786 		 * thread and driver unload because the midlayer will
5787 		 * have incremented the reference count, so unload won't
5788 		 * happen if we're in here.
5789 		 */
5790 	}
5791 	h->scan_finished = 0; /* mark scan as in progress */
5792 	h->scan_waiting = 0;
5793 	spin_unlock_irqrestore(&h->scan_lock, flags);
5794 
5795 	if (unlikely(lockup_detected(h)))
5796 		return hpsa_scan_complete(h);
5797 
5798 	/*
5799 	 * Do the scan after a reset completion
5800 	 */
5801 	spin_lock_irqsave(&h->reset_lock, flags);
5802 	if (h->reset_in_progress) {
5803 		h->drv_req_rescan = 1;
5804 		spin_unlock_irqrestore(&h->reset_lock, flags);
5805 		hpsa_scan_complete(h);
5806 		return;
5807 	}
5808 	spin_unlock_irqrestore(&h->reset_lock, flags);
5809 
5810 	hpsa_update_scsi_devices(h);
5811 
5812 	hpsa_scan_complete(h);
5813 }
5814 
hpsa_change_queue_depth(struct scsi_device * sdev,int qdepth)5815 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5816 {
5817 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5818 
5819 	if (!logical_drive)
5820 		return -ENODEV;
5821 
5822 	if (qdepth < 1)
5823 		qdepth = 1;
5824 	else if (qdepth > logical_drive->queue_depth)
5825 		qdepth = logical_drive->queue_depth;
5826 
5827 	return scsi_change_queue_depth(sdev, qdepth);
5828 }
5829 
hpsa_scan_finished(struct Scsi_Host * sh,unsigned long elapsed_time)5830 static int hpsa_scan_finished(struct Scsi_Host *sh,
5831 	unsigned long elapsed_time)
5832 {
5833 	struct ctlr_info *h = shost_to_hba(sh);
5834 	unsigned long flags;
5835 	int finished;
5836 
5837 	spin_lock_irqsave(&h->scan_lock, flags);
5838 	finished = h->scan_finished;
5839 	spin_unlock_irqrestore(&h->scan_lock, flags);
5840 	return finished;
5841 }
5842 
hpsa_scsi_host_alloc(struct ctlr_info * h)5843 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5844 {
5845 	struct Scsi_Host *sh;
5846 
5847 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info *));
5848 	if (sh == NULL) {
5849 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5850 		return -ENOMEM;
5851 	}
5852 
5853 	sh->io_port = 0;
5854 	sh->n_io_port = 0;
5855 	sh->this_id = -1;
5856 	sh->max_channel = 3;
5857 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5858 	sh->max_lun = HPSA_MAX_LUN;
5859 	sh->max_id = HPSA_MAX_LUN;
5860 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5861 	sh->cmd_per_lun = sh->can_queue;
5862 	sh->sg_tablesize = h->maxsgentries;
5863 	sh->transportt = hpsa_sas_transport_template;
5864 	sh->hostdata[0] = (unsigned long) h;
5865 	sh->irq = pci_irq_vector(h->pdev, 0);
5866 	sh->unique_id = sh->irq;
5867 
5868 	h->scsi_host = sh;
5869 	return 0;
5870 }
5871 
hpsa_scsi_add_host(struct ctlr_info * h)5872 static int hpsa_scsi_add_host(struct ctlr_info *h)
5873 {
5874 	int rv;
5875 
5876 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5877 	if (rv) {
5878 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5879 		return rv;
5880 	}
5881 	scsi_scan_host(h->scsi_host);
5882 	return 0;
5883 }
5884 
5885 /*
5886  * The block layer has already gone to the trouble of picking out a unique,
5887  * small-integer tag for this request.  We use an offset from that value as
5888  * an index to select our command block.  (The offset allows us to reserve the
5889  * low-numbered entries for our own uses.)
5890  */
hpsa_get_cmd_index(struct scsi_cmnd * scmd)5891 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5892 {
5893 	int idx = scsi_cmd_to_rq(scmd)->tag;
5894 
5895 	if (idx < 0)
5896 		return idx;
5897 
5898 	/* Offset to leave space for internal cmds. */
5899 	return idx += HPSA_NRESERVED_CMDS;
5900 }
5901 
5902 /*
5903  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5904  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5905  */
hpsa_send_test_unit_ready(struct ctlr_info * h,struct CommandList * c,unsigned char lunaddr[],int reply_queue)5906 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5907 				struct CommandList *c, unsigned char lunaddr[],
5908 				int reply_queue)
5909 {
5910 	int rc;
5911 
5912 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5913 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5914 			NULL, 0, 0, lunaddr, TYPE_CMD);
5915 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5916 	if (rc)
5917 		return rc;
5918 	/* no unmap needed here because no data xfer. */
5919 
5920 	/* Check if the unit is already ready. */
5921 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5922 		return 0;
5923 
5924 	/*
5925 	 * The first command sent after reset will receive "unit attention" to
5926 	 * indicate that the LUN has been reset...this is actually what we're
5927 	 * looking for (but, success is good too).
5928 	 */
5929 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5930 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5931 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5932 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5933 		return 0;
5934 
5935 	return 1;
5936 }
5937 
5938 /*
5939  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5940  * returns zero when the unit is ready, and non-zero when giving up.
5941  */
hpsa_wait_for_test_unit_ready(struct ctlr_info * h,struct CommandList * c,unsigned char lunaddr[],int reply_queue)5942 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5943 				struct CommandList *c,
5944 				unsigned char lunaddr[], int reply_queue)
5945 {
5946 	int rc;
5947 	int count = 0;
5948 	int waittime = 1; /* seconds */
5949 
5950 	/* Send test unit ready until device ready, or give up. */
5951 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5952 
5953 		/*
5954 		 * Wait for a bit.  do this first, because if we send
5955 		 * the TUR right away, the reset will just abort it.
5956 		 */
5957 		msleep(1000 * waittime);
5958 
5959 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5960 		if (!rc)
5961 			break;
5962 
5963 		/* Increase wait time with each try, up to a point. */
5964 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5965 			waittime *= 2;
5966 
5967 		dev_warn(&h->pdev->dev,
5968 			 "waiting %d secs for device to become ready.\n",
5969 			 waittime);
5970 	}
5971 
5972 	return rc;
5973 }
5974 
wait_for_device_to_become_ready(struct ctlr_info * h,unsigned char lunaddr[],int reply_queue)5975 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5976 					   unsigned char lunaddr[],
5977 					   int reply_queue)
5978 {
5979 	int first_queue;
5980 	int last_queue;
5981 	int rq;
5982 	int rc = 0;
5983 	struct CommandList *c;
5984 
5985 	c = cmd_alloc(h);
5986 
5987 	/*
5988 	 * If no specific reply queue was requested, then send the TUR
5989 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5990 	 * the loop exactly once using only the specified queue.
5991 	 */
5992 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5993 		first_queue = 0;
5994 		last_queue = h->nreply_queues - 1;
5995 	} else {
5996 		first_queue = reply_queue;
5997 		last_queue = reply_queue;
5998 	}
5999 
6000 	for (rq = first_queue; rq <= last_queue; rq++) {
6001 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6002 		if (rc)
6003 			break;
6004 	}
6005 
6006 	if (rc)
6007 		dev_warn(&h->pdev->dev, "giving up on device.\n");
6008 	else
6009 		dev_warn(&h->pdev->dev, "device is ready.\n");
6010 
6011 	cmd_free(h, c);
6012 	return rc;
6013 }
6014 
6015 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6016  * complaining.  Doing a host- or bus-reset can't do anything good here.
6017  */
hpsa_eh_device_reset_handler(struct scsi_cmnd * scsicmd)6018 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6019 {
6020 	int rc = SUCCESS;
6021 	int i;
6022 	struct ctlr_info *h;
6023 	struct hpsa_scsi_dev_t *dev = NULL;
6024 	u8 reset_type;
6025 	char msg[48];
6026 	unsigned long flags;
6027 
6028 	/* find the controller to which the command to be aborted was sent */
6029 	h = sdev_to_hba(scsicmd->device);
6030 	if (h == NULL) /* paranoia */
6031 		return FAILED;
6032 
6033 	spin_lock_irqsave(&h->reset_lock, flags);
6034 	h->reset_in_progress = 1;
6035 	spin_unlock_irqrestore(&h->reset_lock, flags);
6036 
6037 	if (lockup_detected(h)) {
6038 		rc = FAILED;
6039 		goto return_reset_status;
6040 	}
6041 
6042 	dev = scsicmd->device->hostdata;
6043 	if (!dev) {
6044 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6045 		rc = FAILED;
6046 		goto return_reset_status;
6047 	}
6048 
6049 	if (dev->devtype == TYPE_ENCLOSURE) {
6050 		rc = SUCCESS;
6051 		goto return_reset_status;
6052 	}
6053 
6054 	/* if controller locked up, we can guarantee command won't complete */
6055 	if (lockup_detected(h)) {
6056 		snprintf(msg, sizeof(msg),
6057 			 "cmd %d RESET FAILED, lockup detected",
6058 			 hpsa_get_cmd_index(scsicmd));
6059 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6060 		rc = FAILED;
6061 		goto return_reset_status;
6062 	}
6063 
6064 	/* this reset request might be the result of a lockup; check */
6065 	if (detect_controller_lockup(h)) {
6066 		snprintf(msg, sizeof(msg),
6067 			 "cmd %d RESET FAILED, new lockup detected",
6068 			 hpsa_get_cmd_index(scsicmd));
6069 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6070 		rc = FAILED;
6071 		goto return_reset_status;
6072 	}
6073 
6074 	/* Do not attempt on controller */
6075 	if (is_hba_lunid(dev->scsi3addr)) {
6076 		rc = SUCCESS;
6077 		goto return_reset_status;
6078 	}
6079 
6080 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6081 		reset_type = HPSA_DEVICE_RESET_MSG;
6082 	else
6083 		reset_type = HPSA_PHYS_TARGET_RESET;
6084 
6085 	sprintf(msg, "resetting %s",
6086 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6087 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6088 
6089 	/*
6090 	 * wait to see if any commands will complete before sending reset
6091 	 */
6092 	dev->in_reset = true; /* block any new cmds from OS for this device */
6093 	for (i = 0; i < 10; i++) {
6094 		if (atomic_read(&dev->commands_outstanding) > 0)
6095 			msleep(1000);
6096 		else
6097 			break;
6098 	}
6099 
6100 	/* send a reset to the SCSI LUN which the command was sent to */
6101 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6102 	if (rc == 0)
6103 		rc = SUCCESS;
6104 	else
6105 		rc = FAILED;
6106 
6107 	sprintf(msg, "reset %s %s",
6108 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6109 		rc == SUCCESS ? "completed successfully" : "failed");
6110 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6111 
6112 return_reset_status:
6113 	spin_lock_irqsave(&h->reset_lock, flags);
6114 	h->reset_in_progress = 0;
6115 	if (dev)
6116 		dev->in_reset = false;
6117 	spin_unlock_irqrestore(&h->reset_lock, flags);
6118 	return rc;
6119 }
6120 
6121 /*
6122  * For operations with an associated SCSI command, a command block is allocated
6123  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6124  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6125  * the complement, although cmd_free() may be called instead.
6126  * This function is only called for new requests from queue_command.
6127  */
cmd_tagged_alloc(struct ctlr_info * h,struct scsi_cmnd * scmd)6128 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6129 					    struct scsi_cmnd *scmd)
6130 {
6131 	int idx = hpsa_get_cmd_index(scmd);
6132 	struct CommandList *c = h->cmd_pool + idx;
6133 
6134 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6135 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6136 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6137 		/* The index value comes from the block layer, so if it's out of
6138 		 * bounds, it's probably not our bug.
6139 		 */
6140 		BUG();
6141 	}
6142 
6143 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6144 		/*
6145 		 * We expect that the SCSI layer will hand us a unique tag
6146 		 * value.  Thus, there should never be a collision here between
6147 		 * two requests...because if the selected command isn't idle
6148 		 * then someone is going to be very disappointed.
6149 		 */
6150 		if (idx != h->last_collision_tag) { /* Print once per tag */
6151 			dev_warn(&h->pdev->dev,
6152 				"%s: tag collision (tag=%d)\n", __func__, idx);
6153 			if (scmd)
6154 				scsi_print_command(scmd);
6155 			h->last_collision_tag = idx;
6156 		}
6157 		return NULL;
6158 	}
6159 
6160 	atomic_inc(&c->refcount);
6161 	hpsa_cmd_partial_init(h, idx, c);
6162 
6163 	/*
6164 	 * This is a new command obtained from queue_command so
6165 	 * there have not been any driver initiated retry attempts.
6166 	 */
6167 	c->retry_pending = false;
6168 
6169 	return c;
6170 }
6171 
cmd_tagged_free(struct ctlr_info * h,struct CommandList * c)6172 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6173 {
6174 	/*
6175 	 * Release our reference to the block.  We don't need to do anything
6176 	 * else to free it, because it is accessed by index.
6177 	 */
6178 	(void)atomic_dec(&c->refcount);
6179 }
6180 
6181 /*
6182  * For operations that cannot sleep, a command block is allocated at init,
6183  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6184  * which ones are free or in use.  Lock must be held when calling this.
6185  * cmd_free() is the complement.
6186  * This function never gives up and returns NULL.  If it hangs,
6187  * another thread must call cmd_free() to free some tags.
6188  */
6189 
cmd_alloc(struct ctlr_info * h)6190 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6191 {
6192 	struct CommandList *c;
6193 	int refcount, i;
6194 	int offset = 0;
6195 
6196 	/*
6197 	 * There is some *extremely* small but non-zero chance that that
6198 	 * multiple threads could get in here, and one thread could
6199 	 * be scanning through the list of bits looking for a free
6200 	 * one, but the free ones are always behind him, and other
6201 	 * threads sneak in behind him and eat them before he can
6202 	 * get to them, so that while there is always a free one, a
6203 	 * very unlucky thread might be starved anyway, never able to
6204 	 * beat the other threads.  In reality, this happens so
6205 	 * infrequently as to be indistinguishable from never.
6206 	 *
6207 	 * Note that we start allocating commands before the SCSI host structure
6208 	 * is initialized.  Since the search starts at bit zero, this
6209 	 * all works, since we have at least one command structure available;
6210 	 * however, it means that the structures with the low indexes have to be
6211 	 * reserved for driver-initiated requests, while requests from the block
6212 	 * layer will use the higher indexes.
6213 	 */
6214 
6215 	for (;;) {
6216 		i = find_next_zero_bit(h->cmd_pool_bits,
6217 					HPSA_NRESERVED_CMDS,
6218 					offset);
6219 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6220 			offset = 0;
6221 			continue;
6222 		}
6223 		c = h->cmd_pool + i;
6224 		refcount = atomic_inc_return(&c->refcount);
6225 		if (unlikely(refcount > 1)) {
6226 			cmd_free(h, c); /* already in use */
6227 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6228 			continue;
6229 		}
6230 		set_bit(i, h->cmd_pool_bits);
6231 		break; /* it's ours now. */
6232 	}
6233 	hpsa_cmd_partial_init(h, i, c);
6234 	c->device = NULL;
6235 
6236 	/*
6237 	 * cmd_alloc is for "internal" commands and they are never
6238 	 * retried.
6239 	 */
6240 	c->retry_pending = false;
6241 
6242 	return c;
6243 }
6244 
6245 /*
6246  * This is the complementary operation to cmd_alloc().  Note, however, in some
6247  * corner cases it may also be used to free blocks allocated by
6248  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6249  * the clear-bit is harmless.
6250  */
cmd_free(struct ctlr_info * h,struct CommandList * c)6251 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6252 {
6253 	if (atomic_dec_and_test(&c->refcount)) {
6254 		int i;
6255 
6256 		i = c - h->cmd_pool;
6257 		clear_bit(i, h->cmd_pool_bits);
6258 	}
6259 }
6260 
6261 #ifdef CONFIG_COMPAT
6262 
hpsa_ioctl32_passthru(struct scsi_device * dev,unsigned int cmd,void __user * arg)6263 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6264 	void __user *arg)
6265 {
6266 	struct ctlr_info *h = sdev_to_hba(dev);
6267 	IOCTL32_Command_struct __user *arg32 = arg;
6268 	IOCTL_Command_struct arg64;
6269 	int err;
6270 	u32 cp;
6271 
6272 	if (!arg)
6273 		return -EINVAL;
6274 
6275 	memset(&arg64, 0, sizeof(arg64));
6276 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6277 		return -EFAULT;
6278 	if (get_user(cp, &arg32->buf))
6279 		return -EFAULT;
6280 	arg64.buf = compat_ptr(cp);
6281 
6282 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6283 		return -EAGAIN;
6284 	err = hpsa_passthru_ioctl(h, &arg64);
6285 	atomic_inc(&h->passthru_cmds_avail);
6286 	if (err)
6287 		return err;
6288 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6289 			 sizeof(arg32->error_info)))
6290 		return -EFAULT;
6291 	return 0;
6292 }
6293 
hpsa_ioctl32_big_passthru(struct scsi_device * dev,unsigned int cmd,void __user * arg)6294 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6295 	unsigned int cmd, void __user *arg)
6296 {
6297 	struct ctlr_info *h = sdev_to_hba(dev);
6298 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6299 	BIG_IOCTL_Command_struct arg64;
6300 	int err;
6301 	u32 cp;
6302 
6303 	if (!arg)
6304 		return -EINVAL;
6305 	memset(&arg64, 0, sizeof(arg64));
6306 	if (copy_from_user(&arg64, arg32,
6307 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6308 		return -EFAULT;
6309 	if (get_user(cp, &arg32->buf))
6310 		return -EFAULT;
6311 	arg64.buf = compat_ptr(cp);
6312 
6313 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6314 		return -EAGAIN;
6315 	err = hpsa_big_passthru_ioctl(h, &arg64);
6316 	atomic_inc(&h->passthru_cmds_avail);
6317 	if (err)
6318 		return err;
6319 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6320 			 sizeof(arg32->error_info)))
6321 		return -EFAULT;
6322 	return 0;
6323 }
6324 
hpsa_compat_ioctl(struct scsi_device * dev,unsigned int cmd,void __user * arg)6325 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6326 			     void __user *arg)
6327 {
6328 	switch (cmd) {
6329 	case CCISS_GETPCIINFO:
6330 	case CCISS_GETINTINFO:
6331 	case CCISS_SETINTINFO:
6332 	case CCISS_GETNODENAME:
6333 	case CCISS_SETNODENAME:
6334 	case CCISS_GETHEARTBEAT:
6335 	case CCISS_GETBUSTYPES:
6336 	case CCISS_GETFIRMVER:
6337 	case CCISS_GETDRIVVER:
6338 	case CCISS_REVALIDVOLS:
6339 	case CCISS_DEREGDISK:
6340 	case CCISS_REGNEWDISK:
6341 	case CCISS_REGNEWD:
6342 	case CCISS_RESCANDISK:
6343 	case CCISS_GETLUNINFO:
6344 		return hpsa_ioctl(dev, cmd, arg);
6345 
6346 	case CCISS_PASSTHRU32:
6347 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6348 	case CCISS_BIG_PASSTHRU32:
6349 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6350 
6351 	default:
6352 		return -ENOIOCTLCMD;
6353 	}
6354 }
6355 #endif
6356 
hpsa_getpciinfo_ioctl(struct ctlr_info * h,void __user * argp)6357 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6358 {
6359 	struct hpsa_pci_info pciinfo;
6360 
6361 	if (!argp)
6362 		return -EINVAL;
6363 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6364 	pciinfo.bus = h->pdev->bus->number;
6365 	pciinfo.dev_fn = h->pdev->devfn;
6366 	pciinfo.board_id = h->board_id;
6367 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6368 		return -EFAULT;
6369 	return 0;
6370 }
6371 
hpsa_getdrivver_ioctl(struct ctlr_info * h,void __user * argp)6372 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6373 {
6374 	DriverVer_type DriverVer;
6375 	unsigned char vmaj, vmin, vsubmin;
6376 	int rc;
6377 
6378 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6379 		&vmaj, &vmin, &vsubmin);
6380 	if (rc != 3) {
6381 		dev_info(&h->pdev->dev, "driver version string '%s' "
6382 			"unrecognized.", HPSA_DRIVER_VERSION);
6383 		vmaj = 0;
6384 		vmin = 0;
6385 		vsubmin = 0;
6386 	}
6387 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6388 	if (!argp)
6389 		return -EINVAL;
6390 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6391 		return -EFAULT;
6392 	return 0;
6393 }
6394 
hpsa_passthru_ioctl(struct ctlr_info * h,IOCTL_Command_struct * iocommand)6395 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6396 			       IOCTL_Command_struct *iocommand)
6397 {
6398 	struct CommandList *c;
6399 	char *buff = NULL;
6400 	u64 temp64;
6401 	int rc = 0;
6402 
6403 	if (!capable(CAP_SYS_RAWIO))
6404 		return -EPERM;
6405 	if ((iocommand->buf_size < 1) &&
6406 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6407 		return -EINVAL;
6408 	}
6409 	if (iocommand->buf_size > 0) {
6410 		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6411 		if (buff == NULL)
6412 			return -ENOMEM;
6413 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6414 			/* Copy the data into the buffer we created */
6415 			if (copy_from_user(buff, iocommand->buf,
6416 				iocommand->buf_size)) {
6417 				rc = -EFAULT;
6418 				goto out_kfree;
6419 			}
6420 		} else {
6421 			memset(buff, 0, iocommand->buf_size);
6422 		}
6423 	}
6424 	c = cmd_alloc(h);
6425 
6426 	/* Fill in the command type */
6427 	c->cmd_type = CMD_IOCTL_PEND;
6428 	c->scsi_cmd = SCSI_CMD_BUSY;
6429 	/* Fill in Command Header */
6430 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6431 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6432 		c->Header.SGList = 1;
6433 		c->Header.SGTotal = cpu_to_le16(1);
6434 	} else	{ /* no buffers to fill */
6435 		c->Header.SGList = 0;
6436 		c->Header.SGTotal = cpu_to_le16(0);
6437 	}
6438 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6439 
6440 	/* Fill in Request block */
6441 	memcpy(&c->Request, &iocommand->Request,
6442 		sizeof(c->Request));
6443 
6444 	/* Fill in the scatter gather information */
6445 	if (iocommand->buf_size > 0) {
6446 		temp64 = dma_map_single(&h->pdev->dev, buff,
6447 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6448 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6449 			c->SG[0].Addr = cpu_to_le64(0);
6450 			c->SG[0].Len = cpu_to_le32(0);
6451 			rc = -ENOMEM;
6452 			goto out;
6453 		}
6454 		c->SG[0].Addr = cpu_to_le64(temp64);
6455 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6456 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6457 	}
6458 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6459 					NO_TIMEOUT);
6460 	if (iocommand->buf_size > 0)
6461 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6462 	check_ioctl_unit_attention(h, c);
6463 	if (rc) {
6464 		rc = -EIO;
6465 		goto out;
6466 	}
6467 
6468 	/* Copy the error information out */
6469 	memcpy(&iocommand->error_info, c->err_info,
6470 		sizeof(iocommand->error_info));
6471 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6472 		iocommand->buf_size > 0) {
6473 		/* Copy the data out of the buffer we created */
6474 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6475 			rc = -EFAULT;
6476 			goto out;
6477 		}
6478 	}
6479 out:
6480 	cmd_free(h, c);
6481 out_kfree:
6482 	kfree(buff);
6483 	return rc;
6484 }
6485 
hpsa_big_passthru_ioctl(struct ctlr_info * h,BIG_IOCTL_Command_struct * ioc)6486 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6487 				   BIG_IOCTL_Command_struct *ioc)
6488 {
6489 	struct CommandList *c;
6490 	unsigned char **buff = NULL;
6491 	int *buff_size = NULL;
6492 	u64 temp64;
6493 	BYTE sg_used = 0;
6494 	int status = 0;
6495 	u32 left;
6496 	u32 sz;
6497 	BYTE __user *data_ptr;
6498 
6499 	if (!capable(CAP_SYS_RAWIO))
6500 		return -EPERM;
6501 
6502 	if ((ioc->buf_size < 1) &&
6503 	    (ioc->Request.Type.Direction != XFER_NONE))
6504 		return -EINVAL;
6505 	/* Check kmalloc limits  using all SGs */
6506 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6507 		return -EINVAL;
6508 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6509 		return -EINVAL;
6510 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6511 	if (!buff) {
6512 		status = -ENOMEM;
6513 		goto cleanup1;
6514 	}
6515 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6516 	if (!buff_size) {
6517 		status = -ENOMEM;
6518 		goto cleanup1;
6519 	}
6520 	left = ioc->buf_size;
6521 	data_ptr = ioc->buf;
6522 	while (left) {
6523 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6524 		buff_size[sg_used] = sz;
6525 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6526 		if (buff[sg_used] == NULL) {
6527 			status = -ENOMEM;
6528 			goto cleanup1;
6529 		}
6530 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6531 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6532 				status = -EFAULT;
6533 				goto cleanup1;
6534 			}
6535 		} else
6536 			memset(buff[sg_used], 0, sz);
6537 		left -= sz;
6538 		data_ptr += sz;
6539 		sg_used++;
6540 	}
6541 	c = cmd_alloc(h);
6542 
6543 	c->cmd_type = CMD_IOCTL_PEND;
6544 	c->scsi_cmd = SCSI_CMD_BUSY;
6545 	c->Header.ReplyQueue = 0;
6546 	c->Header.SGList = (u8) sg_used;
6547 	c->Header.SGTotal = cpu_to_le16(sg_used);
6548 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6549 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6550 	if (ioc->buf_size > 0) {
6551 		int i;
6552 		for (i = 0; i < sg_used; i++) {
6553 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6554 				    buff_size[i], DMA_BIDIRECTIONAL);
6555 			if (dma_mapping_error(&h->pdev->dev,
6556 							(dma_addr_t) temp64)) {
6557 				c->SG[i].Addr = cpu_to_le64(0);
6558 				c->SG[i].Len = cpu_to_le32(0);
6559 				hpsa_pci_unmap(h->pdev, c, i,
6560 					DMA_BIDIRECTIONAL);
6561 				status = -ENOMEM;
6562 				goto cleanup0;
6563 			}
6564 			c->SG[i].Addr = cpu_to_le64(temp64);
6565 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6566 			c->SG[i].Ext = cpu_to_le32(0);
6567 		}
6568 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6569 	}
6570 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6571 						NO_TIMEOUT);
6572 	if (sg_used)
6573 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6574 	check_ioctl_unit_attention(h, c);
6575 	if (status) {
6576 		status = -EIO;
6577 		goto cleanup0;
6578 	}
6579 
6580 	/* Copy the error information out */
6581 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6582 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6583 		int i;
6584 
6585 		/* Copy the data out of the buffer we created */
6586 		BYTE __user *ptr = ioc->buf;
6587 		for (i = 0; i < sg_used; i++) {
6588 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6589 				status = -EFAULT;
6590 				goto cleanup0;
6591 			}
6592 			ptr += buff_size[i];
6593 		}
6594 	}
6595 	status = 0;
6596 cleanup0:
6597 	cmd_free(h, c);
6598 cleanup1:
6599 	if (buff) {
6600 		int i;
6601 
6602 		for (i = 0; i < sg_used; i++)
6603 			kfree(buff[i]);
6604 		kfree(buff);
6605 	}
6606 	kfree(buff_size);
6607 	return status;
6608 }
6609 
check_ioctl_unit_attention(struct ctlr_info * h,struct CommandList * c)6610 static void check_ioctl_unit_attention(struct ctlr_info *h,
6611 	struct CommandList *c)
6612 {
6613 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6614 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6615 		(void) check_for_unit_attention(h, c);
6616 }
6617 
6618 /*
6619  * ioctl
6620  */
hpsa_ioctl(struct scsi_device * dev,unsigned int cmd,void __user * argp)6621 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6622 		      void __user *argp)
6623 {
6624 	struct ctlr_info *h = sdev_to_hba(dev);
6625 	int rc;
6626 
6627 	switch (cmd) {
6628 	case CCISS_DEREGDISK:
6629 	case CCISS_REGNEWDISK:
6630 	case CCISS_REGNEWD:
6631 		hpsa_scan_start(h->scsi_host);
6632 		return 0;
6633 	case CCISS_GETPCIINFO:
6634 		return hpsa_getpciinfo_ioctl(h, argp);
6635 	case CCISS_GETDRIVVER:
6636 		return hpsa_getdrivver_ioctl(h, argp);
6637 	case CCISS_PASSTHRU: {
6638 		IOCTL_Command_struct iocommand;
6639 
6640 		if (!argp)
6641 			return -EINVAL;
6642 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6643 			return -EFAULT;
6644 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6645 			return -EAGAIN;
6646 		rc = hpsa_passthru_ioctl(h, &iocommand);
6647 		atomic_inc(&h->passthru_cmds_avail);
6648 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6649 			rc = -EFAULT;
6650 		return rc;
6651 	}
6652 	case CCISS_BIG_PASSTHRU: {
6653 		BIG_IOCTL_Command_struct ioc;
6654 		if (!argp)
6655 			return -EINVAL;
6656 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6657 			return -EFAULT;
6658 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6659 			return -EAGAIN;
6660 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6661 		atomic_inc(&h->passthru_cmds_avail);
6662 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6663 			rc = -EFAULT;
6664 		return rc;
6665 	}
6666 	default:
6667 		return -ENOTTY;
6668 	}
6669 }
6670 
hpsa_send_host_reset(struct ctlr_info * h,u8 reset_type)6671 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6672 {
6673 	struct CommandList *c;
6674 
6675 	c = cmd_alloc(h);
6676 
6677 	/* fill_cmd can't fail here, no data buffer to map */
6678 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6679 		RAID_CTLR_LUNID, TYPE_MSG);
6680 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6681 	c->waiting = NULL;
6682 	enqueue_cmd_and_start_io(h, c);
6683 	/* Don't wait for completion, the reset won't complete.  Don't free
6684 	 * the command either.  This is the last command we will send before
6685 	 * re-initializing everything, so it doesn't matter and won't leak.
6686 	 */
6687 	return;
6688 }
6689 
fill_cmd(struct CommandList * c,u8 cmd,struct ctlr_info * h,void * buff,size_t size,u16 page_code,unsigned char * scsi3addr,int cmd_type)6690 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6691 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6692 	int cmd_type)
6693 {
6694 	enum dma_data_direction dir = DMA_NONE;
6695 
6696 	c->cmd_type = CMD_IOCTL_PEND;
6697 	c->scsi_cmd = SCSI_CMD_BUSY;
6698 	c->Header.ReplyQueue = 0;
6699 	if (buff != NULL && size > 0) {
6700 		c->Header.SGList = 1;
6701 		c->Header.SGTotal = cpu_to_le16(1);
6702 	} else {
6703 		c->Header.SGList = 0;
6704 		c->Header.SGTotal = cpu_to_le16(0);
6705 	}
6706 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6707 
6708 	if (cmd_type == TYPE_CMD) {
6709 		switch (cmd) {
6710 		case HPSA_INQUIRY:
6711 			/* are we trying to read a vital product page */
6712 			if (page_code & VPD_PAGE) {
6713 				c->Request.CDB[1] = 0x01;
6714 				c->Request.CDB[2] = (page_code & 0xff);
6715 			}
6716 			c->Request.CDBLen = 6;
6717 			c->Request.type_attr_dir =
6718 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719 			c->Request.Timeout = 0;
6720 			c->Request.CDB[0] = HPSA_INQUIRY;
6721 			c->Request.CDB[4] = size & 0xFF;
6722 			break;
6723 		case RECEIVE_DIAGNOSTIC:
6724 			c->Request.CDBLen = 6;
6725 			c->Request.type_attr_dir =
6726 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6727 			c->Request.Timeout = 0;
6728 			c->Request.CDB[0] = cmd;
6729 			c->Request.CDB[1] = 1;
6730 			c->Request.CDB[2] = 1;
6731 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6732 			c->Request.CDB[4] = size & 0xFF;
6733 			break;
6734 		case HPSA_REPORT_LOG:
6735 		case HPSA_REPORT_PHYS:
6736 			/* Talking to controller so It's a physical command
6737 			   mode = 00 target = 0.  Nothing to write.
6738 			 */
6739 			c->Request.CDBLen = 12;
6740 			c->Request.type_attr_dir =
6741 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6742 			c->Request.Timeout = 0;
6743 			c->Request.CDB[0] = cmd;
6744 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6745 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6746 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6747 			c->Request.CDB[9] = size & 0xFF;
6748 			break;
6749 		case BMIC_SENSE_DIAG_OPTIONS:
6750 			c->Request.CDBLen = 16;
6751 			c->Request.type_attr_dir =
6752 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6753 			c->Request.Timeout = 0;
6754 			/* Spec says this should be BMIC_WRITE */
6755 			c->Request.CDB[0] = BMIC_READ;
6756 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6757 			break;
6758 		case BMIC_SET_DIAG_OPTIONS:
6759 			c->Request.CDBLen = 16;
6760 			c->Request.type_attr_dir =
6761 					TYPE_ATTR_DIR(cmd_type,
6762 						ATTR_SIMPLE, XFER_WRITE);
6763 			c->Request.Timeout = 0;
6764 			c->Request.CDB[0] = BMIC_WRITE;
6765 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6766 			break;
6767 		case HPSA_CACHE_FLUSH:
6768 			c->Request.CDBLen = 12;
6769 			c->Request.type_attr_dir =
6770 					TYPE_ATTR_DIR(cmd_type,
6771 						ATTR_SIMPLE, XFER_WRITE);
6772 			c->Request.Timeout = 0;
6773 			c->Request.CDB[0] = BMIC_WRITE;
6774 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6775 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6776 			c->Request.CDB[8] = size & 0xFF;
6777 			break;
6778 		case TEST_UNIT_READY:
6779 			c->Request.CDBLen = 6;
6780 			c->Request.type_attr_dir =
6781 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6782 			c->Request.Timeout = 0;
6783 			break;
6784 		case HPSA_GET_RAID_MAP:
6785 			c->Request.CDBLen = 12;
6786 			c->Request.type_attr_dir =
6787 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6788 			c->Request.Timeout = 0;
6789 			c->Request.CDB[0] = HPSA_CISS_READ;
6790 			c->Request.CDB[1] = cmd;
6791 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6792 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6793 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6794 			c->Request.CDB[9] = size & 0xFF;
6795 			break;
6796 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6797 			c->Request.CDBLen = 10;
6798 			c->Request.type_attr_dir =
6799 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6800 			c->Request.Timeout = 0;
6801 			c->Request.CDB[0] = BMIC_READ;
6802 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6803 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6804 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6805 			break;
6806 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6807 			c->Request.CDBLen = 10;
6808 			c->Request.type_attr_dir =
6809 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6810 			c->Request.Timeout = 0;
6811 			c->Request.CDB[0] = BMIC_READ;
6812 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6813 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6814 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6815 			break;
6816 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6817 			c->Request.CDBLen = 10;
6818 			c->Request.type_attr_dir =
6819 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6820 			c->Request.Timeout = 0;
6821 			c->Request.CDB[0] = BMIC_READ;
6822 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6823 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6824 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6825 			break;
6826 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6827 			c->Request.CDBLen = 10;
6828 			c->Request.type_attr_dir =
6829 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6830 			c->Request.Timeout = 0;
6831 			c->Request.CDB[0] = BMIC_READ;
6832 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6833 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6834 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6835 			break;
6836 		case BMIC_IDENTIFY_CONTROLLER:
6837 			c->Request.CDBLen = 10;
6838 			c->Request.type_attr_dir =
6839 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6840 			c->Request.Timeout = 0;
6841 			c->Request.CDB[0] = BMIC_READ;
6842 			c->Request.CDB[1] = 0;
6843 			c->Request.CDB[2] = 0;
6844 			c->Request.CDB[3] = 0;
6845 			c->Request.CDB[4] = 0;
6846 			c->Request.CDB[5] = 0;
6847 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6848 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6849 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6850 			c->Request.CDB[9] = 0;
6851 			break;
6852 		default:
6853 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6854 			BUG();
6855 		}
6856 	} else if (cmd_type == TYPE_MSG) {
6857 		switch (cmd) {
6858 
6859 		case  HPSA_PHYS_TARGET_RESET:
6860 			c->Request.CDBLen = 16;
6861 			c->Request.type_attr_dir =
6862 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6863 			c->Request.Timeout = 0; /* Don't time out */
6864 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6865 			c->Request.CDB[0] = HPSA_RESET;
6866 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6867 			/* Physical target reset needs no control bytes 4-7*/
6868 			c->Request.CDB[4] = 0x00;
6869 			c->Request.CDB[5] = 0x00;
6870 			c->Request.CDB[6] = 0x00;
6871 			c->Request.CDB[7] = 0x00;
6872 			break;
6873 		case  HPSA_DEVICE_RESET_MSG:
6874 			c->Request.CDBLen = 16;
6875 			c->Request.type_attr_dir =
6876 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6877 			c->Request.Timeout = 0; /* Don't time out */
6878 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6879 			c->Request.CDB[0] =  cmd;
6880 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6881 			/* If bytes 4-7 are zero, it means reset the */
6882 			/* LunID device */
6883 			c->Request.CDB[4] = 0x00;
6884 			c->Request.CDB[5] = 0x00;
6885 			c->Request.CDB[6] = 0x00;
6886 			c->Request.CDB[7] = 0x00;
6887 			break;
6888 		default:
6889 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6890 				cmd);
6891 			BUG();
6892 		}
6893 	} else {
6894 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6895 		BUG();
6896 	}
6897 
6898 	switch (GET_DIR(c->Request.type_attr_dir)) {
6899 	case XFER_READ:
6900 		dir = DMA_FROM_DEVICE;
6901 		break;
6902 	case XFER_WRITE:
6903 		dir = DMA_TO_DEVICE;
6904 		break;
6905 	case XFER_NONE:
6906 		dir = DMA_NONE;
6907 		break;
6908 	default:
6909 		dir = DMA_BIDIRECTIONAL;
6910 	}
6911 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6912 		return -1;
6913 	return 0;
6914 }
6915 
6916 /*
6917  * Map (physical) PCI mem into (virtual) kernel space
6918  */
remap_pci_mem(ulong base,ulong size)6919 static void __iomem *remap_pci_mem(ulong base, ulong size)
6920 {
6921 	ulong page_base = ((ulong) base) & PAGE_MASK;
6922 	ulong page_offs = ((ulong) base) - page_base;
6923 	void __iomem *page_remapped = ioremap(page_base,
6924 		page_offs + size);
6925 
6926 	return page_remapped ? (page_remapped + page_offs) : NULL;
6927 }
6928 
get_next_completion(struct ctlr_info * h,u8 q)6929 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6930 {
6931 	return h->access.command_completed(h, q);
6932 }
6933 
interrupt_pending(struct ctlr_info * h)6934 static inline bool interrupt_pending(struct ctlr_info *h)
6935 {
6936 	return h->access.intr_pending(h);
6937 }
6938 
interrupt_not_for_us(struct ctlr_info * h)6939 static inline long interrupt_not_for_us(struct ctlr_info *h)
6940 {
6941 	return (h->access.intr_pending(h) == 0) ||
6942 		(h->interrupts_enabled == 0);
6943 }
6944 
bad_tag(struct ctlr_info * h,u32 tag_index,u32 raw_tag)6945 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6946 	u32 raw_tag)
6947 {
6948 	if (unlikely(tag_index >= h->nr_cmds)) {
6949 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6950 		return 1;
6951 	}
6952 	return 0;
6953 }
6954 
finish_cmd(struct CommandList * c)6955 static inline void finish_cmd(struct CommandList *c)
6956 {
6957 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6958 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6959 			|| c->cmd_type == CMD_IOACCEL2))
6960 		complete_scsi_command(c);
6961 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6962 		complete(c->waiting);
6963 }
6964 
6965 /* process completion of an indexed ("direct lookup") command */
process_indexed_cmd(struct ctlr_info * h,u32 raw_tag)6966 static inline void process_indexed_cmd(struct ctlr_info *h,
6967 	u32 raw_tag)
6968 {
6969 	u32 tag_index;
6970 	struct CommandList *c;
6971 
6972 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6973 	if (!bad_tag(h, tag_index, raw_tag)) {
6974 		c = h->cmd_pool + tag_index;
6975 		finish_cmd(c);
6976 	}
6977 }
6978 
6979 /* Some controllers, like p400, will give us one interrupt
6980  * after a soft reset, even if we turned interrupts off.
6981  * Only need to check for this in the hpsa_xxx_discard_completions
6982  * functions.
6983  */
ignore_bogus_interrupt(struct ctlr_info * h)6984 static int ignore_bogus_interrupt(struct ctlr_info *h)
6985 {
6986 	if (likely(!reset_devices))
6987 		return 0;
6988 
6989 	if (likely(h->interrupts_enabled))
6990 		return 0;
6991 
6992 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6993 		"(known firmware bug.)  Ignoring.\n");
6994 
6995 	return 1;
6996 }
6997 
6998 /*
6999  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7000  * Relies on (h-q[x] == x) being true for x such that
7001  * 0 <= x < MAX_REPLY_QUEUES.
7002  */
queue_to_hba(u8 * queue)7003 static struct ctlr_info *queue_to_hba(u8 *queue)
7004 {
7005 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7006 }
7007 
hpsa_intx_discard_completions(int irq,void * queue)7008 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7009 {
7010 	struct ctlr_info *h = queue_to_hba(queue);
7011 	u8 q = *(u8 *) queue;
7012 	u32 raw_tag;
7013 
7014 	if (ignore_bogus_interrupt(h))
7015 		return IRQ_NONE;
7016 
7017 	if (interrupt_not_for_us(h))
7018 		return IRQ_NONE;
7019 	h->last_intr_timestamp = get_jiffies_64();
7020 	while (interrupt_pending(h)) {
7021 		raw_tag = get_next_completion(h, q);
7022 		while (raw_tag != FIFO_EMPTY)
7023 			raw_tag = next_command(h, q);
7024 	}
7025 	return IRQ_HANDLED;
7026 }
7027 
hpsa_msix_discard_completions(int irq,void * queue)7028 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7029 {
7030 	struct ctlr_info *h = queue_to_hba(queue);
7031 	u32 raw_tag;
7032 	u8 q = *(u8 *) queue;
7033 
7034 	if (ignore_bogus_interrupt(h))
7035 		return IRQ_NONE;
7036 
7037 	h->last_intr_timestamp = get_jiffies_64();
7038 	raw_tag = get_next_completion(h, q);
7039 	while (raw_tag != FIFO_EMPTY)
7040 		raw_tag = next_command(h, q);
7041 	return IRQ_HANDLED;
7042 }
7043 
do_hpsa_intr_intx(int irq,void * queue)7044 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7045 {
7046 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7047 	u32 raw_tag;
7048 	u8 q = *(u8 *) queue;
7049 
7050 	if (interrupt_not_for_us(h))
7051 		return IRQ_NONE;
7052 	h->last_intr_timestamp = get_jiffies_64();
7053 	while (interrupt_pending(h)) {
7054 		raw_tag = get_next_completion(h, q);
7055 		while (raw_tag != FIFO_EMPTY) {
7056 			process_indexed_cmd(h, raw_tag);
7057 			raw_tag = next_command(h, q);
7058 		}
7059 	}
7060 	return IRQ_HANDLED;
7061 }
7062 
do_hpsa_intr_msi(int irq,void * queue)7063 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7064 {
7065 	struct ctlr_info *h = queue_to_hba(queue);
7066 	u32 raw_tag;
7067 	u8 q = *(u8 *) queue;
7068 
7069 	h->last_intr_timestamp = get_jiffies_64();
7070 	raw_tag = get_next_completion(h, q);
7071 	while (raw_tag != FIFO_EMPTY) {
7072 		process_indexed_cmd(h, raw_tag);
7073 		raw_tag = next_command(h, q);
7074 	}
7075 	return IRQ_HANDLED;
7076 }
7077 
7078 /* Send a message CDB to the firmware. Careful, this only works
7079  * in simple mode, not performant mode due to the tag lookup.
7080  * We only ever use this immediately after a controller reset.
7081  */
hpsa_message(struct pci_dev * pdev,unsigned char opcode,unsigned char type)7082 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7083 			unsigned char type)
7084 {
7085 	struct Command {
7086 		struct CommandListHeader CommandHeader;
7087 		struct RequestBlock Request;
7088 		struct ErrDescriptor ErrorDescriptor;
7089 	};
7090 	struct Command *cmd;
7091 	static const size_t cmd_sz = sizeof(*cmd) +
7092 					sizeof(cmd->ErrorDescriptor);
7093 	dma_addr_t paddr64;
7094 	__le32 paddr32;
7095 	u32 tag;
7096 	void __iomem *vaddr;
7097 	int i, err;
7098 
7099 	vaddr = pci_ioremap_bar(pdev, 0);
7100 	if (vaddr == NULL)
7101 		return -ENOMEM;
7102 
7103 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7104 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7105 	 * memory.
7106 	 */
7107 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7108 	if (err) {
7109 		iounmap(vaddr);
7110 		return err;
7111 	}
7112 
7113 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7114 	if (cmd == NULL) {
7115 		iounmap(vaddr);
7116 		return -ENOMEM;
7117 	}
7118 
7119 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7120 	 * although there's no guarantee, we assume that the address is at
7121 	 * least 4-byte aligned (most likely, it's page-aligned).
7122 	 */
7123 	paddr32 = cpu_to_le32(paddr64);
7124 
7125 	cmd->CommandHeader.ReplyQueue = 0;
7126 	cmd->CommandHeader.SGList = 0;
7127 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7128 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7129 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7130 
7131 	cmd->Request.CDBLen = 16;
7132 	cmd->Request.type_attr_dir =
7133 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7134 	cmd->Request.Timeout = 0; /* Don't time out */
7135 	cmd->Request.CDB[0] = opcode;
7136 	cmd->Request.CDB[1] = type;
7137 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7138 	cmd->ErrorDescriptor.Addr =
7139 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7140 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7141 
7142 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7143 
7144 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7145 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7146 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7147 			break;
7148 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7149 	}
7150 
7151 	iounmap(vaddr);
7152 
7153 	/* we leak the DMA buffer here ... no choice since the controller could
7154 	 *  still complete the command.
7155 	 */
7156 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7157 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7158 			opcode, type);
7159 		return -ETIMEDOUT;
7160 	}
7161 
7162 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7163 
7164 	if (tag & HPSA_ERROR_BIT) {
7165 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7166 			opcode, type);
7167 		return -EIO;
7168 	}
7169 
7170 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7171 		opcode, type);
7172 	return 0;
7173 }
7174 
7175 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7176 
hpsa_controller_hard_reset(struct pci_dev * pdev,void __iomem * vaddr,u32 use_doorbell)7177 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7178 	void __iomem *vaddr, u32 use_doorbell)
7179 {
7180 
7181 	if (use_doorbell) {
7182 		/* For everything after the P600, the PCI power state method
7183 		 * of resetting the controller doesn't work, so we have this
7184 		 * other way using the doorbell register.
7185 		 */
7186 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7187 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7188 
7189 		/* PMC hardware guys tell us we need a 10 second delay after
7190 		 * doorbell reset and before any attempt to talk to the board
7191 		 * at all to ensure that this actually works and doesn't fall
7192 		 * over in some weird corner cases.
7193 		 */
7194 		msleep(10000);
7195 	} else { /* Try to do it the PCI power state way */
7196 
7197 		/* Quoting from the Open CISS Specification: "The Power
7198 		 * Management Control/Status Register (CSR) controls the power
7199 		 * state of the device.  The normal operating state is D0,
7200 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7201 		 * the controller, place the interface device in D3 then to D0,
7202 		 * this causes a secondary PCI reset which will reset the
7203 		 * controller." */
7204 
7205 		int rc = 0;
7206 
7207 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7208 
7209 		/* enter the D3hot power management state */
7210 		rc = pci_set_power_state(pdev, PCI_D3hot);
7211 		if (rc)
7212 			return rc;
7213 
7214 		msleep(500);
7215 
7216 		/* enter the D0 power management state */
7217 		rc = pci_set_power_state(pdev, PCI_D0);
7218 		if (rc)
7219 			return rc;
7220 
7221 		/*
7222 		 * The P600 requires a small delay when changing states.
7223 		 * Otherwise we may think the board did not reset and we bail.
7224 		 * This for kdump only and is particular to the P600.
7225 		 */
7226 		msleep(500);
7227 	}
7228 	return 0;
7229 }
7230 
init_driver_version(char * driver_version,int len)7231 static void init_driver_version(char *driver_version, int len)
7232 {
7233 	strscpy_pad(driver_version, HPSA " " HPSA_DRIVER_VERSION, len);
7234 }
7235 
write_driver_ver_to_cfgtable(struct CfgTable __iomem * cfgtable)7236 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7237 {
7238 	char *driver_version;
7239 	int i, size = sizeof(cfgtable->driver_version);
7240 
7241 	driver_version = kmalloc(size, GFP_KERNEL);
7242 	if (!driver_version)
7243 		return -ENOMEM;
7244 
7245 	init_driver_version(driver_version, size);
7246 	for (i = 0; i < size; i++)
7247 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7248 	kfree(driver_version);
7249 	return 0;
7250 }
7251 
read_driver_ver_from_cfgtable(struct CfgTable __iomem * cfgtable,unsigned char * driver_ver)7252 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7253 					  unsigned char *driver_ver)
7254 {
7255 	int i;
7256 
7257 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7258 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7259 }
7260 
controller_reset_failed(struct CfgTable __iomem * cfgtable)7261 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7262 {
7263 
7264 	char *driver_ver, *old_driver_ver;
7265 	int rc, size = sizeof(cfgtable->driver_version);
7266 
7267 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7268 	if (!old_driver_ver)
7269 		return -ENOMEM;
7270 	driver_ver = old_driver_ver + size;
7271 
7272 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7273 	 * should have been changed, otherwise we know the reset failed.
7274 	 */
7275 	init_driver_version(old_driver_ver, size);
7276 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7277 	rc = !memcmp(driver_ver, old_driver_ver, size);
7278 	kfree(old_driver_ver);
7279 	return rc;
7280 }
7281 /* This does a hard reset of the controller using PCI power management
7282  * states or the using the doorbell register.
7283  */
hpsa_kdump_hard_reset_controller(struct pci_dev * pdev,u32 board_id)7284 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7285 {
7286 	u64 cfg_offset;
7287 	u32 cfg_base_addr;
7288 	u64 cfg_base_addr_index;
7289 	void __iomem *vaddr;
7290 	unsigned long paddr;
7291 	u32 misc_fw_support;
7292 	int rc;
7293 	struct CfgTable __iomem *cfgtable;
7294 	u32 use_doorbell;
7295 	u16 command_register;
7296 
7297 	/* For controllers as old as the P600, this is very nearly
7298 	 * the same thing as
7299 	 *
7300 	 * pci_save_state(pci_dev);
7301 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7302 	 * pci_set_power_state(pci_dev, PCI_D0);
7303 	 * pci_restore_state(pci_dev);
7304 	 *
7305 	 * For controllers newer than the P600, the pci power state
7306 	 * method of resetting doesn't work so we have another way
7307 	 * using the doorbell register.
7308 	 */
7309 
7310 	if (!ctlr_is_resettable(board_id)) {
7311 		dev_warn(&pdev->dev, "Controller not resettable\n");
7312 		return -ENODEV;
7313 	}
7314 
7315 	/* if controller is soft- but not hard resettable... */
7316 	if (!ctlr_is_hard_resettable(board_id))
7317 		return -ENOTSUPP; /* try soft reset later. */
7318 
7319 	/* Save the PCI command register */
7320 	pci_read_config_word(pdev, 4, &command_register);
7321 	pci_save_state(pdev);
7322 
7323 	/* find the first memory BAR, so we can find the cfg table */
7324 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7325 	if (rc)
7326 		return rc;
7327 	vaddr = remap_pci_mem(paddr, 0x250);
7328 	if (!vaddr)
7329 		return -ENOMEM;
7330 
7331 	/* find cfgtable in order to check if reset via doorbell is supported */
7332 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7333 					&cfg_base_addr_index, &cfg_offset);
7334 	if (rc)
7335 		goto unmap_vaddr;
7336 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7337 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7338 	if (!cfgtable) {
7339 		rc = -ENOMEM;
7340 		goto unmap_vaddr;
7341 	}
7342 	rc = write_driver_ver_to_cfgtable(cfgtable);
7343 	if (rc)
7344 		goto unmap_cfgtable;
7345 
7346 	/* If reset via doorbell register is supported, use that.
7347 	 * There are two such methods.  Favor the newest method.
7348 	 */
7349 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7350 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7351 	if (use_doorbell) {
7352 		use_doorbell = DOORBELL_CTLR_RESET2;
7353 	} else {
7354 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7355 		if (use_doorbell) {
7356 			dev_warn(&pdev->dev,
7357 				"Soft reset not supported. Firmware update is required.\n");
7358 			rc = -ENOTSUPP; /* try soft reset */
7359 			goto unmap_cfgtable;
7360 		}
7361 	}
7362 
7363 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7364 	if (rc)
7365 		goto unmap_cfgtable;
7366 
7367 	pci_restore_state(pdev);
7368 	pci_write_config_word(pdev, 4, command_register);
7369 
7370 	/* Some devices (notably the HP Smart Array 5i Controller)
7371 	   need a little pause here */
7372 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7373 
7374 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7375 	if (rc) {
7376 		dev_warn(&pdev->dev,
7377 			"Failed waiting for board to become ready after hard reset\n");
7378 		goto unmap_cfgtable;
7379 	}
7380 
7381 	rc = controller_reset_failed(vaddr);
7382 	if (rc < 0)
7383 		goto unmap_cfgtable;
7384 	if (rc) {
7385 		dev_warn(&pdev->dev, "Unable to successfully reset "
7386 			"controller. Will try soft reset.\n");
7387 		rc = -ENOTSUPP;
7388 	} else {
7389 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7390 	}
7391 
7392 unmap_cfgtable:
7393 	iounmap(cfgtable);
7394 
7395 unmap_vaddr:
7396 	iounmap(vaddr);
7397 	return rc;
7398 }
7399 
7400 /*
7401  *  We cannot read the structure directly, for portability we must use
7402  *   the io functions.
7403  *   This is for debug only.
7404  */
print_cfg_table(struct device * dev,struct CfgTable __iomem * tb)7405 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7406 {
7407 #ifdef HPSA_DEBUG
7408 	int i;
7409 	char temp_name[17];
7410 
7411 	dev_info(dev, "Controller Configuration information\n");
7412 	dev_info(dev, "------------------------------------\n");
7413 	for (i = 0; i < 4; i++)
7414 		temp_name[i] = readb(&(tb->Signature[i]));
7415 	temp_name[4] = '\0';
7416 	dev_info(dev, "   Signature = %s\n", temp_name);
7417 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7418 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7419 	       readl(&(tb->TransportSupport)));
7420 	dev_info(dev, "   Transport methods active = 0x%x\n",
7421 	       readl(&(tb->TransportActive)));
7422 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7423 	       readl(&(tb->HostWrite.TransportRequest)));
7424 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7425 	       readl(&(tb->HostWrite.CoalIntDelay)));
7426 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7427 	       readl(&(tb->HostWrite.CoalIntCount)));
7428 	dev_info(dev, "   Max outstanding commands = %d\n",
7429 	       readl(&(tb->CmdsOutMax)));
7430 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7431 	for (i = 0; i < 16; i++)
7432 		temp_name[i] = readb(&(tb->ServerName[i]));
7433 	temp_name[16] = '\0';
7434 	dev_info(dev, "   Server Name = %s\n", temp_name);
7435 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7436 		readl(&(tb->HeartBeat)));
7437 #endif				/* HPSA_DEBUG */
7438 }
7439 
find_PCI_BAR_index(struct pci_dev * pdev,unsigned long pci_bar_addr)7440 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7441 {
7442 	int i, offset, mem_type, bar_type;
7443 
7444 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7445 		return 0;
7446 	offset = 0;
7447 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7448 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7449 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7450 			offset += 4;
7451 		else {
7452 			mem_type = pci_resource_flags(pdev, i) &
7453 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7454 			switch (mem_type) {
7455 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7456 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7457 				offset += 4;	/* 32 bit */
7458 				break;
7459 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7460 				offset += 8;
7461 				break;
7462 			default:	/* reserved in PCI 2.2 */
7463 				dev_warn(&pdev->dev,
7464 				       "base address is invalid\n");
7465 				return -1;
7466 			}
7467 		}
7468 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7469 			return i + 1;
7470 	}
7471 	return -1;
7472 }
7473 
hpsa_disable_interrupt_mode(struct ctlr_info * h)7474 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7475 {
7476 	pci_free_irq_vectors(h->pdev);
7477 	h->msix_vectors = 0;
7478 }
7479 
hpsa_setup_reply_map(struct ctlr_info * h)7480 static void hpsa_setup_reply_map(struct ctlr_info *h)
7481 {
7482 	const struct cpumask *mask;
7483 	unsigned int queue, cpu;
7484 
7485 	for (queue = 0; queue < h->msix_vectors; queue++) {
7486 		mask = pci_irq_get_affinity(h->pdev, queue);
7487 		if (!mask)
7488 			goto fallback;
7489 
7490 		for_each_cpu(cpu, mask)
7491 			h->reply_map[cpu] = queue;
7492 	}
7493 	return;
7494 
7495 fallback:
7496 	for_each_possible_cpu(cpu)
7497 		h->reply_map[cpu] = 0;
7498 }
7499 
7500 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7501  * controllers that are capable. If not, we use legacy INTx mode.
7502  */
hpsa_interrupt_mode(struct ctlr_info * h)7503 static int hpsa_interrupt_mode(struct ctlr_info *h)
7504 {
7505 	unsigned int flags = PCI_IRQ_INTX;
7506 	int ret;
7507 
7508 	/* Some boards advertise MSI but don't really support it */
7509 	switch (h->board_id) {
7510 	case 0x40700E11:
7511 	case 0x40800E11:
7512 	case 0x40820E11:
7513 	case 0x40830E11:
7514 		break;
7515 	default:
7516 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7517 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7518 		if (ret > 0) {
7519 			h->msix_vectors = ret;
7520 			return 0;
7521 		}
7522 
7523 		flags |= PCI_IRQ_MSI;
7524 		break;
7525 	}
7526 
7527 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7528 	if (ret < 0)
7529 		return ret;
7530 	return 0;
7531 }
7532 
hpsa_lookup_board_id(struct pci_dev * pdev,u32 * board_id,bool * legacy_board)7533 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7534 				bool *legacy_board)
7535 {
7536 	int i;
7537 	u32 subsystem_vendor_id, subsystem_device_id;
7538 
7539 	subsystem_vendor_id = pdev->subsystem_vendor;
7540 	subsystem_device_id = pdev->subsystem_device;
7541 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7542 		    subsystem_vendor_id;
7543 
7544 	if (legacy_board)
7545 		*legacy_board = false;
7546 	for (i = 0; i < ARRAY_SIZE(products); i++)
7547 		if (*board_id == products[i].board_id) {
7548 			if (products[i].access != &SA5A_access &&
7549 			    products[i].access != &SA5B_access)
7550 				return i;
7551 			dev_warn(&pdev->dev,
7552 				 "legacy board ID: 0x%08x\n",
7553 				 *board_id);
7554 			if (legacy_board)
7555 			    *legacy_board = true;
7556 			return i;
7557 		}
7558 
7559 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7560 	if (legacy_board)
7561 		*legacy_board = true;
7562 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7563 }
7564 
hpsa_pci_find_memory_BAR(struct pci_dev * pdev,unsigned long * memory_bar)7565 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7566 				    unsigned long *memory_bar)
7567 {
7568 	int i;
7569 
7570 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7571 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7572 			/* addressing mode bits already removed */
7573 			*memory_bar = pci_resource_start(pdev, i);
7574 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7575 				*memory_bar);
7576 			return 0;
7577 		}
7578 	dev_warn(&pdev->dev, "no memory BAR found\n");
7579 	return -ENODEV;
7580 }
7581 
hpsa_wait_for_board_state(struct pci_dev * pdev,void __iomem * vaddr,int wait_for_ready)7582 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7583 				     int wait_for_ready)
7584 {
7585 	int i, iterations;
7586 	u32 scratchpad;
7587 	if (wait_for_ready)
7588 		iterations = HPSA_BOARD_READY_ITERATIONS;
7589 	else
7590 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7591 
7592 	for (i = 0; i < iterations; i++) {
7593 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7594 		if (wait_for_ready) {
7595 			if (scratchpad == HPSA_FIRMWARE_READY)
7596 				return 0;
7597 		} else {
7598 			if (scratchpad != HPSA_FIRMWARE_READY)
7599 				return 0;
7600 		}
7601 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7602 	}
7603 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7604 	return -ENODEV;
7605 }
7606 
hpsa_find_cfg_addrs(struct pci_dev * pdev,void __iomem * vaddr,u32 * cfg_base_addr,u64 * cfg_base_addr_index,u64 * cfg_offset)7607 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7608 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7609 			       u64 *cfg_offset)
7610 {
7611 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7612 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7613 	*cfg_base_addr &= (u32) 0x0000ffff;
7614 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7615 	if (*cfg_base_addr_index == -1) {
7616 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7617 		return -ENODEV;
7618 	}
7619 	return 0;
7620 }
7621 
hpsa_free_cfgtables(struct ctlr_info * h)7622 static void hpsa_free_cfgtables(struct ctlr_info *h)
7623 {
7624 	if (h->transtable) {
7625 		iounmap(h->transtable);
7626 		h->transtable = NULL;
7627 	}
7628 	if (h->cfgtable) {
7629 		iounmap(h->cfgtable);
7630 		h->cfgtable = NULL;
7631 	}
7632 }
7633 
7634 /* Find and map CISS config table and transfer table
7635 + * several items must be unmapped (freed) later
7636 + * */
hpsa_find_cfgtables(struct ctlr_info * h)7637 static int hpsa_find_cfgtables(struct ctlr_info *h)
7638 {
7639 	u64 cfg_offset;
7640 	u32 cfg_base_addr;
7641 	u64 cfg_base_addr_index;
7642 	u32 trans_offset;
7643 	int rc;
7644 
7645 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7646 		&cfg_base_addr_index, &cfg_offset);
7647 	if (rc)
7648 		return rc;
7649 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7650 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7651 	if (!h->cfgtable) {
7652 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7653 		return -ENOMEM;
7654 	}
7655 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7656 	if (rc)
7657 		return rc;
7658 	/* Find performant mode table. */
7659 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7660 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7661 				cfg_base_addr_index)+cfg_offset+trans_offset,
7662 				sizeof(*h->transtable));
7663 	if (!h->transtable) {
7664 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7665 		hpsa_free_cfgtables(h);
7666 		return -ENOMEM;
7667 	}
7668 	return 0;
7669 }
7670 
hpsa_get_max_perf_mode_cmds(struct ctlr_info * h)7671 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7672 {
7673 #define MIN_MAX_COMMANDS 16
7674 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7675 
7676 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7677 
7678 	/* Limit commands in memory limited kdump scenario. */
7679 	if (reset_devices && h->max_commands > 32)
7680 		h->max_commands = 32;
7681 
7682 	if (h->max_commands < MIN_MAX_COMMANDS) {
7683 		dev_warn(&h->pdev->dev,
7684 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7685 			h->max_commands,
7686 			MIN_MAX_COMMANDS);
7687 		h->max_commands = MIN_MAX_COMMANDS;
7688 	}
7689 }
7690 
7691 /* If the controller reports that the total max sg entries is greater than 512,
7692  * then we know that chained SG blocks work.  (Original smart arrays did not
7693  * support chained SG blocks and would return zero for max sg entries.)
7694  */
hpsa_supports_chained_sg_blocks(struct ctlr_info * h)7695 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7696 {
7697 	return h->maxsgentries > 512;
7698 }
7699 
7700 /* Interrogate the hardware for some limits:
7701  * max commands, max SG elements without chaining, and with chaining,
7702  * SG chain block size, etc.
7703  */
hpsa_find_board_params(struct ctlr_info * h)7704 static void hpsa_find_board_params(struct ctlr_info *h)
7705 {
7706 	hpsa_get_max_perf_mode_cmds(h);
7707 	h->nr_cmds = h->max_commands;
7708 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7709 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7710 	if (hpsa_supports_chained_sg_blocks(h)) {
7711 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7712 		h->max_cmd_sg_entries = 32;
7713 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7714 		h->maxsgentries--; /* save one for chain pointer */
7715 	} else {
7716 		/*
7717 		 * Original smart arrays supported at most 31 s/g entries
7718 		 * embedded inline in the command (trying to use more
7719 		 * would lock up the controller)
7720 		 */
7721 		h->max_cmd_sg_entries = 31;
7722 		h->maxsgentries = 31; /* default to traditional values */
7723 		h->chainsize = 0;
7724 	}
7725 
7726 	/* Find out what task management functions are supported and cache */
7727 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7728 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7729 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7730 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7731 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7732 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7733 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7734 }
7735 
hpsa_CISS_signature_present(struct ctlr_info * h)7736 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7737 {
7738 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7739 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7740 		return false;
7741 	}
7742 	return true;
7743 }
7744 
hpsa_set_driver_support_bits(struct ctlr_info * h)7745 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7746 {
7747 	u32 driver_support;
7748 
7749 	driver_support = readl(&(h->cfgtable->driver_support));
7750 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7751 #ifdef CONFIG_X86
7752 	driver_support |= ENABLE_SCSI_PREFETCH;
7753 #endif
7754 	driver_support |= ENABLE_UNIT_ATTN;
7755 	writel(driver_support, &(h->cfgtable->driver_support));
7756 }
7757 
7758 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7759  * in a prefetch beyond physical memory.
7760  */
hpsa_p600_dma_prefetch_quirk(struct ctlr_info * h)7761 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7762 {
7763 	u32 dma_prefetch;
7764 
7765 	if (h->board_id != 0x3225103C)
7766 		return;
7767 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7768 	dma_prefetch |= 0x8000;
7769 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7770 }
7771 
hpsa_wait_for_clear_event_notify_ack(struct ctlr_info * h)7772 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7773 {
7774 	int i;
7775 	u32 doorbell_value;
7776 	unsigned long flags;
7777 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7778 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7779 		spin_lock_irqsave(&h->lock, flags);
7780 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7781 		spin_unlock_irqrestore(&h->lock, flags);
7782 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7783 			goto done;
7784 		/* delay and try again */
7785 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7786 	}
7787 	return -ENODEV;
7788 done:
7789 	return 0;
7790 }
7791 
hpsa_wait_for_mode_change_ack(struct ctlr_info * h)7792 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7793 {
7794 	int i;
7795 	u32 doorbell_value;
7796 	unsigned long flags;
7797 
7798 	/* under certain very rare conditions, this can take awhile.
7799 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7800 	 * as we enter this code.)
7801 	 */
7802 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7803 		if (h->remove_in_progress)
7804 			goto done;
7805 		spin_lock_irqsave(&h->lock, flags);
7806 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7807 		spin_unlock_irqrestore(&h->lock, flags);
7808 		if (!(doorbell_value & CFGTBL_ChangeReq))
7809 			goto done;
7810 		/* delay and try again */
7811 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7812 	}
7813 	return -ENODEV;
7814 done:
7815 	return 0;
7816 }
7817 
7818 /* return -ENODEV or other reason on error, 0 on success */
hpsa_enter_simple_mode(struct ctlr_info * h)7819 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7820 {
7821 	u32 trans_support;
7822 
7823 	trans_support = readl(&(h->cfgtable->TransportSupport));
7824 	if (!(trans_support & SIMPLE_MODE))
7825 		return -ENOTSUPP;
7826 
7827 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7828 
7829 	/* Update the field, and then ring the doorbell */
7830 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7831 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7832 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7833 	if (hpsa_wait_for_mode_change_ack(h))
7834 		goto error;
7835 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7836 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7837 		goto error;
7838 	h->transMethod = CFGTBL_Trans_Simple;
7839 	return 0;
7840 error:
7841 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7842 	return -ENODEV;
7843 }
7844 
7845 /* free items allocated or mapped by hpsa_pci_init */
hpsa_free_pci_init(struct ctlr_info * h)7846 static void hpsa_free_pci_init(struct ctlr_info *h)
7847 {
7848 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7849 	iounmap(h->vaddr);			/* pci_init 3 */
7850 	h->vaddr = NULL;
7851 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7852 	/*
7853 	 * call pci_disable_device before pci_release_regions per
7854 	 * Documentation/driver-api/pci/pci.rst
7855 	 */
7856 	pci_disable_device(h->pdev);		/* pci_init 1 */
7857 	pci_release_regions(h->pdev);		/* pci_init 2 */
7858 }
7859 
7860 /* several items must be freed later */
hpsa_pci_init(struct ctlr_info * h)7861 static int hpsa_pci_init(struct ctlr_info *h)
7862 {
7863 	int prod_index, err;
7864 	bool legacy_board;
7865 
7866 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7867 	if (prod_index < 0)
7868 		return prod_index;
7869 	h->product_name = products[prod_index].product_name;
7870 	h->access = *(products[prod_index].access);
7871 	h->legacy_board = legacy_board;
7872 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7873 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7874 
7875 	err = pci_enable_device(h->pdev);
7876 	if (err) {
7877 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7878 		pci_disable_device(h->pdev);
7879 		return err;
7880 	}
7881 
7882 	err = pci_request_regions(h->pdev, HPSA);
7883 	if (err) {
7884 		dev_err(&h->pdev->dev,
7885 			"failed to obtain PCI resources\n");
7886 		pci_disable_device(h->pdev);
7887 		return err;
7888 	}
7889 
7890 	pci_set_master(h->pdev);
7891 
7892 	err = hpsa_interrupt_mode(h);
7893 	if (err)
7894 		goto clean1;
7895 
7896 	/* setup mapping between CPU and reply queue */
7897 	hpsa_setup_reply_map(h);
7898 
7899 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7900 	if (err)
7901 		goto clean2;	/* intmode+region, pci */
7902 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7903 	if (!h->vaddr) {
7904 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7905 		err = -ENOMEM;
7906 		goto clean2;	/* intmode+region, pci */
7907 	}
7908 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7909 	if (err)
7910 		goto clean3;	/* vaddr, intmode+region, pci */
7911 	err = hpsa_find_cfgtables(h);
7912 	if (err)
7913 		goto clean3;	/* vaddr, intmode+region, pci */
7914 	hpsa_find_board_params(h);
7915 
7916 	if (!hpsa_CISS_signature_present(h)) {
7917 		err = -ENODEV;
7918 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7919 	}
7920 	hpsa_set_driver_support_bits(h);
7921 	hpsa_p600_dma_prefetch_quirk(h);
7922 	err = hpsa_enter_simple_mode(h);
7923 	if (err)
7924 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7925 	return 0;
7926 
7927 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7928 	hpsa_free_cfgtables(h);
7929 clean3:	/* vaddr, intmode+region, pci */
7930 	iounmap(h->vaddr);
7931 	h->vaddr = NULL;
7932 clean2:	/* intmode+region, pci */
7933 	hpsa_disable_interrupt_mode(h);
7934 clean1:
7935 	/*
7936 	 * call pci_disable_device before pci_release_regions per
7937 	 * Documentation/driver-api/pci/pci.rst
7938 	 */
7939 	pci_disable_device(h->pdev);
7940 	pci_release_regions(h->pdev);
7941 	return err;
7942 }
7943 
hpsa_hba_inquiry(struct ctlr_info * h)7944 static void hpsa_hba_inquiry(struct ctlr_info *h)
7945 {
7946 	int rc;
7947 
7948 #define HBA_INQUIRY_BYTE_COUNT 64
7949 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7950 	if (!h->hba_inquiry_data)
7951 		return;
7952 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7953 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7954 	if (rc != 0) {
7955 		kfree(h->hba_inquiry_data);
7956 		h->hba_inquiry_data = NULL;
7957 	}
7958 }
7959 
hpsa_init_reset_devices(struct pci_dev * pdev,u32 board_id)7960 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7961 {
7962 	int rc, i;
7963 	void __iomem *vaddr;
7964 
7965 	if (!reset_devices)
7966 		return 0;
7967 
7968 	/* kdump kernel is loading, we don't know in which state is
7969 	 * the pci interface. The dev->enable_cnt is equal zero
7970 	 * so we call enable+disable, wait a while and switch it on.
7971 	 */
7972 	rc = pci_enable_device(pdev);
7973 	if (rc) {
7974 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7975 		return -ENODEV;
7976 	}
7977 	pci_disable_device(pdev);
7978 	msleep(260);			/* a randomly chosen number */
7979 	rc = pci_enable_device(pdev);
7980 	if (rc) {
7981 		dev_warn(&pdev->dev, "failed to enable device.\n");
7982 		return -ENODEV;
7983 	}
7984 
7985 	pci_set_master(pdev);
7986 
7987 	vaddr = pci_ioremap_bar(pdev, 0);
7988 	if (vaddr == NULL) {
7989 		rc = -ENOMEM;
7990 		goto out_disable;
7991 	}
7992 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7993 	iounmap(vaddr);
7994 
7995 	/* Reset the controller with a PCI power-cycle or via doorbell */
7996 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7997 
7998 	/* -ENOTSUPP here means we cannot reset the controller
7999 	 * but it's already (and still) up and running in
8000 	 * "performant mode".  Or, it might be 640x, which can't reset
8001 	 * due to concerns about shared bbwc between 6402/6404 pair.
8002 	 */
8003 	if (rc)
8004 		goto out_disable;
8005 
8006 	/* Now try to get the controller to respond to a no-op */
8007 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8008 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8009 		if (hpsa_noop(pdev) == 0)
8010 			break;
8011 		else
8012 			dev_warn(&pdev->dev, "no-op failed%s\n",
8013 					(i < 11 ? "; re-trying" : ""));
8014 	}
8015 
8016 out_disable:
8017 
8018 	pci_disable_device(pdev);
8019 	return rc;
8020 }
8021 
hpsa_free_cmd_pool(struct ctlr_info * h)8022 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8023 {
8024 	bitmap_free(h->cmd_pool_bits);
8025 	h->cmd_pool_bits = NULL;
8026 	if (h->cmd_pool) {
8027 		dma_free_coherent(&h->pdev->dev,
8028 				h->nr_cmds * sizeof(struct CommandList),
8029 				h->cmd_pool,
8030 				h->cmd_pool_dhandle);
8031 		h->cmd_pool = NULL;
8032 		h->cmd_pool_dhandle = 0;
8033 	}
8034 	if (h->errinfo_pool) {
8035 		dma_free_coherent(&h->pdev->dev,
8036 				h->nr_cmds * sizeof(struct ErrorInfo),
8037 				h->errinfo_pool,
8038 				h->errinfo_pool_dhandle);
8039 		h->errinfo_pool = NULL;
8040 		h->errinfo_pool_dhandle = 0;
8041 	}
8042 }
8043 
hpsa_alloc_cmd_pool(struct ctlr_info * h)8044 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8045 {
8046 	h->cmd_pool_bits = bitmap_zalloc(h->nr_cmds, GFP_KERNEL);
8047 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8048 		    h->nr_cmds * sizeof(*h->cmd_pool),
8049 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8050 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8051 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8052 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8053 	if ((h->cmd_pool_bits == NULL)
8054 	    || (h->cmd_pool == NULL)
8055 	    || (h->errinfo_pool == NULL)) {
8056 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8057 		goto clean_up;
8058 	}
8059 	hpsa_preinitialize_commands(h);
8060 	return 0;
8061 clean_up:
8062 	hpsa_free_cmd_pool(h);
8063 	return -ENOMEM;
8064 }
8065 
8066 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
hpsa_free_irqs(struct ctlr_info * h)8067 static void hpsa_free_irqs(struct ctlr_info *h)
8068 {
8069 	int i;
8070 	int irq_vector = 0;
8071 
8072 	if (hpsa_simple_mode)
8073 		irq_vector = h->intr_mode;
8074 
8075 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8076 		/* Single reply queue, only one irq to free */
8077 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8078 				&h->q[h->intr_mode]);
8079 		h->q[h->intr_mode] = 0;
8080 		return;
8081 	}
8082 
8083 	for (i = 0; i < h->msix_vectors; i++) {
8084 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8085 		h->q[i] = 0;
8086 	}
8087 	for (; i < MAX_REPLY_QUEUES; i++)
8088 		h->q[i] = 0;
8089 }
8090 
8091 /* returns 0 on success; cleans up and returns -Enn on error */
hpsa_request_irqs(struct ctlr_info * h,irqreturn_t (* msixhandler)(int,void *),irqreturn_t (* intxhandler)(int,void *))8092 static int hpsa_request_irqs(struct ctlr_info *h,
8093 	irqreturn_t (*msixhandler)(int, void *),
8094 	irqreturn_t (*intxhandler)(int, void *))
8095 {
8096 	int rc, i;
8097 	int irq_vector = 0;
8098 
8099 	if (hpsa_simple_mode)
8100 		irq_vector = h->intr_mode;
8101 
8102 	/*
8103 	 * initialize h->q[x] = x so that interrupt handlers know which
8104 	 * queue to process.
8105 	 */
8106 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8107 		h->q[i] = (u8) i;
8108 
8109 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8110 		/* If performant mode and MSI-X, use multiple reply queues */
8111 		for (i = 0; i < h->msix_vectors; i++) {
8112 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8113 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8114 					0, h->intrname[i],
8115 					&h->q[i]);
8116 			if (rc) {
8117 				int j;
8118 
8119 				dev_err(&h->pdev->dev,
8120 					"failed to get irq %d for %s\n",
8121 				       pci_irq_vector(h->pdev, i), h->devname);
8122 				for (j = 0; j < i; j++) {
8123 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8124 					h->q[j] = 0;
8125 				}
8126 				for (; j < MAX_REPLY_QUEUES; j++)
8127 					h->q[j] = 0;
8128 				return rc;
8129 			}
8130 		}
8131 	} else {
8132 		/* Use single reply pool */
8133 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8134 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8135 				h->msix_vectors ? "x" : "");
8136 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8137 				msixhandler, 0,
8138 				h->intrname[0],
8139 				&h->q[h->intr_mode]);
8140 		} else {
8141 			sprintf(h->intrname[h->intr_mode],
8142 				"%s-intx", h->devname);
8143 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8144 				intxhandler, IRQF_SHARED,
8145 				h->intrname[0],
8146 				&h->q[h->intr_mode]);
8147 		}
8148 	}
8149 	if (rc) {
8150 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8151 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8152 		hpsa_free_irqs(h);
8153 		return -ENODEV;
8154 	}
8155 	return 0;
8156 }
8157 
hpsa_kdump_soft_reset(struct ctlr_info * h)8158 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8159 {
8160 	int rc;
8161 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8162 
8163 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8164 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8165 	if (rc) {
8166 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8167 		return rc;
8168 	}
8169 
8170 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8171 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8172 	if (rc) {
8173 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8174 			"after soft reset.\n");
8175 		return rc;
8176 	}
8177 
8178 	return 0;
8179 }
8180 
hpsa_free_reply_queues(struct ctlr_info * h)8181 static void hpsa_free_reply_queues(struct ctlr_info *h)
8182 {
8183 	int i;
8184 
8185 	for (i = 0; i < h->nreply_queues; i++) {
8186 		if (!h->reply_queue[i].head)
8187 			continue;
8188 		dma_free_coherent(&h->pdev->dev,
8189 					h->reply_queue_size,
8190 					h->reply_queue[i].head,
8191 					h->reply_queue[i].busaddr);
8192 		h->reply_queue[i].head = NULL;
8193 		h->reply_queue[i].busaddr = 0;
8194 	}
8195 	h->reply_queue_size = 0;
8196 }
8197 
hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info * h)8198 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8199 {
8200 	hpsa_free_performant_mode(h);		/* init_one 7 */
8201 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8202 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8203 	hpsa_free_irqs(h);			/* init_one 4 */
8204 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8205 	h->scsi_host = NULL;			/* init_one 3 */
8206 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8207 	free_percpu(h->lockup_detected);	/* init_one 2 */
8208 	h->lockup_detected = NULL;		/* init_one 2 */
8209 	if (h->resubmit_wq) {
8210 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8211 		h->resubmit_wq = NULL;
8212 	}
8213 	if (h->rescan_ctlr_wq) {
8214 		destroy_workqueue(h->rescan_ctlr_wq);
8215 		h->rescan_ctlr_wq = NULL;
8216 	}
8217 	if (h->monitor_ctlr_wq) {
8218 		destroy_workqueue(h->monitor_ctlr_wq);
8219 		h->monitor_ctlr_wq = NULL;
8220 	}
8221 
8222 	kfree(h);				/* init_one 1 */
8223 }
8224 
8225 /* Called when controller lockup detected. */
fail_all_outstanding_cmds(struct ctlr_info * h)8226 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8227 {
8228 	int i, refcount;
8229 	struct CommandList *c;
8230 	int failcount = 0;
8231 
8232 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8233 	for (i = 0; i < h->nr_cmds; i++) {
8234 		c = h->cmd_pool + i;
8235 		refcount = atomic_inc_return(&c->refcount);
8236 		if (refcount > 1) {
8237 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8238 			finish_cmd(c);
8239 			atomic_dec(&h->commands_outstanding);
8240 			failcount++;
8241 		}
8242 		cmd_free(h, c);
8243 	}
8244 	dev_warn(&h->pdev->dev,
8245 		"failed %d commands in fail_all\n", failcount);
8246 }
8247 
set_lockup_detected_for_all_cpus(struct ctlr_info * h,u32 value)8248 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8249 {
8250 	int cpu;
8251 
8252 	for_each_online_cpu(cpu) {
8253 		u32 *lockup_detected;
8254 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8255 		*lockup_detected = value;
8256 	}
8257 	wmb(); /* be sure the per-cpu variables are out to memory */
8258 }
8259 
controller_lockup_detected(struct ctlr_info * h)8260 static void controller_lockup_detected(struct ctlr_info *h)
8261 {
8262 	unsigned long flags;
8263 	u32 lockup_detected;
8264 
8265 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8266 	spin_lock_irqsave(&h->lock, flags);
8267 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8268 	if (!lockup_detected) {
8269 		/* no heartbeat, but controller gave us a zero. */
8270 		dev_warn(&h->pdev->dev,
8271 			"lockup detected after %d but scratchpad register is zero\n",
8272 			h->heartbeat_sample_interval / HZ);
8273 		lockup_detected = 0xffffffff;
8274 	}
8275 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8276 	spin_unlock_irqrestore(&h->lock, flags);
8277 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8278 			lockup_detected, h->heartbeat_sample_interval / HZ);
8279 	if (lockup_detected == 0xffff0000) {
8280 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8281 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8282 	}
8283 	pci_disable_device(h->pdev);
8284 	fail_all_outstanding_cmds(h);
8285 }
8286 
detect_controller_lockup(struct ctlr_info * h)8287 static int detect_controller_lockup(struct ctlr_info *h)
8288 {
8289 	u64 now;
8290 	u32 heartbeat;
8291 	unsigned long flags;
8292 
8293 	now = get_jiffies_64();
8294 	/* If we've received an interrupt recently, we're ok. */
8295 	if (time_after64(h->last_intr_timestamp +
8296 				(h->heartbeat_sample_interval), now))
8297 		return false;
8298 
8299 	/*
8300 	 * If we've already checked the heartbeat recently, we're ok.
8301 	 * This could happen if someone sends us a signal. We
8302 	 * otherwise don't care about signals in this thread.
8303 	 */
8304 	if (time_after64(h->last_heartbeat_timestamp +
8305 				(h->heartbeat_sample_interval), now))
8306 		return false;
8307 
8308 	/* If heartbeat has not changed since we last looked, we're not ok. */
8309 	spin_lock_irqsave(&h->lock, flags);
8310 	heartbeat = readl(&h->cfgtable->HeartBeat);
8311 	spin_unlock_irqrestore(&h->lock, flags);
8312 	if (h->last_heartbeat == heartbeat) {
8313 		controller_lockup_detected(h);
8314 		return true;
8315 	}
8316 
8317 	/* We're ok. */
8318 	h->last_heartbeat = heartbeat;
8319 	h->last_heartbeat_timestamp = now;
8320 	return false;
8321 }
8322 
8323 /*
8324  * Set ioaccel status for all ioaccel volumes.
8325  *
8326  * Called from monitor controller worker (hpsa_event_monitor_worker)
8327  *
8328  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8329  * transformation, so we will be turning off ioaccel for all volumes that
8330  * make up the Array.
8331  */
hpsa_set_ioaccel_status(struct ctlr_info * h)8332 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8333 {
8334 	int rc;
8335 	int i;
8336 	u8 ioaccel_status;
8337 	unsigned char *buf;
8338 	struct hpsa_scsi_dev_t *device;
8339 
8340 	if (!h)
8341 		return;
8342 
8343 	buf = kmalloc(64, GFP_KERNEL);
8344 	if (!buf)
8345 		return;
8346 
8347 	/*
8348 	 * Run through current device list used during I/O requests.
8349 	 */
8350 	for (i = 0; i < h->ndevices; i++) {
8351 		int offload_to_be_enabled = 0;
8352 		int offload_config = 0;
8353 
8354 		device = h->dev[i];
8355 
8356 		if (!device)
8357 			continue;
8358 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8359 						HPSA_VPD_LV_IOACCEL_STATUS))
8360 			continue;
8361 
8362 		memset(buf, 0, 64);
8363 
8364 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8365 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8366 					buf, 64);
8367 		if (rc != 0)
8368 			continue;
8369 
8370 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8371 
8372 		/*
8373 		 * Check if offload is still configured on
8374 		 */
8375 		offload_config =
8376 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8377 		/*
8378 		 * If offload is configured on, check to see if ioaccel
8379 		 * needs to be enabled.
8380 		 */
8381 		if (offload_config)
8382 			offload_to_be_enabled =
8383 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8384 
8385 		/*
8386 		 * If ioaccel is to be re-enabled, re-enable later during the
8387 		 * scan operation so the driver can get a fresh raidmap
8388 		 * before turning ioaccel back on.
8389 		 */
8390 		if (offload_to_be_enabled)
8391 			continue;
8392 
8393 		/*
8394 		 * Immediately turn off ioaccel for any volume the
8395 		 * controller tells us to. Some of the reasons could be:
8396 		 *    transformation - change to the LVs of an Array.
8397 		 *    degraded volume - component failure
8398 		 */
8399 		hpsa_turn_off_ioaccel_for_device(device);
8400 	}
8401 
8402 	kfree(buf);
8403 }
8404 
hpsa_ack_ctlr_events(struct ctlr_info * h)8405 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8406 {
8407 	char *event_type;
8408 
8409 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8410 		return;
8411 
8412 	/* Ask the controller to clear the events we're handling. */
8413 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8414 			| CFGTBL_Trans_io_accel2)) &&
8415 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8416 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8417 
8418 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8419 			event_type = "state change";
8420 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8421 			event_type = "configuration change";
8422 		/* Stop sending new RAID offload reqs via the IO accelerator */
8423 		scsi_block_requests(h->scsi_host);
8424 		hpsa_set_ioaccel_status(h);
8425 		hpsa_drain_accel_commands(h);
8426 		/* Set 'accelerator path config change' bit */
8427 		dev_warn(&h->pdev->dev,
8428 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8429 			h->events, event_type);
8430 		writel(h->events, &(h->cfgtable->clear_event_notify));
8431 		/* Set the "clear event notify field update" bit 6 */
8432 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8433 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8434 		hpsa_wait_for_clear_event_notify_ack(h);
8435 		scsi_unblock_requests(h->scsi_host);
8436 	} else {
8437 		/* Acknowledge controller notification events. */
8438 		writel(h->events, &(h->cfgtable->clear_event_notify));
8439 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8440 		hpsa_wait_for_clear_event_notify_ack(h);
8441 	}
8442 	return;
8443 }
8444 
8445 /* Check a register on the controller to see if there are configuration
8446  * changes (added/changed/removed logical drives, etc.) which mean that
8447  * we should rescan the controller for devices.
8448  * Also check flag for driver-initiated rescan.
8449  */
hpsa_ctlr_needs_rescan(struct ctlr_info * h)8450 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8451 {
8452 	if (h->drv_req_rescan) {
8453 		h->drv_req_rescan = 0;
8454 		return 1;
8455 	}
8456 
8457 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8458 		return 0;
8459 
8460 	h->events = readl(&(h->cfgtable->event_notify));
8461 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8462 }
8463 
8464 /*
8465  * Check if any of the offline devices have become ready
8466  */
hpsa_offline_devices_ready(struct ctlr_info * h)8467 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8468 {
8469 	unsigned long flags;
8470 	struct offline_device_entry *d;
8471 	struct list_head *this, *tmp;
8472 
8473 	spin_lock_irqsave(&h->offline_device_lock, flags);
8474 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8475 		d = list_entry(this, struct offline_device_entry,
8476 				offline_list);
8477 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8478 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8479 			spin_lock_irqsave(&h->offline_device_lock, flags);
8480 			list_del(&d->offline_list);
8481 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8482 			return 1;
8483 		}
8484 		spin_lock_irqsave(&h->offline_device_lock, flags);
8485 	}
8486 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8487 	return 0;
8488 }
8489 
hpsa_luns_changed(struct ctlr_info * h)8490 static int hpsa_luns_changed(struct ctlr_info *h)
8491 {
8492 	int rc = 1; /* assume there are changes */
8493 	struct ReportLUNdata *logdev = NULL;
8494 
8495 	/* if we can't find out if lun data has changed,
8496 	 * assume that it has.
8497 	 */
8498 
8499 	if (!h->lastlogicals)
8500 		return rc;
8501 
8502 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8503 	if (!logdev)
8504 		return rc;
8505 
8506 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8507 		dev_warn(&h->pdev->dev,
8508 			"report luns failed, can't track lun changes.\n");
8509 		goto out;
8510 	}
8511 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8512 		dev_info(&h->pdev->dev,
8513 			"Lun changes detected.\n");
8514 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8515 		goto out;
8516 	} else
8517 		rc = 0; /* no changes detected. */
8518 out:
8519 	kfree(logdev);
8520 	return rc;
8521 }
8522 
hpsa_perform_rescan(struct ctlr_info * h)8523 static void hpsa_perform_rescan(struct ctlr_info *h)
8524 {
8525 	struct Scsi_Host *sh = NULL;
8526 	unsigned long flags;
8527 
8528 	/*
8529 	 * Do the scan after the reset
8530 	 */
8531 	spin_lock_irqsave(&h->reset_lock, flags);
8532 	if (h->reset_in_progress) {
8533 		h->drv_req_rescan = 1;
8534 		spin_unlock_irqrestore(&h->reset_lock, flags);
8535 		return;
8536 	}
8537 	spin_unlock_irqrestore(&h->reset_lock, flags);
8538 
8539 	sh = scsi_host_get(h->scsi_host);
8540 	if (sh != NULL) {
8541 		hpsa_scan_start(sh);
8542 		scsi_host_put(sh);
8543 		h->drv_req_rescan = 0;
8544 	}
8545 }
8546 
8547 /*
8548  * watch for controller events
8549  */
hpsa_event_monitor_worker(struct work_struct * work)8550 static void hpsa_event_monitor_worker(struct work_struct *work)
8551 {
8552 	struct ctlr_info *h = container_of(to_delayed_work(work),
8553 					struct ctlr_info, event_monitor_work);
8554 	unsigned long flags;
8555 
8556 	spin_lock_irqsave(&h->lock, flags);
8557 	if (h->remove_in_progress) {
8558 		spin_unlock_irqrestore(&h->lock, flags);
8559 		return;
8560 	}
8561 	spin_unlock_irqrestore(&h->lock, flags);
8562 
8563 	if (hpsa_ctlr_needs_rescan(h)) {
8564 		hpsa_ack_ctlr_events(h);
8565 		hpsa_perform_rescan(h);
8566 	}
8567 
8568 	spin_lock_irqsave(&h->lock, flags);
8569 	if (!h->remove_in_progress)
8570 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8571 				HPSA_EVENT_MONITOR_INTERVAL);
8572 	spin_unlock_irqrestore(&h->lock, flags);
8573 }
8574 
hpsa_rescan_ctlr_worker(struct work_struct * work)8575 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8576 {
8577 	unsigned long flags;
8578 	struct ctlr_info *h = container_of(to_delayed_work(work),
8579 					struct ctlr_info, rescan_ctlr_work);
8580 
8581 	spin_lock_irqsave(&h->lock, flags);
8582 	if (h->remove_in_progress) {
8583 		spin_unlock_irqrestore(&h->lock, flags);
8584 		return;
8585 	}
8586 	spin_unlock_irqrestore(&h->lock, flags);
8587 
8588 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8589 		hpsa_perform_rescan(h);
8590 	} else if (h->discovery_polling) {
8591 		if (hpsa_luns_changed(h)) {
8592 			dev_info(&h->pdev->dev,
8593 				"driver discovery polling rescan.\n");
8594 			hpsa_perform_rescan(h);
8595 		}
8596 	}
8597 	spin_lock_irqsave(&h->lock, flags);
8598 	if (!h->remove_in_progress)
8599 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8600 				h->heartbeat_sample_interval);
8601 	spin_unlock_irqrestore(&h->lock, flags);
8602 }
8603 
hpsa_monitor_ctlr_worker(struct work_struct * work)8604 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8605 {
8606 	unsigned long flags;
8607 	struct ctlr_info *h = container_of(to_delayed_work(work),
8608 					struct ctlr_info, monitor_ctlr_work);
8609 
8610 	detect_controller_lockup(h);
8611 	if (lockup_detected(h))
8612 		return;
8613 
8614 	spin_lock_irqsave(&h->lock, flags);
8615 	if (!h->remove_in_progress)
8616 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8617 				h->heartbeat_sample_interval);
8618 	spin_unlock_irqrestore(&h->lock, flags);
8619 }
8620 
hpsa_create_controller_wq(struct ctlr_info * h,char * name)8621 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8622 						char *name)
8623 {
8624 	struct workqueue_struct *wq = NULL;
8625 
8626 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8627 	if (!wq)
8628 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8629 
8630 	return wq;
8631 }
8632 
hpda_free_ctlr_info(struct ctlr_info * h)8633 static void hpda_free_ctlr_info(struct ctlr_info *h)
8634 {
8635 	kfree(h->reply_map);
8636 	kfree(h);
8637 }
8638 
hpda_alloc_ctlr_info(void)8639 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8640 {
8641 	struct ctlr_info *h;
8642 
8643 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8644 	if (!h)
8645 		return NULL;
8646 
8647 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8648 	if (!h->reply_map) {
8649 		kfree(h);
8650 		return NULL;
8651 	}
8652 	return h;
8653 }
8654 
hpsa_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)8655 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8656 {
8657 	int rc;
8658 	struct ctlr_info *h;
8659 	int try_soft_reset = 0;
8660 	unsigned long flags;
8661 	u32 board_id;
8662 
8663 	if (number_of_controllers == 0)
8664 		printk(KERN_INFO DRIVER_NAME "\n");
8665 
8666 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8667 	if (rc < 0) {
8668 		dev_warn(&pdev->dev, "Board ID not found\n");
8669 		return rc;
8670 	}
8671 
8672 	rc = hpsa_init_reset_devices(pdev, board_id);
8673 	if (rc) {
8674 		if (rc != -ENOTSUPP)
8675 			return rc;
8676 		/* If the reset fails in a particular way (it has no way to do
8677 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8678 		 * a soft reset once we get the controller configured up to the
8679 		 * point that it can accept a command.
8680 		 */
8681 		try_soft_reset = 1;
8682 		rc = 0;
8683 	}
8684 
8685 reinit_after_soft_reset:
8686 
8687 	/* Command structures must be aligned on a 32-byte boundary because
8688 	 * the 5 lower bits of the address are used by the hardware. and by
8689 	 * the driver.  See comments in hpsa.h for more info.
8690 	 */
8691 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8692 	h = hpda_alloc_ctlr_info();
8693 	if (!h) {
8694 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8695 		return -ENOMEM;
8696 	}
8697 
8698 	h->pdev = pdev;
8699 
8700 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8701 	INIT_LIST_HEAD(&h->offline_device_list);
8702 	spin_lock_init(&h->lock);
8703 	spin_lock_init(&h->offline_device_lock);
8704 	spin_lock_init(&h->scan_lock);
8705 	spin_lock_init(&h->reset_lock);
8706 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8707 
8708 	/* Allocate and clear per-cpu variable lockup_detected */
8709 	h->lockup_detected = alloc_percpu(u32);
8710 	if (!h->lockup_detected) {
8711 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8712 		rc = -ENOMEM;
8713 		goto clean1;	/* aer/h */
8714 	}
8715 	set_lockup_detected_for_all_cpus(h, 0);
8716 
8717 	rc = hpsa_pci_init(h);
8718 	if (rc)
8719 		goto clean2;	/* lu, aer/h */
8720 
8721 	/* relies on h-> settings made by hpsa_pci_init, including
8722 	 * interrupt_mode h->intr */
8723 	rc = hpsa_scsi_host_alloc(h);
8724 	if (rc)
8725 		goto clean2_5;	/* pci, lu, aer/h */
8726 
8727 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8728 	h->ctlr = number_of_controllers;
8729 	number_of_controllers++;
8730 
8731 	/* configure PCI DMA stuff */
8732 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8733 	if (rc != 0) {
8734 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8735 		if (rc != 0) {
8736 			dev_err(&pdev->dev, "no suitable DMA available\n");
8737 			goto clean3;	/* shost, pci, lu, aer/h */
8738 		}
8739 	}
8740 
8741 	/* make sure the board interrupts are off */
8742 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8743 
8744 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8745 	if (rc)
8746 		goto clean3;	/* shost, pci, lu, aer/h */
8747 	rc = hpsa_alloc_cmd_pool(h);
8748 	if (rc)
8749 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8750 	rc = hpsa_alloc_sg_chain_blocks(h);
8751 	if (rc)
8752 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8753 	init_waitqueue_head(&h->scan_wait_queue);
8754 	init_waitqueue_head(&h->event_sync_wait_queue);
8755 	mutex_init(&h->reset_mutex);
8756 	h->scan_finished = 1; /* no scan currently in progress */
8757 	h->scan_waiting = 0;
8758 
8759 	pci_set_drvdata(pdev, h);
8760 	h->ndevices = 0;
8761 
8762 	spin_lock_init(&h->devlock);
8763 	rc = hpsa_put_ctlr_into_performant_mode(h);
8764 	if (rc)
8765 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8766 
8767 	/* create the resubmit workqueue */
8768 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8769 	if (!h->rescan_ctlr_wq) {
8770 		rc = -ENOMEM;
8771 		goto clean7;
8772 	}
8773 
8774 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8775 	if (!h->resubmit_wq) {
8776 		rc = -ENOMEM;
8777 		goto clean7;	/* aer/h */
8778 	}
8779 
8780 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8781 	if (!h->monitor_ctlr_wq) {
8782 		rc = -ENOMEM;
8783 		goto clean7;
8784 	}
8785 
8786 	/*
8787 	 * At this point, the controller is ready to take commands.
8788 	 * Now, if reset_devices and the hard reset didn't work, try
8789 	 * the soft reset and see if that works.
8790 	 */
8791 	if (try_soft_reset) {
8792 
8793 		/* This is kind of gross.  We may or may not get a completion
8794 		 * from the soft reset command, and if we do, then the value
8795 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8796 		 * after the reset throwing away any completions we get during
8797 		 * that time.  Unregister the interrupt handler and register
8798 		 * fake ones to scoop up any residual completions.
8799 		 */
8800 		spin_lock_irqsave(&h->lock, flags);
8801 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8802 		spin_unlock_irqrestore(&h->lock, flags);
8803 		hpsa_free_irqs(h);
8804 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8805 					hpsa_intx_discard_completions);
8806 		if (rc) {
8807 			dev_warn(&h->pdev->dev,
8808 				"Failed to request_irq after soft reset.\n");
8809 			/*
8810 			 * cannot goto clean7 or free_irqs will be called
8811 			 * again. Instead, do its work
8812 			 */
8813 			hpsa_free_performant_mode(h);	/* clean7 */
8814 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8815 			hpsa_free_cmd_pool(h);		/* clean5 */
8816 			/*
8817 			 * skip hpsa_free_irqs(h) clean4 since that
8818 			 * was just called before request_irqs failed
8819 			 */
8820 			goto clean3;
8821 		}
8822 
8823 		rc = hpsa_kdump_soft_reset(h);
8824 		if (rc)
8825 			/* Neither hard nor soft reset worked, we're hosed. */
8826 			goto clean7;
8827 
8828 		dev_info(&h->pdev->dev, "Board READY.\n");
8829 		dev_info(&h->pdev->dev,
8830 			"Waiting for stale completions to drain.\n");
8831 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8832 		msleep(10000);
8833 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8834 
8835 		rc = controller_reset_failed(h->cfgtable);
8836 		if (rc)
8837 			dev_info(&h->pdev->dev,
8838 				"Soft reset appears to have failed.\n");
8839 
8840 		/* since the controller's reset, we have to go back and re-init
8841 		 * everything.  Easiest to just forget what we've done and do it
8842 		 * all over again.
8843 		 */
8844 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8845 		try_soft_reset = 0;
8846 		if (rc)
8847 			/* don't goto clean, we already unallocated */
8848 			return -ENODEV;
8849 
8850 		goto reinit_after_soft_reset;
8851 	}
8852 
8853 	/* Enable Accelerated IO path at driver layer */
8854 	h->acciopath_status = 1;
8855 	/* Disable discovery polling.*/
8856 	h->discovery_polling = 0;
8857 
8858 
8859 	/* Turn the interrupts on so we can service requests */
8860 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8861 
8862 	hpsa_hba_inquiry(h);
8863 
8864 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8865 	if (!h->lastlogicals)
8866 		dev_info(&h->pdev->dev,
8867 			"Can't track change to report lun data\n");
8868 
8869 	/* hook into SCSI subsystem */
8870 	rc = hpsa_scsi_add_host(h);
8871 	if (rc)
8872 		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8873 
8874 	/* Monitor the controller for firmware lockups */
8875 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8876 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8877 	schedule_delayed_work(&h->monitor_ctlr_work,
8878 				h->heartbeat_sample_interval);
8879 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8880 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8881 				h->heartbeat_sample_interval);
8882 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8883 	schedule_delayed_work(&h->event_monitor_work,
8884 				HPSA_EVENT_MONITOR_INTERVAL);
8885 	return 0;
8886 
8887 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8888 	kfree(h->lastlogicals);
8889 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8890 	hpsa_free_performant_mode(h);
8891 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8892 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8893 	hpsa_free_sg_chain_blocks(h);
8894 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8895 	hpsa_free_cmd_pool(h);
8896 clean4: /* irq, shost, pci, lu, aer/h */
8897 	hpsa_free_irqs(h);
8898 clean3: /* shost, pci, lu, aer/h */
8899 	scsi_host_put(h->scsi_host);
8900 	h->scsi_host = NULL;
8901 clean2_5: /* pci, lu, aer/h */
8902 	hpsa_free_pci_init(h);
8903 clean2: /* lu, aer/h */
8904 	if (h->lockup_detected) {
8905 		free_percpu(h->lockup_detected);
8906 		h->lockup_detected = NULL;
8907 	}
8908 clean1:	/* wq/aer/h */
8909 	if (h->resubmit_wq) {
8910 		destroy_workqueue(h->resubmit_wq);
8911 		h->resubmit_wq = NULL;
8912 	}
8913 	if (h->rescan_ctlr_wq) {
8914 		destroy_workqueue(h->rescan_ctlr_wq);
8915 		h->rescan_ctlr_wq = NULL;
8916 	}
8917 	if (h->monitor_ctlr_wq) {
8918 		destroy_workqueue(h->monitor_ctlr_wq);
8919 		h->monitor_ctlr_wq = NULL;
8920 	}
8921 	hpda_free_ctlr_info(h);
8922 	return rc;
8923 }
8924 
hpsa_flush_cache(struct ctlr_info * h)8925 static void hpsa_flush_cache(struct ctlr_info *h)
8926 {
8927 	char *flush_buf;
8928 	struct CommandList *c;
8929 	int rc;
8930 
8931 	if (unlikely(lockup_detected(h)))
8932 		return;
8933 	flush_buf = kzalloc(4, GFP_KERNEL);
8934 	if (!flush_buf)
8935 		return;
8936 
8937 	c = cmd_alloc(h);
8938 
8939 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8940 		RAID_CTLR_LUNID, TYPE_CMD)) {
8941 		goto out;
8942 	}
8943 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8944 			DEFAULT_TIMEOUT);
8945 	if (rc)
8946 		goto out;
8947 	if (c->err_info->CommandStatus != 0)
8948 out:
8949 		dev_warn(&h->pdev->dev,
8950 			"error flushing cache on controller\n");
8951 	cmd_free(h, c);
8952 	kfree(flush_buf);
8953 }
8954 
8955 /* Make controller gather fresh report lun data each time we
8956  * send down a report luns request
8957  */
hpsa_disable_rld_caching(struct ctlr_info * h)8958 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8959 {
8960 	u32 *options;
8961 	struct CommandList *c;
8962 	int rc;
8963 
8964 	/* Don't bother trying to set diag options if locked up */
8965 	if (unlikely(h->lockup_detected))
8966 		return;
8967 
8968 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8969 	if (!options)
8970 		return;
8971 
8972 	c = cmd_alloc(h);
8973 
8974 	/* first, get the current diag options settings */
8975 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8976 		RAID_CTLR_LUNID, TYPE_CMD))
8977 		goto errout;
8978 
8979 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8980 			NO_TIMEOUT);
8981 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8982 		goto errout;
8983 
8984 	/* Now, set the bit for disabling the RLD caching */
8985 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8986 
8987 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8988 		RAID_CTLR_LUNID, TYPE_CMD))
8989 		goto errout;
8990 
8991 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8992 			NO_TIMEOUT);
8993 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8994 		goto errout;
8995 
8996 	/* Now verify that it got set: */
8997 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8998 		RAID_CTLR_LUNID, TYPE_CMD))
8999 		goto errout;
9000 
9001 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9002 			NO_TIMEOUT);
9003 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9004 		goto errout;
9005 
9006 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9007 		goto out;
9008 
9009 errout:
9010 	dev_err(&h->pdev->dev,
9011 			"Error: failed to disable report lun data caching.\n");
9012 out:
9013 	cmd_free(h, c);
9014 	kfree(options);
9015 }
9016 
__hpsa_shutdown(struct pci_dev * pdev)9017 static void __hpsa_shutdown(struct pci_dev *pdev)
9018 {
9019 	struct ctlr_info *h;
9020 
9021 	h = pci_get_drvdata(pdev);
9022 	/* Turn board interrupts off  and send the flush cache command
9023 	 * sendcmd will turn off interrupt, and send the flush...
9024 	 * To write all data in the battery backed cache to disks
9025 	 */
9026 	hpsa_flush_cache(h);
9027 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9028 	hpsa_free_irqs(h);			/* init_one 4 */
9029 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9030 }
9031 
hpsa_shutdown(struct pci_dev * pdev)9032 static void hpsa_shutdown(struct pci_dev *pdev)
9033 {
9034 	__hpsa_shutdown(pdev);
9035 	pci_disable_device(pdev);
9036 }
9037 
hpsa_free_device_info(struct ctlr_info * h)9038 static void hpsa_free_device_info(struct ctlr_info *h)
9039 {
9040 	int i;
9041 
9042 	for (i = 0; i < h->ndevices; i++) {
9043 		kfree(h->dev[i]);
9044 		h->dev[i] = NULL;
9045 	}
9046 }
9047 
hpsa_remove_one(struct pci_dev * pdev)9048 static void hpsa_remove_one(struct pci_dev *pdev)
9049 {
9050 	struct ctlr_info *h;
9051 	unsigned long flags;
9052 
9053 	if (pci_get_drvdata(pdev) == NULL) {
9054 		dev_err(&pdev->dev, "unable to remove device\n");
9055 		return;
9056 	}
9057 	h = pci_get_drvdata(pdev);
9058 
9059 	/* Get rid of any controller monitoring work items */
9060 	spin_lock_irqsave(&h->lock, flags);
9061 	h->remove_in_progress = 1;
9062 	spin_unlock_irqrestore(&h->lock, flags);
9063 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9064 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9065 	cancel_delayed_work_sync(&h->event_monitor_work);
9066 	destroy_workqueue(h->rescan_ctlr_wq);
9067 	destroy_workqueue(h->resubmit_wq);
9068 	destroy_workqueue(h->monitor_ctlr_wq);
9069 
9070 	hpsa_delete_sas_host(h);
9071 
9072 	/*
9073 	 * Call before disabling interrupts.
9074 	 * scsi_remove_host can trigger I/O operations especially
9075 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9076 	 * operations which cannot complete and will hang the system.
9077 	 */
9078 	if (h->scsi_host)
9079 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9080 	/* includes hpsa_free_irqs - init_one 4 */
9081 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9082 	__hpsa_shutdown(pdev);
9083 
9084 	hpsa_free_device_info(h);		/* scan */
9085 
9086 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9087 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9088 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9089 	hpsa_free_performant_mode(h);			/* init_one 7 */
9090 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9091 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9092 	kfree(h->lastlogicals);
9093 
9094 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9095 
9096 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9097 	h->scsi_host = NULL;				/* init_one 3 */
9098 
9099 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9100 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9101 
9102 	free_percpu(h->lockup_detected);		/* init_one 2 */
9103 	h->lockup_detected = NULL;			/* init_one 2 */
9104 
9105 	hpda_free_ctlr_info(h);				/* init_one 1 */
9106 }
9107 
hpsa_suspend(struct device * dev)9108 static int __maybe_unused hpsa_suspend(
9109 	__attribute__((unused)) struct device *dev)
9110 {
9111 	return -ENOSYS;
9112 }
9113 
hpsa_resume(struct device * dev)9114 static int __maybe_unused hpsa_resume
9115 	(__attribute__((unused)) struct device *dev)
9116 {
9117 	return -ENOSYS;
9118 }
9119 
9120 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9121 
9122 static struct pci_driver hpsa_pci_driver = {
9123 	.name = HPSA,
9124 	.probe = hpsa_init_one,
9125 	.remove = hpsa_remove_one,
9126 	.id_table = hpsa_pci_device_id,	/* id_table */
9127 	.shutdown = hpsa_shutdown,
9128 	.driver.pm = &hpsa_pm_ops,
9129 };
9130 
9131 /* Fill in bucket_map[], given nsgs (the max number of
9132  * scatter gather elements supported) and bucket[],
9133  * which is an array of 8 integers.  The bucket[] array
9134  * contains 8 different DMA transfer sizes (in 16
9135  * byte increments) which the controller uses to fetch
9136  * commands.  This function fills in bucket_map[], which
9137  * maps a given number of scatter gather elements to one of
9138  * the 8 DMA transfer sizes.  The point of it is to allow the
9139  * controller to only do as much DMA as needed to fetch the
9140  * command, with the DMA transfer size encoded in the lower
9141  * bits of the command address.
9142  */
calc_bucket_map(int bucket[],int num_buckets,int nsgs,int min_blocks,u32 * bucket_map)9143 static void  calc_bucket_map(int bucket[], int num_buckets,
9144 	int nsgs, int min_blocks, u32 *bucket_map)
9145 {
9146 	int i, j, b, size;
9147 
9148 	/* Note, bucket_map must have nsgs+1 entries. */
9149 	for (i = 0; i <= nsgs; i++) {
9150 		/* Compute size of a command with i SG entries */
9151 		size = i + min_blocks;
9152 		b = num_buckets; /* Assume the biggest bucket */
9153 		/* Find the bucket that is just big enough */
9154 		for (j = 0; j < num_buckets; j++) {
9155 			if (bucket[j] >= size) {
9156 				b = j;
9157 				break;
9158 			}
9159 		}
9160 		/* for a command with i SG entries, use bucket b. */
9161 		bucket_map[i] = b;
9162 	}
9163 }
9164 
9165 /*
9166  * return -ENODEV on err, 0 on success (or no action)
9167  * allocates numerous items that must be freed later
9168  */
hpsa_enter_performant_mode(struct ctlr_info * h,u32 trans_support)9169 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9170 {
9171 	int i;
9172 	unsigned long register_value;
9173 	unsigned long transMethod = CFGTBL_Trans_Performant |
9174 			(trans_support & CFGTBL_Trans_use_short_tags) |
9175 				CFGTBL_Trans_enable_directed_msix |
9176 			(trans_support & (CFGTBL_Trans_io_accel1 |
9177 				CFGTBL_Trans_io_accel2));
9178 	struct access_method access = SA5_performant_access;
9179 
9180 	/* This is a bit complicated.  There are 8 registers on
9181 	 * the controller which we write to to tell it 8 different
9182 	 * sizes of commands which there may be.  It's a way of
9183 	 * reducing the DMA done to fetch each command.  Encoded into
9184 	 * each command's tag are 3 bits which communicate to the controller
9185 	 * which of the eight sizes that command fits within.  The size of
9186 	 * each command depends on how many scatter gather entries there are.
9187 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9188 	 * with the number of 16-byte blocks a command of that size requires.
9189 	 * The smallest command possible requires 5 such 16 byte blocks.
9190 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9191 	 * blocks.  Note, this only extends to the SG entries contained
9192 	 * within the command block, and does not extend to chained blocks
9193 	 * of SG elements.   bft[] contains the eight values we write to
9194 	 * the registers.  They are not evenly distributed, but have more
9195 	 * sizes for small commands, and fewer sizes for larger commands.
9196 	 */
9197 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9198 #define MIN_IOACCEL2_BFT_ENTRY 5
9199 #define HPSA_IOACCEL2_HEADER_SZ 4
9200 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9201 			13, 14, 15, 16, 17, 18, 19,
9202 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9203 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9204 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9205 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9206 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9207 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9208 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9209 	/*  5 = 1 s/g entry or 4k
9210 	 *  6 = 2 s/g entry or 8k
9211 	 *  8 = 4 s/g entry or 16k
9212 	 * 10 = 6 s/g entry or 24k
9213 	 */
9214 
9215 	/* If the controller supports either ioaccel method then
9216 	 * we can also use the RAID stack submit path that does not
9217 	 * perform the superfluous readl() after each command submission.
9218 	 */
9219 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9220 		access = SA5_performant_access_no_read;
9221 
9222 	/* Controller spec: zero out this buffer. */
9223 	for (i = 0; i < h->nreply_queues; i++)
9224 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9225 
9226 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9227 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9228 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9229 	for (i = 0; i < 8; i++)
9230 		writel(bft[i], &h->transtable->BlockFetch[i]);
9231 
9232 	/* size of controller ring buffer */
9233 	writel(h->max_commands, &h->transtable->RepQSize);
9234 	writel(h->nreply_queues, &h->transtable->RepQCount);
9235 	writel(0, &h->transtable->RepQCtrAddrLow32);
9236 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9237 
9238 	for (i = 0; i < h->nreply_queues; i++) {
9239 		writel(0, &h->transtable->RepQAddr[i].upper);
9240 		writel(h->reply_queue[i].busaddr,
9241 			&h->transtable->RepQAddr[i].lower);
9242 	}
9243 
9244 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9245 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9246 	/*
9247 	 * enable outbound interrupt coalescing in accelerator mode;
9248 	 */
9249 	if (trans_support & CFGTBL_Trans_io_accel1) {
9250 		access = SA5_ioaccel_mode1_access;
9251 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9252 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9253 	} else
9254 		if (trans_support & CFGTBL_Trans_io_accel2)
9255 			access = SA5_ioaccel_mode2_access;
9256 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9257 	if (hpsa_wait_for_mode_change_ack(h)) {
9258 		dev_err(&h->pdev->dev,
9259 			"performant mode problem - doorbell timeout\n");
9260 		return -ENODEV;
9261 	}
9262 	register_value = readl(&(h->cfgtable->TransportActive));
9263 	if (!(register_value & CFGTBL_Trans_Performant)) {
9264 		dev_err(&h->pdev->dev,
9265 			"performant mode problem - transport not active\n");
9266 		return -ENODEV;
9267 	}
9268 	/* Change the access methods to the performant access methods */
9269 	h->access = access;
9270 	h->transMethod = transMethod;
9271 
9272 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9273 		(trans_support & CFGTBL_Trans_io_accel2)))
9274 		return 0;
9275 
9276 	if (trans_support & CFGTBL_Trans_io_accel1) {
9277 		/* Set up I/O accelerator mode */
9278 		for (i = 0; i < h->nreply_queues; i++) {
9279 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9280 			h->reply_queue[i].current_entry =
9281 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9282 		}
9283 		bft[7] = h->ioaccel_maxsg + 8;
9284 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9285 				h->ioaccel1_blockFetchTable);
9286 
9287 		/* initialize all reply queue entries to unused */
9288 		for (i = 0; i < h->nreply_queues; i++)
9289 			memset(h->reply_queue[i].head,
9290 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9291 				h->reply_queue_size);
9292 
9293 		/* set all the constant fields in the accelerator command
9294 		 * frames once at init time to save CPU cycles later.
9295 		 */
9296 		for (i = 0; i < h->nr_cmds; i++) {
9297 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9298 
9299 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9300 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9301 					(i * sizeof(struct ErrorInfo)));
9302 			cp->err_info_len = sizeof(struct ErrorInfo);
9303 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9304 			cp->host_context_flags =
9305 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9306 			cp->timeout_sec = 0;
9307 			cp->ReplyQueue = 0;
9308 			cp->tag =
9309 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9310 			cp->host_addr =
9311 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9312 					(i * sizeof(struct io_accel1_cmd)));
9313 		}
9314 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9315 		u64 cfg_offset, cfg_base_addr_index;
9316 		u32 bft2_offset, cfg_base_addr;
9317 
9318 		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9319 				    &cfg_base_addr_index, &cfg_offset);
9320 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9321 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9322 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9323 				4, h->ioaccel2_blockFetchTable);
9324 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9325 		BUILD_BUG_ON(offsetof(struct CfgTable,
9326 				io_accel_request_size_offset) != 0xb8);
9327 		h->ioaccel2_bft2_regs =
9328 			remap_pci_mem(pci_resource_start(h->pdev,
9329 					cfg_base_addr_index) +
9330 					cfg_offset + bft2_offset,
9331 					ARRAY_SIZE(bft2) *
9332 					sizeof(*h->ioaccel2_bft2_regs));
9333 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9334 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9335 	}
9336 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9337 	if (hpsa_wait_for_mode_change_ack(h)) {
9338 		dev_err(&h->pdev->dev,
9339 			"performant mode problem - enabling ioaccel mode\n");
9340 		return -ENODEV;
9341 	}
9342 	return 0;
9343 }
9344 
9345 /* Free ioaccel1 mode command blocks and block fetch table */
hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info * h)9346 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9347 {
9348 	if (h->ioaccel_cmd_pool) {
9349 		dma_free_coherent(&h->pdev->dev,
9350 				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9351 				  h->ioaccel_cmd_pool,
9352 				  h->ioaccel_cmd_pool_dhandle);
9353 		h->ioaccel_cmd_pool = NULL;
9354 		h->ioaccel_cmd_pool_dhandle = 0;
9355 	}
9356 	kfree(h->ioaccel1_blockFetchTable);
9357 	h->ioaccel1_blockFetchTable = NULL;
9358 }
9359 
9360 /* Allocate ioaccel1 mode command blocks and block fetch table */
hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info * h)9361 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9362 {
9363 	h->ioaccel_maxsg =
9364 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9365 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9366 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9367 
9368 	/* Command structures must be aligned on a 128-byte boundary
9369 	 * because the 7 lower bits of the address are used by the
9370 	 * hardware.
9371 	 */
9372 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9373 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9374 	h->ioaccel_cmd_pool =
9375 		dma_alloc_coherent(&h->pdev->dev,
9376 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9377 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9378 
9379 	h->ioaccel1_blockFetchTable =
9380 		kmalloc(((h->ioaccel_maxsg + 1) *
9381 				sizeof(u32)), GFP_KERNEL);
9382 
9383 	if ((h->ioaccel_cmd_pool == NULL) ||
9384 		(h->ioaccel1_blockFetchTable == NULL))
9385 		goto clean_up;
9386 
9387 	memset(h->ioaccel_cmd_pool, 0,
9388 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9389 	return 0;
9390 
9391 clean_up:
9392 	hpsa_free_ioaccel1_cmd_and_bft(h);
9393 	return -ENOMEM;
9394 }
9395 
9396 /* Free ioaccel2 mode command blocks and block fetch table */
hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info * h)9397 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9398 {
9399 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9400 
9401 	if (h->ioaccel2_cmd_pool) {
9402 		dma_free_coherent(&h->pdev->dev,
9403 				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9404 				  h->ioaccel2_cmd_pool,
9405 				  h->ioaccel2_cmd_pool_dhandle);
9406 		h->ioaccel2_cmd_pool = NULL;
9407 		h->ioaccel2_cmd_pool_dhandle = 0;
9408 	}
9409 	kfree(h->ioaccel2_blockFetchTable);
9410 	h->ioaccel2_blockFetchTable = NULL;
9411 }
9412 
9413 /* Allocate ioaccel2 mode command blocks and block fetch table */
hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info * h)9414 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9415 {
9416 	int rc;
9417 
9418 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9419 
9420 	h->ioaccel_maxsg =
9421 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9422 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9423 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9424 
9425 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9426 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9427 	h->ioaccel2_cmd_pool =
9428 		dma_alloc_coherent(&h->pdev->dev,
9429 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9430 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9431 
9432 	h->ioaccel2_blockFetchTable =
9433 		kmalloc(((h->ioaccel_maxsg + 1) *
9434 				sizeof(u32)), GFP_KERNEL);
9435 
9436 	if ((h->ioaccel2_cmd_pool == NULL) ||
9437 		(h->ioaccel2_blockFetchTable == NULL)) {
9438 		rc = -ENOMEM;
9439 		goto clean_up;
9440 	}
9441 
9442 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9443 	if (rc)
9444 		goto clean_up;
9445 
9446 	memset(h->ioaccel2_cmd_pool, 0,
9447 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9448 	return 0;
9449 
9450 clean_up:
9451 	hpsa_free_ioaccel2_cmd_and_bft(h);
9452 	return rc;
9453 }
9454 
9455 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
hpsa_free_performant_mode(struct ctlr_info * h)9456 static void hpsa_free_performant_mode(struct ctlr_info *h)
9457 {
9458 	kfree(h->blockFetchTable);
9459 	h->blockFetchTable = NULL;
9460 	hpsa_free_reply_queues(h);
9461 	hpsa_free_ioaccel1_cmd_and_bft(h);
9462 	hpsa_free_ioaccel2_cmd_and_bft(h);
9463 }
9464 
9465 /* return -ENODEV on error, 0 on success (or no action)
9466  * allocates numerous items that must be freed later
9467  */
hpsa_put_ctlr_into_performant_mode(struct ctlr_info * h)9468 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9469 {
9470 	u32 trans_support;
9471 	int i, rc;
9472 
9473 	if (hpsa_simple_mode)
9474 		return 0;
9475 
9476 	trans_support = readl(&(h->cfgtable->TransportSupport));
9477 	if (!(trans_support & PERFORMANT_MODE))
9478 		return 0;
9479 
9480 	/* Check for I/O accelerator mode support */
9481 	if (trans_support & CFGTBL_Trans_io_accel1) {
9482 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9483 		if (rc)
9484 			return rc;
9485 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9486 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9487 		if (rc)
9488 			return rc;
9489 	}
9490 
9491 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9492 	hpsa_get_max_perf_mode_cmds(h);
9493 	/* Performant mode ring buffer and supporting data structures */
9494 	h->reply_queue_size = h->max_commands * sizeof(u64);
9495 
9496 	for (i = 0; i < h->nreply_queues; i++) {
9497 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9498 						h->reply_queue_size,
9499 						&h->reply_queue[i].busaddr,
9500 						GFP_KERNEL);
9501 		if (!h->reply_queue[i].head) {
9502 			rc = -ENOMEM;
9503 			goto clean1;	/* rq, ioaccel */
9504 		}
9505 		h->reply_queue[i].size = h->max_commands;
9506 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9507 		h->reply_queue[i].current_entry = 0;
9508 	}
9509 
9510 	/* Need a block fetch table for performant mode */
9511 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9512 				sizeof(u32)), GFP_KERNEL);
9513 	if (!h->blockFetchTable) {
9514 		rc = -ENOMEM;
9515 		goto clean1;	/* rq, ioaccel */
9516 	}
9517 
9518 	rc = hpsa_enter_performant_mode(h, trans_support);
9519 	if (rc)
9520 		goto clean2;	/* bft, rq, ioaccel */
9521 	return 0;
9522 
9523 clean2:	/* bft, rq, ioaccel */
9524 	kfree(h->blockFetchTable);
9525 	h->blockFetchTable = NULL;
9526 clean1:	/* rq, ioaccel */
9527 	hpsa_free_reply_queues(h);
9528 	hpsa_free_ioaccel1_cmd_and_bft(h);
9529 	hpsa_free_ioaccel2_cmd_and_bft(h);
9530 	return rc;
9531 }
9532 
is_accelerated_cmd(struct CommandList * c)9533 static int is_accelerated_cmd(struct CommandList *c)
9534 {
9535 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9536 }
9537 
hpsa_drain_accel_commands(struct ctlr_info * h)9538 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9539 {
9540 	struct CommandList *c = NULL;
9541 	int i, accel_cmds_out;
9542 	int refcount;
9543 
9544 	do { /* wait for all outstanding ioaccel commands to drain out */
9545 		accel_cmds_out = 0;
9546 		for (i = 0; i < h->nr_cmds; i++) {
9547 			c = h->cmd_pool + i;
9548 			refcount = atomic_inc_return(&c->refcount);
9549 			if (refcount > 1) /* Command is allocated */
9550 				accel_cmds_out += is_accelerated_cmd(c);
9551 			cmd_free(h, c);
9552 		}
9553 		if (accel_cmds_out <= 0)
9554 			break;
9555 		msleep(100);
9556 	} while (1);
9557 }
9558 
hpsa_alloc_sas_phy(struct hpsa_sas_port * hpsa_sas_port)9559 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9560 				struct hpsa_sas_port *hpsa_sas_port)
9561 {
9562 	struct hpsa_sas_phy *hpsa_sas_phy;
9563 	struct sas_phy *phy;
9564 
9565 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9566 	if (!hpsa_sas_phy)
9567 		return NULL;
9568 
9569 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9570 		hpsa_sas_port->next_phy_index);
9571 	if (!phy) {
9572 		kfree(hpsa_sas_phy);
9573 		return NULL;
9574 	}
9575 
9576 	hpsa_sas_port->next_phy_index++;
9577 	hpsa_sas_phy->phy = phy;
9578 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9579 
9580 	return hpsa_sas_phy;
9581 }
9582 
hpsa_free_sas_phy(struct hpsa_sas_phy * hpsa_sas_phy)9583 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9584 {
9585 	struct sas_phy *phy = hpsa_sas_phy->phy;
9586 
9587 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9588 	if (hpsa_sas_phy->added_to_port)
9589 		list_del(&hpsa_sas_phy->phy_list_entry);
9590 	sas_phy_delete(phy);
9591 	kfree(hpsa_sas_phy);
9592 }
9593 
hpsa_sas_port_add_phy(struct hpsa_sas_phy * hpsa_sas_phy)9594 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9595 {
9596 	int rc;
9597 	struct hpsa_sas_port *hpsa_sas_port;
9598 	struct sas_phy *phy;
9599 	struct sas_identify *identify;
9600 
9601 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9602 	phy = hpsa_sas_phy->phy;
9603 
9604 	identify = &phy->identify;
9605 	memset(identify, 0, sizeof(*identify));
9606 	identify->sas_address = hpsa_sas_port->sas_address;
9607 	identify->device_type = SAS_END_DEVICE;
9608 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9609 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9610 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9611 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9612 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9613 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9614 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9615 
9616 	rc = sas_phy_add(hpsa_sas_phy->phy);
9617 	if (rc)
9618 		return rc;
9619 
9620 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9621 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9622 			&hpsa_sas_port->phy_list_head);
9623 	hpsa_sas_phy->added_to_port = true;
9624 
9625 	return 0;
9626 }
9627 
9628 static int
hpsa_sas_port_add_rphy(struct hpsa_sas_port * hpsa_sas_port,struct sas_rphy * rphy)9629 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9630 				struct sas_rphy *rphy)
9631 {
9632 	struct sas_identify *identify;
9633 
9634 	identify = &rphy->identify;
9635 	identify->sas_address = hpsa_sas_port->sas_address;
9636 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9637 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9638 
9639 	return sas_rphy_add(rphy);
9640 }
9641 
9642 static struct hpsa_sas_port
hpsa_alloc_sas_port(struct hpsa_sas_node * hpsa_sas_node,u64 sas_address)9643 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9644 				u64 sas_address)
9645 {
9646 	int rc;
9647 	struct hpsa_sas_port *hpsa_sas_port;
9648 	struct sas_port *port;
9649 
9650 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9651 	if (!hpsa_sas_port)
9652 		return NULL;
9653 
9654 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9655 	hpsa_sas_port->parent_node = hpsa_sas_node;
9656 
9657 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9658 	if (!port)
9659 		goto free_hpsa_port;
9660 
9661 	rc = sas_port_add(port);
9662 	if (rc)
9663 		goto free_sas_port;
9664 
9665 	hpsa_sas_port->port = port;
9666 	hpsa_sas_port->sas_address = sas_address;
9667 	list_add_tail(&hpsa_sas_port->port_list_entry,
9668 			&hpsa_sas_node->port_list_head);
9669 
9670 	return hpsa_sas_port;
9671 
9672 free_sas_port:
9673 	sas_port_free(port);
9674 free_hpsa_port:
9675 	kfree(hpsa_sas_port);
9676 
9677 	return NULL;
9678 }
9679 
hpsa_free_sas_port(struct hpsa_sas_port * hpsa_sas_port)9680 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9681 {
9682 	struct hpsa_sas_phy *hpsa_sas_phy;
9683 	struct hpsa_sas_phy *next;
9684 
9685 	list_for_each_entry_safe(hpsa_sas_phy, next,
9686 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9687 		hpsa_free_sas_phy(hpsa_sas_phy);
9688 
9689 	sas_port_delete(hpsa_sas_port->port);
9690 	list_del(&hpsa_sas_port->port_list_entry);
9691 	kfree(hpsa_sas_port);
9692 }
9693 
hpsa_alloc_sas_node(struct device * parent_dev)9694 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9695 {
9696 	struct hpsa_sas_node *hpsa_sas_node;
9697 
9698 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9699 	if (hpsa_sas_node) {
9700 		hpsa_sas_node->parent_dev = parent_dev;
9701 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9702 	}
9703 
9704 	return hpsa_sas_node;
9705 }
9706 
hpsa_free_sas_node(struct hpsa_sas_node * hpsa_sas_node)9707 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9708 {
9709 	struct hpsa_sas_port *hpsa_sas_port;
9710 	struct hpsa_sas_port *next;
9711 
9712 	if (!hpsa_sas_node)
9713 		return;
9714 
9715 	list_for_each_entry_safe(hpsa_sas_port, next,
9716 			&hpsa_sas_node->port_list_head, port_list_entry)
9717 		hpsa_free_sas_port(hpsa_sas_port);
9718 
9719 	kfree(hpsa_sas_node);
9720 }
9721 
9722 static struct hpsa_scsi_dev_t
hpsa_find_device_by_sas_rphy(struct ctlr_info * h,struct sas_rphy * rphy)9723 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9724 					struct sas_rphy *rphy)
9725 {
9726 	int i;
9727 	struct hpsa_scsi_dev_t *device;
9728 
9729 	for (i = 0; i < h->ndevices; i++) {
9730 		device = h->dev[i];
9731 		if (!device->sas_port)
9732 			continue;
9733 		if (device->sas_port->rphy == rphy)
9734 			return device;
9735 	}
9736 
9737 	return NULL;
9738 }
9739 
hpsa_add_sas_host(struct ctlr_info * h)9740 static int hpsa_add_sas_host(struct ctlr_info *h)
9741 {
9742 	int rc;
9743 	struct device *parent_dev;
9744 	struct hpsa_sas_node *hpsa_sas_node;
9745 	struct hpsa_sas_port *hpsa_sas_port;
9746 	struct hpsa_sas_phy *hpsa_sas_phy;
9747 
9748 	parent_dev = &h->scsi_host->shost_dev;
9749 
9750 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9751 	if (!hpsa_sas_node)
9752 		return -ENOMEM;
9753 
9754 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9755 	if (!hpsa_sas_port) {
9756 		rc = -ENODEV;
9757 		goto free_sas_node;
9758 	}
9759 
9760 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9761 	if (!hpsa_sas_phy) {
9762 		rc = -ENODEV;
9763 		goto free_sas_port;
9764 	}
9765 
9766 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9767 	if (rc)
9768 		goto free_sas_phy;
9769 
9770 	h->sas_host = hpsa_sas_node;
9771 
9772 	return 0;
9773 
9774 free_sas_phy:
9775 	sas_phy_free(hpsa_sas_phy->phy);
9776 	kfree(hpsa_sas_phy);
9777 free_sas_port:
9778 	hpsa_free_sas_port(hpsa_sas_port);
9779 free_sas_node:
9780 	hpsa_free_sas_node(hpsa_sas_node);
9781 
9782 	return rc;
9783 }
9784 
hpsa_delete_sas_host(struct ctlr_info * h)9785 static void hpsa_delete_sas_host(struct ctlr_info *h)
9786 {
9787 	hpsa_free_sas_node(h->sas_host);
9788 }
9789 
hpsa_add_sas_device(struct hpsa_sas_node * hpsa_sas_node,struct hpsa_scsi_dev_t * device)9790 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9791 				struct hpsa_scsi_dev_t *device)
9792 {
9793 	int rc;
9794 	struct hpsa_sas_port *hpsa_sas_port;
9795 	struct sas_rphy *rphy;
9796 
9797 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9798 	if (!hpsa_sas_port)
9799 		return -ENOMEM;
9800 
9801 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9802 	if (!rphy) {
9803 		rc = -ENODEV;
9804 		goto free_sas_port;
9805 	}
9806 
9807 	hpsa_sas_port->rphy = rphy;
9808 	device->sas_port = hpsa_sas_port;
9809 
9810 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9811 	if (rc)
9812 		goto free_sas_rphy;
9813 
9814 	return 0;
9815 
9816 free_sas_rphy:
9817 	sas_rphy_free(rphy);
9818 free_sas_port:
9819 	hpsa_free_sas_port(hpsa_sas_port);
9820 	device->sas_port = NULL;
9821 
9822 	return rc;
9823 }
9824 
hpsa_remove_sas_device(struct hpsa_scsi_dev_t * device)9825 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9826 {
9827 	if (device->sas_port) {
9828 		hpsa_free_sas_port(device->sas_port);
9829 		device->sas_port = NULL;
9830 	}
9831 }
9832 
9833 static int
hpsa_sas_get_linkerrors(struct sas_phy * phy)9834 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9835 {
9836 	return 0;
9837 }
9838 
9839 static int
hpsa_sas_get_enclosure_identifier(struct sas_rphy * rphy,u64 * identifier)9840 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9841 {
9842 	struct Scsi_Host *shost = phy_to_shost(rphy);
9843 	struct ctlr_info *h;
9844 	struct hpsa_scsi_dev_t *sd;
9845 
9846 	if (!shost)
9847 		return -ENXIO;
9848 
9849 	h = shost_to_hba(shost);
9850 
9851 	if (!h)
9852 		return -ENXIO;
9853 
9854 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9855 	if (!sd)
9856 		return -ENXIO;
9857 
9858 	*identifier = sd->eli;
9859 
9860 	return 0;
9861 }
9862 
9863 static int
hpsa_sas_get_bay_identifier(struct sas_rphy * rphy)9864 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9865 {
9866 	return -ENXIO;
9867 }
9868 
9869 static int
hpsa_sas_phy_reset(struct sas_phy * phy,int hard_reset)9870 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9871 {
9872 	return 0;
9873 }
9874 
9875 static int
hpsa_sas_phy_enable(struct sas_phy * phy,int enable)9876 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9877 {
9878 	return 0;
9879 }
9880 
9881 static int
hpsa_sas_phy_setup(struct sas_phy * phy)9882 hpsa_sas_phy_setup(struct sas_phy *phy)
9883 {
9884 	return 0;
9885 }
9886 
9887 static void
hpsa_sas_phy_release(struct sas_phy * phy)9888 hpsa_sas_phy_release(struct sas_phy *phy)
9889 {
9890 }
9891 
9892 static int
hpsa_sas_phy_speed(struct sas_phy * phy,struct sas_phy_linkrates * rates)9893 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9894 {
9895 	return -EINVAL;
9896 }
9897 
9898 static struct sas_function_template hpsa_sas_transport_functions = {
9899 	.get_linkerrors = hpsa_sas_get_linkerrors,
9900 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9901 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9902 	.phy_reset = hpsa_sas_phy_reset,
9903 	.phy_enable = hpsa_sas_phy_enable,
9904 	.phy_setup = hpsa_sas_phy_setup,
9905 	.phy_release = hpsa_sas_phy_release,
9906 	.set_phy_speed = hpsa_sas_phy_speed,
9907 };
9908 
9909 /*
9910  *  This is it.  Register the PCI driver information for the cards we control
9911  *  the OS will call our registered routines when it finds one of our cards.
9912  */
hpsa_init(void)9913 static int __init hpsa_init(void)
9914 {
9915 	int rc;
9916 
9917 	hpsa_sas_transport_template =
9918 		sas_attach_transport(&hpsa_sas_transport_functions);
9919 	if (!hpsa_sas_transport_template)
9920 		return -ENODEV;
9921 
9922 	rc = pci_register_driver(&hpsa_pci_driver);
9923 
9924 	if (rc)
9925 		sas_release_transport(hpsa_sas_transport_template);
9926 
9927 	return rc;
9928 }
9929 
hpsa_cleanup(void)9930 static void __exit hpsa_cleanup(void)
9931 {
9932 	pci_unregister_driver(&hpsa_pci_driver);
9933 	sas_release_transport(hpsa_sas_transport_template);
9934 }
9935 
verify_offsets(void)9936 static void __attribute__((unused)) verify_offsets(void)
9937 {
9938 #define VERIFY_OFFSET(member, offset) \
9939 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9940 
9941 	VERIFY_OFFSET(structure_size, 0);
9942 	VERIFY_OFFSET(volume_blk_size, 4);
9943 	VERIFY_OFFSET(volume_blk_cnt, 8);
9944 	VERIFY_OFFSET(phys_blk_shift, 16);
9945 	VERIFY_OFFSET(parity_rotation_shift, 17);
9946 	VERIFY_OFFSET(strip_size, 18);
9947 	VERIFY_OFFSET(disk_starting_blk, 20);
9948 	VERIFY_OFFSET(disk_blk_cnt, 28);
9949 	VERIFY_OFFSET(data_disks_per_row, 36);
9950 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9951 	VERIFY_OFFSET(row_cnt, 40);
9952 	VERIFY_OFFSET(layout_map_count, 42);
9953 	VERIFY_OFFSET(flags, 44);
9954 	VERIFY_OFFSET(dekindex, 46);
9955 	/* VERIFY_OFFSET(reserved, 48 */
9956 	VERIFY_OFFSET(data, 64);
9957 
9958 #undef VERIFY_OFFSET
9959 
9960 #define VERIFY_OFFSET(member, offset) \
9961 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9962 
9963 	VERIFY_OFFSET(IU_type, 0);
9964 	VERIFY_OFFSET(direction, 1);
9965 	VERIFY_OFFSET(reply_queue, 2);
9966 	/* VERIFY_OFFSET(reserved1, 3);  */
9967 	VERIFY_OFFSET(scsi_nexus, 4);
9968 	VERIFY_OFFSET(Tag, 8);
9969 	VERIFY_OFFSET(cdb, 16);
9970 	VERIFY_OFFSET(cciss_lun, 32);
9971 	VERIFY_OFFSET(data_len, 40);
9972 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9973 	VERIFY_OFFSET(sg_count, 45);
9974 	/* VERIFY_OFFSET(reserved3 */
9975 	VERIFY_OFFSET(err_ptr, 48);
9976 	VERIFY_OFFSET(err_len, 56);
9977 	/* VERIFY_OFFSET(reserved4  */
9978 	VERIFY_OFFSET(sg, 64);
9979 
9980 #undef VERIFY_OFFSET
9981 
9982 #define VERIFY_OFFSET(member, offset) \
9983 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9984 
9985 	VERIFY_OFFSET(dev_handle, 0x00);
9986 	VERIFY_OFFSET(reserved1, 0x02);
9987 	VERIFY_OFFSET(function, 0x03);
9988 	VERIFY_OFFSET(reserved2, 0x04);
9989 	VERIFY_OFFSET(err_info, 0x0C);
9990 	VERIFY_OFFSET(reserved3, 0x10);
9991 	VERIFY_OFFSET(err_info_len, 0x12);
9992 	VERIFY_OFFSET(reserved4, 0x13);
9993 	VERIFY_OFFSET(sgl_offset, 0x14);
9994 	VERIFY_OFFSET(reserved5, 0x15);
9995 	VERIFY_OFFSET(transfer_len, 0x1C);
9996 	VERIFY_OFFSET(reserved6, 0x20);
9997 	VERIFY_OFFSET(io_flags, 0x24);
9998 	VERIFY_OFFSET(reserved7, 0x26);
9999 	VERIFY_OFFSET(LUN, 0x34);
10000 	VERIFY_OFFSET(control, 0x3C);
10001 	VERIFY_OFFSET(CDB, 0x40);
10002 	VERIFY_OFFSET(reserved8, 0x50);
10003 	VERIFY_OFFSET(host_context_flags, 0x60);
10004 	VERIFY_OFFSET(timeout_sec, 0x62);
10005 	VERIFY_OFFSET(ReplyQueue, 0x64);
10006 	VERIFY_OFFSET(reserved9, 0x65);
10007 	VERIFY_OFFSET(tag, 0x68);
10008 	VERIFY_OFFSET(host_addr, 0x70);
10009 	VERIFY_OFFSET(CISS_LUN, 0x78);
10010 	VERIFY_OFFSET(SG, 0x78 + 8);
10011 #undef VERIFY_OFFSET
10012 }
10013 
10014 module_init(hpsa_init);
10015 module_exit(hpsa_cleanup);
10016