xref: /linux/arch/x86/kvm/svm/sev.c (revision 11e7861d680c3757eab18ec0a474ff680e007dc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 #include <uapi/linux/sev-guest.h>
23 
24 #include <asm/pkru.h>
25 #include <asm/trapnr.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/fpu/xstate.h>
28 #include <asm/debugreg.h>
29 #include <asm/msr.h>
30 #include <asm/sev.h>
31 
32 #include "mmu.h"
33 #include "x86.h"
34 #include "svm.h"
35 #include "svm_ops.h"
36 #include "cpuid.h"
37 #include "trace.h"
38 
39 #define GHCB_VERSION_MAX	2ULL
40 #define GHCB_VERSION_DEFAULT	2ULL
41 #define GHCB_VERSION_MIN	1ULL
42 
43 #define GHCB_HV_FT_SUPPORTED	(GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
44 
45 /* enable/disable SEV support */
46 static bool sev_enabled = true;
47 module_param_named(sev, sev_enabled, bool, 0444);
48 
49 /* enable/disable SEV-ES support */
50 static bool sev_es_enabled = true;
51 module_param_named(sev_es, sev_es_enabled, bool, 0444);
52 
53 /* enable/disable SEV-SNP support */
54 static bool sev_snp_enabled = true;
55 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
56 
57 /* enable/disable SEV-ES DebugSwap support */
58 static bool sev_es_debug_swap_enabled = true;
59 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
60 static u64 sev_supported_vmsa_features;
61 
62 #define AP_RESET_HOLD_NONE		0
63 #define AP_RESET_HOLD_NAE_EVENT		1
64 #define AP_RESET_HOLD_MSR_PROTO		2
65 
66 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
67 #define SNP_POLICY_MASK_API_MINOR	GENMASK_ULL(7, 0)
68 #define SNP_POLICY_MASK_API_MAJOR	GENMASK_ULL(15, 8)
69 #define SNP_POLICY_MASK_SMT		BIT_ULL(16)
70 #define SNP_POLICY_MASK_RSVD_MBO	BIT_ULL(17)
71 #define SNP_POLICY_MASK_DEBUG		BIT_ULL(19)
72 #define SNP_POLICY_MASK_SINGLE_SOCKET	BIT_ULL(20)
73 
74 #define SNP_POLICY_MASK_VALID		(SNP_POLICY_MASK_API_MINOR	| \
75 					 SNP_POLICY_MASK_API_MAJOR	| \
76 					 SNP_POLICY_MASK_SMT		| \
77 					 SNP_POLICY_MASK_RSVD_MBO	| \
78 					 SNP_POLICY_MASK_DEBUG		| \
79 					 SNP_POLICY_MASK_SINGLE_SOCKET)
80 
81 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
82 
83 static u8 sev_enc_bit;
84 static DECLARE_RWSEM(sev_deactivate_lock);
85 static DEFINE_MUTEX(sev_bitmap_lock);
86 unsigned int max_sev_asid;
87 static unsigned int min_sev_asid;
88 static unsigned long sev_me_mask;
89 static unsigned int nr_asids;
90 static unsigned long *sev_asid_bitmap;
91 static unsigned long *sev_reclaim_asid_bitmap;
92 
93 static int snp_decommission_context(struct kvm *kvm);
94 
95 struct enc_region {
96 	struct list_head list;
97 	unsigned long npages;
98 	struct page **pages;
99 	unsigned long uaddr;
100 	unsigned long size;
101 };
102 
103 /* Called with the sev_bitmap_lock held, or on shutdown  */
sev_flush_asids(unsigned int min_asid,unsigned int max_asid)104 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
105 {
106 	int ret, error = 0;
107 	unsigned int asid;
108 
109 	/* Check if there are any ASIDs to reclaim before performing a flush */
110 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
111 	if (asid > max_asid)
112 		return -EBUSY;
113 
114 	/*
115 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
116 	 * so it must be guarded.
117 	 */
118 	down_write(&sev_deactivate_lock);
119 
120 	/* SNP firmware requires use of WBINVD for ASID recycling. */
121 	wbinvd_on_all_cpus();
122 
123 	if (sev_snp_enabled)
124 		ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
125 	else
126 		ret = sev_guest_df_flush(&error);
127 
128 	up_write(&sev_deactivate_lock);
129 
130 	if (ret)
131 		pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
132 		       sev_snp_enabled ? "-SNP" : "", ret, error);
133 
134 	return ret;
135 }
136 
is_mirroring_enc_context(struct kvm * kvm)137 static inline bool is_mirroring_enc_context(struct kvm *kvm)
138 {
139 	return !!to_kvm_sev_info(kvm)->enc_context_owner;
140 }
141 
sev_vcpu_has_debug_swap(struct vcpu_svm * svm)142 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
143 {
144 	struct kvm_vcpu *vcpu = &svm->vcpu;
145 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
146 
147 	return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
148 }
149 
150 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(unsigned int min_asid,unsigned int max_asid)151 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
152 {
153 	if (sev_flush_asids(min_asid, max_asid))
154 		return false;
155 
156 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
157 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
158 		   nr_asids);
159 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
160 
161 	return true;
162 }
163 
sev_misc_cg_try_charge(struct kvm_sev_info * sev)164 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
165 {
166 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
167 	return misc_cg_try_charge(type, sev->misc_cg, 1);
168 }
169 
sev_misc_cg_uncharge(struct kvm_sev_info * sev)170 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
171 {
172 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
173 	misc_cg_uncharge(type, sev->misc_cg, 1);
174 }
175 
sev_asid_new(struct kvm_sev_info * sev)176 static int sev_asid_new(struct kvm_sev_info *sev)
177 {
178 	/*
179 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
180 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
181 	 * Note: min ASID can end up larger than the max if basic SEV support is
182 	 * effectively disabled by disallowing use of ASIDs for SEV guests.
183 	 */
184 	unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
185 	unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
186 	unsigned int asid;
187 	bool retry = true;
188 	int ret;
189 
190 	if (min_asid > max_asid)
191 		return -ENOTTY;
192 
193 	WARN_ON(sev->misc_cg);
194 	sev->misc_cg = get_current_misc_cg();
195 	ret = sev_misc_cg_try_charge(sev);
196 	if (ret) {
197 		put_misc_cg(sev->misc_cg);
198 		sev->misc_cg = NULL;
199 		return ret;
200 	}
201 
202 	mutex_lock(&sev_bitmap_lock);
203 
204 again:
205 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
206 	if (asid > max_asid) {
207 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
208 			retry = false;
209 			goto again;
210 		}
211 		mutex_unlock(&sev_bitmap_lock);
212 		ret = -EBUSY;
213 		goto e_uncharge;
214 	}
215 
216 	__set_bit(asid, sev_asid_bitmap);
217 
218 	mutex_unlock(&sev_bitmap_lock);
219 
220 	sev->asid = asid;
221 	return 0;
222 e_uncharge:
223 	sev_misc_cg_uncharge(sev);
224 	put_misc_cg(sev->misc_cg);
225 	sev->misc_cg = NULL;
226 	return ret;
227 }
228 
sev_get_asid(struct kvm * kvm)229 static unsigned int sev_get_asid(struct kvm *kvm)
230 {
231 	return to_kvm_sev_info(kvm)->asid;
232 }
233 
sev_asid_free(struct kvm_sev_info * sev)234 static void sev_asid_free(struct kvm_sev_info *sev)
235 {
236 	struct svm_cpu_data *sd;
237 	int cpu;
238 
239 	mutex_lock(&sev_bitmap_lock);
240 
241 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
242 
243 	for_each_possible_cpu(cpu) {
244 		sd = per_cpu_ptr(&svm_data, cpu);
245 		sd->sev_vmcbs[sev->asid] = NULL;
246 	}
247 
248 	mutex_unlock(&sev_bitmap_lock);
249 
250 	sev_misc_cg_uncharge(sev);
251 	put_misc_cg(sev->misc_cg);
252 	sev->misc_cg = NULL;
253 }
254 
sev_decommission(unsigned int handle)255 static void sev_decommission(unsigned int handle)
256 {
257 	struct sev_data_decommission decommission;
258 
259 	if (!handle)
260 		return;
261 
262 	decommission.handle = handle;
263 	sev_guest_decommission(&decommission, NULL);
264 }
265 
266 /*
267  * Transition a page to hypervisor-owned/shared state in the RMP table. This
268  * should not fail under normal conditions, but leak the page should that
269  * happen since it will no longer be usable by the host due to RMP protections.
270  */
kvm_rmp_make_shared(struct kvm * kvm,u64 pfn,enum pg_level level)271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
272 {
273 	if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
274 		snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
275 		return -EIO;
276 	}
277 
278 	return 0;
279 }
280 
281 /*
282  * Certain page-states, such as Pre-Guest and Firmware pages (as documented
283  * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
284  * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
285  * unless they are reclaimed first.
286  *
287  * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
288  * might not be usable by the host due to being set as immutable or still
289  * being associated with a guest ASID.
290  *
291  * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
292  * converted back to shared, as the page is no longer usable due to RMP
293  * protections, and it's infeasible for the guest to continue on.
294  */
snp_page_reclaim(struct kvm * kvm,u64 pfn)295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
296 {
297 	struct sev_data_snp_page_reclaim data = {0};
298 	int fw_err, rc;
299 
300 	data.paddr = __sme_set(pfn << PAGE_SHIFT);
301 	rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
302 	if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
303 		snp_leak_pages(pfn, 1);
304 		return -EIO;
305 	}
306 
307 	if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
308 		return -EIO;
309 
310 	return rc;
311 }
312 
sev_unbind_asid(struct kvm * kvm,unsigned int handle)313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
314 {
315 	struct sev_data_deactivate deactivate;
316 
317 	if (!handle)
318 		return;
319 
320 	deactivate.handle = handle;
321 
322 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
323 	down_read(&sev_deactivate_lock);
324 	sev_guest_deactivate(&deactivate, NULL);
325 	up_read(&sev_deactivate_lock);
326 
327 	sev_decommission(handle);
328 }
329 
330 /*
331  * This sets up bounce buffers/firmware pages to handle SNP Guest Request
332  * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
333  * 2.0 specification for more details.
334  *
335  * Technically, when an SNP Guest Request is issued, the guest will provide its
336  * own request/response pages, which could in theory be passed along directly
337  * to firmware rather than using bounce pages. However, these pages would need
338  * special care:
339  *
340  *   - Both pages are from shared guest memory, so they need to be protected
341  *     from migration/etc. occurring while firmware reads/writes to them. At a
342  *     minimum, this requires elevating the ref counts and potentially needing
343  *     an explicit pinning of the memory. This places additional restrictions
344  *     on what type of memory backends userspace can use for shared guest
345  *     memory since there is some reliance on using refcounted pages.
346  *
347  *   - The response page needs to be switched to Firmware-owned[1] state
348  *     before the firmware can write to it, which can lead to potential
349  *     host RMP #PFs if the guest is misbehaved and hands the host a
350  *     guest page that KVM might write to for other reasons (e.g. virtio
351  *     buffers/etc.).
352  *
353  * Both of these issues can be avoided completely by using separately-allocated
354  * bounce pages for both the request/response pages and passing those to
355  * firmware instead. So that's what is being set up here.
356  *
357  * Guest requests rely on message sequence numbers to ensure requests are
358  * issued to firmware in the order the guest issues them, so concurrent guest
359  * requests generally shouldn't happen. But a misbehaved guest could issue
360  * concurrent guest requests in theory, so a mutex is used to serialize
361  * access to the bounce buffers.
362  *
363  * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
364  *     details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
365  *     in the APM for details on the related RMP restrictions.
366  */
snp_guest_req_init(struct kvm * kvm)367 static int snp_guest_req_init(struct kvm *kvm)
368 {
369 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
370 	struct page *req_page;
371 
372 	req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
373 	if (!req_page)
374 		return -ENOMEM;
375 
376 	sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
377 	if (!sev->guest_resp_buf) {
378 		__free_page(req_page);
379 		return -EIO;
380 	}
381 
382 	sev->guest_req_buf = page_address(req_page);
383 	mutex_init(&sev->guest_req_mutex);
384 
385 	return 0;
386 }
387 
snp_guest_req_cleanup(struct kvm * kvm)388 static void snp_guest_req_cleanup(struct kvm *kvm)
389 {
390 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
391 
392 	if (sev->guest_resp_buf)
393 		snp_free_firmware_page(sev->guest_resp_buf);
394 
395 	if (sev->guest_req_buf)
396 		__free_page(virt_to_page(sev->guest_req_buf));
397 
398 	sev->guest_req_buf = NULL;
399 	sev->guest_resp_buf = NULL;
400 }
401 
__sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_init * data,unsigned long vm_type)402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
403 			    struct kvm_sev_init *data,
404 			    unsigned long vm_type)
405 {
406 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
407 	struct sev_platform_init_args init_args = {0};
408 	bool es_active = vm_type != KVM_X86_SEV_VM;
409 	u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
410 	int ret;
411 
412 	if (kvm->created_vcpus)
413 		return -EINVAL;
414 
415 	if (data->flags)
416 		return -EINVAL;
417 
418 	if (data->vmsa_features & ~valid_vmsa_features)
419 		return -EINVAL;
420 
421 	if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
422 		return -EINVAL;
423 
424 	if (unlikely(sev->active))
425 		return -EINVAL;
426 
427 	sev->active = true;
428 	sev->es_active = es_active;
429 	sev->vmsa_features = data->vmsa_features;
430 	sev->ghcb_version = data->ghcb_version;
431 
432 	/*
433 	 * Currently KVM supports the full range of mandatory features defined
434 	 * by version 2 of the GHCB protocol, so default to that for SEV-ES
435 	 * guests created via KVM_SEV_INIT2.
436 	 */
437 	if (sev->es_active && !sev->ghcb_version)
438 		sev->ghcb_version = GHCB_VERSION_DEFAULT;
439 
440 	if (vm_type == KVM_X86_SNP_VM)
441 		sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
442 
443 	ret = sev_asid_new(sev);
444 	if (ret)
445 		goto e_no_asid;
446 
447 	init_args.probe = false;
448 	ret = sev_platform_init(&init_args);
449 	if (ret)
450 		goto e_free_asid;
451 
452 	if (!zalloc_cpumask_var(&sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
453 		ret = -ENOMEM;
454 		goto e_free_asid;
455 	}
456 
457 	/* This needs to happen after SEV/SNP firmware initialization. */
458 	if (vm_type == KVM_X86_SNP_VM) {
459 		ret = snp_guest_req_init(kvm);
460 		if (ret)
461 			goto e_free;
462 	}
463 
464 	INIT_LIST_HEAD(&sev->regions_list);
465 	INIT_LIST_HEAD(&sev->mirror_vms);
466 	sev->need_init = false;
467 
468 	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
469 
470 	return 0;
471 
472 e_free:
473 	free_cpumask_var(sev->have_run_cpus);
474 e_free_asid:
475 	argp->error = init_args.error;
476 	sev_asid_free(sev);
477 	sev->asid = 0;
478 e_no_asid:
479 	sev->vmsa_features = 0;
480 	sev->es_active = false;
481 	sev->active = false;
482 	return ret;
483 }
484 
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)485 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
486 {
487 	struct kvm_sev_init data = {
488 		.vmsa_features = 0,
489 		.ghcb_version = 0,
490 	};
491 	unsigned long vm_type;
492 
493 	if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
494 		return -EINVAL;
495 
496 	vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
497 
498 	/*
499 	 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
500 	 * continue to only ever support the minimal GHCB protocol version.
501 	 */
502 	if (vm_type == KVM_X86_SEV_ES_VM)
503 		data.ghcb_version = GHCB_VERSION_MIN;
504 
505 	return __sev_guest_init(kvm, argp, &data, vm_type);
506 }
507 
sev_guest_init2(struct kvm * kvm,struct kvm_sev_cmd * argp)508 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
509 {
510 	struct kvm_sev_init data;
511 
512 	if (!to_kvm_sev_info(kvm)->need_init)
513 		return -EINVAL;
514 
515 	if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
516 	    kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
517 	    kvm->arch.vm_type != KVM_X86_SNP_VM)
518 		return -EINVAL;
519 
520 	if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
521 		return -EFAULT;
522 
523 	return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
524 }
525 
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)526 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
527 {
528 	unsigned int asid = sev_get_asid(kvm);
529 	struct sev_data_activate activate;
530 	int ret;
531 
532 	/* activate ASID on the given handle */
533 	activate.handle = handle;
534 	activate.asid   = asid;
535 	ret = sev_guest_activate(&activate, error);
536 
537 	return ret;
538 }
539 
__sev_issue_cmd(int fd,int id,void * data,int * error)540 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
541 {
542 	CLASS(fd, f)(fd);
543 
544 	if (fd_empty(f))
545 		return -EBADF;
546 
547 	return sev_issue_cmd_external_user(fd_file(f), id, data, error);
548 }
549 
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)550 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
551 {
552 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
553 
554 	return __sev_issue_cmd(sev->fd, id, data, error);
555 }
556 
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)557 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
558 {
559 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
560 	struct sev_data_launch_start start;
561 	struct kvm_sev_launch_start params;
562 	void *dh_blob, *session_blob;
563 	int *error = &argp->error;
564 	int ret;
565 
566 	if (!sev_guest(kvm))
567 		return -ENOTTY;
568 
569 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
570 		return -EFAULT;
571 
572 	sev->policy = params.policy;
573 
574 	memset(&start, 0, sizeof(start));
575 
576 	dh_blob = NULL;
577 	if (params.dh_uaddr) {
578 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
579 		if (IS_ERR(dh_blob))
580 			return PTR_ERR(dh_blob);
581 
582 		start.dh_cert_address = __sme_set(__pa(dh_blob));
583 		start.dh_cert_len = params.dh_len;
584 	}
585 
586 	session_blob = NULL;
587 	if (params.session_uaddr) {
588 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
589 		if (IS_ERR(session_blob)) {
590 			ret = PTR_ERR(session_blob);
591 			goto e_free_dh;
592 		}
593 
594 		start.session_address = __sme_set(__pa(session_blob));
595 		start.session_len = params.session_len;
596 	}
597 
598 	start.handle = params.handle;
599 	start.policy = params.policy;
600 
601 	/* create memory encryption context */
602 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
603 	if (ret)
604 		goto e_free_session;
605 
606 	/* Bind ASID to this guest */
607 	ret = sev_bind_asid(kvm, start.handle, error);
608 	if (ret) {
609 		sev_decommission(start.handle);
610 		goto e_free_session;
611 	}
612 
613 	/* return handle to userspace */
614 	params.handle = start.handle;
615 	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params))) {
616 		sev_unbind_asid(kvm, start.handle);
617 		ret = -EFAULT;
618 		goto e_free_session;
619 	}
620 
621 	sev->handle = start.handle;
622 	sev->fd = argp->sev_fd;
623 
624 e_free_session:
625 	kfree(session_blob);
626 e_free_dh:
627 	kfree(dh_blob);
628 	return ret;
629 }
630 
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,unsigned int flags)631 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
632 				    unsigned long ulen, unsigned long *n,
633 				    unsigned int flags)
634 {
635 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
636 	unsigned long npages, size;
637 	int npinned;
638 	unsigned long locked, lock_limit;
639 	struct page **pages;
640 	unsigned long first, last;
641 	int ret;
642 
643 	lockdep_assert_held(&kvm->lock);
644 
645 	if (ulen == 0 || uaddr + ulen < uaddr)
646 		return ERR_PTR(-EINVAL);
647 
648 	/* Calculate number of pages. */
649 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
650 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
651 	npages = (last - first + 1);
652 
653 	locked = sev->pages_locked + npages;
654 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
655 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
656 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
657 		return ERR_PTR(-ENOMEM);
658 	}
659 
660 	if (WARN_ON_ONCE(npages > INT_MAX))
661 		return ERR_PTR(-EINVAL);
662 
663 	/* Avoid using vmalloc for smaller buffers. */
664 	size = npages * sizeof(struct page *);
665 	if (size > PAGE_SIZE)
666 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
667 	else
668 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
669 
670 	if (!pages)
671 		return ERR_PTR(-ENOMEM);
672 
673 	/* Pin the user virtual address. */
674 	npinned = pin_user_pages_fast(uaddr, npages, flags, pages);
675 	if (npinned != npages) {
676 		pr_err("SEV: Failure locking %lu pages.\n", npages);
677 		ret = -ENOMEM;
678 		goto err;
679 	}
680 
681 	*n = npages;
682 	sev->pages_locked = locked;
683 
684 	return pages;
685 
686 err:
687 	if (npinned > 0)
688 		unpin_user_pages(pages, npinned);
689 
690 	kvfree(pages);
691 	return ERR_PTR(ret);
692 }
693 
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)694 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
695 			     unsigned long npages)
696 {
697 	unpin_user_pages(pages, npages);
698 	kvfree(pages);
699 	to_kvm_sev_info(kvm)->pages_locked -= npages;
700 }
701 
sev_clflush_pages(struct page * pages[],unsigned long npages)702 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
703 {
704 	uint8_t *page_virtual;
705 	unsigned long i;
706 
707 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
708 	    pages == NULL)
709 		return;
710 
711 	for (i = 0; i < npages; i++) {
712 		page_virtual = kmap_local_page(pages[i]);
713 		clflush_cache_range(page_virtual, PAGE_SIZE);
714 		kunmap_local(page_virtual);
715 		cond_resched();
716 	}
717 }
718 
sev_writeback_caches(struct kvm * kvm)719 static void sev_writeback_caches(struct kvm *kvm)
720 {
721 	/*
722 	 * Ensure that all dirty guest tagged cache entries are written back
723 	 * before releasing the pages back to the system for use.  CLFLUSH will
724 	 * not do this without SME_COHERENT, and flushing many cache lines
725 	 * individually is slower than blasting WBINVD for large VMs, so issue
726 	 * WBNOINVD (or WBINVD if the "no invalidate" variant is unsupported)
727 	 * on CPUs that have done VMRUN, i.e. may have dirtied data using the
728 	 * VM's ASID.
729 	 *
730 	 * For simplicity, never remove CPUs from the bitmap.  Ideally, KVM
731 	 * would clear the mask when flushing caches, but doing so requires
732 	 * serializing multiple calls and having responding CPUs (to the IPI)
733 	 * mark themselves as still running if they are running (or about to
734 	 * run) a vCPU for the VM.
735 	 *
736 	 * Note, the caller is responsible for ensuring correctness if the mask
737 	 * can be modified, e.g. if a CPU could be doing VMRUN.
738 	 */
739 	wbnoinvd_on_cpus_mask(to_kvm_sev_info(kvm)->have_run_cpus);
740 }
741 
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)742 static unsigned long get_num_contig_pages(unsigned long idx,
743 				struct page **inpages, unsigned long npages)
744 {
745 	unsigned long paddr, next_paddr;
746 	unsigned long i = idx + 1, pages = 1;
747 
748 	/* find the number of contiguous pages starting from idx */
749 	paddr = __sme_page_pa(inpages[idx]);
750 	while (i < npages) {
751 		next_paddr = __sme_page_pa(inpages[i++]);
752 		if ((paddr + PAGE_SIZE) == next_paddr) {
753 			pages++;
754 			paddr = next_paddr;
755 			continue;
756 		}
757 		break;
758 	}
759 
760 	return pages;
761 }
762 
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)763 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
764 {
765 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
766 	struct kvm_sev_launch_update_data params;
767 	struct sev_data_launch_update_data data;
768 	struct page **inpages;
769 	int ret;
770 
771 	if (!sev_guest(kvm))
772 		return -ENOTTY;
773 
774 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
775 		return -EFAULT;
776 
777 	vaddr = params.uaddr;
778 	size = params.len;
779 	vaddr_end = vaddr + size;
780 
781 	/* Lock the user memory. */
782 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE);
783 	if (IS_ERR(inpages))
784 		return PTR_ERR(inpages);
785 
786 	/*
787 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
788 	 * place; the cache may contain the data that was written unencrypted.
789 	 */
790 	sev_clflush_pages(inpages, npages);
791 
792 	data.reserved = 0;
793 	data.handle = to_kvm_sev_info(kvm)->handle;
794 
795 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
796 		int offset, len;
797 
798 		/*
799 		 * If the user buffer is not page-aligned, calculate the offset
800 		 * within the page.
801 		 */
802 		offset = vaddr & (PAGE_SIZE - 1);
803 
804 		/* Calculate the number of pages that can be encrypted in one go. */
805 		pages = get_num_contig_pages(i, inpages, npages);
806 
807 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
808 
809 		data.len = len;
810 		data.address = __sme_page_pa(inpages[i]) + offset;
811 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
812 		if (ret)
813 			goto e_unpin;
814 
815 		size -= len;
816 		next_vaddr = vaddr + len;
817 	}
818 
819 e_unpin:
820 	/* content of memory is updated, mark pages dirty */
821 	for (i = 0; i < npages; i++) {
822 		set_page_dirty_lock(inpages[i]);
823 		mark_page_accessed(inpages[i]);
824 	}
825 	/* unlock the user pages */
826 	sev_unpin_memory(kvm, inpages, npages);
827 	return ret;
828 }
829 
sev_es_sync_vmsa(struct vcpu_svm * svm)830 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
831 {
832 	struct kvm_vcpu *vcpu = &svm->vcpu;
833 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
834 	struct sev_es_save_area *save = svm->sev_es.vmsa;
835 	struct xregs_state *xsave;
836 	const u8 *s;
837 	u8 *d;
838 	int i;
839 
840 	/* Check some debug related fields before encrypting the VMSA */
841 	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
842 		return -EINVAL;
843 
844 	/*
845 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
846 	 * the traditional VMSA that is part of the VMCB. Copy the
847 	 * traditional VMSA as it has been built so far (in prep
848 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
849 	 */
850 	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
851 
852 	/* Sync registgers */
853 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
854 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
855 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
856 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
857 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
858 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
859 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
860 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
861 #ifdef CONFIG_X86_64
862 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
863 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
864 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
865 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
866 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
867 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
868 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
869 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
870 #endif
871 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
872 
873 	/* Sync some non-GPR registers before encrypting */
874 	save->xcr0 = svm->vcpu.arch.xcr0;
875 	save->pkru = svm->vcpu.arch.pkru;
876 	save->xss  = svm->vcpu.arch.ia32_xss;
877 	save->dr6  = svm->vcpu.arch.dr6;
878 
879 	save->sev_features = sev->vmsa_features;
880 
881 	/*
882 	 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
883 	 * breaking older measurements.
884 	 */
885 	if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
886 		xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
887 		save->x87_dp = xsave->i387.rdp;
888 		save->mxcsr = xsave->i387.mxcsr;
889 		save->x87_ftw = xsave->i387.twd;
890 		save->x87_fsw = xsave->i387.swd;
891 		save->x87_fcw = xsave->i387.cwd;
892 		save->x87_fop = xsave->i387.fop;
893 		save->x87_ds = 0;
894 		save->x87_cs = 0;
895 		save->x87_rip = xsave->i387.rip;
896 
897 		for (i = 0; i < 8; i++) {
898 			/*
899 			 * The format of the x87 save area is undocumented and
900 			 * definitely not what you would expect.  It consists of
901 			 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
902 			 * area with bytes 8-9 of each register.
903 			 */
904 			d = save->fpreg_x87 + i * 8;
905 			s = ((u8 *)xsave->i387.st_space) + i * 16;
906 			memcpy(d, s, 8);
907 			save->fpreg_x87[64 + i * 2] = s[8];
908 			save->fpreg_x87[64 + i * 2 + 1] = s[9];
909 		}
910 		memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
911 
912 		s = get_xsave_addr(xsave, XFEATURE_YMM);
913 		if (s)
914 			memcpy(save->fpreg_ymm, s, 256);
915 		else
916 			memset(save->fpreg_ymm, 0, 256);
917 	}
918 
919 	pr_debug("Virtual Machine Save Area (VMSA):\n");
920 	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
921 
922 	return 0;
923 }
924 
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)925 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
926 				    int *error)
927 {
928 	struct sev_data_launch_update_vmsa vmsa;
929 	struct vcpu_svm *svm = to_svm(vcpu);
930 	int ret;
931 
932 	if (vcpu->guest_debug) {
933 		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
934 		return -EINVAL;
935 	}
936 
937 	/* Perform some pre-encryption checks against the VMSA */
938 	ret = sev_es_sync_vmsa(svm);
939 	if (ret)
940 		return ret;
941 
942 	/*
943 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
944 	 * the VMSA memory content (i.e it will write the same memory region
945 	 * with the guest's key), so invalidate it first.
946 	 */
947 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
948 
949 	vmsa.reserved = 0;
950 	vmsa.handle = to_kvm_sev_info(kvm)->handle;
951 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
952 	vmsa.len = PAGE_SIZE;
953 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
954 	if (ret)
955 	  return ret;
956 
957 	/*
958 	 * SEV-ES guests maintain an encrypted version of their FPU
959 	 * state which is restored and saved on VMRUN and VMEXIT.
960 	 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
961 	 * do xsave/xrstor on it.
962 	 */
963 	fpstate_set_confidential(&vcpu->arch.guest_fpu);
964 	vcpu->arch.guest_state_protected = true;
965 
966 	/*
967 	 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
968 	 * only after setting guest_state_protected because KVM_SET_MSRS allows
969 	 * dynamic toggling of LBRV (for performance reason) on write access to
970 	 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
971 	 */
972 	svm_enable_lbrv(vcpu);
973 	return 0;
974 }
975 
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)976 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
977 {
978 	struct kvm_vcpu *vcpu;
979 	unsigned long i;
980 	int ret;
981 
982 	if (!sev_es_guest(kvm))
983 		return -ENOTTY;
984 
985 	kvm_for_each_vcpu(i, vcpu, kvm) {
986 		ret = mutex_lock_killable(&vcpu->mutex);
987 		if (ret)
988 			return ret;
989 
990 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
991 
992 		mutex_unlock(&vcpu->mutex);
993 		if (ret)
994 			return ret;
995 	}
996 
997 	return 0;
998 }
999 
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)1000 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
1001 {
1002 	void __user *measure = u64_to_user_ptr(argp->data);
1003 	struct sev_data_launch_measure data;
1004 	struct kvm_sev_launch_measure params;
1005 	void __user *p = NULL;
1006 	void *blob = NULL;
1007 	int ret;
1008 
1009 	if (!sev_guest(kvm))
1010 		return -ENOTTY;
1011 
1012 	if (copy_from_user(&params, measure, sizeof(params)))
1013 		return -EFAULT;
1014 
1015 	memset(&data, 0, sizeof(data));
1016 
1017 	/* User wants to query the blob length */
1018 	if (!params.len)
1019 		goto cmd;
1020 
1021 	p = u64_to_user_ptr(params.uaddr);
1022 	if (p) {
1023 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1024 			return -EINVAL;
1025 
1026 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1027 		if (!blob)
1028 			return -ENOMEM;
1029 
1030 		data.address = __psp_pa(blob);
1031 		data.len = params.len;
1032 	}
1033 
1034 cmd:
1035 	data.handle = to_kvm_sev_info(kvm)->handle;
1036 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1037 
1038 	/*
1039 	 * If we query the session length, FW responded with expected data.
1040 	 */
1041 	if (!params.len)
1042 		goto done;
1043 
1044 	if (ret)
1045 		goto e_free_blob;
1046 
1047 	if (blob) {
1048 		if (copy_to_user(p, blob, params.len))
1049 			ret = -EFAULT;
1050 	}
1051 
1052 done:
1053 	params.len = data.len;
1054 	if (copy_to_user(measure, &params, sizeof(params)))
1055 		ret = -EFAULT;
1056 e_free_blob:
1057 	kfree(blob);
1058 	return ret;
1059 }
1060 
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1061 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1062 {
1063 	struct sev_data_launch_finish data;
1064 
1065 	if (!sev_guest(kvm))
1066 		return -ENOTTY;
1067 
1068 	data.handle = to_kvm_sev_info(kvm)->handle;
1069 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1070 }
1071 
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)1072 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1073 {
1074 	struct kvm_sev_guest_status params;
1075 	struct sev_data_guest_status data;
1076 	int ret;
1077 
1078 	if (!sev_guest(kvm))
1079 		return -ENOTTY;
1080 
1081 	memset(&data, 0, sizeof(data));
1082 
1083 	data.handle = to_kvm_sev_info(kvm)->handle;
1084 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1085 	if (ret)
1086 		return ret;
1087 
1088 	params.policy = data.policy;
1089 	params.state = data.state;
1090 	params.handle = data.handle;
1091 
1092 	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
1093 		ret = -EFAULT;
1094 
1095 	return ret;
1096 }
1097 
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)1098 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1099 			       unsigned long dst, int size,
1100 			       int *error, bool enc)
1101 {
1102 	struct sev_data_dbg data;
1103 
1104 	data.reserved = 0;
1105 	data.handle = to_kvm_sev_info(kvm)->handle;
1106 	data.dst_addr = dst;
1107 	data.src_addr = src;
1108 	data.len = size;
1109 
1110 	return sev_issue_cmd(kvm,
1111 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1112 			     &data, error);
1113 }
1114 
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)1115 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1116 			     unsigned long dst_paddr, int sz, int *err)
1117 {
1118 	int offset;
1119 
1120 	/*
1121 	 * Its safe to read more than we are asked, caller should ensure that
1122 	 * destination has enough space.
1123 	 */
1124 	offset = src_paddr & 15;
1125 	src_paddr = round_down(src_paddr, 16);
1126 	sz = round_up(sz + offset, 16);
1127 
1128 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1129 }
1130 
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)1131 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1132 				  void __user *dst_uaddr,
1133 				  unsigned long dst_paddr,
1134 				  int size, int *err)
1135 {
1136 	struct page *tpage = NULL;
1137 	int ret, offset;
1138 
1139 	/* if inputs are not 16-byte then use intermediate buffer */
1140 	if (!IS_ALIGNED(dst_paddr, 16) ||
1141 	    !IS_ALIGNED(paddr,     16) ||
1142 	    !IS_ALIGNED(size,      16)) {
1143 		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1144 		if (!tpage)
1145 			return -ENOMEM;
1146 
1147 		dst_paddr = __sme_page_pa(tpage);
1148 	}
1149 
1150 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1151 	if (ret)
1152 		goto e_free;
1153 
1154 	if (tpage) {
1155 		offset = paddr & 15;
1156 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1157 			ret = -EFAULT;
1158 	}
1159 
1160 e_free:
1161 	if (tpage)
1162 		__free_page(tpage);
1163 
1164 	return ret;
1165 }
1166 
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)1167 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1168 				  void __user *vaddr,
1169 				  unsigned long dst_paddr,
1170 				  void __user *dst_vaddr,
1171 				  int size, int *error)
1172 {
1173 	struct page *src_tpage = NULL;
1174 	struct page *dst_tpage = NULL;
1175 	int ret, len = size;
1176 
1177 	/* If source buffer is not aligned then use an intermediate buffer */
1178 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1179 		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1180 		if (!src_tpage)
1181 			return -ENOMEM;
1182 
1183 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1184 			__free_page(src_tpage);
1185 			return -EFAULT;
1186 		}
1187 
1188 		paddr = __sme_page_pa(src_tpage);
1189 	}
1190 
1191 	/*
1192 	 *  If destination buffer or length is not aligned then do read-modify-write:
1193 	 *   - decrypt destination in an intermediate buffer
1194 	 *   - copy the source buffer in an intermediate buffer
1195 	 *   - use the intermediate buffer as source buffer
1196 	 */
1197 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1198 		int dst_offset;
1199 
1200 		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1201 		if (!dst_tpage) {
1202 			ret = -ENOMEM;
1203 			goto e_free;
1204 		}
1205 
1206 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
1207 					__sme_page_pa(dst_tpage), size, error);
1208 		if (ret)
1209 			goto e_free;
1210 
1211 		/*
1212 		 *  If source is kernel buffer then use memcpy() otherwise
1213 		 *  copy_from_user().
1214 		 */
1215 		dst_offset = dst_paddr & 15;
1216 
1217 		if (src_tpage)
1218 			memcpy(page_address(dst_tpage) + dst_offset,
1219 			       page_address(src_tpage), size);
1220 		else {
1221 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
1222 					   vaddr, size)) {
1223 				ret = -EFAULT;
1224 				goto e_free;
1225 			}
1226 		}
1227 
1228 		paddr = __sme_page_pa(dst_tpage);
1229 		dst_paddr = round_down(dst_paddr, 16);
1230 		len = round_up(size, 16);
1231 	}
1232 
1233 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1234 
1235 e_free:
1236 	if (src_tpage)
1237 		__free_page(src_tpage);
1238 	if (dst_tpage)
1239 		__free_page(dst_tpage);
1240 	return ret;
1241 }
1242 
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)1243 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1244 {
1245 	unsigned long vaddr, vaddr_end, next_vaddr;
1246 	unsigned long dst_vaddr;
1247 	struct page **src_p, **dst_p;
1248 	struct kvm_sev_dbg debug;
1249 	unsigned long n;
1250 	unsigned int size;
1251 	int ret;
1252 
1253 	if (!sev_guest(kvm))
1254 		return -ENOTTY;
1255 
1256 	if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1257 		return -EFAULT;
1258 
1259 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1260 		return -EINVAL;
1261 	if (!debug.dst_uaddr)
1262 		return -EINVAL;
1263 
1264 	vaddr = debug.src_uaddr;
1265 	size = debug.len;
1266 	vaddr_end = vaddr + size;
1267 	dst_vaddr = debug.dst_uaddr;
1268 
1269 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1270 		int len, s_off, d_off;
1271 
1272 		/* lock userspace source and destination page */
1273 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1274 		if (IS_ERR(src_p))
1275 			return PTR_ERR(src_p);
1276 
1277 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE);
1278 		if (IS_ERR(dst_p)) {
1279 			sev_unpin_memory(kvm, src_p, n);
1280 			return PTR_ERR(dst_p);
1281 		}
1282 
1283 		/*
1284 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1285 		 * the pages; flush the destination too so that future accesses do not
1286 		 * see stale data.
1287 		 */
1288 		sev_clflush_pages(src_p, 1);
1289 		sev_clflush_pages(dst_p, 1);
1290 
1291 		/*
1292 		 * Since user buffer may not be page aligned, calculate the
1293 		 * offset within the page.
1294 		 */
1295 		s_off = vaddr & ~PAGE_MASK;
1296 		d_off = dst_vaddr & ~PAGE_MASK;
1297 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
1298 
1299 		if (dec)
1300 			ret = __sev_dbg_decrypt_user(kvm,
1301 						     __sme_page_pa(src_p[0]) + s_off,
1302 						     (void __user *)dst_vaddr,
1303 						     __sme_page_pa(dst_p[0]) + d_off,
1304 						     len, &argp->error);
1305 		else
1306 			ret = __sev_dbg_encrypt_user(kvm,
1307 						     __sme_page_pa(src_p[0]) + s_off,
1308 						     (void __user *)vaddr,
1309 						     __sme_page_pa(dst_p[0]) + d_off,
1310 						     (void __user *)dst_vaddr,
1311 						     len, &argp->error);
1312 
1313 		sev_unpin_memory(kvm, src_p, n);
1314 		sev_unpin_memory(kvm, dst_p, n);
1315 
1316 		if (ret)
1317 			goto err;
1318 
1319 		next_vaddr = vaddr + len;
1320 		dst_vaddr = dst_vaddr + len;
1321 		size -= len;
1322 	}
1323 err:
1324 	return ret;
1325 }
1326 
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1327 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1328 {
1329 	struct sev_data_launch_secret data;
1330 	struct kvm_sev_launch_secret params;
1331 	struct page **pages;
1332 	void *blob, *hdr;
1333 	unsigned long n, i;
1334 	int ret, offset;
1335 
1336 	if (!sev_guest(kvm))
1337 		return -ENOTTY;
1338 
1339 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1340 		return -EFAULT;
1341 
1342 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE);
1343 	if (IS_ERR(pages))
1344 		return PTR_ERR(pages);
1345 
1346 	/*
1347 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1348 	 * place; the cache may contain the data that was written unencrypted.
1349 	 */
1350 	sev_clflush_pages(pages, n);
1351 
1352 	/*
1353 	 * The secret must be copied into contiguous memory region, lets verify
1354 	 * that userspace memory pages are contiguous before we issue command.
1355 	 */
1356 	if (get_num_contig_pages(0, pages, n) != n) {
1357 		ret = -EINVAL;
1358 		goto e_unpin_memory;
1359 	}
1360 
1361 	memset(&data, 0, sizeof(data));
1362 
1363 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1364 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1365 	data.guest_len = params.guest_len;
1366 
1367 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1368 	if (IS_ERR(blob)) {
1369 		ret = PTR_ERR(blob);
1370 		goto e_unpin_memory;
1371 	}
1372 
1373 	data.trans_address = __psp_pa(blob);
1374 	data.trans_len = params.trans_len;
1375 
1376 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1377 	if (IS_ERR(hdr)) {
1378 		ret = PTR_ERR(hdr);
1379 		goto e_free_blob;
1380 	}
1381 	data.hdr_address = __psp_pa(hdr);
1382 	data.hdr_len = params.hdr_len;
1383 
1384 	data.handle = to_kvm_sev_info(kvm)->handle;
1385 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1386 
1387 	kfree(hdr);
1388 
1389 e_free_blob:
1390 	kfree(blob);
1391 e_unpin_memory:
1392 	/* content of memory is updated, mark pages dirty */
1393 	for (i = 0; i < n; i++) {
1394 		set_page_dirty_lock(pages[i]);
1395 		mark_page_accessed(pages[i]);
1396 	}
1397 	sev_unpin_memory(kvm, pages, n);
1398 	return ret;
1399 }
1400 
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1401 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1402 {
1403 	void __user *report = u64_to_user_ptr(argp->data);
1404 	struct sev_data_attestation_report data;
1405 	struct kvm_sev_attestation_report params;
1406 	void __user *p;
1407 	void *blob = NULL;
1408 	int ret;
1409 
1410 	if (!sev_guest(kvm))
1411 		return -ENOTTY;
1412 
1413 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1414 		return -EFAULT;
1415 
1416 	memset(&data, 0, sizeof(data));
1417 
1418 	/* User wants to query the blob length */
1419 	if (!params.len)
1420 		goto cmd;
1421 
1422 	p = u64_to_user_ptr(params.uaddr);
1423 	if (p) {
1424 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1425 			return -EINVAL;
1426 
1427 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1428 		if (!blob)
1429 			return -ENOMEM;
1430 
1431 		data.address = __psp_pa(blob);
1432 		data.len = params.len;
1433 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1434 	}
1435 cmd:
1436 	data.handle = to_kvm_sev_info(kvm)->handle;
1437 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1438 	/*
1439 	 * If we query the session length, FW responded with expected data.
1440 	 */
1441 	if (!params.len)
1442 		goto done;
1443 
1444 	if (ret)
1445 		goto e_free_blob;
1446 
1447 	if (blob) {
1448 		if (copy_to_user(p, blob, params.len))
1449 			ret = -EFAULT;
1450 	}
1451 
1452 done:
1453 	params.len = data.len;
1454 	if (copy_to_user(report, &params, sizeof(params)))
1455 		ret = -EFAULT;
1456 e_free_blob:
1457 	kfree(blob);
1458 	return ret;
1459 }
1460 
1461 /* Userspace wants to query session length. */
1462 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1463 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1464 				      struct kvm_sev_send_start *params)
1465 {
1466 	struct sev_data_send_start data;
1467 	int ret;
1468 
1469 	memset(&data, 0, sizeof(data));
1470 	data.handle = to_kvm_sev_info(kvm)->handle;
1471 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1472 
1473 	params->session_len = data.session_len;
1474 	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1475 				sizeof(struct kvm_sev_send_start)))
1476 		ret = -EFAULT;
1477 
1478 	return ret;
1479 }
1480 
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1481 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1482 {
1483 	struct sev_data_send_start data;
1484 	struct kvm_sev_send_start params;
1485 	void *amd_certs, *session_data;
1486 	void *pdh_cert, *plat_certs;
1487 	int ret;
1488 
1489 	if (!sev_guest(kvm))
1490 		return -ENOTTY;
1491 
1492 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1493 				sizeof(struct kvm_sev_send_start)))
1494 		return -EFAULT;
1495 
1496 	/* if session_len is zero, userspace wants to query the session length */
1497 	if (!params.session_len)
1498 		return __sev_send_start_query_session_length(kvm, argp,
1499 				&params);
1500 
1501 	/* some sanity checks */
1502 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1503 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1504 		return -EINVAL;
1505 
1506 	/* allocate the memory to hold the session data blob */
1507 	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1508 	if (!session_data)
1509 		return -ENOMEM;
1510 
1511 	/* copy the certificate blobs from userspace */
1512 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1513 				params.pdh_cert_len);
1514 	if (IS_ERR(pdh_cert)) {
1515 		ret = PTR_ERR(pdh_cert);
1516 		goto e_free_session;
1517 	}
1518 
1519 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1520 				params.plat_certs_len);
1521 	if (IS_ERR(plat_certs)) {
1522 		ret = PTR_ERR(plat_certs);
1523 		goto e_free_pdh;
1524 	}
1525 
1526 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1527 				params.amd_certs_len);
1528 	if (IS_ERR(amd_certs)) {
1529 		ret = PTR_ERR(amd_certs);
1530 		goto e_free_plat_cert;
1531 	}
1532 
1533 	/* populate the FW SEND_START field with system physical address */
1534 	memset(&data, 0, sizeof(data));
1535 	data.pdh_cert_address = __psp_pa(pdh_cert);
1536 	data.pdh_cert_len = params.pdh_cert_len;
1537 	data.plat_certs_address = __psp_pa(plat_certs);
1538 	data.plat_certs_len = params.plat_certs_len;
1539 	data.amd_certs_address = __psp_pa(amd_certs);
1540 	data.amd_certs_len = params.amd_certs_len;
1541 	data.session_address = __psp_pa(session_data);
1542 	data.session_len = params.session_len;
1543 	data.handle = to_kvm_sev_info(kvm)->handle;
1544 
1545 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1546 
1547 	if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1548 			session_data, params.session_len)) {
1549 		ret = -EFAULT;
1550 		goto e_free_amd_cert;
1551 	}
1552 
1553 	params.policy = data.policy;
1554 	params.session_len = data.session_len;
1555 	if (copy_to_user(u64_to_user_ptr(argp->data), &params,
1556 				sizeof(struct kvm_sev_send_start)))
1557 		ret = -EFAULT;
1558 
1559 e_free_amd_cert:
1560 	kfree(amd_certs);
1561 e_free_plat_cert:
1562 	kfree(plat_certs);
1563 e_free_pdh:
1564 	kfree(pdh_cert);
1565 e_free_session:
1566 	kfree(session_data);
1567 	return ret;
1568 }
1569 
1570 /* Userspace wants to query either header or trans length. */
1571 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1572 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1573 				     struct kvm_sev_send_update_data *params)
1574 {
1575 	struct sev_data_send_update_data data;
1576 	int ret;
1577 
1578 	memset(&data, 0, sizeof(data));
1579 	data.handle = to_kvm_sev_info(kvm)->handle;
1580 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1581 
1582 	params->hdr_len = data.hdr_len;
1583 	params->trans_len = data.trans_len;
1584 
1585 	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1586 			 sizeof(struct kvm_sev_send_update_data)))
1587 		ret = -EFAULT;
1588 
1589 	return ret;
1590 }
1591 
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1592 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1593 {
1594 	struct sev_data_send_update_data data;
1595 	struct kvm_sev_send_update_data params;
1596 	void *hdr, *trans_data;
1597 	struct page **guest_page;
1598 	unsigned long n;
1599 	int ret, offset;
1600 
1601 	if (!sev_guest(kvm))
1602 		return -ENOTTY;
1603 
1604 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1605 			sizeof(struct kvm_sev_send_update_data)))
1606 		return -EFAULT;
1607 
1608 	/* userspace wants to query either header or trans length */
1609 	if (!params.trans_len || !params.hdr_len)
1610 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1611 
1612 	if (!params.trans_uaddr || !params.guest_uaddr ||
1613 	    !params.guest_len || !params.hdr_uaddr)
1614 		return -EINVAL;
1615 
1616 	/* Check if we are crossing the page boundary */
1617 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1618 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1619 		return -EINVAL;
1620 
1621 	/* Pin guest memory */
1622 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1623 				    PAGE_SIZE, &n, 0);
1624 	if (IS_ERR(guest_page))
1625 		return PTR_ERR(guest_page);
1626 
1627 	/* allocate memory for header and transport buffer */
1628 	ret = -ENOMEM;
1629 	hdr = kzalloc(params.hdr_len, GFP_KERNEL);
1630 	if (!hdr)
1631 		goto e_unpin;
1632 
1633 	trans_data = kzalloc(params.trans_len, GFP_KERNEL);
1634 	if (!trans_data)
1635 		goto e_free_hdr;
1636 
1637 	memset(&data, 0, sizeof(data));
1638 	data.hdr_address = __psp_pa(hdr);
1639 	data.hdr_len = params.hdr_len;
1640 	data.trans_address = __psp_pa(trans_data);
1641 	data.trans_len = params.trans_len;
1642 
1643 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1644 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1645 	data.guest_address |= sev_me_mask;
1646 	data.guest_len = params.guest_len;
1647 	data.handle = to_kvm_sev_info(kvm)->handle;
1648 
1649 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1650 
1651 	if (ret)
1652 		goto e_free_trans_data;
1653 
1654 	/* copy transport buffer to user space */
1655 	if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1656 			 trans_data, params.trans_len)) {
1657 		ret = -EFAULT;
1658 		goto e_free_trans_data;
1659 	}
1660 
1661 	/* Copy packet header to userspace. */
1662 	if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1663 			 params.hdr_len))
1664 		ret = -EFAULT;
1665 
1666 e_free_trans_data:
1667 	kfree(trans_data);
1668 e_free_hdr:
1669 	kfree(hdr);
1670 e_unpin:
1671 	sev_unpin_memory(kvm, guest_page, n);
1672 
1673 	return ret;
1674 }
1675 
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1676 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1677 {
1678 	struct sev_data_send_finish data;
1679 
1680 	if (!sev_guest(kvm))
1681 		return -ENOTTY;
1682 
1683 	data.handle = to_kvm_sev_info(kvm)->handle;
1684 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1685 }
1686 
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1687 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1688 {
1689 	struct sev_data_send_cancel data;
1690 
1691 	if (!sev_guest(kvm))
1692 		return -ENOTTY;
1693 
1694 	data.handle = to_kvm_sev_info(kvm)->handle;
1695 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1696 }
1697 
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1698 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1699 {
1700 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
1701 	struct sev_data_receive_start start;
1702 	struct kvm_sev_receive_start params;
1703 	int *error = &argp->error;
1704 	void *session_data;
1705 	void *pdh_data;
1706 	int ret;
1707 
1708 	if (!sev_guest(kvm))
1709 		return -ENOTTY;
1710 
1711 	/* Get parameter from the userspace */
1712 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1713 			sizeof(struct kvm_sev_receive_start)))
1714 		return -EFAULT;
1715 
1716 	/* some sanity checks */
1717 	if (!params.pdh_uaddr || !params.pdh_len ||
1718 	    !params.session_uaddr || !params.session_len)
1719 		return -EINVAL;
1720 
1721 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1722 	if (IS_ERR(pdh_data))
1723 		return PTR_ERR(pdh_data);
1724 
1725 	session_data = psp_copy_user_blob(params.session_uaddr,
1726 			params.session_len);
1727 	if (IS_ERR(session_data)) {
1728 		ret = PTR_ERR(session_data);
1729 		goto e_free_pdh;
1730 	}
1731 
1732 	memset(&start, 0, sizeof(start));
1733 	start.handle = params.handle;
1734 	start.policy = params.policy;
1735 	start.pdh_cert_address = __psp_pa(pdh_data);
1736 	start.pdh_cert_len = params.pdh_len;
1737 	start.session_address = __psp_pa(session_data);
1738 	start.session_len = params.session_len;
1739 
1740 	/* create memory encryption context */
1741 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1742 				error);
1743 	if (ret)
1744 		goto e_free_session;
1745 
1746 	/* Bind ASID to this guest */
1747 	ret = sev_bind_asid(kvm, start.handle, error);
1748 	if (ret) {
1749 		sev_decommission(start.handle);
1750 		goto e_free_session;
1751 	}
1752 
1753 	params.handle = start.handle;
1754 	if (copy_to_user(u64_to_user_ptr(argp->data),
1755 			 &params, sizeof(struct kvm_sev_receive_start))) {
1756 		ret = -EFAULT;
1757 		sev_unbind_asid(kvm, start.handle);
1758 		goto e_free_session;
1759 	}
1760 
1761     	sev->handle = start.handle;
1762 	sev->fd = argp->sev_fd;
1763 
1764 e_free_session:
1765 	kfree(session_data);
1766 e_free_pdh:
1767 	kfree(pdh_data);
1768 
1769 	return ret;
1770 }
1771 
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1772 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1773 {
1774 	struct kvm_sev_receive_update_data params;
1775 	struct sev_data_receive_update_data data;
1776 	void *hdr = NULL, *trans = NULL;
1777 	struct page **guest_page;
1778 	unsigned long n;
1779 	int ret, offset;
1780 
1781 	if (!sev_guest(kvm))
1782 		return -EINVAL;
1783 
1784 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1785 			sizeof(struct kvm_sev_receive_update_data)))
1786 		return -EFAULT;
1787 
1788 	if (!params.hdr_uaddr || !params.hdr_len ||
1789 	    !params.guest_uaddr || !params.guest_len ||
1790 	    !params.trans_uaddr || !params.trans_len)
1791 		return -EINVAL;
1792 
1793 	/* Check if we are crossing the page boundary */
1794 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1795 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1796 		return -EINVAL;
1797 
1798 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1799 	if (IS_ERR(hdr))
1800 		return PTR_ERR(hdr);
1801 
1802 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1803 	if (IS_ERR(trans)) {
1804 		ret = PTR_ERR(trans);
1805 		goto e_free_hdr;
1806 	}
1807 
1808 	memset(&data, 0, sizeof(data));
1809 	data.hdr_address = __psp_pa(hdr);
1810 	data.hdr_len = params.hdr_len;
1811 	data.trans_address = __psp_pa(trans);
1812 	data.trans_len = params.trans_len;
1813 
1814 	/* Pin guest memory */
1815 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1816 				    PAGE_SIZE, &n, FOLL_WRITE);
1817 	if (IS_ERR(guest_page)) {
1818 		ret = PTR_ERR(guest_page);
1819 		goto e_free_trans;
1820 	}
1821 
1822 	/*
1823 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1824 	 * encrypts the written data with the guest's key, and the cache may
1825 	 * contain dirty, unencrypted data.
1826 	 */
1827 	sev_clflush_pages(guest_page, n);
1828 
1829 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1830 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1831 	data.guest_address |= sev_me_mask;
1832 	data.guest_len = params.guest_len;
1833 	data.handle = to_kvm_sev_info(kvm)->handle;
1834 
1835 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1836 				&argp->error);
1837 
1838 	sev_unpin_memory(kvm, guest_page, n);
1839 
1840 e_free_trans:
1841 	kfree(trans);
1842 e_free_hdr:
1843 	kfree(hdr);
1844 
1845 	return ret;
1846 }
1847 
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1848 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1849 {
1850 	struct sev_data_receive_finish data;
1851 
1852 	if (!sev_guest(kvm))
1853 		return -ENOTTY;
1854 
1855 	data.handle = to_kvm_sev_info(kvm)->handle;
1856 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1857 }
1858 
is_cmd_allowed_from_mirror(u32 cmd_id)1859 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1860 {
1861 	/*
1862 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1863 	 * active mirror VMs. Also allow the debugging and status commands.
1864 	 */
1865 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1866 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1867 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1868 		return true;
1869 
1870 	return false;
1871 }
1872 
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1873 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1874 {
1875 	struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1876 	struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1877 	int r = -EBUSY;
1878 
1879 	if (dst_kvm == src_kvm)
1880 		return -EINVAL;
1881 
1882 	/*
1883 	 * Bail if these VMs are already involved in a migration to avoid
1884 	 * deadlock between two VMs trying to migrate to/from each other.
1885 	 */
1886 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1887 		return -EBUSY;
1888 
1889 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1890 		goto release_dst;
1891 
1892 	r = -EINTR;
1893 	if (mutex_lock_killable(&dst_kvm->lock))
1894 		goto release_src;
1895 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1896 		goto unlock_dst;
1897 	return 0;
1898 
1899 unlock_dst:
1900 	mutex_unlock(&dst_kvm->lock);
1901 release_src:
1902 	atomic_set_release(&src_sev->migration_in_progress, 0);
1903 release_dst:
1904 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1905 	return r;
1906 }
1907 
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1908 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1909 {
1910 	struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1911 	struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1912 
1913 	mutex_unlock(&dst_kvm->lock);
1914 	mutex_unlock(&src_kvm->lock);
1915 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1916 	atomic_set_release(&src_sev->migration_in_progress, 0);
1917 }
1918 
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1919 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1920 {
1921 	struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm);
1922 	struct kvm_sev_info *src = to_kvm_sev_info(src_kvm);
1923 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1924 	struct vcpu_svm *dst_svm, *src_svm;
1925 	struct kvm_sev_info *mirror;
1926 	unsigned long i;
1927 
1928 	dst->active = true;
1929 	dst->asid = src->asid;
1930 	dst->handle = src->handle;
1931 	dst->pages_locked = src->pages_locked;
1932 	dst->enc_context_owner = src->enc_context_owner;
1933 	dst->es_active = src->es_active;
1934 	dst->vmsa_features = src->vmsa_features;
1935 
1936 	src->asid = 0;
1937 	src->active = false;
1938 	src->handle = 0;
1939 	src->pages_locked = 0;
1940 	src->enc_context_owner = NULL;
1941 	src->es_active = false;
1942 
1943 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1944 
1945 	/*
1946 	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1947 	 * source to the destination (this KVM).  The caller holds a reference
1948 	 * to the source, so there's no danger of use-after-free.
1949 	 */
1950 	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1951 	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1952 		kvm_get_kvm(dst_kvm);
1953 		kvm_put_kvm(src_kvm);
1954 		mirror->enc_context_owner = dst_kvm;
1955 	}
1956 
1957 	/*
1958 	 * If this VM is a mirror, remove the old mirror from the owners list
1959 	 * and add the new mirror to the list.
1960 	 */
1961 	if (is_mirroring_enc_context(dst_kvm)) {
1962 		struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner);
1963 
1964 		list_del(&src->mirror_entry);
1965 		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1966 	}
1967 
1968 	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1969 		dst_svm = to_svm(dst_vcpu);
1970 
1971 		sev_init_vmcb(dst_svm);
1972 
1973 		if (!dst->es_active)
1974 			continue;
1975 
1976 		/*
1977 		 * Note, the source is not required to have the same number of
1978 		 * vCPUs as the destination when migrating a vanilla SEV VM.
1979 		 */
1980 		src_vcpu = kvm_get_vcpu(src_kvm, i);
1981 		src_svm = to_svm(src_vcpu);
1982 
1983 		/*
1984 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1985 		 * clear source fields as appropriate, the state now belongs to
1986 		 * the destination.
1987 		 */
1988 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1989 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1990 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1991 		dst_vcpu->arch.guest_state_protected = true;
1992 
1993 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1994 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1995 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1996 		src_vcpu->arch.guest_state_protected = false;
1997 	}
1998 }
1999 
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)2000 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2001 {
2002 	struct kvm_vcpu *src_vcpu;
2003 	unsigned long i;
2004 
2005 	if (src->created_vcpus != atomic_read(&src->online_vcpus) ||
2006 	    dst->created_vcpus != atomic_read(&dst->online_vcpus))
2007 		return -EBUSY;
2008 
2009 	if (!sev_es_guest(src))
2010 		return 0;
2011 
2012 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2013 		return -EINVAL;
2014 
2015 	kvm_for_each_vcpu(i, src_vcpu, src) {
2016 		if (!src_vcpu->arch.guest_state_protected)
2017 			return -EINVAL;
2018 	}
2019 
2020 	return 0;
2021 }
2022 
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)2023 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2024 {
2025 	struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm);
2026 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2027 	CLASS(fd, f)(source_fd);
2028 	struct kvm *source_kvm;
2029 	bool charged = false;
2030 	int ret;
2031 
2032 	if (fd_empty(f))
2033 		return -EBADF;
2034 
2035 	if (!file_is_kvm(fd_file(f)))
2036 		return -EBADF;
2037 
2038 	source_kvm = fd_file(f)->private_data;
2039 	ret = sev_lock_two_vms(kvm, source_kvm);
2040 	if (ret)
2041 		return ret;
2042 
2043 	if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2044 	    sev_guest(kvm) || !sev_guest(source_kvm)) {
2045 		ret = -EINVAL;
2046 		goto out_unlock;
2047 	}
2048 
2049 	src_sev = to_kvm_sev_info(source_kvm);
2050 
2051 	dst_sev->misc_cg = get_current_misc_cg();
2052 	cg_cleanup_sev = dst_sev;
2053 	if (dst_sev->misc_cg != src_sev->misc_cg) {
2054 		ret = sev_misc_cg_try_charge(dst_sev);
2055 		if (ret)
2056 			goto out_dst_cgroup;
2057 		charged = true;
2058 	}
2059 
2060 	ret = kvm_lock_all_vcpus(kvm);
2061 	if (ret)
2062 		goto out_dst_cgroup;
2063 	ret = kvm_lock_all_vcpus(source_kvm);
2064 	if (ret)
2065 		goto out_dst_vcpu;
2066 
2067 	ret = sev_check_source_vcpus(kvm, source_kvm);
2068 	if (ret)
2069 		goto out_source_vcpu;
2070 
2071 	/*
2072 	 * Allocate a new have_run_cpus for the destination, i.e. don't copy
2073 	 * the set of CPUs from the source.  If a CPU was used to run a vCPU in
2074 	 * the source VM but is never used for the destination VM, then the CPU
2075 	 * can only have cached memory that was accessible to the source VM.
2076 	 */
2077 	if (!zalloc_cpumask_var(&dst_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2078 		ret = -ENOMEM;
2079 		goto out_source_vcpu;
2080 	}
2081 
2082 	sev_migrate_from(kvm, source_kvm);
2083 	kvm_vm_dead(source_kvm);
2084 	cg_cleanup_sev = src_sev;
2085 	ret = 0;
2086 
2087 out_source_vcpu:
2088 	kvm_unlock_all_vcpus(source_kvm);
2089 out_dst_vcpu:
2090 	kvm_unlock_all_vcpus(kvm);
2091 out_dst_cgroup:
2092 	/* Operates on the source on success, on the destination on failure.  */
2093 	if (charged)
2094 		sev_misc_cg_uncharge(cg_cleanup_sev);
2095 	put_misc_cg(cg_cleanup_sev->misc_cg);
2096 	cg_cleanup_sev->misc_cg = NULL;
2097 out_unlock:
2098 	sev_unlock_two_vms(kvm, source_kvm);
2099 	return ret;
2100 }
2101 
sev_dev_get_attr(u32 group,u64 attr,u64 * val)2102 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2103 {
2104 	if (group != KVM_X86_GRP_SEV)
2105 		return -ENXIO;
2106 
2107 	switch (attr) {
2108 	case KVM_X86_SEV_VMSA_FEATURES:
2109 		*val = sev_supported_vmsa_features;
2110 		return 0;
2111 
2112 	default:
2113 		return -ENXIO;
2114 	}
2115 }
2116 
2117 /*
2118  * The guest context contains all the information, keys and metadata
2119  * associated with the guest that the firmware tracks to implement SEV
2120  * and SNP features. The firmware stores the guest context in hypervisor
2121  * provide page via the SNP_GCTX_CREATE command.
2122  */
snp_context_create(struct kvm * kvm,struct kvm_sev_cmd * argp)2123 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2124 {
2125 	struct sev_data_snp_addr data = {};
2126 	void *context;
2127 	int rc;
2128 
2129 	/* Allocate memory for context page */
2130 	context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2131 	if (!context)
2132 		return NULL;
2133 
2134 	data.address = __psp_pa(context);
2135 	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2136 	if (rc) {
2137 		pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2138 			rc, argp->error);
2139 		snp_free_firmware_page(context);
2140 		return NULL;
2141 	}
2142 
2143 	return context;
2144 }
2145 
snp_bind_asid(struct kvm * kvm,int * error)2146 static int snp_bind_asid(struct kvm *kvm, int *error)
2147 {
2148 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2149 	struct sev_data_snp_activate data = {0};
2150 
2151 	data.gctx_paddr = __psp_pa(sev->snp_context);
2152 	data.asid = sev_get_asid(kvm);
2153 	return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2154 }
2155 
snp_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)2156 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2157 {
2158 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2159 	struct sev_data_snp_launch_start start = {0};
2160 	struct kvm_sev_snp_launch_start params;
2161 	int rc;
2162 
2163 	if (!sev_snp_guest(kvm))
2164 		return -ENOTTY;
2165 
2166 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2167 		return -EFAULT;
2168 
2169 	/* Don't allow userspace to allocate memory for more than 1 SNP context. */
2170 	if (sev->snp_context)
2171 		return -EINVAL;
2172 
2173 	if (params.flags)
2174 		return -EINVAL;
2175 
2176 	if (params.policy & ~SNP_POLICY_MASK_VALID)
2177 		return -EINVAL;
2178 
2179 	/* Check for policy bits that must be set */
2180 	if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO))
2181 		return -EINVAL;
2182 
2183 	sev->policy = params.policy;
2184 
2185 	sev->snp_context = snp_context_create(kvm, argp);
2186 	if (!sev->snp_context)
2187 		return -ENOTTY;
2188 
2189 	start.gctx_paddr = __psp_pa(sev->snp_context);
2190 	start.policy = params.policy;
2191 	memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2192 	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2193 	if (rc) {
2194 		pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2195 			 __func__, rc);
2196 		goto e_free_context;
2197 	}
2198 
2199 	sev->fd = argp->sev_fd;
2200 	rc = snp_bind_asid(kvm, &argp->error);
2201 	if (rc) {
2202 		pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2203 			 __func__, rc);
2204 		goto e_free_context;
2205 	}
2206 
2207 	return 0;
2208 
2209 e_free_context:
2210 	snp_decommission_context(kvm);
2211 
2212 	return rc;
2213 }
2214 
2215 struct sev_gmem_populate_args {
2216 	__u8 type;
2217 	int sev_fd;
2218 	int fw_error;
2219 };
2220 
sev_gmem_post_populate(struct kvm * kvm,gfn_t gfn_start,kvm_pfn_t pfn,void __user * src,int order,void * opaque)2221 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2222 				  void __user *src, int order, void *opaque)
2223 {
2224 	struct sev_gmem_populate_args *sev_populate_args = opaque;
2225 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2226 	int n_private = 0, ret, i;
2227 	int npages = (1 << order);
2228 	gfn_t gfn;
2229 
2230 	if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2231 		return -EINVAL;
2232 
2233 	for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2234 		struct sev_data_snp_launch_update fw_args = {0};
2235 		bool assigned = false;
2236 		int level;
2237 
2238 		ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2239 		if (ret || assigned) {
2240 			pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2241 				 __func__, gfn, ret, assigned);
2242 			ret = ret ? -EINVAL : -EEXIST;
2243 			goto err;
2244 		}
2245 
2246 		if (src) {
2247 			void *vaddr = kmap_local_pfn(pfn + i);
2248 
2249 			if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2250 				ret = -EFAULT;
2251 				goto err;
2252 			}
2253 			kunmap_local(vaddr);
2254 		}
2255 
2256 		ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2257 				       sev_get_asid(kvm), true);
2258 		if (ret)
2259 			goto err;
2260 
2261 		n_private++;
2262 
2263 		fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2264 		fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2265 		fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2266 		fw_args.page_type = sev_populate_args->type;
2267 
2268 		ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2269 				      &fw_args, &sev_populate_args->fw_error);
2270 		if (ret)
2271 			goto fw_err;
2272 	}
2273 
2274 	return 0;
2275 
2276 fw_err:
2277 	/*
2278 	 * If the firmware command failed handle the reclaim and cleanup of that
2279 	 * PFN specially vs. prior pages which can be cleaned up below without
2280 	 * needing to reclaim in advance.
2281 	 *
2282 	 * Additionally, when invalid CPUID function entries are detected,
2283 	 * firmware writes the expected values into the page and leaves it
2284 	 * unencrypted so it can be used for debugging and error-reporting.
2285 	 *
2286 	 * Copy this page back into the source buffer so userspace can use this
2287 	 * information to provide information on which CPUID leaves/fields
2288 	 * failed CPUID validation.
2289 	 */
2290 	if (!snp_page_reclaim(kvm, pfn + i) &&
2291 	    sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2292 	    sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2293 		void *vaddr = kmap_local_pfn(pfn + i);
2294 
2295 		if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2296 			pr_debug("Failed to write CPUID page back to userspace\n");
2297 
2298 		kunmap_local(vaddr);
2299 	}
2300 
2301 	/* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2302 	n_private--;
2303 
2304 err:
2305 	pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2306 		 __func__, ret, sev_populate_args->fw_error, n_private);
2307 	for (i = 0; i < n_private; i++)
2308 		kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2309 
2310 	return ret;
2311 }
2312 
snp_launch_update(struct kvm * kvm,struct kvm_sev_cmd * argp)2313 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2314 {
2315 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2316 	struct sev_gmem_populate_args sev_populate_args = {0};
2317 	struct kvm_sev_snp_launch_update params;
2318 	struct kvm_memory_slot *memslot;
2319 	long npages, count;
2320 	void __user *src;
2321 	int ret = 0;
2322 
2323 	if (!sev_snp_guest(kvm) || !sev->snp_context)
2324 		return -EINVAL;
2325 
2326 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2327 		return -EFAULT;
2328 
2329 	pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2330 		 params.gfn_start, params.len, params.type, params.flags);
2331 
2332 	if (!PAGE_ALIGNED(params.len) || params.flags ||
2333 	    (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2334 	     params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2335 	     params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2336 	     params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2337 	     params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2338 		return -EINVAL;
2339 
2340 	npages = params.len / PAGE_SIZE;
2341 
2342 	/*
2343 	 * For each GFN that's being prepared as part of the initial guest
2344 	 * state, the following pre-conditions are verified:
2345 	 *
2346 	 *   1) The backing memslot is a valid private memslot.
2347 	 *   2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2348 	 *      beforehand.
2349 	 *   3) The PFN of the guest_memfd has not already been set to private
2350 	 *      in the RMP table.
2351 	 *
2352 	 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2353 	 * faults if there's a race between a fault and an attribute update via
2354 	 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2355 	 * here. However, kvm->slots_lock guards against both this as well as
2356 	 * concurrent memslot updates occurring while these checks are being
2357 	 * performed, so use that here to make it easier to reason about the
2358 	 * initial expected state and better guard against unexpected
2359 	 * situations.
2360 	 */
2361 	mutex_lock(&kvm->slots_lock);
2362 
2363 	memslot = gfn_to_memslot(kvm, params.gfn_start);
2364 	if (!kvm_slot_can_be_private(memslot)) {
2365 		ret = -EINVAL;
2366 		goto out;
2367 	}
2368 
2369 	sev_populate_args.sev_fd = argp->sev_fd;
2370 	sev_populate_args.type = params.type;
2371 	src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2372 
2373 	count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2374 				  sev_gmem_post_populate, &sev_populate_args);
2375 	if (count < 0) {
2376 		argp->error = sev_populate_args.fw_error;
2377 		pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2378 			 __func__, count, argp->error);
2379 		ret = -EIO;
2380 	} else {
2381 		params.gfn_start += count;
2382 		params.len -= count * PAGE_SIZE;
2383 		if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2384 			params.uaddr += count * PAGE_SIZE;
2385 
2386 		ret = 0;
2387 		if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
2388 			ret = -EFAULT;
2389 	}
2390 
2391 out:
2392 	mutex_unlock(&kvm->slots_lock);
2393 
2394 	return ret;
2395 }
2396 
snp_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)2397 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2398 {
2399 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2400 	struct sev_data_snp_launch_update data = {};
2401 	struct kvm_vcpu *vcpu;
2402 	unsigned long i;
2403 	int ret;
2404 
2405 	data.gctx_paddr = __psp_pa(sev->snp_context);
2406 	data.page_type = SNP_PAGE_TYPE_VMSA;
2407 
2408 	kvm_for_each_vcpu(i, vcpu, kvm) {
2409 		struct vcpu_svm *svm = to_svm(vcpu);
2410 		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2411 
2412 		ret = sev_es_sync_vmsa(svm);
2413 		if (ret)
2414 			return ret;
2415 
2416 		/* Transition the VMSA page to a firmware state. */
2417 		ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2418 		if (ret)
2419 			return ret;
2420 
2421 		/* Issue the SNP command to encrypt the VMSA */
2422 		data.address = __sme_pa(svm->sev_es.vmsa);
2423 		ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2424 				      &data, &argp->error);
2425 		if (ret) {
2426 			snp_page_reclaim(kvm, pfn);
2427 
2428 			return ret;
2429 		}
2430 
2431 		svm->vcpu.arch.guest_state_protected = true;
2432 		/*
2433 		 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2434 		 * be _always_ ON. Enable it only after setting
2435 		 * guest_state_protected because KVM_SET_MSRS allows dynamic
2436 		 * toggling of LBRV (for performance reason) on write access to
2437 		 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2438 		 */
2439 		svm_enable_lbrv(vcpu);
2440 	}
2441 
2442 	return 0;
2443 }
2444 
snp_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)2445 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2446 {
2447 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2448 	struct kvm_sev_snp_launch_finish params;
2449 	struct sev_data_snp_launch_finish *data;
2450 	void *id_block = NULL, *id_auth = NULL;
2451 	int ret;
2452 
2453 	if (!sev_snp_guest(kvm))
2454 		return -ENOTTY;
2455 
2456 	if (!sev->snp_context)
2457 		return -EINVAL;
2458 
2459 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2460 		return -EFAULT;
2461 
2462 	if (params.flags)
2463 		return -EINVAL;
2464 
2465 	/* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2466 	ret = snp_launch_update_vmsa(kvm, argp);
2467 	if (ret)
2468 		return ret;
2469 
2470 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2471 	if (!data)
2472 		return -ENOMEM;
2473 
2474 	if (params.id_block_en) {
2475 		id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2476 		if (IS_ERR(id_block)) {
2477 			ret = PTR_ERR(id_block);
2478 			goto e_free;
2479 		}
2480 
2481 		data->id_block_en = 1;
2482 		data->id_block_paddr = __sme_pa(id_block);
2483 
2484 		id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2485 		if (IS_ERR(id_auth)) {
2486 			ret = PTR_ERR(id_auth);
2487 			goto e_free_id_block;
2488 		}
2489 
2490 		data->id_auth_paddr = __sme_pa(id_auth);
2491 
2492 		if (params.auth_key_en)
2493 			data->auth_key_en = 1;
2494 	}
2495 
2496 	data->vcek_disabled = params.vcek_disabled;
2497 
2498 	memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2499 	data->gctx_paddr = __psp_pa(sev->snp_context);
2500 	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2501 
2502 	/*
2503 	 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2504 	 * can be given to the guest simply by marking the RMP entry as private.
2505 	 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2506 	 */
2507 	if (!ret)
2508 		kvm->arch.pre_fault_allowed = true;
2509 
2510 	kfree(id_auth);
2511 
2512 e_free_id_block:
2513 	kfree(id_block);
2514 
2515 e_free:
2516 	kfree(data);
2517 
2518 	return ret;
2519 }
2520 
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)2521 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2522 {
2523 	struct kvm_sev_cmd sev_cmd;
2524 	int r;
2525 
2526 	if (!sev_enabled)
2527 		return -ENOTTY;
2528 
2529 	if (!argp)
2530 		return 0;
2531 
2532 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2533 		return -EFAULT;
2534 
2535 	mutex_lock(&kvm->lock);
2536 
2537 	/* Only the enc_context_owner handles some memory enc operations. */
2538 	if (is_mirroring_enc_context(kvm) &&
2539 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2540 		r = -EINVAL;
2541 		goto out;
2542 	}
2543 
2544 	/*
2545 	 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2546 	 * allow the use of SNP-specific commands.
2547 	 */
2548 	if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2549 		r = -EPERM;
2550 		goto out;
2551 	}
2552 
2553 	switch (sev_cmd.id) {
2554 	case KVM_SEV_ES_INIT:
2555 		if (!sev_es_enabled) {
2556 			r = -ENOTTY;
2557 			goto out;
2558 		}
2559 		fallthrough;
2560 	case KVM_SEV_INIT:
2561 		r = sev_guest_init(kvm, &sev_cmd);
2562 		break;
2563 	case KVM_SEV_INIT2:
2564 		r = sev_guest_init2(kvm, &sev_cmd);
2565 		break;
2566 	case KVM_SEV_LAUNCH_START:
2567 		r = sev_launch_start(kvm, &sev_cmd);
2568 		break;
2569 	case KVM_SEV_LAUNCH_UPDATE_DATA:
2570 		r = sev_launch_update_data(kvm, &sev_cmd);
2571 		break;
2572 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
2573 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
2574 		break;
2575 	case KVM_SEV_LAUNCH_MEASURE:
2576 		r = sev_launch_measure(kvm, &sev_cmd);
2577 		break;
2578 	case KVM_SEV_LAUNCH_FINISH:
2579 		r = sev_launch_finish(kvm, &sev_cmd);
2580 		break;
2581 	case KVM_SEV_GUEST_STATUS:
2582 		r = sev_guest_status(kvm, &sev_cmd);
2583 		break;
2584 	case KVM_SEV_DBG_DECRYPT:
2585 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
2586 		break;
2587 	case KVM_SEV_DBG_ENCRYPT:
2588 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
2589 		break;
2590 	case KVM_SEV_LAUNCH_SECRET:
2591 		r = sev_launch_secret(kvm, &sev_cmd);
2592 		break;
2593 	case KVM_SEV_GET_ATTESTATION_REPORT:
2594 		r = sev_get_attestation_report(kvm, &sev_cmd);
2595 		break;
2596 	case KVM_SEV_SEND_START:
2597 		r = sev_send_start(kvm, &sev_cmd);
2598 		break;
2599 	case KVM_SEV_SEND_UPDATE_DATA:
2600 		r = sev_send_update_data(kvm, &sev_cmd);
2601 		break;
2602 	case KVM_SEV_SEND_FINISH:
2603 		r = sev_send_finish(kvm, &sev_cmd);
2604 		break;
2605 	case KVM_SEV_SEND_CANCEL:
2606 		r = sev_send_cancel(kvm, &sev_cmd);
2607 		break;
2608 	case KVM_SEV_RECEIVE_START:
2609 		r = sev_receive_start(kvm, &sev_cmd);
2610 		break;
2611 	case KVM_SEV_RECEIVE_UPDATE_DATA:
2612 		r = sev_receive_update_data(kvm, &sev_cmd);
2613 		break;
2614 	case KVM_SEV_RECEIVE_FINISH:
2615 		r = sev_receive_finish(kvm, &sev_cmd);
2616 		break;
2617 	case KVM_SEV_SNP_LAUNCH_START:
2618 		r = snp_launch_start(kvm, &sev_cmd);
2619 		break;
2620 	case KVM_SEV_SNP_LAUNCH_UPDATE:
2621 		r = snp_launch_update(kvm, &sev_cmd);
2622 		break;
2623 	case KVM_SEV_SNP_LAUNCH_FINISH:
2624 		r = snp_launch_finish(kvm, &sev_cmd);
2625 		break;
2626 	default:
2627 		r = -EINVAL;
2628 		goto out;
2629 	}
2630 
2631 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2632 		r = -EFAULT;
2633 
2634 out:
2635 	mutex_unlock(&kvm->lock);
2636 	return r;
2637 }
2638 
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)2639 int sev_mem_enc_register_region(struct kvm *kvm,
2640 				struct kvm_enc_region *range)
2641 {
2642 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2643 	struct enc_region *region;
2644 	int ret = 0;
2645 
2646 	if (!sev_guest(kvm))
2647 		return -ENOTTY;
2648 
2649 	/* If kvm is mirroring encryption context it isn't responsible for it */
2650 	if (is_mirroring_enc_context(kvm))
2651 		return -EINVAL;
2652 
2653 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2654 		return -EINVAL;
2655 
2656 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2657 	if (!region)
2658 		return -ENOMEM;
2659 
2660 	mutex_lock(&kvm->lock);
2661 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages,
2662 				       FOLL_WRITE | FOLL_LONGTERM);
2663 	if (IS_ERR(region->pages)) {
2664 		ret = PTR_ERR(region->pages);
2665 		mutex_unlock(&kvm->lock);
2666 		goto e_free;
2667 	}
2668 
2669 	/*
2670 	 * The guest may change the memory encryption attribute from C=0 -> C=1
2671 	 * or vice versa for this memory range. Lets make sure caches are
2672 	 * flushed to ensure that guest data gets written into memory with
2673 	 * correct C-bit.  Note, this must be done before dropping kvm->lock,
2674 	 * as region and its array of pages can be freed by a different task
2675 	 * once kvm->lock is released.
2676 	 */
2677 	sev_clflush_pages(region->pages, region->npages);
2678 
2679 	region->uaddr = range->addr;
2680 	region->size = range->size;
2681 
2682 	list_add_tail(&region->list, &sev->regions_list);
2683 	mutex_unlock(&kvm->lock);
2684 
2685 	return ret;
2686 
2687 e_free:
2688 	kfree(region);
2689 	return ret;
2690 }
2691 
2692 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)2693 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2694 {
2695 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2696 	struct list_head *head = &sev->regions_list;
2697 	struct enc_region *i;
2698 
2699 	list_for_each_entry(i, head, list) {
2700 		if (i->uaddr == range->addr &&
2701 		    i->size == range->size)
2702 			return i;
2703 	}
2704 
2705 	return NULL;
2706 }
2707 
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)2708 static void __unregister_enc_region_locked(struct kvm *kvm,
2709 					   struct enc_region *region)
2710 {
2711 	sev_unpin_memory(kvm, region->pages, region->npages);
2712 	list_del(&region->list);
2713 	kfree(region);
2714 }
2715 
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2716 int sev_mem_enc_unregister_region(struct kvm *kvm,
2717 				  struct kvm_enc_region *range)
2718 {
2719 	struct enc_region *region;
2720 	int ret;
2721 
2722 	/* If kvm is mirroring encryption context it isn't responsible for it */
2723 	if (is_mirroring_enc_context(kvm))
2724 		return -EINVAL;
2725 
2726 	mutex_lock(&kvm->lock);
2727 
2728 	if (!sev_guest(kvm)) {
2729 		ret = -ENOTTY;
2730 		goto failed;
2731 	}
2732 
2733 	region = find_enc_region(kvm, range);
2734 	if (!region) {
2735 		ret = -EINVAL;
2736 		goto failed;
2737 	}
2738 
2739 	sev_writeback_caches(kvm);
2740 
2741 	__unregister_enc_region_locked(kvm, region);
2742 
2743 	mutex_unlock(&kvm->lock);
2744 	return 0;
2745 
2746 failed:
2747 	mutex_unlock(&kvm->lock);
2748 	return ret;
2749 }
2750 
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2751 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2752 {
2753 	CLASS(fd, f)(source_fd);
2754 	struct kvm *source_kvm;
2755 	struct kvm_sev_info *source_sev, *mirror_sev;
2756 	int ret;
2757 
2758 	if (fd_empty(f))
2759 		return -EBADF;
2760 
2761 	if (!file_is_kvm(fd_file(f)))
2762 		return -EBADF;
2763 
2764 	source_kvm = fd_file(f)->private_data;
2765 	ret = sev_lock_two_vms(kvm, source_kvm);
2766 	if (ret)
2767 		return ret;
2768 
2769 	/*
2770 	 * Mirrors of mirrors should work, but let's not get silly.  Also
2771 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2772 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2773 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2774 	 */
2775 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2776 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2777 		ret = -EINVAL;
2778 		goto e_unlock;
2779 	}
2780 
2781 	mirror_sev = to_kvm_sev_info(kvm);
2782 	if (!zalloc_cpumask_var(&mirror_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2783 		ret = -ENOMEM;
2784 		goto e_unlock;
2785 	}
2786 
2787 	/*
2788 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2789 	 * disappear until we're done with it
2790 	 */
2791 	source_sev = to_kvm_sev_info(source_kvm);
2792 	kvm_get_kvm(source_kvm);
2793 	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2794 
2795 	/* Set enc_context_owner and copy its encryption context over */
2796 	mirror_sev->enc_context_owner = source_kvm;
2797 	mirror_sev->active = true;
2798 	mirror_sev->asid = source_sev->asid;
2799 	mirror_sev->fd = source_sev->fd;
2800 	mirror_sev->es_active = source_sev->es_active;
2801 	mirror_sev->need_init = false;
2802 	mirror_sev->handle = source_sev->handle;
2803 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2804 	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2805 	ret = 0;
2806 
2807 	/*
2808 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2809 	 * KVM contexts as the original, and they may have different
2810 	 * memory-views.
2811 	 */
2812 
2813 e_unlock:
2814 	sev_unlock_two_vms(kvm, source_kvm);
2815 	return ret;
2816 }
2817 
snp_decommission_context(struct kvm * kvm)2818 static int snp_decommission_context(struct kvm *kvm)
2819 {
2820 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2821 	struct sev_data_snp_addr data = {};
2822 	int ret;
2823 
2824 	/* If context is not created then do nothing */
2825 	if (!sev->snp_context)
2826 		return 0;
2827 
2828 	/* Do the decommision, which will unbind the ASID from the SNP context */
2829 	data.address = __sme_pa(sev->snp_context);
2830 	down_write(&sev_deactivate_lock);
2831 	ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2832 	up_write(&sev_deactivate_lock);
2833 
2834 	if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2835 		return ret;
2836 
2837 	snp_free_firmware_page(sev->snp_context);
2838 	sev->snp_context = NULL;
2839 
2840 	return 0;
2841 }
2842 
sev_vm_destroy(struct kvm * kvm)2843 void sev_vm_destroy(struct kvm *kvm)
2844 {
2845 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2846 	struct list_head *head = &sev->regions_list;
2847 	struct list_head *pos, *q;
2848 
2849 	if (!sev_guest(kvm))
2850 		return;
2851 
2852 	WARN_ON(!list_empty(&sev->mirror_vms));
2853 
2854 	free_cpumask_var(sev->have_run_cpus);
2855 
2856 	/*
2857 	 * If this is a mirror VM, remove it from the owner's list of a mirrors
2858 	 * and skip ASID cleanup (the ASID is tied to the lifetime of the owner).
2859 	 * Note, mirror VMs don't support registering encrypted regions.
2860 	 */
2861 	if (is_mirroring_enc_context(kvm)) {
2862 		struct kvm *owner_kvm = sev->enc_context_owner;
2863 
2864 		mutex_lock(&owner_kvm->lock);
2865 		list_del(&sev->mirror_entry);
2866 		mutex_unlock(&owner_kvm->lock);
2867 		kvm_put_kvm(owner_kvm);
2868 		return;
2869 	}
2870 
2871 
2872 	/*
2873 	 * if userspace was terminated before unregistering the memory regions
2874 	 * then lets unpin all the registered memory.
2875 	 */
2876 	if (!list_empty(head)) {
2877 		list_for_each_safe(pos, q, head) {
2878 			__unregister_enc_region_locked(kvm,
2879 				list_entry(pos, struct enc_region, list));
2880 			cond_resched();
2881 		}
2882 	}
2883 
2884 	if (sev_snp_guest(kvm)) {
2885 		snp_guest_req_cleanup(kvm);
2886 
2887 		/*
2888 		 * Decomission handles unbinding of the ASID. If it fails for
2889 		 * some unexpected reason, just leak the ASID.
2890 		 */
2891 		if (snp_decommission_context(kvm))
2892 			return;
2893 	} else {
2894 		sev_unbind_asid(kvm, sev->handle);
2895 	}
2896 
2897 	sev_asid_free(sev);
2898 }
2899 
sev_set_cpu_caps(void)2900 void __init sev_set_cpu_caps(void)
2901 {
2902 	if (sev_enabled) {
2903 		kvm_cpu_cap_set(X86_FEATURE_SEV);
2904 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2905 	}
2906 	if (sev_es_enabled) {
2907 		kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2908 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2909 	}
2910 	if (sev_snp_enabled) {
2911 		kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2912 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2913 	}
2914 }
2915 
is_sev_snp_initialized(void)2916 static bool is_sev_snp_initialized(void)
2917 {
2918 	struct sev_user_data_snp_status *status;
2919 	struct sev_data_snp_addr buf;
2920 	bool initialized = false;
2921 	int ret, error = 0;
2922 
2923 	status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO);
2924 	if (!status)
2925 		return false;
2926 
2927 	buf.address = __psp_pa(status);
2928 	ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error);
2929 	if (ret) {
2930 		pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n",
2931 		       ret, error, error);
2932 		goto out;
2933 	}
2934 
2935 	initialized = !!status->state;
2936 
2937 out:
2938 	snp_free_firmware_page(status);
2939 
2940 	return initialized;
2941 }
2942 
sev_hardware_setup(void)2943 void __init sev_hardware_setup(void)
2944 {
2945 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2946 	struct sev_platform_init_args init_args = {0};
2947 	bool sev_snp_supported = false;
2948 	bool sev_es_supported = false;
2949 	bool sev_supported = false;
2950 
2951 	if (!sev_enabled || !npt_enabled || !nrips)
2952 		goto out;
2953 
2954 	/*
2955 	 * SEV must obviously be supported in hardware.  Sanity check that the
2956 	 * CPU supports decode assists, which is mandatory for SEV guests to
2957 	 * support instruction emulation.  Ditto for flushing by ASID, as SEV
2958 	 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2959 	 * ASID to effect a TLB flush.
2960 	 */
2961 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2962 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2963 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2964 		goto out;
2965 
2966 	/*
2967 	 * The kernel's initcall infrastructure lacks the ability to express
2968 	 * dependencies between initcalls, whereas the modules infrastructure
2969 	 * automatically handles dependencies via symbol loading.  Ensure the
2970 	 * PSP SEV driver is initialized before proceeding if KVM is built-in,
2971 	 * as the dependency isn't handled by the initcall infrastructure.
2972 	 */
2973 	if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init())
2974 		goto out;
2975 
2976 	/* Retrieve SEV CPUID information */
2977 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2978 
2979 	/* Set encryption bit location for SEV-ES guests */
2980 	sev_enc_bit = ebx & 0x3f;
2981 
2982 	/* Maximum number of encrypted guests supported simultaneously */
2983 	max_sev_asid = ecx;
2984 	if (!max_sev_asid)
2985 		goto out;
2986 
2987 	/* Minimum ASID value that should be used for SEV guest */
2988 	min_sev_asid = edx;
2989 	sev_me_mask = 1UL << (ebx & 0x3f);
2990 
2991 	/*
2992 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2993 	 * even though it's never used, so that the bitmap is indexed by the
2994 	 * actual ASID.
2995 	 */
2996 	nr_asids = max_sev_asid + 1;
2997 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2998 	if (!sev_asid_bitmap)
2999 		goto out;
3000 
3001 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3002 	if (!sev_reclaim_asid_bitmap) {
3003 		bitmap_free(sev_asid_bitmap);
3004 		sev_asid_bitmap = NULL;
3005 		goto out;
3006 	}
3007 
3008 	if (min_sev_asid <= max_sev_asid) {
3009 		sev_asid_count = max_sev_asid - min_sev_asid + 1;
3010 		WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3011 	}
3012 	sev_supported = true;
3013 
3014 	/* SEV-ES support requested? */
3015 	if (!sev_es_enabled)
3016 		goto out;
3017 
3018 	/*
3019 	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3020 	 * instruction stream, i.e. can't emulate in response to a #NPF and
3021 	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3022 	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
3023 	 */
3024 	if (!enable_mmio_caching)
3025 		goto out;
3026 
3027 	/* Does the CPU support SEV-ES? */
3028 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3029 		goto out;
3030 
3031 	if (!lbrv) {
3032 		WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3033 			  "LBRV must be present for SEV-ES support");
3034 		goto out;
3035 	}
3036 
3037 	/* Has the system been allocated ASIDs for SEV-ES? */
3038 	if (min_sev_asid == 1)
3039 		goto out;
3040 
3041 	sev_es_asid_count = min_sev_asid - 1;
3042 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3043 	sev_es_supported = true;
3044 	sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3045 
3046 out:
3047 	if (sev_enabled) {
3048 		init_args.probe = true;
3049 		if (sev_platform_init(&init_args))
3050 			sev_supported = sev_es_supported = sev_snp_supported = false;
3051 		else if (sev_snp_supported)
3052 			sev_snp_supported = is_sev_snp_initialized();
3053 	}
3054 
3055 	if (boot_cpu_has(X86_FEATURE_SEV))
3056 		pr_info("SEV %s (ASIDs %u - %u)\n",
3057 			sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3058 								       "unusable" :
3059 								       "disabled",
3060 			min_sev_asid, max_sev_asid);
3061 	if (boot_cpu_has(X86_FEATURE_SEV_ES))
3062 		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3063 			str_enabled_disabled(sev_es_supported),
3064 			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3065 	if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3066 		pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3067 			str_enabled_disabled(sev_snp_supported),
3068 			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3069 
3070 	sev_enabled = sev_supported;
3071 	sev_es_enabled = sev_es_supported;
3072 	sev_snp_enabled = sev_snp_supported;
3073 
3074 	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3075 	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3076 		sev_es_debug_swap_enabled = false;
3077 
3078 	sev_supported_vmsa_features = 0;
3079 	if (sev_es_debug_swap_enabled)
3080 		sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3081 }
3082 
sev_hardware_unsetup(void)3083 void sev_hardware_unsetup(void)
3084 {
3085 	if (!sev_enabled)
3086 		return;
3087 
3088 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3089 	sev_flush_asids(1, max_sev_asid);
3090 
3091 	bitmap_free(sev_asid_bitmap);
3092 	bitmap_free(sev_reclaim_asid_bitmap);
3093 
3094 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3095 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3096 
3097 	sev_platform_shutdown();
3098 }
3099 
sev_cpu_init(struct svm_cpu_data * sd)3100 int sev_cpu_init(struct svm_cpu_data *sd)
3101 {
3102 	if (!sev_enabled)
3103 		return 0;
3104 
3105 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3106 	if (!sd->sev_vmcbs)
3107 		return -ENOMEM;
3108 
3109 	return 0;
3110 }
3111 
3112 /*
3113  * Pages used by hardware to hold guest encrypted state must be flushed before
3114  * returning them to the system.
3115  */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)3116 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3117 {
3118 	unsigned int asid = sev_get_asid(vcpu->kvm);
3119 
3120 	/*
3121 	 * Note!  The address must be a kernel address, as regular page walk
3122 	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3123 	 * address is non-deterministic and unsafe.  This function deliberately
3124 	 * takes a pointer to deter passing in a user address.
3125 	 */
3126 	unsigned long addr = (unsigned long)va;
3127 
3128 	/*
3129 	 * If CPU enforced cache coherency for encrypted mappings of the
3130 	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3131 	 * flush is still needed in order to work properly with DMA devices.
3132 	 */
3133 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3134 		clflush_cache_range(va, PAGE_SIZE);
3135 		return;
3136 	}
3137 
3138 	/*
3139 	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
3140 	 * back to full writeback of caches if this faults so as not to make
3141 	 * any problems worse by leaving stale encrypted data in the cache.
3142 	 */
3143 	if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3144 		goto do_sev_writeback_caches;
3145 
3146 	return;
3147 
3148 do_sev_writeback_caches:
3149 	sev_writeback_caches(vcpu->kvm);
3150 }
3151 
sev_guest_memory_reclaimed(struct kvm * kvm)3152 void sev_guest_memory_reclaimed(struct kvm *kvm)
3153 {
3154 	/*
3155 	 * With SNP+gmem, private/encrypted memory is unreachable via the
3156 	 * hva-based mmu notifiers, i.e. these events are explicitly scoped to
3157 	 * shared pages, where there's no need to flush caches.
3158 	 */
3159 	if (!sev_guest(kvm) || sev_snp_guest(kvm))
3160 		return;
3161 
3162 	sev_writeback_caches(kvm);
3163 }
3164 
sev_free_vcpu(struct kvm_vcpu * vcpu)3165 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3166 {
3167 	struct vcpu_svm *svm;
3168 
3169 	if (!sev_es_guest(vcpu->kvm))
3170 		return;
3171 
3172 	svm = to_svm(vcpu);
3173 
3174 	/*
3175 	 * If it's an SNP guest, then the VMSA was marked in the RMP table as
3176 	 * a guest-owned page. Transition the page to hypervisor state before
3177 	 * releasing it back to the system.
3178 	 */
3179 	if (sev_snp_guest(vcpu->kvm)) {
3180 		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3181 
3182 		if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3183 			goto skip_vmsa_free;
3184 	}
3185 
3186 	if (vcpu->arch.guest_state_protected)
3187 		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3188 
3189 	__free_page(virt_to_page(svm->sev_es.vmsa));
3190 
3191 skip_vmsa_free:
3192 	if (svm->sev_es.ghcb_sa_free)
3193 		kvfree(svm->sev_es.ghcb_sa);
3194 }
3195 
kvm_ghcb_get_sw_exit_code(struct vmcb_control_area * control)3196 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
3197 {
3198 	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3199 }
3200 
dump_ghcb(struct vcpu_svm * svm)3201 static void dump_ghcb(struct vcpu_svm *svm)
3202 {
3203 	struct vmcb_control_area *control = &svm->vmcb->control;
3204 	unsigned int nbits;
3205 
3206 	/* Re-use the dump_invalid_vmcb module parameter */
3207 	if (!dump_invalid_vmcb) {
3208 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3209 		return;
3210 	}
3211 
3212 	nbits = sizeof(svm->sev_es.valid_bitmap) * 8;
3213 
3214 	/*
3215 	 * Print KVM's snapshot of the GHCB values that were (unsuccessfully)
3216 	 * used to handle the exit.  If the guest has since modified the GHCB
3217 	 * itself, dumping the raw GHCB won't help debug why KVM was unable to
3218 	 * handle the VMGEXIT that KVM observed.
3219 	 */
3220 	pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa);
3221 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3222 	       kvm_ghcb_get_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm));
3223 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3224 	       control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm));
3225 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3226 	       control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm));
3227 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3228 	       svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm));
3229 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap);
3230 }
3231 
sev_es_sync_to_ghcb(struct vcpu_svm * svm)3232 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3233 {
3234 	struct kvm_vcpu *vcpu = &svm->vcpu;
3235 	struct ghcb *ghcb = svm->sev_es.ghcb;
3236 
3237 	/*
3238 	 * The GHCB protocol so far allows for the following data
3239 	 * to be returned:
3240 	 *   GPRs RAX, RBX, RCX, RDX
3241 	 *
3242 	 * Copy their values, even if they may not have been written during the
3243 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
3244 	 */
3245 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3246 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3247 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3248 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3249 }
3250 
sev_es_sync_from_ghcb(struct vcpu_svm * svm)3251 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3252 {
3253 	struct vmcb_control_area *control = &svm->vmcb->control;
3254 	struct kvm_vcpu *vcpu = &svm->vcpu;
3255 	struct ghcb *ghcb = svm->sev_es.ghcb;
3256 	u64 exit_code;
3257 
3258 	/*
3259 	 * The GHCB protocol so far allows for the following data
3260 	 * to be supplied:
3261 	 *   GPRs RAX, RBX, RCX, RDX
3262 	 *   XCR0
3263 	 *   CPL
3264 	 *
3265 	 * VMMCALL allows the guest to provide extra registers. KVM also
3266 	 * expects RSI for hypercalls, so include that, too.
3267 	 *
3268 	 * Copy their values to the appropriate location if supplied.
3269 	 */
3270 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3271 
3272 	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3273 	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3274 
3275 	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
3276 	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
3277 	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
3278 	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
3279 	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
3280 
3281 	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
3282 
3283 	if (kvm_ghcb_xcr0_is_valid(svm)) {
3284 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
3285 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3286 	}
3287 
3288 	/* Copy the GHCB exit information into the VMCB fields */
3289 	exit_code = ghcb_get_sw_exit_code(ghcb);
3290 	control->exit_code = lower_32_bits(exit_code);
3291 	control->exit_code_hi = upper_32_bits(exit_code);
3292 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
3293 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
3294 	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
3295 
3296 	/* Clear the valid entries fields */
3297 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3298 }
3299 
sev_es_validate_vmgexit(struct vcpu_svm * svm)3300 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3301 {
3302 	struct vmcb_control_area *control = &svm->vmcb->control;
3303 	struct kvm_vcpu *vcpu = &svm->vcpu;
3304 	u64 exit_code;
3305 	u64 reason;
3306 
3307 	/*
3308 	 * Retrieve the exit code now even though it may not be marked valid
3309 	 * as it could help with debugging.
3310 	 */
3311 	exit_code = kvm_ghcb_get_sw_exit_code(control);
3312 
3313 	/* Only GHCB Usage code 0 is supported */
3314 	if (svm->sev_es.ghcb->ghcb_usage) {
3315 		reason = GHCB_ERR_INVALID_USAGE;
3316 		goto vmgexit_err;
3317 	}
3318 
3319 	reason = GHCB_ERR_MISSING_INPUT;
3320 
3321 	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3322 	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3323 	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3324 		goto vmgexit_err;
3325 
3326 	switch (exit_code) {
3327 	case SVM_EXIT_READ_DR7:
3328 		break;
3329 	case SVM_EXIT_WRITE_DR7:
3330 		if (!kvm_ghcb_rax_is_valid(svm))
3331 			goto vmgexit_err;
3332 		break;
3333 	case SVM_EXIT_RDTSC:
3334 		break;
3335 	case SVM_EXIT_RDPMC:
3336 		if (!kvm_ghcb_rcx_is_valid(svm))
3337 			goto vmgexit_err;
3338 		break;
3339 	case SVM_EXIT_CPUID:
3340 		if (!kvm_ghcb_rax_is_valid(svm) ||
3341 		    !kvm_ghcb_rcx_is_valid(svm))
3342 			goto vmgexit_err;
3343 		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3344 			if (!kvm_ghcb_xcr0_is_valid(svm))
3345 				goto vmgexit_err;
3346 		break;
3347 	case SVM_EXIT_INVD:
3348 		break;
3349 	case SVM_EXIT_IOIO:
3350 		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3351 			if (!kvm_ghcb_sw_scratch_is_valid(svm))
3352 				goto vmgexit_err;
3353 		} else {
3354 			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3355 				if (!kvm_ghcb_rax_is_valid(svm))
3356 					goto vmgexit_err;
3357 		}
3358 		break;
3359 	case SVM_EXIT_MSR:
3360 		if (!kvm_ghcb_rcx_is_valid(svm))
3361 			goto vmgexit_err;
3362 		if (control->exit_info_1) {
3363 			if (!kvm_ghcb_rax_is_valid(svm) ||
3364 			    !kvm_ghcb_rdx_is_valid(svm))
3365 				goto vmgexit_err;
3366 		}
3367 		break;
3368 	case SVM_EXIT_VMMCALL:
3369 		if (!kvm_ghcb_rax_is_valid(svm) ||
3370 		    !kvm_ghcb_cpl_is_valid(svm))
3371 			goto vmgexit_err;
3372 		break;
3373 	case SVM_EXIT_RDTSCP:
3374 		break;
3375 	case SVM_EXIT_WBINVD:
3376 		break;
3377 	case SVM_EXIT_MONITOR:
3378 		if (!kvm_ghcb_rax_is_valid(svm) ||
3379 		    !kvm_ghcb_rcx_is_valid(svm) ||
3380 		    !kvm_ghcb_rdx_is_valid(svm))
3381 			goto vmgexit_err;
3382 		break;
3383 	case SVM_EXIT_MWAIT:
3384 		if (!kvm_ghcb_rax_is_valid(svm) ||
3385 		    !kvm_ghcb_rcx_is_valid(svm))
3386 			goto vmgexit_err;
3387 		break;
3388 	case SVM_VMGEXIT_MMIO_READ:
3389 	case SVM_VMGEXIT_MMIO_WRITE:
3390 		if (!kvm_ghcb_sw_scratch_is_valid(svm))
3391 			goto vmgexit_err;
3392 		break;
3393 	case SVM_VMGEXIT_AP_CREATION:
3394 		if (!sev_snp_guest(vcpu->kvm))
3395 			goto vmgexit_err;
3396 		if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3397 			if (!kvm_ghcb_rax_is_valid(svm))
3398 				goto vmgexit_err;
3399 		break;
3400 	case SVM_VMGEXIT_NMI_COMPLETE:
3401 	case SVM_VMGEXIT_AP_HLT_LOOP:
3402 	case SVM_VMGEXIT_AP_JUMP_TABLE:
3403 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3404 	case SVM_VMGEXIT_HV_FEATURES:
3405 	case SVM_VMGEXIT_TERM_REQUEST:
3406 		break;
3407 	case SVM_VMGEXIT_PSC:
3408 		if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3409 			goto vmgexit_err;
3410 		break;
3411 	case SVM_VMGEXIT_GUEST_REQUEST:
3412 	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3413 		if (!sev_snp_guest(vcpu->kvm) ||
3414 		    !PAGE_ALIGNED(control->exit_info_1) ||
3415 		    !PAGE_ALIGNED(control->exit_info_2) ||
3416 		    control->exit_info_1 == control->exit_info_2)
3417 			goto vmgexit_err;
3418 		break;
3419 	default:
3420 		reason = GHCB_ERR_INVALID_EVENT;
3421 		goto vmgexit_err;
3422 	}
3423 
3424 	return 0;
3425 
3426 vmgexit_err:
3427 	if (reason == GHCB_ERR_INVALID_USAGE) {
3428 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3429 			    svm->sev_es.ghcb->ghcb_usage);
3430 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
3431 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3432 			    exit_code);
3433 	} else {
3434 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3435 			    exit_code);
3436 		dump_ghcb(svm);
3437 	}
3438 
3439 	svm_vmgexit_bad_input(svm, reason);
3440 
3441 	/* Resume the guest to "return" the error code. */
3442 	return 1;
3443 }
3444 
sev_es_unmap_ghcb(struct vcpu_svm * svm)3445 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3446 {
3447 	/* Clear any indication that the vCPU is in a type of AP Reset Hold */
3448 	svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3449 
3450 	if (!svm->sev_es.ghcb)
3451 		return;
3452 
3453 	if (svm->sev_es.ghcb_sa_free) {
3454 		/*
3455 		 * The scratch area lives outside the GHCB, so there is a
3456 		 * buffer that, depending on the operation performed, may
3457 		 * need to be synced, then freed.
3458 		 */
3459 		if (svm->sev_es.ghcb_sa_sync) {
3460 			kvm_write_guest(svm->vcpu.kvm,
3461 					svm->sev_es.sw_scratch,
3462 					svm->sev_es.ghcb_sa,
3463 					svm->sev_es.ghcb_sa_len);
3464 			svm->sev_es.ghcb_sa_sync = false;
3465 		}
3466 
3467 		kvfree(svm->sev_es.ghcb_sa);
3468 		svm->sev_es.ghcb_sa = NULL;
3469 		svm->sev_es.ghcb_sa_free = false;
3470 	}
3471 
3472 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3473 
3474 	sev_es_sync_to_ghcb(svm);
3475 
3476 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map);
3477 	svm->sev_es.ghcb = NULL;
3478 }
3479 
pre_sev_run(struct vcpu_svm * svm,int cpu)3480 int pre_sev_run(struct vcpu_svm *svm, int cpu)
3481 {
3482 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3483 	struct kvm *kvm = svm->vcpu.kvm;
3484 	unsigned int asid = sev_get_asid(kvm);
3485 
3486 	/*
3487 	 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid
3488 	 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP
3489 	 * AP Destroy event.
3490 	 */
3491 	if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa))
3492 		return -EINVAL;
3493 
3494 	/*
3495 	 * To optimize cache flushes when memory is reclaimed from an SEV VM,
3496 	 * track physical CPUs that enter the guest for SEV VMs and thus can
3497 	 * have encrypted, dirty data in the cache, and flush caches only for
3498 	 * CPUs that have entered the guest.
3499 	 */
3500 	if (!cpumask_test_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus))
3501 		cpumask_set_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus);
3502 
3503 	/* Assign the asid allocated with this SEV guest */
3504 	svm->asid = asid;
3505 
3506 	/*
3507 	 * Flush guest TLB:
3508 	 *
3509 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3510 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3511 	 */
3512 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
3513 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
3514 		return 0;
3515 
3516 	sd->sev_vmcbs[asid] = svm->vmcb;
3517 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3518 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3519 	return 0;
3520 }
3521 
3522 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)3523 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3524 {
3525 	struct vmcb_control_area *control = &svm->vmcb->control;
3526 	u64 ghcb_scratch_beg, ghcb_scratch_end;
3527 	u64 scratch_gpa_beg, scratch_gpa_end;
3528 	void *scratch_va;
3529 
3530 	scratch_gpa_beg = svm->sev_es.sw_scratch;
3531 	if (!scratch_gpa_beg) {
3532 		pr_err("vmgexit: scratch gpa not provided\n");
3533 		goto e_scratch;
3534 	}
3535 
3536 	scratch_gpa_end = scratch_gpa_beg + len;
3537 	if (scratch_gpa_end < scratch_gpa_beg) {
3538 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3539 		       len, scratch_gpa_beg);
3540 		goto e_scratch;
3541 	}
3542 
3543 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3544 		/* Scratch area begins within GHCB */
3545 		ghcb_scratch_beg = control->ghcb_gpa +
3546 				   offsetof(struct ghcb, shared_buffer);
3547 		ghcb_scratch_end = control->ghcb_gpa +
3548 				   offsetof(struct ghcb, reserved_0xff0);
3549 
3550 		/*
3551 		 * If the scratch area begins within the GHCB, it must be
3552 		 * completely contained in the GHCB shared buffer area.
3553 		 */
3554 		if (scratch_gpa_beg < ghcb_scratch_beg ||
3555 		    scratch_gpa_end > ghcb_scratch_end) {
3556 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3557 			       scratch_gpa_beg, scratch_gpa_end);
3558 			goto e_scratch;
3559 		}
3560 
3561 		scratch_va = (void *)svm->sev_es.ghcb;
3562 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3563 	} else {
3564 		/*
3565 		 * The guest memory must be read into a kernel buffer, so
3566 		 * limit the size
3567 		 */
3568 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
3569 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3570 			       len, GHCB_SCRATCH_AREA_LIMIT);
3571 			goto e_scratch;
3572 		}
3573 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3574 		if (!scratch_va)
3575 			return -ENOMEM;
3576 
3577 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3578 			/* Unable to copy scratch area from guest */
3579 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3580 
3581 			kvfree(scratch_va);
3582 			return -EFAULT;
3583 		}
3584 
3585 		/*
3586 		 * The scratch area is outside the GHCB. The operation will
3587 		 * dictate whether the buffer needs to be synced before running
3588 		 * the vCPU next time (i.e. a read was requested so the data
3589 		 * must be written back to the guest memory).
3590 		 */
3591 		svm->sev_es.ghcb_sa_sync = sync;
3592 		svm->sev_es.ghcb_sa_free = true;
3593 	}
3594 
3595 	svm->sev_es.ghcb_sa = scratch_va;
3596 	svm->sev_es.ghcb_sa_len = len;
3597 
3598 	return 0;
3599 
3600 e_scratch:
3601 	svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA);
3602 
3603 	return 1;
3604 }
3605 
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)3606 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3607 			      unsigned int pos)
3608 {
3609 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3610 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3611 }
3612 
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)3613 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3614 {
3615 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3616 }
3617 
set_ghcb_msr(struct vcpu_svm * svm,u64 value)3618 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3619 {
3620 	svm->vmcb->control.ghcb_gpa = value;
3621 }
3622 
snp_rmptable_psmash(kvm_pfn_t pfn)3623 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3624 {
3625 	int ret;
3626 
3627 	pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3628 
3629 	/*
3630 	 * PSMASH_FAIL_INUSE indicates another processor is modifying the
3631 	 * entry, so retry until that's no longer the case.
3632 	 */
3633 	do {
3634 		ret = psmash(pfn);
3635 	} while (ret == PSMASH_FAIL_INUSE);
3636 
3637 	return ret;
3638 }
3639 
snp_complete_psc_msr(struct kvm_vcpu * vcpu)3640 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3641 {
3642 	struct vcpu_svm *svm = to_svm(vcpu);
3643 
3644 	if (vcpu->run->hypercall.ret)
3645 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3646 	else
3647 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3648 
3649 	return 1; /* resume guest */
3650 }
3651 
snp_begin_psc_msr(struct vcpu_svm * svm,u64 ghcb_msr)3652 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3653 {
3654 	u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3655 	u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3656 	struct kvm_vcpu *vcpu = &svm->vcpu;
3657 
3658 	if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3659 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3660 		return 1; /* resume guest */
3661 	}
3662 
3663 	if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3664 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3665 		return 1; /* resume guest */
3666 	}
3667 
3668 	vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3669 	vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3670 	/*
3671 	 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3672 	 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3673 	 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
3674 	 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3675 	 */
3676 	vcpu->run->hypercall.ret = 0;
3677 	vcpu->run->hypercall.args[0] = gpa;
3678 	vcpu->run->hypercall.args[1] = 1;
3679 	vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3680 				       ? KVM_MAP_GPA_RANGE_ENCRYPTED
3681 				       : KVM_MAP_GPA_RANGE_DECRYPTED;
3682 	vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3683 
3684 	vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3685 
3686 	return 0; /* forward request to userspace */
3687 }
3688 
3689 struct psc_buffer {
3690 	struct psc_hdr hdr;
3691 	struct psc_entry entries[];
3692 } __packed;
3693 
3694 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3695 
snp_complete_psc(struct vcpu_svm * svm,u64 psc_ret)3696 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3697 {
3698 	svm->sev_es.psc_inflight = 0;
3699 	svm->sev_es.psc_idx = 0;
3700 	svm->sev_es.psc_2m = false;
3701 
3702 	/*
3703 	 * PSC requests always get a "no action" response in SW_EXITINFO1, with
3704 	 * a PSC-specific return code in SW_EXITINFO2 that provides the "real"
3705 	 * return code.  E.g. if the PSC request was interrupted, the need to
3706 	 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1.
3707 	 */
3708 	svm_vmgexit_no_action(svm, psc_ret);
3709 }
3710 
__snp_complete_one_psc(struct vcpu_svm * svm)3711 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3712 {
3713 	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3714 	struct psc_entry *entries = psc->entries;
3715 	struct psc_hdr *hdr = &psc->hdr;
3716 	__u16 idx;
3717 
3718 	/*
3719 	 * Everything in-flight has been processed successfully. Update the
3720 	 * corresponding entries in the guest's PSC buffer and zero out the
3721 	 * count of in-flight PSC entries.
3722 	 */
3723 	for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3724 	     svm->sev_es.psc_inflight--, idx++) {
3725 		struct psc_entry *entry = &entries[idx];
3726 
3727 		entry->cur_page = entry->pagesize ? 512 : 1;
3728 	}
3729 
3730 	hdr->cur_entry = idx;
3731 }
3732 
snp_complete_one_psc(struct kvm_vcpu * vcpu)3733 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3734 {
3735 	struct vcpu_svm *svm = to_svm(vcpu);
3736 	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3737 
3738 	if (vcpu->run->hypercall.ret) {
3739 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3740 		return 1; /* resume guest */
3741 	}
3742 
3743 	__snp_complete_one_psc(svm);
3744 
3745 	/* Handle the next range (if any). */
3746 	return snp_begin_psc(svm, psc);
3747 }
3748 
snp_begin_psc(struct vcpu_svm * svm,struct psc_buffer * psc)3749 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3750 {
3751 	struct psc_entry *entries = psc->entries;
3752 	struct kvm_vcpu *vcpu = &svm->vcpu;
3753 	struct psc_hdr *hdr = &psc->hdr;
3754 	struct psc_entry entry_start;
3755 	u16 idx, idx_start, idx_end;
3756 	int npages;
3757 	bool huge;
3758 	u64 gfn;
3759 
3760 	if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3761 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3762 		return 1;
3763 	}
3764 
3765 next_range:
3766 	/* There should be no other PSCs in-flight at this point. */
3767 	if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3768 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3769 		return 1;
3770 	}
3771 
3772 	/*
3773 	 * The PSC descriptor buffer can be modified by a misbehaved guest after
3774 	 * validation, so take care to only use validated copies of values used
3775 	 * for things like array indexing.
3776 	 */
3777 	idx_start = hdr->cur_entry;
3778 	idx_end = hdr->end_entry;
3779 
3780 	if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3781 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3782 		return 1;
3783 	}
3784 
3785 	/* Find the start of the next range which needs processing. */
3786 	for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3787 		entry_start = entries[idx];
3788 
3789 		gfn = entry_start.gfn;
3790 		huge = entry_start.pagesize;
3791 		npages = huge ? 512 : 1;
3792 
3793 		if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3794 			snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3795 			return 1;
3796 		}
3797 
3798 		if (entry_start.cur_page) {
3799 			/*
3800 			 * If this is a partially-completed 2M range, force 4K handling
3801 			 * for the remaining pages since they're effectively split at
3802 			 * this point. Subsequent code should ensure this doesn't get
3803 			 * combined with adjacent PSC entries where 2M handling is still
3804 			 * possible.
3805 			 */
3806 			npages -= entry_start.cur_page;
3807 			gfn += entry_start.cur_page;
3808 			huge = false;
3809 		}
3810 
3811 		if (npages)
3812 			break;
3813 	}
3814 
3815 	if (idx > idx_end) {
3816 		/* Nothing more to process. */
3817 		snp_complete_psc(svm, 0);
3818 		return 1;
3819 	}
3820 
3821 	svm->sev_es.psc_2m = huge;
3822 	svm->sev_es.psc_idx = idx;
3823 	svm->sev_es.psc_inflight = 1;
3824 
3825 	/*
3826 	 * Find all subsequent PSC entries that contain adjacent GPA
3827 	 * ranges/operations and can be combined into a single
3828 	 * KVM_HC_MAP_GPA_RANGE exit.
3829 	 */
3830 	while (++idx <= idx_end) {
3831 		struct psc_entry entry = entries[idx];
3832 
3833 		if (entry.operation != entry_start.operation ||
3834 		    entry.gfn != entry_start.gfn + npages ||
3835 		    entry.cur_page || !!entry.pagesize != huge)
3836 			break;
3837 
3838 		svm->sev_es.psc_inflight++;
3839 		npages += huge ? 512 : 1;
3840 	}
3841 
3842 	switch (entry_start.operation) {
3843 	case VMGEXIT_PSC_OP_PRIVATE:
3844 	case VMGEXIT_PSC_OP_SHARED:
3845 		vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3846 		vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3847 		/*
3848 		 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3849 		 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3850 		 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
3851 		 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3852 		 */
3853 		vcpu->run->hypercall.ret = 0;
3854 		vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3855 		vcpu->run->hypercall.args[1] = npages;
3856 		vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3857 					       ? KVM_MAP_GPA_RANGE_ENCRYPTED
3858 					       : KVM_MAP_GPA_RANGE_DECRYPTED;
3859 		vcpu->run->hypercall.args[2] |= entry_start.pagesize
3860 						? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3861 						: KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3862 		vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3863 		return 0; /* forward request to userspace */
3864 	default:
3865 		/*
3866 		 * Only shared/private PSC operations are currently supported, so if the
3867 		 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3868 		 * then consider the entire range completed and avoid exiting to
3869 		 * userspace. In theory snp_complete_psc() can always be called directly
3870 		 * at this point to complete the current range and start the next one,
3871 		 * but that could lead to unexpected levels of recursion.
3872 		 */
3873 		__snp_complete_one_psc(svm);
3874 		goto next_range;
3875 	}
3876 
3877 	BUG();
3878 }
3879 
3880 /*
3881  * Invoked as part of svm_vcpu_reset() processing of an init event.
3882  */
sev_snp_init_protected_guest_state(struct kvm_vcpu * vcpu)3883 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3884 {
3885 	struct vcpu_svm *svm = to_svm(vcpu);
3886 	struct kvm_memory_slot *slot;
3887 	struct page *page;
3888 	kvm_pfn_t pfn;
3889 	gfn_t gfn;
3890 
3891 	if (!sev_snp_guest(vcpu->kvm))
3892 		return;
3893 
3894 	guard(mutex)(&svm->sev_es.snp_vmsa_mutex);
3895 
3896 	if (!svm->sev_es.snp_ap_waiting_for_reset)
3897 		return;
3898 
3899 	svm->sev_es.snp_ap_waiting_for_reset = false;
3900 
3901 	/* Mark the vCPU as offline and not runnable */
3902 	vcpu->arch.pv.pv_unhalted = false;
3903 	kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED);
3904 
3905 	/* Clear use of the VMSA */
3906 	svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3907 
3908 	/*
3909 	 * When replacing the VMSA during SEV-SNP AP creation,
3910 	 * mark the VMCB dirty so that full state is always reloaded.
3911 	 */
3912 	vmcb_mark_all_dirty(svm->vmcb);
3913 
3914 	if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa))
3915 		return;
3916 
3917 	gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3918 	svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3919 
3920 	slot = gfn_to_memslot(vcpu->kvm, gfn);
3921 	if (!slot)
3922 		return;
3923 
3924 	/*
3925 	 * The new VMSA will be private memory guest memory, so retrieve the
3926 	 * PFN from the gmem backend.
3927 	 */
3928 	if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
3929 		return;
3930 
3931 	/*
3932 	 * From this point forward, the VMSA will always be a guest-mapped page
3933 	 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In
3934 	 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but
3935 	 * that involves cleanups like flushing caches, which would ideally be
3936 	 * handled during teardown rather than guest boot.  Deferring that also
3937 	 * allows the existing logic for SEV-ES VMSAs to be re-used with
3938 	 * minimal SNP-specific changes.
3939 	 */
3940 	svm->sev_es.snp_has_guest_vmsa = true;
3941 
3942 	/* Use the new VMSA */
3943 	svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
3944 
3945 	/* Mark the vCPU as runnable */
3946 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3947 
3948 	/*
3949 	 * gmem pages aren't currently migratable, but if this ever changes
3950 	 * then care should be taken to ensure svm->sev_es.vmsa is pinned
3951 	 * through some other means.
3952 	 */
3953 	kvm_release_page_clean(page);
3954 }
3955 
sev_snp_ap_creation(struct vcpu_svm * svm)3956 static int sev_snp_ap_creation(struct vcpu_svm *svm)
3957 {
3958 	struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
3959 	struct kvm_vcpu *vcpu = &svm->vcpu;
3960 	struct kvm_vcpu *target_vcpu;
3961 	struct vcpu_svm *target_svm;
3962 	unsigned int request;
3963 	unsigned int apic_id;
3964 
3965 	request = lower_32_bits(svm->vmcb->control.exit_info_1);
3966 	apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
3967 
3968 	/* Validate the APIC ID */
3969 	target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
3970 	if (!target_vcpu) {
3971 		vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
3972 			    apic_id);
3973 		return -EINVAL;
3974 	}
3975 
3976 	target_svm = to_svm(target_vcpu);
3977 
3978 	guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex);
3979 
3980 	switch (request) {
3981 	case SVM_VMGEXIT_AP_CREATE_ON_INIT:
3982 	case SVM_VMGEXIT_AP_CREATE:
3983 		if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) {
3984 			vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n",
3985 				    vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features);
3986 			return -EINVAL;
3987 		}
3988 
3989 		if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
3990 			vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
3991 				    svm->vmcb->control.exit_info_2);
3992 			return -EINVAL;
3993 		}
3994 
3995 		/*
3996 		 * Malicious guest can RMPADJUST a large page into VMSA which
3997 		 * will hit the SNP erratum where the CPU will incorrectly signal
3998 		 * an RMP violation #PF if a hugepage collides with the RMP entry
3999 		 * of VMSA page, reject the AP CREATE request if VMSA address from
4000 		 * guest is 2M aligned.
4001 		 */
4002 		if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
4003 			vcpu_unimpl(vcpu,
4004 				    "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
4005 				    svm->vmcb->control.exit_info_2);
4006 			return -EINVAL;
4007 		}
4008 
4009 		target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4010 		break;
4011 	case SVM_VMGEXIT_AP_DESTROY:
4012 		target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
4013 		break;
4014 	default:
4015 		vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4016 			    request);
4017 		return -EINVAL;
4018 	}
4019 
4020 	target_svm->sev_es.snp_ap_waiting_for_reset = true;
4021 
4022 	/*
4023 	 * Unless Creation is deferred until INIT, signal the vCPU to update
4024 	 * its state.
4025 	 */
4026 	if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT)
4027 		kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4028 
4029 	return 0;
4030 }
4031 
snp_handle_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4032 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4033 {
4034 	struct sev_data_snp_guest_request data = {0};
4035 	struct kvm *kvm = svm->vcpu.kvm;
4036 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4037 	sev_ret_code fw_err = 0;
4038 	int ret;
4039 
4040 	if (!sev_snp_guest(kvm))
4041 		return -EINVAL;
4042 
4043 	mutex_lock(&sev->guest_req_mutex);
4044 
4045 	if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4046 		ret = -EIO;
4047 		goto out_unlock;
4048 	}
4049 
4050 	data.gctx_paddr = __psp_pa(sev->snp_context);
4051 	data.req_paddr = __psp_pa(sev->guest_req_buf);
4052 	data.res_paddr = __psp_pa(sev->guest_resp_buf);
4053 
4054 	/*
4055 	 * Firmware failures are propagated on to guest, but any other failure
4056 	 * condition along the way should be reported to userspace. E.g. if
4057 	 * the PSP is dead and commands are timing out.
4058 	 */
4059 	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4060 	if (ret && !fw_err)
4061 		goto out_unlock;
4062 
4063 	if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4064 		ret = -EIO;
4065 		goto out_unlock;
4066 	}
4067 
4068 	/* No action is requested *from KVM* if there was a firmware error. */
4069 	svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err));
4070 
4071 	ret = 1; /* resume guest */
4072 
4073 out_unlock:
4074 	mutex_unlock(&sev->guest_req_mutex);
4075 	return ret;
4076 }
4077 
snp_handle_ext_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4078 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4079 {
4080 	struct kvm *kvm = svm->vcpu.kvm;
4081 	u8 msg_type;
4082 
4083 	if (!sev_snp_guest(kvm))
4084 		return -EINVAL;
4085 
4086 	if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4087 			   &msg_type, 1))
4088 		return -EIO;
4089 
4090 	/*
4091 	 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4092 	 * additional certificate data to be provided alongside the attestation
4093 	 * report via the guest-provided data pages indicated by RAX/RBX. The
4094 	 * certificate data is optional and requires additional KVM enablement
4095 	 * to provide an interface for userspace to provide it, but KVM still
4096 	 * needs to be able to handle extended guest requests either way. So
4097 	 * provide a stub implementation that will always return an empty
4098 	 * certificate table in the guest-provided data pages.
4099 	 */
4100 	if (msg_type == SNP_MSG_REPORT_REQ) {
4101 		struct kvm_vcpu *vcpu = &svm->vcpu;
4102 		u64 data_npages;
4103 		gpa_t data_gpa;
4104 
4105 		if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4106 			goto request_invalid;
4107 
4108 		data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4109 		data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4110 
4111 		if (!PAGE_ALIGNED(data_gpa))
4112 			goto request_invalid;
4113 
4114 		/*
4115 		 * As per GHCB spec (see "SNP Extended Guest Request"), the
4116 		 * certificate table is terminated by 24-bytes of zeroes.
4117 		 */
4118 		if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4119 			return -EIO;
4120 	}
4121 
4122 	return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4123 
4124 request_invalid:
4125 	svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4126 	return 1; /* resume guest */
4127 }
4128 
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)4129 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4130 {
4131 	struct vmcb_control_area *control = &svm->vmcb->control;
4132 	struct kvm_vcpu *vcpu = &svm->vcpu;
4133 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4134 	u64 ghcb_info;
4135 	int ret = 1;
4136 
4137 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4138 
4139 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4140 					     control->ghcb_gpa);
4141 
4142 	switch (ghcb_info) {
4143 	case GHCB_MSR_SEV_INFO_REQ:
4144 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4145 						    GHCB_VERSION_MIN,
4146 						    sev_enc_bit));
4147 		break;
4148 	case GHCB_MSR_CPUID_REQ: {
4149 		u64 cpuid_fn, cpuid_reg, cpuid_value;
4150 
4151 		cpuid_fn = get_ghcb_msr_bits(svm,
4152 					     GHCB_MSR_CPUID_FUNC_MASK,
4153 					     GHCB_MSR_CPUID_FUNC_POS);
4154 
4155 		/* Initialize the registers needed by the CPUID intercept */
4156 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4157 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4158 
4159 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4160 		if (!ret) {
4161 			/* Error, keep GHCB MSR value as-is */
4162 			break;
4163 		}
4164 
4165 		cpuid_reg = get_ghcb_msr_bits(svm,
4166 					      GHCB_MSR_CPUID_REG_MASK,
4167 					      GHCB_MSR_CPUID_REG_POS);
4168 		if (cpuid_reg == 0)
4169 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4170 		else if (cpuid_reg == 1)
4171 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4172 		else if (cpuid_reg == 2)
4173 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4174 		else
4175 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4176 
4177 		set_ghcb_msr_bits(svm, cpuid_value,
4178 				  GHCB_MSR_CPUID_VALUE_MASK,
4179 				  GHCB_MSR_CPUID_VALUE_POS);
4180 
4181 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4182 				  GHCB_MSR_INFO_MASK,
4183 				  GHCB_MSR_INFO_POS);
4184 		break;
4185 	}
4186 	case GHCB_MSR_AP_RESET_HOLD_REQ:
4187 		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4188 		ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4189 
4190 		/*
4191 		 * Preset the result to a non-SIPI return and then only set
4192 		 * the result to non-zero when delivering a SIPI.
4193 		 */
4194 		set_ghcb_msr_bits(svm, 0,
4195 				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4196 				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4197 
4198 		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4199 				  GHCB_MSR_INFO_MASK,
4200 				  GHCB_MSR_INFO_POS);
4201 		break;
4202 	case GHCB_MSR_HV_FT_REQ:
4203 		set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4204 				  GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4205 		set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4206 				  GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4207 		break;
4208 	case GHCB_MSR_PREF_GPA_REQ:
4209 		if (!sev_snp_guest(vcpu->kvm))
4210 			goto out_terminate;
4211 
4212 		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4213 				  GHCB_MSR_GPA_VALUE_POS);
4214 		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4215 				  GHCB_MSR_INFO_POS);
4216 		break;
4217 	case GHCB_MSR_REG_GPA_REQ: {
4218 		u64 gfn;
4219 
4220 		if (!sev_snp_guest(vcpu->kvm))
4221 			goto out_terminate;
4222 
4223 		gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4224 					GHCB_MSR_GPA_VALUE_POS);
4225 
4226 		svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4227 
4228 		set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4229 				  GHCB_MSR_GPA_VALUE_POS);
4230 		set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4231 				  GHCB_MSR_INFO_POS);
4232 		break;
4233 	}
4234 	case GHCB_MSR_PSC_REQ:
4235 		if (!sev_snp_guest(vcpu->kvm))
4236 			goto out_terminate;
4237 
4238 		ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4239 		break;
4240 	case GHCB_MSR_TERM_REQ: {
4241 		u64 reason_set, reason_code;
4242 
4243 		reason_set = get_ghcb_msr_bits(svm,
4244 					       GHCB_MSR_TERM_REASON_SET_MASK,
4245 					       GHCB_MSR_TERM_REASON_SET_POS);
4246 		reason_code = get_ghcb_msr_bits(svm,
4247 						GHCB_MSR_TERM_REASON_MASK,
4248 						GHCB_MSR_TERM_REASON_POS);
4249 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4250 			reason_set, reason_code);
4251 
4252 		goto out_terminate;
4253 	}
4254 	default:
4255 		/* Error, keep GHCB MSR value as-is */
4256 		break;
4257 	}
4258 
4259 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4260 					    control->ghcb_gpa, ret);
4261 
4262 	return ret;
4263 
4264 out_terminate:
4265 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4266 	vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4267 	vcpu->run->system_event.ndata = 1;
4268 	vcpu->run->system_event.data[0] = control->ghcb_gpa;
4269 
4270 	return 0;
4271 }
4272 
sev_handle_vmgexit(struct kvm_vcpu * vcpu)4273 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4274 {
4275 	struct vcpu_svm *svm = to_svm(vcpu);
4276 	struct vmcb_control_area *control = &svm->vmcb->control;
4277 	u64 ghcb_gpa, exit_code;
4278 	int ret;
4279 
4280 	/* Validate the GHCB */
4281 	ghcb_gpa = control->ghcb_gpa;
4282 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4283 		return sev_handle_vmgexit_msr_protocol(svm);
4284 
4285 	if (!ghcb_gpa) {
4286 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4287 
4288 		/* Without a GHCB, just return right back to the guest */
4289 		return 1;
4290 	}
4291 
4292 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4293 		/* Unable to map GHCB from guest */
4294 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4295 			    ghcb_gpa);
4296 
4297 		/* Without a GHCB, just return right back to the guest */
4298 		return 1;
4299 	}
4300 
4301 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4302 
4303 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4304 
4305 	sev_es_sync_from_ghcb(svm);
4306 
4307 	/* SEV-SNP guest requires that the GHCB GPA must be registered */
4308 	if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4309 		vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4310 		return -EINVAL;
4311 	}
4312 
4313 	ret = sev_es_validate_vmgexit(svm);
4314 	if (ret)
4315 		return ret;
4316 
4317 	svm_vmgexit_success(svm, 0);
4318 
4319 	exit_code = kvm_ghcb_get_sw_exit_code(control);
4320 	switch (exit_code) {
4321 	case SVM_VMGEXIT_MMIO_READ:
4322 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4323 		if (ret)
4324 			break;
4325 
4326 		ret = kvm_sev_es_mmio_read(vcpu,
4327 					   control->exit_info_1,
4328 					   control->exit_info_2,
4329 					   svm->sev_es.ghcb_sa);
4330 		break;
4331 	case SVM_VMGEXIT_MMIO_WRITE:
4332 		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4333 		if (ret)
4334 			break;
4335 
4336 		ret = kvm_sev_es_mmio_write(vcpu,
4337 					    control->exit_info_1,
4338 					    control->exit_info_2,
4339 					    svm->sev_es.ghcb_sa);
4340 		break;
4341 	case SVM_VMGEXIT_NMI_COMPLETE:
4342 		++vcpu->stat.nmi_window_exits;
4343 		svm->nmi_masked = false;
4344 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4345 		ret = 1;
4346 		break;
4347 	case SVM_VMGEXIT_AP_HLT_LOOP:
4348 		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4349 		ret = kvm_emulate_ap_reset_hold(vcpu);
4350 		break;
4351 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
4352 		struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4353 
4354 		switch (control->exit_info_1) {
4355 		case 0:
4356 			/* Set AP jump table address */
4357 			sev->ap_jump_table = control->exit_info_2;
4358 			break;
4359 		case 1:
4360 			/* Get AP jump table address */
4361 			svm_vmgexit_success(svm, sev->ap_jump_table);
4362 			break;
4363 		default:
4364 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4365 			       control->exit_info_1);
4366 			svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4367 		}
4368 
4369 		ret = 1;
4370 		break;
4371 	}
4372 	case SVM_VMGEXIT_HV_FEATURES:
4373 		svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED);
4374 		ret = 1;
4375 		break;
4376 	case SVM_VMGEXIT_TERM_REQUEST:
4377 		pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4378 			control->exit_info_1, control->exit_info_2);
4379 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4380 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4381 		vcpu->run->system_event.ndata = 1;
4382 		vcpu->run->system_event.data[0] = control->ghcb_gpa;
4383 		break;
4384 	case SVM_VMGEXIT_PSC:
4385 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4386 		if (ret)
4387 			break;
4388 
4389 		ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4390 		break;
4391 	case SVM_VMGEXIT_AP_CREATION:
4392 		ret = sev_snp_ap_creation(svm);
4393 		if (ret) {
4394 			svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4395 		}
4396 
4397 		ret = 1;
4398 		break;
4399 	case SVM_VMGEXIT_GUEST_REQUEST:
4400 		ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4401 		break;
4402 	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4403 		ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4404 		break;
4405 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4406 		vcpu_unimpl(vcpu,
4407 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4408 			    control->exit_info_1, control->exit_info_2);
4409 		ret = -EINVAL;
4410 		break;
4411 	default:
4412 		ret = svm_invoke_exit_handler(vcpu, exit_code);
4413 	}
4414 
4415 	return ret;
4416 }
4417 
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)4418 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4419 {
4420 	int count;
4421 	int bytes;
4422 	int r;
4423 
4424 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
4425 		return -EINVAL;
4426 
4427 	count = svm->vmcb->control.exit_info_2;
4428 	if (unlikely(check_mul_overflow(count, size, &bytes)))
4429 		return -EINVAL;
4430 
4431 	r = setup_vmgexit_scratch(svm, in, bytes);
4432 	if (r)
4433 		return r;
4434 
4435 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4436 				    count, in);
4437 }
4438 
sev_es_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4439 void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4440 {
4441 	/* Clear intercepts on MSRs that are context switched by hardware. */
4442 	svm_disable_intercept_for_msr(vcpu, MSR_AMD64_SEV_ES_GHCB, MSR_TYPE_RW);
4443 	svm_disable_intercept_for_msr(vcpu, MSR_EFER, MSR_TYPE_RW);
4444 	svm_disable_intercept_for_msr(vcpu, MSR_IA32_CR_PAT, MSR_TYPE_RW);
4445 
4446 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX))
4447 		svm_set_intercept_for_msr(vcpu, MSR_TSC_AUX, MSR_TYPE_RW,
4448 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
4449 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID));
4450 
4451 	/*
4452 	 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4453 	 * the host/guest supports its use.
4454 	 *
4455 	 * KVM treats the guest as being capable of using XSAVES even if XSAVES
4456 	 * isn't enabled in guest CPUID as there is no intercept for XSAVES,
4457 	 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is
4458 	 * exposed to the guest and XSAVES is supported in hardware.  Condition
4459 	 * full XSS passthrough on the guest being able to use XSAVES *and*
4460 	 * XSAVES being exposed to the guest so that KVM can at least honor
4461 	 * guest CPUID for RDMSR and WRMSR.
4462 	 */
4463 	svm_set_intercept_for_msr(vcpu, MSR_IA32_XSS, MSR_TYPE_RW,
4464 				  !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) ||
4465 				  !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES));
4466 }
4467 
sev_vcpu_after_set_cpuid(struct vcpu_svm * svm)4468 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4469 {
4470 	struct kvm_vcpu *vcpu = &svm->vcpu;
4471 	struct kvm_cpuid_entry2 *best;
4472 
4473 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4474 	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4475 	if (best)
4476 		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4477 }
4478 
sev_es_init_vmcb(struct vcpu_svm * svm)4479 static void sev_es_init_vmcb(struct vcpu_svm *svm)
4480 {
4481 	struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
4482 	struct vmcb *vmcb = svm->vmcb01.ptr;
4483 
4484 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4485 
4486 	/*
4487 	 * An SEV-ES guest requires a VMSA area that is a separate from the
4488 	 * VMCB page. Do not include the encryption mask on the VMSA physical
4489 	 * address since hardware will access it using the guest key.  Note,
4490 	 * the VMSA will be NULL if this vCPU is the destination for intrahost
4491 	 * migration, and will be copied later.
4492 	 */
4493 	if (!svm->sev_es.snp_has_guest_vmsa) {
4494 		if (svm->sev_es.vmsa)
4495 			svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4496 		else
4497 			svm->vmcb->control.vmsa_pa = INVALID_PAGE;
4498 	}
4499 
4500 	if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES))
4501 		svm->vmcb->control.allowed_sev_features = sev->vmsa_features |
4502 							  VMCB_ALLOWED_SEV_FEATURES_VALID;
4503 
4504 	/* Can't intercept CR register access, HV can't modify CR registers */
4505 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4506 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4507 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4508 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4509 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4510 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4511 
4512 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4513 
4514 	/* Track EFER/CR register changes */
4515 	svm_set_intercept(svm, TRAP_EFER_WRITE);
4516 	svm_set_intercept(svm, TRAP_CR0_WRITE);
4517 	svm_set_intercept(svm, TRAP_CR4_WRITE);
4518 	svm_set_intercept(svm, TRAP_CR8_WRITE);
4519 
4520 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
4521 	if (!sev_vcpu_has_debug_swap(svm)) {
4522 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4523 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4524 		recalc_intercepts(svm);
4525 	} else {
4526 		/*
4527 		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
4528 		 * allow debugging SEV-ES guests, and enables DebugSwap iff
4529 		 * NO_NESTED_DATA_BP is supported, so there's no reason to
4530 		 * intercept #DB when DebugSwap is enabled.  For simplicity
4531 		 * with respect to guest debug, intercept #DB for other VMs
4532 		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4533 		 * guest can't DoS the CPU with infinite #DB vectoring.
4534 		 */
4535 		clr_exception_intercept(svm, DB_VECTOR);
4536 	}
4537 
4538 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
4539 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
4540 }
4541 
sev_init_vmcb(struct vcpu_svm * svm)4542 void sev_init_vmcb(struct vcpu_svm *svm)
4543 {
4544 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4545 	clr_exception_intercept(svm, UD_VECTOR);
4546 
4547 	/*
4548 	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4549 	 * KVM can't decrypt guest memory to decode the faulting instruction.
4550 	 */
4551 	clr_exception_intercept(svm, GP_VECTOR);
4552 
4553 	if (sev_es_guest(svm->vcpu.kvm))
4554 		sev_es_init_vmcb(svm);
4555 }
4556 
sev_es_vcpu_reset(struct vcpu_svm * svm)4557 void sev_es_vcpu_reset(struct vcpu_svm *svm)
4558 {
4559 	struct kvm_vcpu *vcpu = &svm->vcpu;
4560 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4561 
4562 	/*
4563 	 * Set the GHCB MSR value as per the GHCB specification when emulating
4564 	 * vCPU RESET for an SEV-ES guest.
4565 	 */
4566 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4567 					    GHCB_VERSION_MIN,
4568 					    sev_enc_bit));
4569 
4570 	mutex_init(&svm->sev_es.snp_vmsa_mutex);
4571 }
4572 
sev_es_prepare_switch_to_guest(struct vcpu_svm * svm,struct sev_es_save_area * hostsa)4573 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4574 {
4575 	struct kvm *kvm = svm->vcpu.kvm;
4576 
4577 	/*
4578 	 * All host state for SEV-ES guests is categorized into three swap types
4579 	 * based on how it is handled by hardware during a world switch:
4580 	 *
4581 	 * A: VMRUN:   Host state saved in host save area
4582 	 *    VMEXIT:  Host state loaded from host save area
4583 	 *
4584 	 * B: VMRUN:   Host state _NOT_ saved in host save area
4585 	 *    VMEXIT:  Host state loaded from host save area
4586 	 *
4587 	 * C: VMRUN:   Host state _NOT_ saved in host save area
4588 	 *    VMEXIT:  Host state initialized to default(reset) values
4589 	 *
4590 	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4591 	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4592 	 * by common SVM code).
4593 	 */
4594 	hostsa->xcr0 = kvm_host.xcr0;
4595 	hostsa->pkru = read_pkru();
4596 	hostsa->xss = kvm_host.xss;
4597 
4598 	/*
4599 	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4600 	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does
4601 	 * not save or load debug registers.  Sadly, KVM can't prevent SNP
4602 	 * guests from lying about DebugSwap on secondary vCPUs, i.e. the
4603 	 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what
4604 	 * the guest has actually enabled (or not!) in the VMSA.
4605 	 *
4606 	 * If DebugSwap is *possible*, save the masks so that they're restored
4607 	 * if the guest enables DebugSwap.  But for the DRs themselves, do NOT
4608 	 * rely on the CPU to restore the host values; KVM will restore them as
4609 	 * needed in common code, via hw_breakpoint_restore().  Note, KVM does
4610 	 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs
4611 	 * don't need to be restored per se, KVM just needs to ensure they are
4612 	 * loaded with the correct values *if* the CPU writes the MSRs.
4613 	 */
4614 	if (sev_vcpu_has_debug_swap(svm) ||
4615 	    (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) {
4616 		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4617 		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4618 		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4619 		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4620 	}
4621 }
4622 
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4623 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4624 {
4625 	struct vcpu_svm *svm = to_svm(vcpu);
4626 
4627 	/* First SIPI: Use the values as initially set by the VMM */
4628 	if (!svm->sev_es.received_first_sipi) {
4629 		svm->sev_es.received_first_sipi = true;
4630 		return;
4631 	}
4632 
4633 	/* Subsequent SIPI */
4634 	switch (svm->sev_es.ap_reset_hold_type) {
4635 	case AP_RESET_HOLD_NAE_EVENT:
4636 		/*
4637 		 * Return from an AP Reset Hold VMGEXIT, where the guest will
4638 		 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4639 		 */
4640 		svm_vmgexit_success(svm, 1);
4641 		break;
4642 	case AP_RESET_HOLD_MSR_PROTO:
4643 		/*
4644 		 * Return from an AP Reset Hold VMGEXIT, where the guest will
4645 		 * set the CS and RIP. Set GHCB data field to a non-zero value.
4646 		 */
4647 		set_ghcb_msr_bits(svm, 1,
4648 				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4649 				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4650 
4651 		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4652 				  GHCB_MSR_INFO_MASK,
4653 				  GHCB_MSR_INFO_POS);
4654 		break;
4655 	default:
4656 		break;
4657 	}
4658 }
4659 
snp_safe_alloc_page_node(int node,gfp_t gfp)4660 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4661 {
4662 	unsigned long pfn;
4663 	struct page *p;
4664 
4665 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4666 		return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4667 
4668 	/*
4669 	 * Allocate an SNP-safe page to workaround the SNP erratum where
4670 	 * the CPU will incorrectly signal an RMP violation #PF if a
4671 	 * hugepage (2MB or 1GB) collides with the RMP entry of a
4672 	 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4673 	 *
4674 	 * Allocate one extra page, choose a page which is not
4675 	 * 2MB-aligned, and free the other.
4676 	 */
4677 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4678 	if (!p)
4679 		return NULL;
4680 
4681 	split_page(p, 1);
4682 
4683 	pfn = page_to_pfn(p);
4684 	if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4685 		__free_page(p++);
4686 	else
4687 		__free_page(p + 1);
4688 
4689 	return p;
4690 }
4691 
sev_handle_rmp_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code)4692 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4693 {
4694 	struct kvm_memory_slot *slot;
4695 	struct kvm *kvm = vcpu->kvm;
4696 	int order, rmp_level, ret;
4697 	struct page *page;
4698 	bool assigned;
4699 	kvm_pfn_t pfn;
4700 	gfn_t gfn;
4701 
4702 	gfn = gpa >> PAGE_SHIFT;
4703 
4704 	/*
4705 	 * The only time RMP faults occur for shared pages is when the guest is
4706 	 * triggering an RMP fault for an implicit page-state change from
4707 	 * shared->private. Implicit page-state changes are forwarded to
4708 	 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4709 	 * for shared pages should not end up here.
4710 	 */
4711 	if (!kvm_mem_is_private(kvm, gfn)) {
4712 		pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4713 				    gpa);
4714 		return;
4715 	}
4716 
4717 	slot = gfn_to_memslot(kvm, gfn);
4718 	if (!kvm_slot_can_be_private(slot)) {
4719 		pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4720 				    gpa);
4721 		return;
4722 	}
4723 
4724 	ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order);
4725 	if (ret) {
4726 		pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4727 				    gpa);
4728 		return;
4729 	}
4730 
4731 	ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4732 	if (ret || !assigned) {
4733 		pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4734 				    gpa, pfn, ret);
4735 		goto out_no_trace;
4736 	}
4737 
4738 	/*
4739 	 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4740 	 * with PFERR_GUEST_RMP_BIT set:
4741 	 *
4742 	 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4743 	 *    bit set if the guest issues them with a smaller granularity than
4744 	 *    what is indicated by the page-size bit in the 2MB RMP entry for
4745 	 *    the PFN that backs the GPA.
4746 	 *
4747 	 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4748 	 *    smaller than what is indicated by the 2MB RMP entry for the PFN
4749 	 *    that backs the GPA.
4750 	 *
4751 	 * In both these cases, the corresponding 2M RMP entry needs to
4752 	 * be PSMASH'd to 512 4K RMP entries.  If the RMP entry is already
4753 	 * split into 4K RMP entries, then this is likely a spurious case which
4754 	 * can occur when there are concurrent accesses by the guest to a 2MB
4755 	 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4756 	 * the process of being PMASH'd into 4K entries. These cases should
4757 	 * resolve automatically on subsequent accesses, so just ignore them
4758 	 * here.
4759 	 */
4760 	if (rmp_level == PG_LEVEL_4K)
4761 		goto out;
4762 
4763 	ret = snp_rmptable_psmash(pfn);
4764 	if (ret) {
4765 		/*
4766 		 * Look it up again. If it's 4K now then the PSMASH may have
4767 		 * raced with another process and the issue has already resolved
4768 		 * itself.
4769 		 */
4770 		if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4771 		    assigned && rmp_level == PG_LEVEL_4K)
4772 			goto out;
4773 
4774 		pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4775 				    gpa, pfn, ret);
4776 	}
4777 
4778 	kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4779 out:
4780 	trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4781 out_no_trace:
4782 	kvm_release_page_unused(page);
4783 }
4784 
is_pfn_range_shared(kvm_pfn_t start,kvm_pfn_t end)4785 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4786 {
4787 	kvm_pfn_t pfn = start;
4788 
4789 	while (pfn < end) {
4790 		int ret, rmp_level;
4791 		bool assigned;
4792 
4793 		ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4794 		if (ret) {
4795 			pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4796 					    pfn, start, end, rmp_level, ret);
4797 			return false;
4798 		}
4799 
4800 		if (assigned) {
4801 			pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4802 				 __func__, pfn, start, end, rmp_level);
4803 			return false;
4804 		}
4805 
4806 		pfn++;
4807 	}
4808 
4809 	return true;
4810 }
4811 
max_level_for_order(int order)4812 static u8 max_level_for_order(int order)
4813 {
4814 	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4815 		return PG_LEVEL_2M;
4816 
4817 	return PG_LEVEL_4K;
4818 }
4819 
is_large_rmp_possible(struct kvm * kvm,kvm_pfn_t pfn,int order)4820 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4821 {
4822 	kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4823 
4824 	/*
4825 	 * If this is a large folio, and the entire 2M range containing the
4826 	 * PFN is currently shared, then the entire 2M-aligned range can be
4827 	 * set to private via a single 2M RMP entry.
4828 	 */
4829 	if (max_level_for_order(order) > PG_LEVEL_4K &&
4830 	    is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4831 		return true;
4832 
4833 	return false;
4834 }
4835 
sev_gmem_prepare(struct kvm * kvm,kvm_pfn_t pfn,gfn_t gfn,int max_order)4836 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4837 {
4838 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4839 	kvm_pfn_t pfn_aligned;
4840 	gfn_t gfn_aligned;
4841 	int level, rc;
4842 	bool assigned;
4843 
4844 	if (!sev_snp_guest(kvm))
4845 		return 0;
4846 
4847 	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4848 	if (rc) {
4849 		pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4850 				   gfn, pfn, rc);
4851 		return -ENOENT;
4852 	}
4853 
4854 	if (assigned) {
4855 		pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4856 			 __func__, gfn, pfn, max_order, level);
4857 		return 0;
4858 	}
4859 
4860 	if (is_large_rmp_possible(kvm, pfn, max_order)) {
4861 		level = PG_LEVEL_2M;
4862 		pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4863 		gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4864 	} else {
4865 		level = PG_LEVEL_4K;
4866 		pfn_aligned = pfn;
4867 		gfn_aligned = gfn;
4868 	}
4869 
4870 	rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4871 	if (rc) {
4872 		pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4873 				   gfn, pfn, level, rc);
4874 		return -EINVAL;
4875 	}
4876 
4877 	pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4878 		 __func__, gfn, pfn, pfn_aligned, max_order, level);
4879 
4880 	return 0;
4881 }
4882 
sev_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)4883 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4884 {
4885 	kvm_pfn_t pfn;
4886 
4887 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4888 		return;
4889 
4890 	pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4891 
4892 	for (pfn = start; pfn < end;) {
4893 		bool use_2m_update = false;
4894 		int rc, rmp_level;
4895 		bool assigned;
4896 
4897 		rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4898 		if (rc || !assigned)
4899 			goto next_pfn;
4900 
4901 		use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
4902 				end >= (pfn + PTRS_PER_PMD) &&
4903 				rmp_level > PG_LEVEL_4K;
4904 
4905 		/*
4906 		 * If an unaligned PFN corresponds to a 2M region assigned as a
4907 		 * large page in the RMP table, PSMASH the region into individual
4908 		 * 4K RMP entries before attempting to convert a 4K sub-page.
4909 		 */
4910 		if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
4911 			/*
4912 			 * This shouldn't fail, but if it does, report it, but
4913 			 * still try to update RMP entry to shared and pray this
4914 			 * was a spurious error that can be addressed later.
4915 			 */
4916 			rc = snp_rmptable_psmash(pfn);
4917 			WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
4918 				  pfn, rc);
4919 		}
4920 
4921 		rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
4922 		if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
4923 			      pfn, rc))
4924 			goto next_pfn;
4925 
4926 		/*
4927 		 * SEV-ES avoids host/guest cache coherency issues through
4928 		 * WBNOINVD hooks issued via MMU notifiers during run-time, and
4929 		 * KVM's VM destroy path at shutdown. Those MMU notifier events
4930 		 * don't cover gmem since there is no requirement to map pages
4931 		 * to a HVA in order to use them for a running guest. While the
4932 		 * shutdown path would still likely cover things for SNP guests,
4933 		 * userspace may also free gmem pages during run-time via
4934 		 * hole-punching operations on the guest_memfd, so flush the
4935 		 * cache entries for these pages before free'ing them back to
4936 		 * the host.
4937 		 */
4938 		clflush_cache_range(__va(pfn_to_hpa(pfn)),
4939 				    use_2m_update ? PMD_SIZE : PAGE_SIZE);
4940 next_pfn:
4941 		pfn += use_2m_update ? PTRS_PER_PMD : 1;
4942 		cond_resched();
4943 	}
4944 }
4945 
sev_private_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn)4946 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
4947 {
4948 	int level, rc;
4949 	bool assigned;
4950 
4951 	if (!sev_snp_guest(kvm))
4952 		return 0;
4953 
4954 	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4955 	if (rc || !assigned)
4956 		return PG_LEVEL_4K;
4957 
4958 	return level;
4959 }
4960 
sev_decrypt_vmsa(struct kvm_vcpu * vcpu)4961 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
4962 {
4963 	struct vcpu_svm *svm = to_svm(vcpu);
4964 	struct vmcb_save_area *vmsa;
4965 	struct kvm_sev_info *sev;
4966 	int error = 0;
4967 	int ret;
4968 
4969 	if (!sev_es_guest(vcpu->kvm))
4970 		return NULL;
4971 
4972 	/*
4973 	 * If the VMSA has not yet been encrypted, return a pointer to the
4974 	 * current un-encrypted VMSA.
4975 	 */
4976 	if (!vcpu->arch.guest_state_protected)
4977 		return (struct vmcb_save_area *)svm->sev_es.vmsa;
4978 
4979 	sev = to_kvm_sev_info(vcpu->kvm);
4980 
4981 	/* Check if the SEV policy allows debugging */
4982 	if (sev_snp_guest(vcpu->kvm)) {
4983 		if (!(sev->policy & SNP_POLICY_DEBUG))
4984 			return NULL;
4985 	} else {
4986 		if (sev->policy & SEV_POLICY_NODBG)
4987 			return NULL;
4988 	}
4989 
4990 	if (sev_snp_guest(vcpu->kvm)) {
4991 		struct sev_data_snp_dbg dbg = {0};
4992 
4993 		vmsa = snp_alloc_firmware_page(__GFP_ZERO);
4994 		if (!vmsa)
4995 			return NULL;
4996 
4997 		dbg.gctx_paddr = __psp_pa(sev->snp_context);
4998 		dbg.src_addr = svm->vmcb->control.vmsa_pa;
4999 		dbg.dst_addr = __psp_pa(vmsa);
5000 
5001 		ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error);
5002 
5003 		/*
5004 		 * Return the target page to a hypervisor page no matter what.
5005 		 * If this fails, the page can't be used, so leak it and don't
5006 		 * try to use it.
5007 		 */
5008 		if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa))))
5009 			return NULL;
5010 
5011 		if (ret) {
5012 			pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n",
5013 			       ret, error, error);
5014 			free_page((unsigned long)vmsa);
5015 
5016 			return NULL;
5017 		}
5018 	} else {
5019 		struct sev_data_dbg dbg = {0};
5020 		struct page *vmsa_page;
5021 
5022 		vmsa_page = alloc_page(GFP_KERNEL);
5023 		if (!vmsa_page)
5024 			return NULL;
5025 
5026 		vmsa = page_address(vmsa_page);
5027 
5028 		dbg.handle = sev->handle;
5029 		dbg.src_addr = svm->vmcb->control.vmsa_pa;
5030 		dbg.dst_addr = __psp_pa(vmsa);
5031 		dbg.len = PAGE_SIZE;
5032 
5033 		ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error);
5034 		if (ret) {
5035 			pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n",
5036 			       ret, error, error);
5037 			__free_page(vmsa_page);
5038 
5039 			return NULL;
5040 		}
5041 	}
5042 
5043 	return vmsa;
5044 }
5045 
sev_free_decrypted_vmsa(struct kvm_vcpu * vcpu,struct vmcb_save_area * vmsa)5046 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa)
5047 {
5048 	/* If the VMSA has not yet been encrypted, nothing was allocated */
5049 	if (!vcpu->arch.guest_state_protected || !vmsa)
5050 		return;
5051 
5052 	free_page((unsigned long)vmsa);
5053 }
5054