1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 #include <uapi/linux/sev-guest.h>
23
24 #include <asm/pkru.h>
25 #include <asm/trapnr.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/fpu/xstate.h>
28 #include <asm/debugreg.h>
29 #include <asm/msr.h>
30 #include <asm/sev.h>
31
32 #include "mmu.h"
33 #include "x86.h"
34 #include "svm.h"
35 #include "svm_ops.h"
36 #include "cpuid.h"
37 #include "trace.h"
38
39 #define GHCB_VERSION_MAX 2ULL
40 #define GHCB_VERSION_DEFAULT 2ULL
41 #define GHCB_VERSION_MIN 1ULL
42
43 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
44
45 /* enable/disable SEV support */
46 static bool sev_enabled = true;
47 module_param_named(sev, sev_enabled, bool, 0444);
48
49 /* enable/disable SEV-ES support */
50 static bool sev_es_enabled = true;
51 module_param_named(sev_es, sev_es_enabled, bool, 0444);
52
53 /* enable/disable SEV-SNP support */
54 static bool sev_snp_enabled = true;
55 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
56
57 /* enable/disable SEV-ES DebugSwap support */
58 static bool sev_es_debug_swap_enabled = true;
59 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
60 static u64 sev_supported_vmsa_features;
61
62 #define AP_RESET_HOLD_NONE 0
63 #define AP_RESET_HOLD_NAE_EVENT 1
64 #define AP_RESET_HOLD_MSR_PROTO 2
65
66 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
67 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0)
68 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8)
69 #define SNP_POLICY_MASK_SMT BIT_ULL(16)
70 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17)
71 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19)
72 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20)
73
74 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \
75 SNP_POLICY_MASK_API_MAJOR | \
76 SNP_POLICY_MASK_SMT | \
77 SNP_POLICY_MASK_RSVD_MBO | \
78 SNP_POLICY_MASK_DEBUG | \
79 SNP_POLICY_MASK_SINGLE_SOCKET)
80
81 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
82
83 static u8 sev_enc_bit;
84 static DECLARE_RWSEM(sev_deactivate_lock);
85 static DEFINE_MUTEX(sev_bitmap_lock);
86 unsigned int max_sev_asid;
87 static unsigned int min_sev_asid;
88 static unsigned long sev_me_mask;
89 static unsigned int nr_asids;
90 static unsigned long *sev_asid_bitmap;
91 static unsigned long *sev_reclaim_asid_bitmap;
92
93 static int snp_decommission_context(struct kvm *kvm);
94
95 struct enc_region {
96 struct list_head list;
97 unsigned long npages;
98 struct page **pages;
99 unsigned long uaddr;
100 unsigned long size;
101 };
102
103 /* Called with the sev_bitmap_lock held, or on shutdown */
sev_flush_asids(unsigned int min_asid,unsigned int max_asid)104 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
105 {
106 int ret, error = 0;
107 unsigned int asid;
108
109 /* Check if there are any ASIDs to reclaim before performing a flush */
110 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
111 if (asid > max_asid)
112 return -EBUSY;
113
114 /*
115 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
116 * so it must be guarded.
117 */
118 down_write(&sev_deactivate_lock);
119
120 /* SNP firmware requires use of WBINVD for ASID recycling. */
121 wbinvd_on_all_cpus();
122
123 if (sev_snp_enabled)
124 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
125 else
126 ret = sev_guest_df_flush(&error);
127
128 up_write(&sev_deactivate_lock);
129
130 if (ret)
131 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
132 sev_snp_enabled ? "-SNP" : "", ret, error);
133
134 return ret;
135 }
136
is_mirroring_enc_context(struct kvm * kvm)137 static inline bool is_mirroring_enc_context(struct kvm *kvm)
138 {
139 return !!to_kvm_sev_info(kvm)->enc_context_owner;
140 }
141
sev_vcpu_has_debug_swap(struct vcpu_svm * svm)142 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
143 {
144 struct kvm_vcpu *vcpu = &svm->vcpu;
145 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
146
147 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
148 }
149
150 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(unsigned int min_asid,unsigned int max_asid)151 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
152 {
153 if (sev_flush_asids(min_asid, max_asid))
154 return false;
155
156 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
157 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
158 nr_asids);
159 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
160
161 return true;
162 }
163
sev_misc_cg_try_charge(struct kvm_sev_info * sev)164 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
165 {
166 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
167 return misc_cg_try_charge(type, sev->misc_cg, 1);
168 }
169
sev_misc_cg_uncharge(struct kvm_sev_info * sev)170 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
171 {
172 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
173 misc_cg_uncharge(type, sev->misc_cg, 1);
174 }
175
sev_asid_new(struct kvm_sev_info * sev)176 static int sev_asid_new(struct kvm_sev_info *sev)
177 {
178 /*
179 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
180 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
181 * Note: min ASID can end up larger than the max if basic SEV support is
182 * effectively disabled by disallowing use of ASIDs for SEV guests.
183 */
184 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
185 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
186 unsigned int asid;
187 bool retry = true;
188 int ret;
189
190 if (min_asid > max_asid)
191 return -ENOTTY;
192
193 WARN_ON(sev->misc_cg);
194 sev->misc_cg = get_current_misc_cg();
195 ret = sev_misc_cg_try_charge(sev);
196 if (ret) {
197 put_misc_cg(sev->misc_cg);
198 sev->misc_cg = NULL;
199 return ret;
200 }
201
202 mutex_lock(&sev_bitmap_lock);
203
204 again:
205 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
206 if (asid > max_asid) {
207 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
208 retry = false;
209 goto again;
210 }
211 mutex_unlock(&sev_bitmap_lock);
212 ret = -EBUSY;
213 goto e_uncharge;
214 }
215
216 __set_bit(asid, sev_asid_bitmap);
217
218 mutex_unlock(&sev_bitmap_lock);
219
220 sev->asid = asid;
221 return 0;
222 e_uncharge:
223 sev_misc_cg_uncharge(sev);
224 put_misc_cg(sev->misc_cg);
225 sev->misc_cg = NULL;
226 return ret;
227 }
228
sev_get_asid(struct kvm * kvm)229 static unsigned int sev_get_asid(struct kvm *kvm)
230 {
231 return to_kvm_sev_info(kvm)->asid;
232 }
233
sev_asid_free(struct kvm_sev_info * sev)234 static void sev_asid_free(struct kvm_sev_info *sev)
235 {
236 struct svm_cpu_data *sd;
237 int cpu;
238
239 mutex_lock(&sev_bitmap_lock);
240
241 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
242
243 for_each_possible_cpu(cpu) {
244 sd = per_cpu_ptr(&svm_data, cpu);
245 sd->sev_vmcbs[sev->asid] = NULL;
246 }
247
248 mutex_unlock(&sev_bitmap_lock);
249
250 sev_misc_cg_uncharge(sev);
251 put_misc_cg(sev->misc_cg);
252 sev->misc_cg = NULL;
253 }
254
sev_decommission(unsigned int handle)255 static void sev_decommission(unsigned int handle)
256 {
257 struct sev_data_decommission decommission;
258
259 if (!handle)
260 return;
261
262 decommission.handle = handle;
263 sev_guest_decommission(&decommission, NULL);
264 }
265
266 /*
267 * Transition a page to hypervisor-owned/shared state in the RMP table. This
268 * should not fail under normal conditions, but leak the page should that
269 * happen since it will no longer be usable by the host due to RMP protections.
270 */
kvm_rmp_make_shared(struct kvm * kvm,u64 pfn,enum pg_level level)271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
272 {
273 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
274 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
275 return -EIO;
276 }
277
278 return 0;
279 }
280
281 /*
282 * Certain page-states, such as Pre-Guest and Firmware pages (as documented
283 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
284 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
285 * unless they are reclaimed first.
286 *
287 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
288 * might not be usable by the host due to being set as immutable or still
289 * being associated with a guest ASID.
290 *
291 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
292 * converted back to shared, as the page is no longer usable due to RMP
293 * protections, and it's infeasible for the guest to continue on.
294 */
snp_page_reclaim(struct kvm * kvm,u64 pfn)295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
296 {
297 struct sev_data_snp_page_reclaim data = {0};
298 int fw_err, rc;
299
300 data.paddr = __sme_set(pfn << PAGE_SHIFT);
301 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
302 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
303 snp_leak_pages(pfn, 1);
304 return -EIO;
305 }
306
307 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
308 return -EIO;
309
310 return rc;
311 }
312
sev_unbind_asid(struct kvm * kvm,unsigned int handle)313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
314 {
315 struct sev_data_deactivate deactivate;
316
317 if (!handle)
318 return;
319
320 deactivate.handle = handle;
321
322 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
323 down_read(&sev_deactivate_lock);
324 sev_guest_deactivate(&deactivate, NULL);
325 up_read(&sev_deactivate_lock);
326
327 sev_decommission(handle);
328 }
329
330 /*
331 * This sets up bounce buffers/firmware pages to handle SNP Guest Request
332 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
333 * 2.0 specification for more details.
334 *
335 * Technically, when an SNP Guest Request is issued, the guest will provide its
336 * own request/response pages, which could in theory be passed along directly
337 * to firmware rather than using bounce pages. However, these pages would need
338 * special care:
339 *
340 * - Both pages are from shared guest memory, so they need to be protected
341 * from migration/etc. occurring while firmware reads/writes to them. At a
342 * minimum, this requires elevating the ref counts and potentially needing
343 * an explicit pinning of the memory. This places additional restrictions
344 * on what type of memory backends userspace can use for shared guest
345 * memory since there is some reliance on using refcounted pages.
346 *
347 * - The response page needs to be switched to Firmware-owned[1] state
348 * before the firmware can write to it, which can lead to potential
349 * host RMP #PFs if the guest is misbehaved and hands the host a
350 * guest page that KVM might write to for other reasons (e.g. virtio
351 * buffers/etc.).
352 *
353 * Both of these issues can be avoided completely by using separately-allocated
354 * bounce pages for both the request/response pages and passing those to
355 * firmware instead. So that's what is being set up here.
356 *
357 * Guest requests rely on message sequence numbers to ensure requests are
358 * issued to firmware in the order the guest issues them, so concurrent guest
359 * requests generally shouldn't happen. But a misbehaved guest could issue
360 * concurrent guest requests in theory, so a mutex is used to serialize
361 * access to the bounce buffers.
362 *
363 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
364 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
365 * in the APM for details on the related RMP restrictions.
366 */
snp_guest_req_init(struct kvm * kvm)367 static int snp_guest_req_init(struct kvm *kvm)
368 {
369 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
370 struct page *req_page;
371
372 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
373 if (!req_page)
374 return -ENOMEM;
375
376 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
377 if (!sev->guest_resp_buf) {
378 __free_page(req_page);
379 return -EIO;
380 }
381
382 sev->guest_req_buf = page_address(req_page);
383 mutex_init(&sev->guest_req_mutex);
384
385 return 0;
386 }
387
snp_guest_req_cleanup(struct kvm * kvm)388 static void snp_guest_req_cleanup(struct kvm *kvm)
389 {
390 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
391
392 if (sev->guest_resp_buf)
393 snp_free_firmware_page(sev->guest_resp_buf);
394
395 if (sev->guest_req_buf)
396 __free_page(virt_to_page(sev->guest_req_buf));
397
398 sev->guest_req_buf = NULL;
399 sev->guest_resp_buf = NULL;
400 }
401
__sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_init * data,unsigned long vm_type)402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
403 struct kvm_sev_init *data,
404 unsigned long vm_type)
405 {
406 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
407 struct sev_platform_init_args init_args = {0};
408 bool es_active = vm_type != KVM_X86_SEV_VM;
409 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
410 int ret;
411
412 if (kvm->created_vcpus)
413 return -EINVAL;
414
415 if (data->flags)
416 return -EINVAL;
417
418 if (data->vmsa_features & ~valid_vmsa_features)
419 return -EINVAL;
420
421 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
422 return -EINVAL;
423
424 if (unlikely(sev->active))
425 return -EINVAL;
426
427 sev->active = true;
428 sev->es_active = es_active;
429 sev->vmsa_features = data->vmsa_features;
430 sev->ghcb_version = data->ghcb_version;
431
432 /*
433 * Currently KVM supports the full range of mandatory features defined
434 * by version 2 of the GHCB protocol, so default to that for SEV-ES
435 * guests created via KVM_SEV_INIT2.
436 */
437 if (sev->es_active && !sev->ghcb_version)
438 sev->ghcb_version = GHCB_VERSION_DEFAULT;
439
440 if (vm_type == KVM_X86_SNP_VM)
441 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
442
443 ret = sev_asid_new(sev);
444 if (ret)
445 goto e_no_asid;
446
447 init_args.probe = false;
448 ret = sev_platform_init(&init_args);
449 if (ret)
450 goto e_free_asid;
451
452 if (!zalloc_cpumask_var(&sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
453 ret = -ENOMEM;
454 goto e_free_asid;
455 }
456
457 /* This needs to happen after SEV/SNP firmware initialization. */
458 if (vm_type == KVM_X86_SNP_VM) {
459 ret = snp_guest_req_init(kvm);
460 if (ret)
461 goto e_free;
462 }
463
464 INIT_LIST_HEAD(&sev->regions_list);
465 INIT_LIST_HEAD(&sev->mirror_vms);
466 sev->need_init = false;
467
468 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
469
470 return 0;
471
472 e_free:
473 free_cpumask_var(sev->have_run_cpus);
474 e_free_asid:
475 argp->error = init_args.error;
476 sev_asid_free(sev);
477 sev->asid = 0;
478 e_no_asid:
479 sev->vmsa_features = 0;
480 sev->es_active = false;
481 sev->active = false;
482 return ret;
483 }
484
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)485 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
486 {
487 struct kvm_sev_init data = {
488 .vmsa_features = 0,
489 .ghcb_version = 0,
490 };
491 unsigned long vm_type;
492
493 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
494 return -EINVAL;
495
496 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
497
498 /*
499 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
500 * continue to only ever support the minimal GHCB protocol version.
501 */
502 if (vm_type == KVM_X86_SEV_ES_VM)
503 data.ghcb_version = GHCB_VERSION_MIN;
504
505 return __sev_guest_init(kvm, argp, &data, vm_type);
506 }
507
sev_guest_init2(struct kvm * kvm,struct kvm_sev_cmd * argp)508 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
509 {
510 struct kvm_sev_init data;
511
512 if (!to_kvm_sev_info(kvm)->need_init)
513 return -EINVAL;
514
515 if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
516 kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
517 kvm->arch.vm_type != KVM_X86_SNP_VM)
518 return -EINVAL;
519
520 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
521 return -EFAULT;
522
523 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
524 }
525
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)526 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
527 {
528 unsigned int asid = sev_get_asid(kvm);
529 struct sev_data_activate activate;
530 int ret;
531
532 /* activate ASID on the given handle */
533 activate.handle = handle;
534 activate.asid = asid;
535 ret = sev_guest_activate(&activate, error);
536
537 return ret;
538 }
539
__sev_issue_cmd(int fd,int id,void * data,int * error)540 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
541 {
542 CLASS(fd, f)(fd);
543
544 if (fd_empty(f))
545 return -EBADF;
546
547 return sev_issue_cmd_external_user(fd_file(f), id, data, error);
548 }
549
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)550 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
551 {
552 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
553
554 return __sev_issue_cmd(sev->fd, id, data, error);
555 }
556
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)557 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
558 {
559 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
560 struct sev_data_launch_start start;
561 struct kvm_sev_launch_start params;
562 void *dh_blob, *session_blob;
563 int *error = &argp->error;
564 int ret;
565
566 if (!sev_guest(kvm))
567 return -ENOTTY;
568
569 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
570 return -EFAULT;
571
572 sev->policy = params.policy;
573
574 memset(&start, 0, sizeof(start));
575
576 dh_blob = NULL;
577 if (params.dh_uaddr) {
578 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
579 if (IS_ERR(dh_blob))
580 return PTR_ERR(dh_blob);
581
582 start.dh_cert_address = __sme_set(__pa(dh_blob));
583 start.dh_cert_len = params.dh_len;
584 }
585
586 session_blob = NULL;
587 if (params.session_uaddr) {
588 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
589 if (IS_ERR(session_blob)) {
590 ret = PTR_ERR(session_blob);
591 goto e_free_dh;
592 }
593
594 start.session_address = __sme_set(__pa(session_blob));
595 start.session_len = params.session_len;
596 }
597
598 start.handle = params.handle;
599 start.policy = params.policy;
600
601 /* create memory encryption context */
602 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
603 if (ret)
604 goto e_free_session;
605
606 /* Bind ASID to this guest */
607 ret = sev_bind_asid(kvm, start.handle, error);
608 if (ret) {
609 sev_decommission(start.handle);
610 goto e_free_session;
611 }
612
613 /* return handle to userspace */
614 params.handle = start.handle;
615 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) {
616 sev_unbind_asid(kvm, start.handle);
617 ret = -EFAULT;
618 goto e_free_session;
619 }
620
621 sev->handle = start.handle;
622 sev->fd = argp->sev_fd;
623
624 e_free_session:
625 kfree(session_blob);
626 e_free_dh:
627 kfree(dh_blob);
628 return ret;
629 }
630
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,unsigned int flags)631 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
632 unsigned long ulen, unsigned long *n,
633 unsigned int flags)
634 {
635 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
636 unsigned long npages, size;
637 int npinned;
638 unsigned long locked, lock_limit;
639 struct page **pages;
640 unsigned long first, last;
641 int ret;
642
643 lockdep_assert_held(&kvm->lock);
644
645 if (ulen == 0 || uaddr + ulen < uaddr)
646 return ERR_PTR(-EINVAL);
647
648 /* Calculate number of pages. */
649 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
650 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
651 npages = (last - first + 1);
652
653 locked = sev->pages_locked + npages;
654 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
655 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
656 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
657 return ERR_PTR(-ENOMEM);
658 }
659
660 if (WARN_ON_ONCE(npages > INT_MAX))
661 return ERR_PTR(-EINVAL);
662
663 /* Avoid using vmalloc for smaller buffers. */
664 size = npages * sizeof(struct page *);
665 if (size > PAGE_SIZE)
666 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
667 else
668 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
669
670 if (!pages)
671 return ERR_PTR(-ENOMEM);
672
673 /* Pin the user virtual address. */
674 npinned = pin_user_pages_fast(uaddr, npages, flags, pages);
675 if (npinned != npages) {
676 pr_err("SEV: Failure locking %lu pages.\n", npages);
677 ret = -ENOMEM;
678 goto err;
679 }
680
681 *n = npages;
682 sev->pages_locked = locked;
683
684 return pages;
685
686 err:
687 if (npinned > 0)
688 unpin_user_pages(pages, npinned);
689
690 kvfree(pages);
691 return ERR_PTR(ret);
692 }
693
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)694 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
695 unsigned long npages)
696 {
697 unpin_user_pages(pages, npages);
698 kvfree(pages);
699 to_kvm_sev_info(kvm)->pages_locked -= npages;
700 }
701
sev_clflush_pages(struct page * pages[],unsigned long npages)702 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
703 {
704 uint8_t *page_virtual;
705 unsigned long i;
706
707 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
708 pages == NULL)
709 return;
710
711 for (i = 0; i < npages; i++) {
712 page_virtual = kmap_local_page(pages[i]);
713 clflush_cache_range(page_virtual, PAGE_SIZE);
714 kunmap_local(page_virtual);
715 cond_resched();
716 }
717 }
718
sev_writeback_caches(struct kvm * kvm)719 static void sev_writeback_caches(struct kvm *kvm)
720 {
721 /*
722 * Ensure that all dirty guest tagged cache entries are written back
723 * before releasing the pages back to the system for use. CLFLUSH will
724 * not do this without SME_COHERENT, and flushing many cache lines
725 * individually is slower than blasting WBINVD for large VMs, so issue
726 * WBNOINVD (or WBINVD if the "no invalidate" variant is unsupported)
727 * on CPUs that have done VMRUN, i.e. may have dirtied data using the
728 * VM's ASID.
729 *
730 * For simplicity, never remove CPUs from the bitmap. Ideally, KVM
731 * would clear the mask when flushing caches, but doing so requires
732 * serializing multiple calls and having responding CPUs (to the IPI)
733 * mark themselves as still running if they are running (or about to
734 * run) a vCPU for the VM.
735 *
736 * Note, the caller is responsible for ensuring correctness if the mask
737 * can be modified, e.g. if a CPU could be doing VMRUN.
738 */
739 wbnoinvd_on_cpus_mask(to_kvm_sev_info(kvm)->have_run_cpus);
740 }
741
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)742 static unsigned long get_num_contig_pages(unsigned long idx,
743 struct page **inpages, unsigned long npages)
744 {
745 unsigned long paddr, next_paddr;
746 unsigned long i = idx + 1, pages = 1;
747
748 /* find the number of contiguous pages starting from idx */
749 paddr = __sme_page_pa(inpages[idx]);
750 while (i < npages) {
751 next_paddr = __sme_page_pa(inpages[i++]);
752 if ((paddr + PAGE_SIZE) == next_paddr) {
753 pages++;
754 paddr = next_paddr;
755 continue;
756 }
757 break;
758 }
759
760 return pages;
761 }
762
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)763 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
764 {
765 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
766 struct kvm_sev_launch_update_data params;
767 struct sev_data_launch_update_data data;
768 struct page **inpages;
769 int ret;
770
771 if (!sev_guest(kvm))
772 return -ENOTTY;
773
774 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
775 return -EFAULT;
776
777 vaddr = params.uaddr;
778 size = params.len;
779 vaddr_end = vaddr + size;
780
781 /* Lock the user memory. */
782 inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE);
783 if (IS_ERR(inpages))
784 return PTR_ERR(inpages);
785
786 /*
787 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
788 * place; the cache may contain the data that was written unencrypted.
789 */
790 sev_clflush_pages(inpages, npages);
791
792 data.reserved = 0;
793 data.handle = to_kvm_sev_info(kvm)->handle;
794
795 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
796 int offset, len;
797
798 /*
799 * If the user buffer is not page-aligned, calculate the offset
800 * within the page.
801 */
802 offset = vaddr & (PAGE_SIZE - 1);
803
804 /* Calculate the number of pages that can be encrypted in one go. */
805 pages = get_num_contig_pages(i, inpages, npages);
806
807 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
808
809 data.len = len;
810 data.address = __sme_page_pa(inpages[i]) + offset;
811 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
812 if (ret)
813 goto e_unpin;
814
815 size -= len;
816 next_vaddr = vaddr + len;
817 }
818
819 e_unpin:
820 /* content of memory is updated, mark pages dirty */
821 for (i = 0; i < npages; i++) {
822 set_page_dirty_lock(inpages[i]);
823 mark_page_accessed(inpages[i]);
824 }
825 /* unlock the user pages */
826 sev_unpin_memory(kvm, inpages, npages);
827 return ret;
828 }
829
sev_es_sync_vmsa(struct vcpu_svm * svm)830 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
831 {
832 struct kvm_vcpu *vcpu = &svm->vcpu;
833 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
834 struct sev_es_save_area *save = svm->sev_es.vmsa;
835 struct xregs_state *xsave;
836 const u8 *s;
837 u8 *d;
838 int i;
839
840 /* Check some debug related fields before encrypting the VMSA */
841 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
842 return -EINVAL;
843
844 /*
845 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
846 * the traditional VMSA that is part of the VMCB. Copy the
847 * traditional VMSA as it has been built so far (in prep
848 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
849 */
850 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
851
852 /* Sync registgers */
853 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
854 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
855 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
856 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
857 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
858 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
859 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
860 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
861 #ifdef CONFIG_X86_64
862 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
863 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
864 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
865 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
866 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
867 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
868 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
869 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
870 #endif
871 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
872
873 /* Sync some non-GPR registers before encrypting */
874 save->xcr0 = svm->vcpu.arch.xcr0;
875 save->pkru = svm->vcpu.arch.pkru;
876 save->xss = svm->vcpu.arch.ia32_xss;
877 save->dr6 = svm->vcpu.arch.dr6;
878
879 save->sev_features = sev->vmsa_features;
880
881 /*
882 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
883 * breaking older measurements.
884 */
885 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
886 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
887 save->x87_dp = xsave->i387.rdp;
888 save->mxcsr = xsave->i387.mxcsr;
889 save->x87_ftw = xsave->i387.twd;
890 save->x87_fsw = xsave->i387.swd;
891 save->x87_fcw = xsave->i387.cwd;
892 save->x87_fop = xsave->i387.fop;
893 save->x87_ds = 0;
894 save->x87_cs = 0;
895 save->x87_rip = xsave->i387.rip;
896
897 for (i = 0; i < 8; i++) {
898 /*
899 * The format of the x87 save area is undocumented and
900 * definitely not what you would expect. It consists of
901 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
902 * area with bytes 8-9 of each register.
903 */
904 d = save->fpreg_x87 + i * 8;
905 s = ((u8 *)xsave->i387.st_space) + i * 16;
906 memcpy(d, s, 8);
907 save->fpreg_x87[64 + i * 2] = s[8];
908 save->fpreg_x87[64 + i * 2 + 1] = s[9];
909 }
910 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
911
912 s = get_xsave_addr(xsave, XFEATURE_YMM);
913 if (s)
914 memcpy(save->fpreg_ymm, s, 256);
915 else
916 memset(save->fpreg_ymm, 0, 256);
917 }
918
919 pr_debug("Virtual Machine Save Area (VMSA):\n");
920 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
921
922 return 0;
923 }
924
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)925 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
926 int *error)
927 {
928 struct sev_data_launch_update_vmsa vmsa;
929 struct vcpu_svm *svm = to_svm(vcpu);
930 int ret;
931
932 if (vcpu->guest_debug) {
933 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
934 return -EINVAL;
935 }
936
937 /* Perform some pre-encryption checks against the VMSA */
938 ret = sev_es_sync_vmsa(svm);
939 if (ret)
940 return ret;
941
942 /*
943 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
944 * the VMSA memory content (i.e it will write the same memory region
945 * with the guest's key), so invalidate it first.
946 */
947 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
948
949 vmsa.reserved = 0;
950 vmsa.handle = to_kvm_sev_info(kvm)->handle;
951 vmsa.address = __sme_pa(svm->sev_es.vmsa);
952 vmsa.len = PAGE_SIZE;
953 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
954 if (ret)
955 return ret;
956
957 /*
958 * SEV-ES guests maintain an encrypted version of their FPU
959 * state which is restored and saved on VMRUN and VMEXIT.
960 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
961 * do xsave/xrstor on it.
962 */
963 fpstate_set_confidential(&vcpu->arch.guest_fpu);
964 vcpu->arch.guest_state_protected = true;
965
966 /*
967 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
968 * only after setting guest_state_protected because KVM_SET_MSRS allows
969 * dynamic toggling of LBRV (for performance reason) on write access to
970 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
971 */
972 svm_enable_lbrv(vcpu);
973 return 0;
974 }
975
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)976 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
977 {
978 struct kvm_vcpu *vcpu;
979 unsigned long i;
980 int ret;
981
982 if (!sev_es_guest(kvm))
983 return -ENOTTY;
984
985 kvm_for_each_vcpu(i, vcpu, kvm) {
986 ret = mutex_lock_killable(&vcpu->mutex);
987 if (ret)
988 return ret;
989
990 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
991
992 mutex_unlock(&vcpu->mutex);
993 if (ret)
994 return ret;
995 }
996
997 return 0;
998 }
999
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)1000 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
1001 {
1002 void __user *measure = u64_to_user_ptr(argp->data);
1003 struct sev_data_launch_measure data;
1004 struct kvm_sev_launch_measure params;
1005 void __user *p = NULL;
1006 void *blob = NULL;
1007 int ret;
1008
1009 if (!sev_guest(kvm))
1010 return -ENOTTY;
1011
1012 if (copy_from_user(¶ms, measure, sizeof(params)))
1013 return -EFAULT;
1014
1015 memset(&data, 0, sizeof(data));
1016
1017 /* User wants to query the blob length */
1018 if (!params.len)
1019 goto cmd;
1020
1021 p = u64_to_user_ptr(params.uaddr);
1022 if (p) {
1023 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1024 return -EINVAL;
1025
1026 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1027 if (!blob)
1028 return -ENOMEM;
1029
1030 data.address = __psp_pa(blob);
1031 data.len = params.len;
1032 }
1033
1034 cmd:
1035 data.handle = to_kvm_sev_info(kvm)->handle;
1036 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1037
1038 /*
1039 * If we query the session length, FW responded with expected data.
1040 */
1041 if (!params.len)
1042 goto done;
1043
1044 if (ret)
1045 goto e_free_blob;
1046
1047 if (blob) {
1048 if (copy_to_user(p, blob, params.len))
1049 ret = -EFAULT;
1050 }
1051
1052 done:
1053 params.len = data.len;
1054 if (copy_to_user(measure, ¶ms, sizeof(params)))
1055 ret = -EFAULT;
1056 e_free_blob:
1057 kfree(blob);
1058 return ret;
1059 }
1060
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1061 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1062 {
1063 struct sev_data_launch_finish data;
1064
1065 if (!sev_guest(kvm))
1066 return -ENOTTY;
1067
1068 data.handle = to_kvm_sev_info(kvm)->handle;
1069 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1070 }
1071
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)1072 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1073 {
1074 struct kvm_sev_guest_status params;
1075 struct sev_data_guest_status data;
1076 int ret;
1077
1078 if (!sev_guest(kvm))
1079 return -ENOTTY;
1080
1081 memset(&data, 0, sizeof(data));
1082
1083 data.handle = to_kvm_sev_info(kvm)->handle;
1084 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1085 if (ret)
1086 return ret;
1087
1088 params.policy = data.policy;
1089 params.state = data.state;
1090 params.handle = data.handle;
1091
1092 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params)))
1093 ret = -EFAULT;
1094
1095 return ret;
1096 }
1097
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)1098 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1099 unsigned long dst, int size,
1100 int *error, bool enc)
1101 {
1102 struct sev_data_dbg data;
1103
1104 data.reserved = 0;
1105 data.handle = to_kvm_sev_info(kvm)->handle;
1106 data.dst_addr = dst;
1107 data.src_addr = src;
1108 data.len = size;
1109
1110 return sev_issue_cmd(kvm,
1111 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1112 &data, error);
1113 }
1114
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)1115 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1116 unsigned long dst_paddr, int sz, int *err)
1117 {
1118 int offset;
1119
1120 /*
1121 * Its safe to read more than we are asked, caller should ensure that
1122 * destination has enough space.
1123 */
1124 offset = src_paddr & 15;
1125 src_paddr = round_down(src_paddr, 16);
1126 sz = round_up(sz + offset, 16);
1127
1128 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1129 }
1130
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)1131 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1132 void __user *dst_uaddr,
1133 unsigned long dst_paddr,
1134 int size, int *err)
1135 {
1136 struct page *tpage = NULL;
1137 int ret, offset;
1138
1139 /* if inputs are not 16-byte then use intermediate buffer */
1140 if (!IS_ALIGNED(dst_paddr, 16) ||
1141 !IS_ALIGNED(paddr, 16) ||
1142 !IS_ALIGNED(size, 16)) {
1143 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1144 if (!tpage)
1145 return -ENOMEM;
1146
1147 dst_paddr = __sme_page_pa(tpage);
1148 }
1149
1150 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1151 if (ret)
1152 goto e_free;
1153
1154 if (tpage) {
1155 offset = paddr & 15;
1156 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1157 ret = -EFAULT;
1158 }
1159
1160 e_free:
1161 if (tpage)
1162 __free_page(tpage);
1163
1164 return ret;
1165 }
1166
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)1167 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1168 void __user *vaddr,
1169 unsigned long dst_paddr,
1170 void __user *dst_vaddr,
1171 int size, int *error)
1172 {
1173 struct page *src_tpage = NULL;
1174 struct page *dst_tpage = NULL;
1175 int ret, len = size;
1176
1177 /* If source buffer is not aligned then use an intermediate buffer */
1178 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1179 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1180 if (!src_tpage)
1181 return -ENOMEM;
1182
1183 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1184 __free_page(src_tpage);
1185 return -EFAULT;
1186 }
1187
1188 paddr = __sme_page_pa(src_tpage);
1189 }
1190
1191 /*
1192 * If destination buffer or length is not aligned then do read-modify-write:
1193 * - decrypt destination in an intermediate buffer
1194 * - copy the source buffer in an intermediate buffer
1195 * - use the intermediate buffer as source buffer
1196 */
1197 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1198 int dst_offset;
1199
1200 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1201 if (!dst_tpage) {
1202 ret = -ENOMEM;
1203 goto e_free;
1204 }
1205
1206 ret = __sev_dbg_decrypt(kvm, dst_paddr,
1207 __sme_page_pa(dst_tpage), size, error);
1208 if (ret)
1209 goto e_free;
1210
1211 /*
1212 * If source is kernel buffer then use memcpy() otherwise
1213 * copy_from_user().
1214 */
1215 dst_offset = dst_paddr & 15;
1216
1217 if (src_tpage)
1218 memcpy(page_address(dst_tpage) + dst_offset,
1219 page_address(src_tpage), size);
1220 else {
1221 if (copy_from_user(page_address(dst_tpage) + dst_offset,
1222 vaddr, size)) {
1223 ret = -EFAULT;
1224 goto e_free;
1225 }
1226 }
1227
1228 paddr = __sme_page_pa(dst_tpage);
1229 dst_paddr = round_down(dst_paddr, 16);
1230 len = round_up(size, 16);
1231 }
1232
1233 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1234
1235 e_free:
1236 if (src_tpage)
1237 __free_page(src_tpage);
1238 if (dst_tpage)
1239 __free_page(dst_tpage);
1240 return ret;
1241 }
1242
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)1243 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1244 {
1245 unsigned long vaddr, vaddr_end, next_vaddr;
1246 unsigned long dst_vaddr;
1247 struct page **src_p, **dst_p;
1248 struct kvm_sev_dbg debug;
1249 unsigned long n;
1250 unsigned int size;
1251 int ret;
1252
1253 if (!sev_guest(kvm))
1254 return -ENOTTY;
1255
1256 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1257 return -EFAULT;
1258
1259 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1260 return -EINVAL;
1261 if (!debug.dst_uaddr)
1262 return -EINVAL;
1263
1264 vaddr = debug.src_uaddr;
1265 size = debug.len;
1266 vaddr_end = vaddr + size;
1267 dst_vaddr = debug.dst_uaddr;
1268
1269 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1270 int len, s_off, d_off;
1271
1272 /* lock userspace source and destination page */
1273 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1274 if (IS_ERR(src_p))
1275 return PTR_ERR(src_p);
1276
1277 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE);
1278 if (IS_ERR(dst_p)) {
1279 sev_unpin_memory(kvm, src_p, n);
1280 return PTR_ERR(dst_p);
1281 }
1282
1283 /*
1284 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1285 * the pages; flush the destination too so that future accesses do not
1286 * see stale data.
1287 */
1288 sev_clflush_pages(src_p, 1);
1289 sev_clflush_pages(dst_p, 1);
1290
1291 /*
1292 * Since user buffer may not be page aligned, calculate the
1293 * offset within the page.
1294 */
1295 s_off = vaddr & ~PAGE_MASK;
1296 d_off = dst_vaddr & ~PAGE_MASK;
1297 len = min_t(size_t, (PAGE_SIZE - s_off), size);
1298
1299 if (dec)
1300 ret = __sev_dbg_decrypt_user(kvm,
1301 __sme_page_pa(src_p[0]) + s_off,
1302 (void __user *)dst_vaddr,
1303 __sme_page_pa(dst_p[0]) + d_off,
1304 len, &argp->error);
1305 else
1306 ret = __sev_dbg_encrypt_user(kvm,
1307 __sme_page_pa(src_p[0]) + s_off,
1308 (void __user *)vaddr,
1309 __sme_page_pa(dst_p[0]) + d_off,
1310 (void __user *)dst_vaddr,
1311 len, &argp->error);
1312
1313 sev_unpin_memory(kvm, src_p, n);
1314 sev_unpin_memory(kvm, dst_p, n);
1315
1316 if (ret)
1317 goto err;
1318
1319 next_vaddr = vaddr + len;
1320 dst_vaddr = dst_vaddr + len;
1321 size -= len;
1322 }
1323 err:
1324 return ret;
1325 }
1326
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1327 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1328 {
1329 struct sev_data_launch_secret data;
1330 struct kvm_sev_launch_secret params;
1331 struct page **pages;
1332 void *blob, *hdr;
1333 unsigned long n, i;
1334 int ret, offset;
1335
1336 if (!sev_guest(kvm))
1337 return -ENOTTY;
1338
1339 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
1340 return -EFAULT;
1341
1342 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE);
1343 if (IS_ERR(pages))
1344 return PTR_ERR(pages);
1345
1346 /*
1347 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1348 * place; the cache may contain the data that was written unencrypted.
1349 */
1350 sev_clflush_pages(pages, n);
1351
1352 /*
1353 * The secret must be copied into contiguous memory region, lets verify
1354 * that userspace memory pages are contiguous before we issue command.
1355 */
1356 if (get_num_contig_pages(0, pages, n) != n) {
1357 ret = -EINVAL;
1358 goto e_unpin_memory;
1359 }
1360
1361 memset(&data, 0, sizeof(data));
1362
1363 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1364 data.guest_address = __sme_page_pa(pages[0]) + offset;
1365 data.guest_len = params.guest_len;
1366
1367 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1368 if (IS_ERR(blob)) {
1369 ret = PTR_ERR(blob);
1370 goto e_unpin_memory;
1371 }
1372
1373 data.trans_address = __psp_pa(blob);
1374 data.trans_len = params.trans_len;
1375
1376 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1377 if (IS_ERR(hdr)) {
1378 ret = PTR_ERR(hdr);
1379 goto e_free_blob;
1380 }
1381 data.hdr_address = __psp_pa(hdr);
1382 data.hdr_len = params.hdr_len;
1383
1384 data.handle = to_kvm_sev_info(kvm)->handle;
1385 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1386
1387 kfree(hdr);
1388
1389 e_free_blob:
1390 kfree(blob);
1391 e_unpin_memory:
1392 /* content of memory is updated, mark pages dirty */
1393 for (i = 0; i < n; i++) {
1394 set_page_dirty_lock(pages[i]);
1395 mark_page_accessed(pages[i]);
1396 }
1397 sev_unpin_memory(kvm, pages, n);
1398 return ret;
1399 }
1400
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1401 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1402 {
1403 void __user *report = u64_to_user_ptr(argp->data);
1404 struct sev_data_attestation_report data;
1405 struct kvm_sev_attestation_report params;
1406 void __user *p;
1407 void *blob = NULL;
1408 int ret;
1409
1410 if (!sev_guest(kvm))
1411 return -ENOTTY;
1412
1413 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
1414 return -EFAULT;
1415
1416 memset(&data, 0, sizeof(data));
1417
1418 /* User wants to query the blob length */
1419 if (!params.len)
1420 goto cmd;
1421
1422 p = u64_to_user_ptr(params.uaddr);
1423 if (p) {
1424 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1425 return -EINVAL;
1426
1427 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1428 if (!blob)
1429 return -ENOMEM;
1430
1431 data.address = __psp_pa(blob);
1432 data.len = params.len;
1433 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1434 }
1435 cmd:
1436 data.handle = to_kvm_sev_info(kvm)->handle;
1437 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1438 /*
1439 * If we query the session length, FW responded with expected data.
1440 */
1441 if (!params.len)
1442 goto done;
1443
1444 if (ret)
1445 goto e_free_blob;
1446
1447 if (blob) {
1448 if (copy_to_user(p, blob, params.len))
1449 ret = -EFAULT;
1450 }
1451
1452 done:
1453 params.len = data.len;
1454 if (copy_to_user(report, ¶ms, sizeof(params)))
1455 ret = -EFAULT;
1456 e_free_blob:
1457 kfree(blob);
1458 return ret;
1459 }
1460
1461 /* Userspace wants to query session length. */
1462 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1463 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1464 struct kvm_sev_send_start *params)
1465 {
1466 struct sev_data_send_start data;
1467 int ret;
1468
1469 memset(&data, 0, sizeof(data));
1470 data.handle = to_kvm_sev_info(kvm)->handle;
1471 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1472
1473 params->session_len = data.session_len;
1474 if (copy_to_user(u64_to_user_ptr(argp->data), params,
1475 sizeof(struct kvm_sev_send_start)))
1476 ret = -EFAULT;
1477
1478 return ret;
1479 }
1480
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1481 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1482 {
1483 struct sev_data_send_start data;
1484 struct kvm_sev_send_start params;
1485 void *amd_certs, *session_data;
1486 void *pdh_cert, *plat_certs;
1487 int ret;
1488
1489 if (!sev_guest(kvm))
1490 return -ENOTTY;
1491
1492 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1493 sizeof(struct kvm_sev_send_start)))
1494 return -EFAULT;
1495
1496 /* if session_len is zero, userspace wants to query the session length */
1497 if (!params.session_len)
1498 return __sev_send_start_query_session_length(kvm, argp,
1499 ¶ms);
1500
1501 /* some sanity checks */
1502 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1503 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1504 return -EINVAL;
1505
1506 /* allocate the memory to hold the session data blob */
1507 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1508 if (!session_data)
1509 return -ENOMEM;
1510
1511 /* copy the certificate blobs from userspace */
1512 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1513 params.pdh_cert_len);
1514 if (IS_ERR(pdh_cert)) {
1515 ret = PTR_ERR(pdh_cert);
1516 goto e_free_session;
1517 }
1518
1519 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1520 params.plat_certs_len);
1521 if (IS_ERR(plat_certs)) {
1522 ret = PTR_ERR(plat_certs);
1523 goto e_free_pdh;
1524 }
1525
1526 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1527 params.amd_certs_len);
1528 if (IS_ERR(amd_certs)) {
1529 ret = PTR_ERR(amd_certs);
1530 goto e_free_plat_cert;
1531 }
1532
1533 /* populate the FW SEND_START field with system physical address */
1534 memset(&data, 0, sizeof(data));
1535 data.pdh_cert_address = __psp_pa(pdh_cert);
1536 data.pdh_cert_len = params.pdh_cert_len;
1537 data.plat_certs_address = __psp_pa(plat_certs);
1538 data.plat_certs_len = params.plat_certs_len;
1539 data.amd_certs_address = __psp_pa(amd_certs);
1540 data.amd_certs_len = params.amd_certs_len;
1541 data.session_address = __psp_pa(session_data);
1542 data.session_len = params.session_len;
1543 data.handle = to_kvm_sev_info(kvm)->handle;
1544
1545 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1546
1547 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1548 session_data, params.session_len)) {
1549 ret = -EFAULT;
1550 goto e_free_amd_cert;
1551 }
1552
1553 params.policy = data.policy;
1554 params.session_len = data.session_len;
1555 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms,
1556 sizeof(struct kvm_sev_send_start)))
1557 ret = -EFAULT;
1558
1559 e_free_amd_cert:
1560 kfree(amd_certs);
1561 e_free_plat_cert:
1562 kfree(plat_certs);
1563 e_free_pdh:
1564 kfree(pdh_cert);
1565 e_free_session:
1566 kfree(session_data);
1567 return ret;
1568 }
1569
1570 /* Userspace wants to query either header or trans length. */
1571 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1572 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1573 struct kvm_sev_send_update_data *params)
1574 {
1575 struct sev_data_send_update_data data;
1576 int ret;
1577
1578 memset(&data, 0, sizeof(data));
1579 data.handle = to_kvm_sev_info(kvm)->handle;
1580 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1581
1582 params->hdr_len = data.hdr_len;
1583 params->trans_len = data.trans_len;
1584
1585 if (copy_to_user(u64_to_user_ptr(argp->data), params,
1586 sizeof(struct kvm_sev_send_update_data)))
1587 ret = -EFAULT;
1588
1589 return ret;
1590 }
1591
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1592 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1593 {
1594 struct sev_data_send_update_data data;
1595 struct kvm_sev_send_update_data params;
1596 void *hdr, *trans_data;
1597 struct page **guest_page;
1598 unsigned long n;
1599 int ret, offset;
1600
1601 if (!sev_guest(kvm))
1602 return -ENOTTY;
1603
1604 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1605 sizeof(struct kvm_sev_send_update_data)))
1606 return -EFAULT;
1607
1608 /* userspace wants to query either header or trans length */
1609 if (!params.trans_len || !params.hdr_len)
1610 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms);
1611
1612 if (!params.trans_uaddr || !params.guest_uaddr ||
1613 !params.guest_len || !params.hdr_uaddr)
1614 return -EINVAL;
1615
1616 /* Check if we are crossing the page boundary */
1617 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1618 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1619 return -EINVAL;
1620
1621 /* Pin guest memory */
1622 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1623 PAGE_SIZE, &n, 0);
1624 if (IS_ERR(guest_page))
1625 return PTR_ERR(guest_page);
1626
1627 /* allocate memory for header and transport buffer */
1628 ret = -ENOMEM;
1629 hdr = kzalloc(params.hdr_len, GFP_KERNEL);
1630 if (!hdr)
1631 goto e_unpin;
1632
1633 trans_data = kzalloc(params.trans_len, GFP_KERNEL);
1634 if (!trans_data)
1635 goto e_free_hdr;
1636
1637 memset(&data, 0, sizeof(data));
1638 data.hdr_address = __psp_pa(hdr);
1639 data.hdr_len = params.hdr_len;
1640 data.trans_address = __psp_pa(trans_data);
1641 data.trans_len = params.trans_len;
1642
1643 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1644 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1645 data.guest_address |= sev_me_mask;
1646 data.guest_len = params.guest_len;
1647 data.handle = to_kvm_sev_info(kvm)->handle;
1648
1649 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1650
1651 if (ret)
1652 goto e_free_trans_data;
1653
1654 /* copy transport buffer to user space */
1655 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1656 trans_data, params.trans_len)) {
1657 ret = -EFAULT;
1658 goto e_free_trans_data;
1659 }
1660
1661 /* Copy packet header to userspace. */
1662 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1663 params.hdr_len))
1664 ret = -EFAULT;
1665
1666 e_free_trans_data:
1667 kfree(trans_data);
1668 e_free_hdr:
1669 kfree(hdr);
1670 e_unpin:
1671 sev_unpin_memory(kvm, guest_page, n);
1672
1673 return ret;
1674 }
1675
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1676 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1677 {
1678 struct sev_data_send_finish data;
1679
1680 if (!sev_guest(kvm))
1681 return -ENOTTY;
1682
1683 data.handle = to_kvm_sev_info(kvm)->handle;
1684 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1685 }
1686
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1687 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1688 {
1689 struct sev_data_send_cancel data;
1690
1691 if (!sev_guest(kvm))
1692 return -ENOTTY;
1693
1694 data.handle = to_kvm_sev_info(kvm)->handle;
1695 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1696 }
1697
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1698 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1699 {
1700 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
1701 struct sev_data_receive_start start;
1702 struct kvm_sev_receive_start params;
1703 int *error = &argp->error;
1704 void *session_data;
1705 void *pdh_data;
1706 int ret;
1707
1708 if (!sev_guest(kvm))
1709 return -ENOTTY;
1710
1711 /* Get parameter from the userspace */
1712 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1713 sizeof(struct kvm_sev_receive_start)))
1714 return -EFAULT;
1715
1716 /* some sanity checks */
1717 if (!params.pdh_uaddr || !params.pdh_len ||
1718 !params.session_uaddr || !params.session_len)
1719 return -EINVAL;
1720
1721 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1722 if (IS_ERR(pdh_data))
1723 return PTR_ERR(pdh_data);
1724
1725 session_data = psp_copy_user_blob(params.session_uaddr,
1726 params.session_len);
1727 if (IS_ERR(session_data)) {
1728 ret = PTR_ERR(session_data);
1729 goto e_free_pdh;
1730 }
1731
1732 memset(&start, 0, sizeof(start));
1733 start.handle = params.handle;
1734 start.policy = params.policy;
1735 start.pdh_cert_address = __psp_pa(pdh_data);
1736 start.pdh_cert_len = params.pdh_len;
1737 start.session_address = __psp_pa(session_data);
1738 start.session_len = params.session_len;
1739
1740 /* create memory encryption context */
1741 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1742 error);
1743 if (ret)
1744 goto e_free_session;
1745
1746 /* Bind ASID to this guest */
1747 ret = sev_bind_asid(kvm, start.handle, error);
1748 if (ret) {
1749 sev_decommission(start.handle);
1750 goto e_free_session;
1751 }
1752
1753 params.handle = start.handle;
1754 if (copy_to_user(u64_to_user_ptr(argp->data),
1755 ¶ms, sizeof(struct kvm_sev_receive_start))) {
1756 ret = -EFAULT;
1757 sev_unbind_asid(kvm, start.handle);
1758 goto e_free_session;
1759 }
1760
1761 sev->handle = start.handle;
1762 sev->fd = argp->sev_fd;
1763
1764 e_free_session:
1765 kfree(session_data);
1766 e_free_pdh:
1767 kfree(pdh_data);
1768
1769 return ret;
1770 }
1771
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1772 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1773 {
1774 struct kvm_sev_receive_update_data params;
1775 struct sev_data_receive_update_data data;
1776 void *hdr = NULL, *trans = NULL;
1777 struct page **guest_page;
1778 unsigned long n;
1779 int ret, offset;
1780
1781 if (!sev_guest(kvm))
1782 return -EINVAL;
1783
1784 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1785 sizeof(struct kvm_sev_receive_update_data)))
1786 return -EFAULT;
1787
1788 if (!params.hdr_uaddr || !params.hdr_len ||
1789 !params.guest_uaddr || !params.guest_len ||
1790 !params.trans_uaddr || !params.trans_len)
1791 return -EINVAL;
1792
1793 /* Check if we are crossing the page boundary */
1794 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1795 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1796 return -EINVAL;
1797
1798 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1799 if (IS_ERR(hdr))
1800 return PTR_ERR(hdr);
1801
1802 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1803 if (IS_ERR(trans)) {
1804 ret = PTR_ERR(trans);
1805 goto e_free_hdr;
1806 }
1807
1808 memset(&data, 0, sizeof(data));
1809 data.hdr_address = __psp_pa(hdr);
1810 data.hdr_len = params.hdr_len;
1811 data.trans_address = __psp_pa(trans);
1812 data.trans_len = params.trans_len;
1813
1814 /* Pin guest memory */
1815 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1816 PAGE_SIZE, &n, FOLL_WRITE);
1817 if (IS_ERR(guest_page)) {
1818 ret = PTR_ERR(guest_page);
1819 goto e_free_trans;
1820 }
1821
1822 /*
1823 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1824 * encrypts the written data with the guest's key, and the cache may
1825 * contain dirty, unencrypted data.
1826 */
1827 sev_clflush_pages(guest_page, n);
1828
1829 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1830 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1831 data.guest_address |= sev_me_mask;
1832 data.guest_len = params.guest_len;
1833 data.handle = to_kvm_sev_info(kvm)->handle;
1834
1835 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1836 &argp->error);
1837
1838 sev_unpin_memory(kvm, guest_page, n);
1839
1840 e_free_trans:
1841 kfree(trans);
1842 e_free_hdr:
1843 kfree(hdr);
1844
1845 return ret;
1846 }
1847
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1848 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1849 {
1850 struct sev_data_receive_finish data;
1851
1852 if (!sev_guest(kvm))
1853 return -ENOTTY;
1854
1855 data.handle = to_kvm_sev_info(kvm)->handle;
1856 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1857 }
1858
is_cmd_allowed_from_mirror(u32 cmd_id)1859 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1860 {
1861 /*
1862 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1863 * active mirror VMs. Also allow the debugging and status commands.
1864 */
1865 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1866 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1867 cmd_id == KVM_SEV_DBG_ENCRYPT)
1868 return true;
1869
1870 return false;
1871 }
1872
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1873 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1874 {
1875 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1876 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1877 int r = -EBUSY;
1878
1879 if (dst_kvm == src_kvm)
1880 return -EINVAL;
1881
1882 /*
1883 * Bail if these VMs are already involved in a migration to avoid
1884 * deadlock between two VMs trying to migrate to/from each other.
1885 */
1886 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1887 return -EBUSY;
1888
1889 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1890 goto release_dst;
1891
1892 r = -EINTR;
1893 if (mutex_lock_killable(&dst_kvm->lock))
1894 goto release_src;
1895 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1896 goto unlock_dst;
1897 return 0;
1898
1899 unlock_dst:
1900 mutex_unlock(&dst_kvm->lock);
1901 release_src:
1902 atomic_set_release(&src_sev->migration_in_progress, 0);
1903 release_dst:
1904 atomic_set_release(&dst_sev->migration_in_progress, 0);
1905 return r;
1906 }
1907
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1908 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1909 {
1910 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1911 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1912
1913 mutex_unlock(&dst_kvm->lock);
1914 mutex_unlock(&src_kvm->lock);
1915 atomic_set_release(&dst_sev->migration_in_progress, 0);
1916 atomic_set_release(&src_sev->migration_in_progress, 0);
1917 }
1918
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1919 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1920 {
1921 struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm);
1922 struct kvm_sev_info *src = to_kvm_sev_info(src_kvm);
1923 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1924 struct vcpu_svm *dst_svm, *src_svm;
1925 struct kvm_sev_info *mirror;
1926 unsigned long i;
1927
1928 dst->active = true;
1929 dst->asid = src->asid;
1930 dst->handle = src->handle;
1931 dst->pages_locked = src->pages_locked;
1932 dst->enc_context_owner = src->enc_context_owner;
1933 dst->es_active = src->es_active;
1934 dst->vmsa_features = src->vmsa_features;
1935
1936 src->asid = 0;
1937 src->active = false;
1938 src->handle = 0;
1939 src->pages_locked = 0;
1940 src->enc_context_owner = NULL;
1941 src->es_active = false;
1942
1943 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1944
1945 /*
1946 * If this VM has mirrors, "transfer" each mirror's refcount of the
1947 * source to the destination (this KVM). The caller holds a reference
1948 * to the source, so there's no danger of use-after-free.
1949 */
1950 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1951 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1952 kvm_get_kvm(dst_kvm);
1953 kvm_put_kvm(src_kvm);
1954 mirror->enc_context_owner = dst_kvm;
1955 }
1956
1957 /*
1958 * If this VM is a mirror, remove the old mirror from the owners list
1959 * and add the new mirror to the list.
1960 */
1961 if (is_mirroring_enc_context(dst_kvm)) {
1962 struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner);
1963
1964 list_del(&src->mirror_entry);
1965 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1966 }
1967
1968 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1969 dst_svm = to_svm(dst_vcpu);
1970
1971 sev_init_vmcb(dst_svm);
1972
1973 if (!dst->es_active)
1974 continue;
1975
1976 /*
1977 * Note, the source is not required to have the same number of
1978 * vCPUs as the destination when migrating a vanilla SEV VM.
1979 */
1980 src_vcpu = kvm_get_vcpu(src_kvm, i);
1981 src_svm = to_svm(src_vcpu);
1982
1983 /*
1984 * Transfer VMSA and GHCB state to the destination. Nullify and
1985 * clear source fields as appropriate, the state now belongs to
1986 * the destination.
1987 */
1988 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1989 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1990 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1991 dst_vcpu->arch.guest_state_protected = true;
1992
1993 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1994 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1995 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1996 src_vcpu->arch.guest_state_protected = false;
1997 }
1998 }
1999
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)2000 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2001 {
2002 struct kvm_vcpu *src_vcpu;
2003 unsigned long i;
2004
2005 if (src->created_vcpus != atomic_read(&src->online_vcpus) ||
2006 dst->created_vcpus != atomic_read(&dst->online_vcpus))
2007 return -EBUSY;
2008
2009 if (!sev_es_guest(src))
2010 return 0;
2011
2012 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2013 return -EINVAL;
2014
2015 kvm_for_each_vcpu(i, src_vcpu, src) {
2016 if (!src_vcpu->arch.guest_state_protected)
2017 return -EINVAL;
2018 }
2019
2020 return 0;
2021 }
2022
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)2023 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2024 {
2025 struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm);
2026 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2027 CLASS(fd, f)(source_fd);
2028 struct kvm *source_kvm;
2029 bool charged = false;
2030 int ret;
2031
2032 if (fd_empty(f))
2033 return -EBADF;
2034
2035 if (!file_is_kvm(fd_file(f)))
2036 return -EBADF;
2037
2038 source_kvm = fd_file(f)->private_data;
2039 ret = sev_lock_two_vms(kvm, source_kvm);
2040 if (ret)
2041 return ret;
2042
2043 if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2044 sev_guest(kvm) || !sev_guest(source_kvm)) {
2045 ret = -EINVAL;
2046 goto out_unlock;
2047 }
2048
2049 src_sev = to_kvm_sev_info(source_kvm);
2050
2051 dst_sev->misc_cg = get_current_misc_cg();
2052 cg_cleanup_sev = dst_sev;
2053 if (dst_sev->misc_cg != src_sev->misc_cg) {
2054 ret = sev_misc_cg_try_charge(dst_sev);
2055 if (ret)
2056 goto out_dst_cgroup;
2057 charged = true;
2058 }
2059
2060 ret = kvm_lock_all_vcpus(kvm);
2061 if (ret)
2062 goto out_dst_cgroup;
2063 ret = kvm_lock_all_vcpus(source_kvm);
2064 if (ret)
2065 goto out_dst_vcpu;
2066
2067 ret = sev_check_source_vcpus(kvm, source_kvm);
2068 if (ret)
2069 goto out_source_vcpu;
2070
2071 /*
2072 * Allocate a new have_run_cpus for the destination, i.e. don't copy
2073 * the set of CPUs from the source. If a CPU was used to run a vCPU in
2074 * the source VM but is never used for the destination VM, then the CPU
2075 * can only have cached memory that was accessible to the source VM.
2076 */
2077 if (!zalloc_cpumask_var(&dst_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2078 ret = -ENOMEM;
2079 goto out_source_vcpu;
2080 }
2081
2082 sev_migrate_from(kvm, source_kvm);
2083 kvm_vm_dead(source_kvm);
2084 cg_cleanup_sev = src_sev;
2085 ret = 0;
2086
2087 out_source_vcpu:
2088 kvm_unlock_all_vcpus(source_kvm);
2089 out_dst_vcpu:
2090 kvm_unlock_all_vcpus(kvm);
2091 out_dst_cgroup:
2092 /* Operates on the source on success, on the destination on failure. */
2093 if (charged)
2094 sev_misc_cg_uncharge(cg_cleanup_sev);
2095 put_misc_cg(cg_cleanup_sev->misc_cg);
2096 cg_cleanup_sev->misc_cg = NULL;
2097 out_unlock:
2098 sev_unlock_two_vms(kvm, source_kvm);
2099 return ret;
2100 }
2101
sev_dev_get_attr(u32 group,u64 attr,u64 * val)2102 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2103 {
2104 if (group != KVM_X86_GRP_SEV)
2105 return -ENXIO;
2106
2107 switch (attr) {
2108 case KVM_X86_SEV_VMSA_FEATURES:
2109 *val = sev_supported_vmsa_features;
2110 return 0;
2111
2112 default:
2113 return -ENXIO;
2114 }
2115 }
2116
2117 /*
2118 * The guest context contains all the information, keys and metadata
2119 * associated with the guest that the firmware tracks to implement SEV
2120 * and SNP features. The firmware stores the guest context in hypervisor
2121 * provide page via the SNP_GCTX_CREATE command.
2122 */
snp_context_create(struct kvm * kvm,struct kvm_sev_cmd * argp)2123 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2124 {
2125 struct sev_data_snp_addr data = {};
2126 void *context;
2127 int rc;
2128
2129 /* Allocate memory for context page */
2130 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2131 if (!context)
2132 return NULL;
2133
2134 data.address = __psp_pa(context);
2135 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2136 if (rc) {
2137 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2138 rc, argp->error);
2139 snp_free_firmware_page(context);
2140 return NULL;
2141 }
2142
2143 return context;
2144 }
2145
snp_bind_asid(struct kvm * kvm,int * error)2146 static int snp_bind_asid(struct kvm *kvm, int *error)
2147 {
2148 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2149 struct sev_data_snp_activate data = {0};
2150
2151 data.gctx_paddr = __psp_pa(sev->snp_context);
2152 data.asid = sev_get_asid(kvm);
2153 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2154 }
2155
snp_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)2156 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2157 {
2158 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2159 struct sev_data_snp_launch_start start = {0};
2160 struct kvm_sev_snp_launch_start params;
2161 int rc;
2162
2163 if (!sev_snp_guest(kvm))
2164 return -ENOTTY;
2165
2166 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2167 return -EFAULT;
2168
2169 /* Don't allow userspace to allocate memory for more than 1 SNP context. */
2170 if (sev->snp_context)
2171 return -EINVAL;
2172
2173 if (params.flags)
2174 return -EINVAL;
2175
2176 if (params.policy & ~SNP_POLICY_MASK_VALID)
2177 return -EINVAL;
2178
2179 /* Check for policy bits that must be set */
2180 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO))
2181 return -EINVAL;
2182
2183 sev->policy = params.policy;
2184
2185 sev->snp_context = snp_context_create(kvm, argp);
2186 if (!sev->snp_context)
2187 return -ENOTTY;
2188
2189 start.gctx_paddr = __psp_pa(sev->snp_context);
2190 start.policy = params.policy;
2191 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2192 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2193 if (rc) {
2194 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2195 __func__, rc);
2196 goto e_free_context;
2197 }
2198
2199 sev->fd = argp->sev_fd;
2200 rc = snp_bind_asid(kvm, &argp->error);
2201 if (rc) {
2202 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2203 __func__, rc);
2204 goto e_free_context;
2205 }
2206
2207 return 0;
2208
2209 e_free_context:
2210 snp_decommission_context(kvm);
2211
2212 return rc;
2213 }
2214
2215 struct sev_gmem_populate_args {
2216 __u8 type;
2217 int sev_fd;
2218 int fw_error;
2219 };
2220
sev_gmem_post_populate(struct kvm * kvm,gfn_t gfn_start,kvm_pfn_t pfn,void __user * src,int order,void * opaque)2221 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2222 void __user *src, int order, void *opaque)
2223 {
2224 struct sev_gmem_populate_args *sev_populate_args = opaque;
2225 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2226 int n_private = 0, ret, i;
2227 int npages = (1 << order);
2228 gfn_t gfn;
2229
2230 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2231 return -EINVAL;
2232
2233 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2234 struct sev_data_snp_launch_update fw_args = {0};
2235 bool assigned = false;
2236 int level;
2237
2238 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2239 if (ret || assigned) {
2240 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2241 __func__, gfn, ret, assigned);
2242 ret = ret ? -EINVAL : -EEXIST;
2243 goto err;
2244 }
2245
2246 if (src) {
2247 void *vaddr = kmap_local_pfn(pfn + i);
2248
2249 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2250 ret = -EFAULT;
2251 goto err;
2252 }
2253 kunmap_local(vaddr);
2254 }
2255
2256 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2257 sev_get_asid(kvm), true);
2258 if (ret)
2259 goto err;
2260
2261 n_private++;
2262
2263 fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2264 fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2265 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2266 fw_args.page_type = sev_populate_args->type;
2267
2268 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2269 &fw_args, &sev_populate_args->fw_error);
2270 if (ret)
2271 goto fw_err;
2272 }
2273
2274 return 0;
2275
2276 fw_err:
2277 /*
2278 * If the firmware command failed handle the reclaim and cleanup of that
2279 * PFN specially vs. prior pages which can be cleaned up below without
2280 * needing to reclaim in advance.
2281 *
2282 * Additionally, when invalid CPUID function entries are detected,
2283 * firmware writes the expected values into the page and leaves it
2284 * unencrypted so it can be used for debugging and error-reporting.
2285 *
2286 * Copy this page back into the source buffer so userspace can use this
2287 * information to provide information on which CPUID leaves/fields
2288 * failed CPUID validation.
2289 */
2290 if (!snp_page_reclaim(kvm, pfn + i) &&
2291 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2292 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2293 void *vaddr = kmap_local_pfn(pfn + i);
2294
2295 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2296 pr_debug("Failed to write CPUID page back to userspace\n");
2297
2298 kunmap_local(vaddr);
2299 }
2300
2301 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2302 n_private--;
2303
2304 err:
2305 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2306 __func__, ret, sev_populate_args->fw_error, n_private);
2307 for (i = 0; i < n_private; i++)
2308 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2309
2310 return ret;
2311 }
2312
snp_launch_update(struct kvm * kvm,struct kvm_sev_cmd * argp)2313 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2314 {
2315 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2316 struct sev_gmem_populate_args sev_populate_args = {0};
2317 struct kvm_sev_snp_launch_update params;
2318 struct kvm_memory_slot *memslot;
2319 long npages, count;
2320 void __user *src;
2321 int ret = 0;
2322
2323 if (!sev_snp_guest(kvm) || !sev->snp_context)
2324 return -EINVAL;
2325
2326 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2327 return -EFAULT;
2328
2329 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2330 params.gfn_start, params.len, params.type, params.flags);
2331
2332 if (!PAGE_ALIGNED(params.len) || params.flags ||
2333 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2334 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2335 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2336 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2337 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2338 return -EINVAL;
2339
2340 npages = params.len / PAGE_SIZE;
2341
2342 /*
2343 * For each GFN that's being prepared as part of the initial guest
2344 * state, the following pre-conditions are verified:
2345 *
2346 * 1) The backing memslot is a valid private memslot.
2347 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2348 * beforehand.
2349 * 3) The PFN of the guest_memfd has not already been set to private
2350 * in the RMP table.
2351 *
2352 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2353 * faults if there's a race between a fault and an attribute update via
2354 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2355 * here. However, kvm->slots_lock guards against both this as well as
2356 * concurrent memslot updates occurring while these checks are being
2357 * performed, so use that here to make it easier to reason about the
2358 * initial expected state and better guard against unexpected
2359 * situations.
2360 */
2361 mutex_lock(&kvm->slots_lock);
2362
2363 memslot = gfn_to_memslot(kvm, params.gfn_start);
2364 if (!kvm_slot_can_be_private(memslot)) {
2365 ret = -EINVAL;
2366 goto out;
2367 }
2368
2369 sev_populate_args.sev_fd = argp->sev_fd;
2370 sev_populate_args.type = params.type;
2371 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2372
2373 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2374 sev_gmem_post_populate, &sev_populate_args);
2375 if (count < 0) {
2376 argp->error = sev_populate_args.fw_error;
2377 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2378 __func__, count, argp->error);
2379 ret = -EIO;
2380 } else {
2381 params.gfn_start += count;
2382 params.len -= count * PAGE_SIZE;
2383 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2384 params.uaddr += count * PAGE_SIZE;
2385
2386 ret = 0;
2387 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params)))
2388 ret = -EFAULT;
2389 }
2390
2391 out:
2392 mutex_unlock(&kvm->slots_lock);
2393
2394 return ret;
2395 }
2396
snp_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)2397 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2398 {
2399 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2400 struct sev_data_snp_launch_update data = {};
2401 struct kvm_vcpu *vcpu;
2402 unsigned long i;
2403 int ret;
2404
2405 data.gctx_paddr = __psp_pa(sev->snp_context);
2406 data.page_type = SNP_PAGE_TYPE_VMSA;
2407
2408 kvm_for_each_vcpu(i, vcpu, kvm) {
2409 struct vcpu_svm *svm = to_svm(vcpu);
2410 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2411
2412 ret = sev_es_sync_vmsa(svm);
2413 if (ret)
2414 return ret;
2415
2416 /* Transition the VMSA page to a firmware state. */
2417 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2418 if (ret)
2419 return ret;
2420
2421 /* Issue the SNP command to encrypt the VMSA */
2422 data.address = __sme_pa(svm->sev_es.vmsa);
2423 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2424 &data, &argp->error);
2425 if (ret) {
2426 snp_page_reclaim(kvm, pfn);
2427
2428 return ret;
2429 }
2430
2431 svm->vcpu.arch.guest_state_protected = true;
2432 /*
2433 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2434 * be _always_ ON. Enable it only after setting
2435 * guest_state_protected because KVM_SET_MSRS allows dynamic
2436 * toggling of LBRV (for performance reason) on write access to
2437 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2438 */
2439 svm_enable_lbrv(vcpu);
2440 }
2441
2442 return 0;
2443 }
2444
snp_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)2445 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2446 {
2447 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2448 struct kvm_sev_snp_launch_finish params;
2449 struct sev_data_snp_launch_finish *data;
2450 void *id_block = NULL, *id_auth = NULL;
2451 int ret;
2452
2453 if (!sev_snp_guest(kvm))
2454 return -ENOTTY;
2455
2456 if (!sev->snp_context)
2457 return -EINVAL;
2458
2459 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2460 return -EFAULT;
2461
2462 if (params.flags)
2463 return -EINVAL;
2464
2465 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2466 ret = snp_launch_update_vmsa(kvm, argp);
2467 if (ret)
2468 return ret;
2469
2470 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2471 if (!data)
2472 return -ENOMEM;
2473
2474 if (params.id_block_en) {
2475 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2476 if (IS_ERR(id_block)) {
2477 ret = PTR_ERR(id_block);
2478 goto e_free;
2479 }
2480
2481 data->id_block_en = 1;
2482 data->id_block_paddr = __sme_pa(id_block);
2483
2484 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2485 if (IS_ERR(id_auth)) {
2486 ret = PTR_ERR(id_auth);
2487 goto e_free_id_block;
2488 }
2489
2490 data->id_auth_paddr = __sme_pa(id_auth);
2491
2492 if (params.auth_key_en)
2493 data->auth_key_en = 1;
2494 }
2495
2496 data->vcek_disabled = params.vcek_disabled;
2497
2498 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2499 data->gctx_paddr = __psp_pa(sev->snp_context);
2500 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2501
2502 /*
2503 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2504 * can be given to the guest simply by marking the RMP entry as private.
2505 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2506 */
2507 if (!ret)
2508 kvm->arch.pre_fault_allowed = true;
2509
2510 kfree(id_auth);
2511
2512 e_free_id_block:
2513 kfree(id_block);
2514
2515 e_free:
2516 kfree(data);
2517
2518 return ret;
2519 }
2520
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)2521 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2522 {
2523 struct kvm_sev_cmd sev_cmd;
2524 int r;
2525
2526 if (!sev_enabled)
2527 return -ENOTTY;
2528
2529 if (!argp)
2530 return 0;
2531
2532 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2533 return -EFAULT;
2534
2535 mutex_lock(&kvm->lock);
2536
2537 /* Only the enc_context_owner handles some memory enc operations. */
2538 if (is_mirroring_enc_context(kvm) &&
2539 !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2540 r = -EINVAL;
2541 goto out;
2542 }
2543
2544 /*
2545 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2546 * allow the use of SNP-specific commands.
2547 */
2548 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2549 r = -EPERM;
2550 goto out;
2551 }
2552
2553 switch (sev_cmd.id) {
2554 case KVM_SEV_ES_INIT:
2555 if (!sev_es_enabled) {
2556 r = -ENOTTY;
2557 goto out;
2558 }
2559 fallthrough;
2560 case KVM_SEV_INIT:
2561 r = sev_guest_init(kvm, &sev_cmd);
2562 break;
2563 case KVM_SEV_INIT2:
2564 r = sev_guest_init2(kvm, &sev_cmd);
2565 break;
2566 case KVM_SEV_LAUNCH_START:
2567 r = sev_launch_start(kvm, &sev_cmd);
2568 break;
2569 case KVM_SEV_LAUNCH_UPDATE_DATA:
2570 r = sev_launch_update_data(kvm, &sev_cmd);
2571 break;
2572 case KVM_SEV_LAUNCH_UPDATE_VMSA:
2573 r = sev_launch_update_vmsa(kvm, &sev_cmd);
2574 break;
2575 case KVM_SEV_LAUNCH_MEASURE:
2576 r = sev_launch_measure(kvm, &sev_cmd);
2577 break;
2578 case KVM_SEV_LAUNCH_FINISH:
2579 r = sev_launch_finish(kvm, &sev_cmd);
2580 break;
2581 case KVM_SEV_GUEST_STATUS:
2582 r = sev_guest_status(kvm, &sev_cmd);
2583 break;
2584 case KVM_SEV_DBG_DECRYPT:
2585 r = sev_dbg_crypt(kvm, &sev_cmd, true);
2586 break;
2587 case KVM_SEV_DBG_ENCRYPT:
2588 r = sev_dbg_crypt(kvm, &sev_cmd, false);
2589 break;
2590 case KVM_SEV_LAUNCH_SECRET:
2591 r = sev_launch_secret(kvm, &sev_cmd);
2592 break;
2593 case KVM_SEV_GET_ATTESTATION_REPORT:
2594 r = sev_get_attestation_report(kvm, &sev_cmd);
2595 break;
2596 case KVM_SEV_SEND_START:
2597 r = sev_send_start(kvm, &sev_cmd);
2598 break;
2599 case KVM_SEV_SEND_UPDATE_DATA:
2600 r = sev_send_update_data(kvm, &sev_cmd);
2601 break;
2602 case KVM_SEV_SEND_FINISH:
2603 r = sev_send_finish(kvm, &sev_cmd);
2604 break;
2605 case KVM_SEV_SEND_CANCEL:
2606 r = sev_send_cancel(kvm, &sev_cmd);
2607 break;
2608 case KVM_SEV_RECEIVE_START:
2609 r = sev_receive_start(kvm, &sev_cmd);
2610 break;
2611 case KVM_SEV_RECEIVE_UPDATE_DATA:
2612 r = sev_receive_update_data(kvm, &sev_cmd);
2613 break;
2614 case KVM_SEV_RECEIVE_FINISH:
2615 r = sev_receive_finish(kvm, &sev_cmd);
2616 break;
2617 case KVM_SEV_SNP_LAUNCH_START:
2618 r = snp_launch_start(kvm, &sev_cmd);
2619 break;
2620 case KVM_SEV_SNP_LAUNCH_UPDATE:
2621 r = snp_launch_update(kvm, &sev_cmd);
2622 break;
2623 case KVM_SEV_SNP_LAUNCH_FINISH:
2624 r = snp_launch_finish(kvm, &sev_cmd);
2625 break;
2626 default:
2627 r = -EINVAL;
2628 goto out;
2629 }
2630
2631 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2632 r = -EFAULT;
2633
2634 out:
2635 mutex_unlock(&kvm->lock);
2636 return r;
2637 }
2638
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)2639 int sev_mem_enc_register_region(struct kvm *kvm,
2640 struct kvm_enc_region *range)
2641 {
2642 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2643 struct enc_region *region;
2644 int ret = 0;
2645
2646 if (!sev_guest(kvm))
2647 return -ENOTTY;
2648
2649 /* If kvm is mirroring encryption context it isn't responsible for it */
2650 if (is_mirroring_enc_context(kvm))
2651 return -EINVAL;
2652
2653 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2654 return -EINVAL;
2655
2656 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2657 if (!region)
2658 return -ENOMEM;
2659
2660 mutex_lock(&kvm->lock);
2661 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages,
2662 FOLL_WRITE | FOLL_LONGTERM);
2663 if (IS_ERR(region->pages)) {
2664 ret = PTR_ERR(region->pages);
2665 mutex_unlock(&kvm->lock);
2666 goto e_free;
2667 }
2668
2669 /*
2670 * The guest may change the memory encryption attribute from C=0 -> C=1
2671 * or vice versa for this memory range. Lets make sure caches are
2672 * flushed to ensure that guest data gets written into memory with
2673 * correct C-bit. Note, this must be done before dropping kvm->lock,
2674 * as region and its array of pages can be freed by a different task
2675 * once kvm->lock is released.
2676 */
2677 sev_clflush_pages(region->pages, region->npages);
2678
2679 region->uaddr = range->addr;
2680 region->size = range->size;
2681
2682 list_add_tail(®ion->list, &sev->regions_list);
2683 mutex_unlock(&kvm->lock);
2684
2685 return ret;
2686
2687 e_free:
2688 kfree(region);
2689 return ret;
2690 }
2691
2692 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)2693 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2694 {
2695 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2696 struct list_head *head = &sev->regions_list;
2697 struct enc_region *i;
2698
2699 list_for_each_entry(i, head, list) {
2700 if (i->uaddr == range->addr &&
2701 i->size == range->size)
2702 return i;
2703 }
2704
2705 return NULL;
2706 }
2707
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)2708 static void __unregister_enc_region_locked(struct kvm *kvm,
2709 struct enc_region *region)
2710 {
2711 sev_unpin_memory(kvm, region->pages, region->npages);
2712 list_del(®ion->list);
2713 kfree(region);
2714 }
2715
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2716 int sev_mem_enc_unregister_region(struct kvm *kvm,
2717 struct kvm_enc_region *range)
2718 {
2719 struct enc_region *region;
2720 int ret;
2721
2722 /* If kvm is mirroring encryption context it isn't responsible for it */
2723 if (is_mirroring_enc_context(kvm))
2724 return -EINVAL;
2725
2726 mutex_lock(&kvm->lock);
2727
2728 if (!sev_guest(kvm)) {
2729 ret = -ENOTTY;
2730 goto failed;
2731 }
2732
2733 region = find_enc_region(kvm, range);
2734 if (!region) {
2735 ret = -EINVAL;
2736 goto failed;
2737 }
2738
2739 sev_writeback_caches(kvm);
2740
2741 __unregister_enc_region_locked(kvm, region);
2742
2743 mutex_unlock(&kvm->lock);
2744 return 0;
2745
2746 failed:
2747 mutex_unlock(&kvm->lock);
2748 return ret;
2749 }
2750
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2751 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2752 {
2753 CLASS(fd, f)(source_fd);
2754 struct kvm *source_kvm;
2755 struct kvm_sev_info *source_sev, *mirror_sev;
2756 int ret;
2757
2758 if (fd_empty(f))
2759 return -EBADF;
2760
2761 if (!file_is_kvm(fd_file(f)))
2762 return -EBADF;
2763
2764 source_kvm = fd_file(f)->private_data;
2765 ret = sev_lock_two_vms(kvm, source_kvm);
2766 if (ret)
2767 return ret;
2768
2769 /*
2770 * Mirrors of mirrors should work, but let's not get silly. Also
2771 * disallow out-of-band SEV/SEV-ES init if the target is already an
2772 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2773 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2774 */
2775 if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2776 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2777 ret = -EINVAL;
2778 goto e_unlock;
2779 }
2780
2781 mirror_sev = to_kvm_sev_info(kvm);
2782 if (!zalloc_cpumask_var(&mirror_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2783 ret = -ENOMEM;
2784 goto e_unlock;
2785 }
2786
2787 /*
2788 * The mirror kvm holds an enc_context_owner ref so its asid can't
2789 * disappear until we're done with it
2790 */
2791 source_sev = to_kvm_sev_info(source_kvm);
2792 kvm_get_kvm(source_kvm);
2793 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2794
2795 /* Set enc_context_owner and copy its encryption context over */
2796 mirror_sev->enc_context_owner = source_kvm;
2797 mirror_sev->active = true;
2798 mirror_sev->asid = source_sev->asid;
2799 mirror_sev->fd = source_sev->fd;
2800 mirror_sev->es_active = source_sev->es_active;
2801 mirror_sev->need_init = false;
2802 mirror_sev->handle = source_sev->handle;
2803 INIT_LIST_HEAD(&mirror_sev->regions_list);
2804 INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2805 ret = 0;
2806
2807 /*
2808 * Do not copy ap_jump_table. Since the mirror does not share the same
2809 * KVM contexts as the original, and they may have different
2810 * memory-views.
2811 */
2812
2813 e_unlock:
2814 sev_unlock_two_vms(kvm, source_kvm);
2815 return ret;
2816 }
2817
snp_decommission_context(struct kvm * kvm)2818 static int snp_decommission_context(struct kvm *kvm)
2819 {
2820 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2821 struct sev_data_snp_addr data = {};
2822 int ret;
2823
2824 /* If context is not created then do nothing */
2825 if (!sev->snp_context)
2826 return 0;
2827
2828 /* Do the decommision, which will unbind the ASID from the SNP context */
2829 data.address = __sme_pa(sev->snp_context);
2830 down_write(&sev_deactivate_lock);
2831 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2832 up_write(&sev_deactivate_lock);
2833
2834 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2835 return ret;
2836
2837 snp_free_firmware_page(sev->snp_context);
2838 sev->snp_context = NULL;
2839
2840 return 0;
2841 }
2842
sev_vm_destroy(struct kvm * kvm)2843 void sev_vm_destroy(struct kvm *kvm)
2844 {
2845 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2846 struct list_head *head = &sev->regions_list;
2847 struct list_head *pos, *q;
2848
2849 if (!sev_guest(kvm))
2850 return;
2851
2852 WARN_ON(!list_empty(&sev->mirror_vms));
2853
2854 free_cpumask_var(sev->have_run_cpus);
2855
2856 /*
2857 * If this is a mirror VM, remove it from the owner's list of a mirrors
2858 * and skip ASID cleanup (the ASID is tied to the lifetime of the owner).
2859 * Note, mirror VMs don't support registering encrypted regions.
2860 */
2861 if (is_mirroring_enc_context(kvm)) {
2862 struct kvm *owner_kvm = sev->enc_context_owner;
2863
2864 mutex_lock(&owner_kvm->lock);
2865 list_del(&sev->mirror_entry);
2866 mutex_unlock(&owner_kvm->lock);
2867 kvm_put_kvm(owner_kvm);
2868 return;
2869 }
2870
2871
2872 /*
2873 * if userspace was terminated before unregistering the memory regions
2874 * then lets unpin all the registered memory.
2875 */
2876 if (!list_empty(head)) {
2877 list_for_each_safe(pos, q, head) {
2878 __unregister_enc_region_locked(kvm,
2879 list_entry(pos, struct enc_region, list));
2880 cond_resched();
2881 }
2882 }
2883
2884 if (sev_snp_guest(kvm)) {
2885 snp_guest_req_cleanup(kvm);
2886
2887 /*
2888 * Decomission handles unbinding of the ASID. If it fails for
2889 * some unexpected reason, just leak the ASID.
2890 */
2891 if (snp_decommission_context(kvm))
2892 return;
2893 } else {
2894 sev_unbind_asid(kvm, sev->handle);
2895 }
2896
2897 sev_asid_free(sev);
2898 }
2899
sev_set_cpu_caps(void)2900 void __init sev_set_cpu_caps(void)
2901 {
2902 if (sev_enabled) {
2903 kvm_cpu_cap_set(X86_FEATURE_SEV);
2904 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2905 }
2906 if (sev_es_enabled) {
2907 kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2908 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2909 }
2910 if (sev_snp_enabled) {
2911 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2912 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2913 }
2914 }
2915
is_sev_snp_initialized(void)2916 static bool is_sev_snp_initialized(void)
2917 {
2918 struct sev_user_data_snp_status *status;
2919 struct sev_data_snp_addr buf;
2920 bool initialized = false;
2921 int ret, error = 0;
2922
2923 status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO);
2924 if (!status)
2925 return false;
2926
2927 buf.address = __psp_pa(status);
2928 ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error);
2929 if (ret) {
2930 pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n",
2931 ret, error, error);
2932 goto out;
2933 }
2934
2935 initialized = !!status->state;
2936
2937 out:
2938 snp_free_firmware_page(status);
2939
2940 return initialized;
2941 }
2942
sev_hardware_setup(void)2943 void __init sev_hardware_setup(void)
2944 {
2945 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2946 struct sev_platform_init_args init_args = {0};
2947 bool sev_snp_supported = false;
2948 bool sev_es_supported = false;
2949 bool sev_supported = false;
2950
2951 if (!sev_enabled || !npt_enabled || !nrips)
2952 goto out;
2953
2954 /*
2955 * SEV must obviously be supported in hardware. Sanity check that the
2956 * CPU supports decode assists, which is mandatory for SEV guests to
2957 * support instruction emulation. Ditto for flushing by ASID, as SEV
2958 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2959 * ASID to effect a TLB flush.
2960 */
2961 if (!boot_cpu_has(X86_FEATURE_SEV) ||
2962 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2963 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2964 goto out;
2965
2966 /*
2967 * The kernel's initcall infrastructure lacks the ability to express
2968 * dependencies between initcalls, whereas the modules infrastructure
2969 * automatically handles dependencies via symbol loading. Ensure the
2970 * PSP SEV driver is initialized before proceeding if KVM is built-in,
2971 * as the dependency isn't handled by the initcall infrastructure.
2972 */
2973 if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init())
2974 goto out;
2975
2976 /* Retrieve SEV CPUID information */
2977 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2978
2979 /* Set encryption bit location for SEV-ES guests */
2980 sev_enc_bit = ebx & 0x3f;
2981
2982 /* Maximum number of encrypted guests supported simultaneously */
2983 max_sev_asid = ecx;
2984 if (!max_sev_asid)
2985 goto out;
2986
2987 /* Minimum ASID value that should be used for SEV guest */
2988 min_sev_asid = edx;
2989 sev_me_mask = 1UL << (ebx & 0x3f);
2990
2991 /*
2992 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2993 * even though it's never used, so that the bitmap is indexed by the
2994 * actual ASID.
2995 */
2996 nr_asids = max_sev_asid + 1;
2997 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2998 if (!sev_asid_bitmap)
2999 goto out;
3000
3001 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3002 if (!sev_reclaim_asid_bitmap) {
3003 bitmap_free(sev_asid_bitmap);
3004 sev_asid_bitmap = NULL;
3005 goto out;
3006 }
3007
3008 if (min_sev_asid <= max_sev_asid) {
3009 sev_asid_count = max_sev_asid - min_sev_asid + 1;
3010 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3011 }
3012 sev_supported = true;
3013
3014 /* SEV-ES support requested? */
3015 if (!sev_es_enabled)
3016 goto out;
3017
3018 /*
3019 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3020 * instruction stream, i.e. can't emulate in response to a #NPF and
3021 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3022 * (the guest can then do a #VMGEXIT to request MMIO emulation).
3023 */
3024 if (!enable_mmio_caching)
3025 goto out;
3026
3027 /* Does the CPU support SEV-ES? */
3028 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3029 goto out;
3030
3031 if (!lbrv) {
3032 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3033 "LBRV must be present for SEV-ES support");
3034 goto out;
3035 }
3036
3037 /* Has the system been allocated ASIDs for SEV-ES? */
3038 if (min_sev_asid == 1)
3039 goto out;
3040
3041 sev_es_asid_count = min_sev_asid - 1;
3042 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3043 sev_es_supported = true;
3044 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3045
3046 out:
3047 if (sev_enabled) {
3048 init_args.probe = true;
3049 if (sev_platform_init(&init_args))
3050 sev_supported = sev_es_supported = sev_snp_supported = false;
3051 else if (sev_snp_supported)
3052 sev_snp_supported = is_sev_snp_initialized();
3053 }
3054
3055 if (boot_cpu_has(X86_FEATURE_SEV))
3056 pr_info("SEV %s (ASIDs %u - %u)\n",
3057 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3058 "unusable" :
3059 "disabled",
3060 min_sev_asid, max_sev_asid);
3061 if (boot_cpu_has(X86_FEATURE_SEV_ES))
3062 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3063 str_enabled_disabled(sev_es_supported),
3064 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3065 if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3066 pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3067 str_enabled_disabled(sev_snp_supported),
3068 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3069
3070 sev_enabled = sev_supported;
3071 sev_es_enabled = sev_es_supported;
3072 sev_snp_enabled = sev_snp_supported;
3073
3074 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3075 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3076 sev_es_debug_swap_enabled = false;
3077
3078 sev_supported_vmsa_features = 0;
3079 if (sev_es_debug_swap_enabled)
3080 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3081 }
3082
sev_hardware_unsetup(void)3083 void sev_hardware_unsetup(void)
3084 {
3085 if (!sev_enabled)
3086 return;
3087
3088 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3089 sev_flush_asids(1, max_sev_asid);
3090
3091 bitmap_free(sev_asid_bitmap);
3092 bitmap_free(sev_reclaim_asid_bitmap);
3093
3094 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3095 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3096
3097 sev_platform_shutdown();
3098 }
3099
sev_cpu_init(struct svm_cpu_data * sd)3100 int sev_cpu_init(struct svm_cpu_data *sd)
3101 {
3102 if (!sev_enabled)
3103 return 0;
3104
3105 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3106 if (!sd->sev_vmcbs)
3107 return -ENOMEM;
3108
3109 return 0;
3110 }
3111
3112 /*
3113 * Pages used by hardware to hold guest encrypted state must be flushed before
3114 * returning them to the system.
3115 */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)3116 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3117 {
3118 unsigned int asid = sev_get_asid(vcpu->kvm);
3119
3120 /*
3121 * Note! The address must be a kernel address, as regular page walk
3122 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3123 * address is non-deterministic and unsafe. This function deliberately
3124 * takes a pointer to deter passing in a user address.
3125 */
3126 unsigned long addr = (unsigned long)va;
3127
3128 /*
3129 * If CPU enforced cache coherency for encrypted mappings of the
3130 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3131 * flush is still needed in order to work properly with DMA devices.
3132 */
3133 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3134 clflush_cache_range(va, PAGE_SIZE);
3135 return;
3136 }
3137
3138 /*
3139 * VM Page Flush takes a host virtual address and a guest ASID. Fall
3140 * back to full writeback of caches if this faults so as not to make
3141 * any problems worse by leaving stale encrypted data in the cache.
3142 */
3143 if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3144 goto do_sev_writeback_caches;
3145
3146 return;
3147
3148 do_sev_writeback_caches:
3149 sev_writeback_caches(vcpu->kvm);
3150 }
3151
sev_guest_memory_reclaimed(struct kvm * kvm)3152 void sev_guest_memory_reclaimed(struct kvm *kvm)
3153 {
3154 /*
3155 * With SNP+gmem, private/encrypted memory is unreachable via the
3156 * hva-based mmu notifiers, i.e. these events are explicitly scoped to
3157 * shared pages, where there's no need to flush caches.
3158 */
3159 if (!sev_guest(kvm) || sev_snp_guest(kvm))
3160 return;
3161
3162 sev_writeback_caches(kvm);
3163 }
3164
sev_free_vcpu(struct kvm_vcpu * vcpu)3165 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3166 {
3167 struct vcpu_svm *svm;
3168
3169 if (!sev_es_guest(vcpu->kvm))
3170 return;
3171
3172 svm = to_svm(vcpu);
3173
3174 /*
3175 * If it's an SNP guest, then the VMSA was marked in the RMP table as
3176 * a guest-owned page. Transition the page to hypervisor state before
3177 * releasing it back to the system.
3178 */
3179 if (sev_snp_guest(vcpu->kvm)) {
3180 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3181
3182 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3183 goto skip_vmsa_free;
3184 }
3185
3186 if (vcpu->arch.guest_state_protected)
3187 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3188
3189 __free_page(virt_to_page(svm->sev_es.vmsa));
3190
3191 skip_vmsa_free:
3192 if (svm->sev_es.ghcb_sa_free)
3193 kvfree(svm->sev_es.ghcb_sa);
3194 }
3195
kvm_ghcb_get_sw_exit_code(struct vmcb_control_area * control)3196 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
3197 {
3198 return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3199 }
3200
dump_ghcb(struct vcpu_svm * svm)3201 static void dump_ghcb(struct vcpu_svm *svm)
3202 {
3203 struct vmcb_control_area *control = &svm->vmcb->control;
3204 unsigned int nbits;
3205
3206 /* Re-use the dump_invalid_vmcb module parameter */
3207 if (!dump_invalid_vmcb) {
3208 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3209 return;
3210 }
3211
3212 nbits = sizeof(svm->sev_es.valid_bitmap) * 8;
3213
3214 /*
3215 * Print KVM's snapshot of the GHCB values that were (unsuccessfully)
3216 * used to handle the exit. If the guest has since modified the GHCB
3217 * itself, dumping the raw GHCB won't help debug why KVM was unable to
3218 * handle the VMGEXIT that KVM observed.
3219 */
3220 pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa);
3221 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3222 kvm_ghcb_get_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm));
3223 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3224 control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm));
3225 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3226 control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm));
3227 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3228 svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm));
3229 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap);
3230 }
3231
sev_es_sync_to_ghcb(struct vcpu_svm * svm)3232 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3233 {
3234 struct kvm_vcpu *vcpu = &svm->vcpu;
3235 struct ghcb *ghcb = svm->sev_es.ghcb;
3236
3237 /*
3238 * The GHCB protocol so far allows for the following data
3239 * to be returned:
3240 * GPRs RAX, RBX, RCX, RDX
3241 *
3242 * Copy their values, even if they may not have been written during the
3243 * VM-Exit. It's the guest's responsibility to not consume random data.
3244 */
3245 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3246 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3247 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3248 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3249 }
3250
sev_es_sync_from_ghcb(struct vcpu_svm * svm)3251 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3252 {
3253 struct vmcb_control_area *control = &svm->vmcb->control;
3254 struct kvm_vcpu *vcpu = &svm->vcpu;
3255 struct ghcb *ghcb = svm->sev_es.ghcb;
3256 u64 exit_code;
3257
3258 /*
3259 * The GHCB protocol so far allows for the following data
3260 * to be supplied:
3261 * GPRs RAX, RBX, RCX, RDX
3262 * XCR0
3263 * CPL
3264 *
3265 * VMMCALL allows the guest to provide extra registers. KVM also
3266 * expects RSI for hypercalls, so include that, too.
3267 *
3268 * Copy their values to the appropriate location if supplied.
3269 */
3270 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3271
3272 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3273 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3274
3275 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
3276 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
3277 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
3278 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
3279 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
3280
3281 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
3282
3283 if (kvm_ghcb_xcr0_is_valid(svm)) {
3284 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
3285 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3286 }
3287
3288 /* Copy the GHCB exit information into the VMCB fields */
3289 exit_code = ghcb_get_sw_exit_code(ghcb);
3290 control->exit_code = lower_32_bits(exit_code);
3291 control->exit_code_hi = upper_32_bits(exit_code);
3292 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
3293 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
3294 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
3295
3296 /* Clear the valid entries fields */
3297 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3298 }
3299
sev_es_validate_vmgexit(struct vcpu_svm * svm)3300 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3301 {
3302 struct vmcb_control_area *control = &svm->vmcb->control;
3303 struct kvm_vcpu *vcpu = &svm->vcpu;
3304 u64 exit_code;
3305 u64 reason;
3306
3307 /*
3308 * Retrieve the exit code now even though it may not be marked valid
3309 * as it could help with debugging.
3310 */
3311 exit_code = kvm_ghcb_get_sw_exit_code(control);
3312
3313 /* Only GHCB Usage code 0 is supported */
3314 if (svm->sev_es.ghcb->ghcb_usage) {
3315 reason = GHCB_ERR_INVALID_USAGE;
3316 goto vmgexit_err;
3317 }
3318
3319 reason = GHCB_ERR_MISSING_INPUT;
3320
3321 if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3322 !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3323 !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3324 goto vmgexit_err;
3325
3326 switch (exit_code) {
3327 case SVM_EXIT_READ_DR7:
3328 break;
3329 case SVM_EXIT_WRITE_DR7:
3330 if (!kvm_ghcb_rax_is_valid(svm))
3331 goto vmgexit_err;
3332 break;
3333 case SVM_EXIT_RDTSC:
3334 break;
3335 case SVM_EXIT_RDPMC:
3336 if (!kvm_ghcb_rcx_is_valid(svm))
3337 goto vmgexit_err;
3338 break;
3339 case SVM_EXIT_CPUID:
3340 if (!kvm_ghcb_rax_is_valid(svm) ||
3341 !kvm_ghcb_rcx_is_valid(svm))
3342 goto vmgexit_err;
3343 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3344 if (!kvm_ghcb_xcr0_is_valid(svm))
3345 goto vmgexit_err;
3346 break;
3347 case SVM_EXIT_INVD:
3348 break;
3349 case SVM_EXIT_IOIO:
3350 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3351 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3352 goto vmgexit_err;
3353 } else {
3354 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3355 if (!kvm_ghcb_rax_is_valid(svm))
3356 goto vmgexit_err;
3357 }
3358 break;
3359 case SVM_EXIT_MSR:
3360 if (!kvm_ghcb_rcx_is_valid(svm))
3361 goto vmgexit_err;
3362 if (control->exit_info_1) {
3363 if (!kvm_ghcb_rax_is_valid(svm) ||
3364 !kvm_ghcb_rdx_is_valid(svm))
3365 goto vmgexit_err;
3366 }
3367 break;
3368 case SVM_EXIT_VMMCALL:
3369 if (!kvm_ghcb_rax_is_valid(svm) ||
3370 !kvm_ghcb_cpl_is_valid(svm))
3371 goto vmgexit_err;
3372 break;
3373 case SVM_EXIT_RDTSCP:
3374 break;
3375 case SVM_EXIT_WBINVD:
3376 break;
3377 case SVM_EXIT_MONITOR:
3378 if (!kvm_ghcb_rax_is_valid(svm) ||
3379 !kvm_ghcb_rcx_is_valid(svm) ||
3380 !kvm_ghcb_rdx_is_valid(svm))
3381 goto vmgexit_err;
3382 break;
3383 case SVM_EXIT_MWAIT:
3384 if (!kvm_ghcb_rax_is_valid(svm) ||
3385 !kvm_ghcb_rcx_is_valid(svm))
3386 goto vmgexit_err;
3387 break;
3388 case SVM_VMGEXIT_MMIO_READ:
3389 case SVM_VMGEXIT_MMIO_WRITE:
3390 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3391 goto vmgexit_err;
3392 break;
3393 case SVM_VMGEXIT_AP_CREATION:
3394 if (!sev_snp_guest(vcpu->kvm))
3395 goto vmgexit_err;
3396 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3397 if (!kvm_ghcb_rax_is_valid(svm))
3398 goto vmgexit_err;
3399 break;
3400 case SVM_VMGEXIT_NMI_COMPLETE:
3401 case SVM_VMGEXIT_AP_HLT_LOOP:
3402 case SVM_VMGEXIT_AP_JUMP_TABLE:
3403 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3404 case SVM_VMGEXIT_HV_FEATURES:
3405 case SVM_VMGEXIT_TERM_REQUEST:
3406 break;
3407 case SVM_VMGEXIT_PSC:
3408 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3409 goto vmgexit_err;
3410 break;
3411 case SVM_VMGEXIT_GUEST_REQUEST:
3412 case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3413 if (!sev_snp_guest(vcpu->kvm) ||
3414 !PAGE_ALIGNED(control->exit_info_1) ||
3415 !PAGE_ALIGNED(control->exit_info_2) ||
3416 control->exit_info_1 == control->exit_info_2)
3417 goto vmgexit_err;
3418 break;
3419 default:
3420 reason = GHCB_ERR_INVALID_EVENT;
3421 goto vmgexit_err;
3422 }
3423
3424 return 0;
3425
3426 vmgexit_err:
3427 if (reason == GHCB_ERR_INVALID_USAGE) {
3428 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3429 svm->sev_es.ghcb->ghcb_usage);
3430 } else if (reason == GHCB_ERR_INVALID_EVENT) {
3431 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3432 exit_code);
3433 } else {
3434 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3435 exit_code);
3436 dump_ghcb(svm);
3437 }
3438
3439 svm_vmgexit_bad_input(svm, reason);
3440
3441 /* Resume the guest to "return" the error code. */
3442 return 1;
3443 }
3444
sev_es_unmap_ghcb(struct vcpu_svm * svm)3445 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3446 {
3447 /* Clear any indication that the vCPU is in a type of AP Reset Hold */
3448 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3449
3450 if (!svm->sev_es.ghcb)
3451 return;
3452
3453 if (svm->sev_es.ghcb_sa_free) {
3454 /*
3455 * The scratch area lives outside the GHCB, so there is a
3456 * buffer that, depending on the operation performed, may
3457 * need to be synced, then freed.
3458 */
3459 if (svm->sev_es.ghcb_sa_sync) {
3460 kvm_write_guest(svm->vcpu.kvm,
3461 svm->sev_es.sw_scratch,
3462 svm->sev_es.ghcb_sa,
3463 svm->sev_es.ghcb_sa_len);
3464 svm->sev_es.ghcb_sa_sync = false;
3465 }
3466
3467 kvfree(svm->sev_es.ghcb_sa);
3468 svm->sev_es.ghcb_sa = NULL;
3469 svm->sev_es.ghcb_sa_free = false;
3470 }
3471
3472 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3473
3474 sev_es_sync_to_ghcb(svm);
3475
3476 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map);
3477 svm->sev_es.ghcb = NULL;
3478 }
3479
pre_sev_run(struct vcpu_svm * svm,int cpu)3480 int pre_sev_run(struct vcpu_svm *svm, int cpu)
3481 {
3482 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3483 struct kvm *kvm = svm->vcpu.kvm;
3484 unsigned int asid = sev_get_asid(kvm);
3485
3486 /*
3487 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid
3488 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP
3489 * AP Destroy event.
3490 */
3491 if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa))
3492 return -EINVAL;
3493
3494 /*
3495 * To optimize cache flushes when memory is reclaimed from an SEV VM,
3496 * track physical CPUs that enter the guest for SEV VMs and thus can
3497 * have encrypted, dirty data in the cache, and flush caches only for
3498 * CPUs that have entered the guest.
3499 */
3500 if (!cpumask_test_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus))
3501 cpumask_set_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus);
3502
3503 /* Assign the asid allocated with this SEV guest */
3504 svm->asid = asid;
3505
3506 /*
3507 * Flush guest TLB:
3508 *
3509 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3510 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3511 */
3512 if (sd->sev_vmcbs[asid] == svm->vmcb &&
3513 svm->vcpu.arch.last_vmentry_cpu == cpu)
3514 return 0;
3515
3516 sd->sev_vmcbs[asid] = svm->vmcb;
3517 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3518 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3519 return 0;
3520 }
3521
3522 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)3523 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3524 {
3525 struct vmcb_control_area *control = &svm->vmcb->control;
3526 u64 ghcb_scratch_beg, ghcb_scratch_end;
3527 u64 scratch_gpa_beg, scratch_gpa_end;
3528 void *scratch_va;
3529
3530 scratch_gpa_beg = svm->sev_es.sw_scratch;
3531 if (!scratch_gpa_beg) {
3532 pr_err("vmgexit: scratch gpa not provided\n");
3533 goto e_scratch;
3534 }
3535
3536 scratch_gpa_end = scratch_gpa_beg + len;
3537 if (scratch_gpa_end < scratch_gpa_beg) {
3538 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3539 len, scratch_gpa_beg);
3540 goto e_scratch;
3541 }
3542
3543 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3544 /* Scratch area begins within GHCB */
3545 ghcb_scratch_beg = control->ghcb_gpa +
3546 offsetof(struct ghcb, shared_buffer);
3547 ghcb_scratch_end = control->ghcb_gpa +
3548 offsetof(struct ghcb, reserved_0xff0);
3549
3550 /*
3551 * If the scratch area begins within the GHCB, it must be
3552 * completely contained in the GHCB shared buffer area.
3553 */
3554 if (scratch_gpa_beg < ghcb_scratch_beg ||
3555 scratch_gpa_end > ghcb_scratch_end) {
3556 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3557 scratch_gpa_beg, scratch_gpa_end);
3558 goto e_scratch;
3559 }
3560
3561 scratch_va = (void *)svm->sev_es.ghcb;
3562 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3563 } else {
3564 /*
3565 * The guest memory must be read into a kernel buffer, so
3566 * limit the size
3567 */
3568 if (len > GHCB_SCRATCH_AREA_LIMIT) {
3569 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3570 len, GHCB_SCRATCH_AREA_LIMIT);
3571 goto e_scratch;
3572 }
3573 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3574 if (!scratch_va)
3575 return -ENOMEM;
3576
3577 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3578 /* Unable to copy scratch area from guest */
3579 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3580
3581 kvfree(scratch_va);
3582 return -EFAULT;
3583 }
3584
3585 /*
3586 * The scratch area is outside the GHCB. The operation will
3587 * dictate whether the buffer needs to be synced before running
3588 * the vCPU next time (i.e. a read was requested so the data
3589 * must be written back to the guest memory).
3590 */
3591 svm->sev_es.ghcb_sa_sync = sync;
3592 svm->sev_es.ghcb_sa_free = true;
3593 }
3594
3595 svm->sev_es.ghcb_sa = scratch_va;
3596 svm->sev_es.ghcb_sa_len = len;
3597
3598 return 0;
3599
3600 e_scratch:
3601 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA);
3602
3603 return 1;
3604 }
3605
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)3606 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3607 unsigned int pos)
3608 {
3609 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3610 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3611 }
3612
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)3613 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3614 {
3615 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3616 }
3617
set_ghcb_msr(struct vcpu_svm * svm,u64 value)3618 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3619 {
3620 svm->vmcb->control.ghcb_gpa = value;
3621 }
3622
snp_rmptable_psmash(kvm_pfn_t pfn)3623 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3624 {
3625 int ret;
3626
3627 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3628
3629 /*
3630 * PSMASH_FAIL_INUSE indicates another processor is modifying the
3631 * entry, so retry until that's no longer the case.
3632 */
3633 do {
3634 ret = psmash(pfn);
3635 } while (ret == PSMASH_FAIL_INUSE);
3636
3637 return ret;
3638 }
3639
snp_complete_psc_msr(struct kvm_vcpu * vcpu)3640 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3641 {
3642 struct vcpu_svm *svm = to_svm(vcpu);
3643
3644 if (vcpu->run->hypercall.ret)
3645 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3646 else
3647 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3648
3649 return 1; /* resume guest */
3650 }
3651
snp_begin_psc_msr(struct vcpu_svm * svm,u64 ghcb_msr)3652 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3653 {
3654 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3655 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3656 struct kvm_vcpu *vcpu = &svm->vcpu;
3657
3658 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3659 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3660 return 1; /* resume guest */
3661 }
3662
3663 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3664 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3665 return 1; /* resume guest */
3666 }
3667
3668 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3669 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3670 /*
3671 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3672 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3673 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
3674 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3675 */
3676 vcpu->run->hypercall.ret = 0;
3677 vcpu->run->hypercall.args[0] = gpa;
3678 vcpu->run->hypercall.args[1] = 1;
3679 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3680 ? KVM_MAP_GPA_RANGE_ENCRYPTED
3681 : KVM_MAP_GPA_RANGE_DECRYPTED;
3682 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3683
3684 vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3685
3686 return 0; /* forward request to userspace */
3687 }
3688
3689 struct psc_buffer {
3690 struct psc_hdr hdr;
3691 struct psc_entry entries[];
3692 } __packed;
3693
3694 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3695
snp_complete_psc(struct vcpu_svm * svm,u64 psc_ret)3696 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3697 {
3698 svm->sev_es.psc_inflight = 0;
3699 svm->sev_es.psc_idx = 0;
3700 svm->sev_es.psc_2m = false;
3701
3702 /*
3703 * PSC requests always get a "no action" response in SW_EXITINFO1, with
3704 * a PSC-specific return code in SW_EXITINFO2 that provides the "real"
3705 * return code. E.g. if the PSC request was interrupted, the need to
3706 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1.
3707 */
3708 svm_vmgexit_no_action(svm, psc_ret);
3709 }
3710
__snp_complete_one_psc(struct vcpu_svm * svm)3711 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3712 {
3713 struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3714 struct psc_entry *entries = psc->entries;
3715 struct psc_hdr *hdr = &psc->hdr;
3716 __u16 idx;
3717
3718 /*
3719 * Everything in-flight has been processed successfully. Update the
3720 * corresponding entries in the guest's PSC buffer and zero out the
3721 * count of in-flight PSC entries.
3722 */
3723 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3724 svm->sev_es.psc_inflight--, idx++) {
3725 struct psc_entry *entry = &entries[idx];
3726
3727 entry->cur_page = entry->pagesize ? 512 : 1;
3728 }
3729
3730 hdr->cur_entry = idx;
3731 }
3732
snp_complete_one_psc(struct kvm_vcpu * vcpu)3733 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3734 {
3735 struct vcpu_svm *svm = to_svm(vcpu);
3736 struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3737
3738 if (vcpu->run->hypercall.ret) {
3739 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3740 return 1; /* resume guest */
3741 }
3742
3743 __snp_complete_one_psc(svm);
3744
3745 /* Handle the next range (if any). */
3746 return snp_begin_psc(svm, psc);
3747 }
3748
snp_begin_psc(struct vcpu_svm * svm,struct psc_buffer * psc)3749 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3750 {
3751 struct psc_entry *entries = psc->entries;
3752 struct kvm_vcpu *vcpu = &svm->vcpu;
3753 struct psc_hdr *hdr = &psc->hdr;
3754 struct psc_entry entry_start;
3755 u16 idx, idx_start, idx_end;
3756 int npages;
3757 bool huge;
3758 u64 gfn;
3759
3760 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3761 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3762 return 1;
3763 }
3764
3765 next_range:
3766 /* There should be no other PSCs in-flight at this point. */
3767 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3768 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3769 return 1;
3770 }
3771
3772 /*
3773 * The PSC descriptor buffer can be modified by a misbehaved guest after
3774 * validation, so take care to only use validated copies of values used
3775 * for things like array indexing.
3776 */
3777 idx_start = hdr->cur_entry;
3778 idx_end = hdr->end_entry;
3779
3780 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3781 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3782 return 1;
3783 }
3784
3785 /* Find the start of the next range which needs processing. */
3786 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3787 entry_start = entries[idx];
3788
3789 gfn = entry_start.gfn;
3790 huge = entry_start.pagesize;
3791 npages = huge ? 512 : 1;
3792
3793 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3794 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3795 return 1;
3796 }
3797
3798 if (entry_start.cur_page) {
3799 /*
3800 * If this is a partially-completed 2M range, force 4K handling
3801 * for the remaining pages since they're effectively split at
3802 * this point. Subsequent code should ensure this doesn't get
3803 * combined with adjacent PSC entries where 2M handling is still
3804 * possible.
3805 */
3806 npages -= entry_start.cur_page;
3807 gfn += entry_start.cur_page;
3808 huge = false;
3809 }
3810
3811 if (npages)
3812 break;
3813 }
3814
3815 if (idx > idx_end) {
3816 /* Nothing more to process. */
3817 snp_complete_psc(svm, 0);
3818 return 1;
3819 }
3820
3821 svm->sev_es.psc_2m = huge;
3822 svm->sev_es.psc_idx = idx;
3823 svm->sev_es.psc_inflight = 1;
3824
3825 /*
3826 * Find all subsequent PSC entries that contain adjacent GPA
3827 * ranges/operations and can be combined into a single
3828 * KVM_HC_MAP_GPA_RANGE exit.
3829 */
3830 while (++idx <= idx_end) {
3831 struct psc_entry entry = entries[idx];
3832
3833 if (entry.operation != entry_start.operation ||
3834 entry.gfn != entry_start.gfn + npages ||
3835 entry.cur_page || !!entry.pagesize != huge)
3836 break;
3837
3838 svm->sev_es.psc_inflight++;
3839 npages += huge ? 512 : 1;
3840 }
3841
3842 switch (entry_start.operation) {
3843 case VMGEXIT_PSC_OP_PRIVATE:
3844 case VMGEXIT_PSC_OP_SHARED:
3845 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3846 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3847 /*
3848 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3849 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3850 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
3851 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3852 */
3853 vcpu->run->hypercall.ret = 0;
3854 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3855 vcpu->run->hypercall.args[1] = npages;
3856 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3857 ? KVM_MAP_GPA_RANGE_ENCRYPTED
3858 : KVM_MAP_GPA_RANGE_DECRYPTED;
3859 vcpu->run->hypercall.args[2] |= entry_start.pagesize
3860 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3861 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3862 vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3863 return 0; /* forward request to userspace */
3864 default:
3865 /*
3866 * Only shared/private PSC operations are currently supported, so if the
3867 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3868 * then consider the entire range completed and avoid exiting to
3869 * userspace. In theory snp_complete_psc() can always be called directly
3870 * at this point to complete the current range and start the next one,
3871 * but that could lead to unexpected levels of recursion.
3872 */
3873 __snp_complete_one_psc(svm);
3874 goto next_range;
3875 }
3876
3877 BUG();
3878 }
3879
3880 /*
3881 * Invoked as part of svm_vcpu_reset() processing of an init event.
3882 */
sev_snp_init_protected_guest_state(struct kvm_vcpu * vcpu)3883 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3884 {
3885 struct vcpu_svm *svm = to_svm(vcpu);
3886 struct kvm_memory_slot *slot;
3887 struct page *page;
3888 kvm_pfn_t pfn;
3889 gfn_t gfn;
3890
3891 if (!sev_snp_guest(vcpu->kvm))
3892 return;
3893
3894 guard(mutex)(&svm->sev_es.snp_vmsa_mutex);
3895
3896 if (!svm->sev_es.snp_ap_waiting_for_reset)
3897 return;
3898
3899 svm->sev_es.snp_ap_waiting_for_reset = false;
3900
3901 /* Mark the vCPU as offline and not runnable */
3902 vcpu->arch.pv.pv_unhalted = false;
3903 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED);
3904
3905 /* Clear use of the VMSA */
3906 svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3907
3908 /*
3909 * When replacing the VMSA during SEV-SNP AP creation,
3910 * mark the VMCB dirty so that full state is always reloaded.
3911 */
3912 vmcb_mark_all_dirty(svm->vmcb);
3913
3914 if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa))
3915 return;
3916
3917 gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3918 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3919
3920 slot = gfn_to_memslot(vcpu->kvm, gfn);
3921 if (!slot)
3922 return;
3923
3924 /*
3925 * The new VMSA will be private memory guest memory, so retrieve the
3926 * PFN from the gmem backend.
3927 */
3928 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
3929 return;
3930
3931 /*
3932 * From this point forward, the VMSA will always be a guest-mapped page
3933 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In
3934 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but
3935 * that involves cleanups like flushing caches, which would ideally be
3936 * handled during teardown rather than guest boot. Deferring that also
3937 * allows the existing logic for SEV-ES VMSAs to be re-used with
3938 * minimal SNP-specific changes.
3939 */
3940 svm->sev_es.snp_has_guest_vmsa = true;
3941
3942 /* Use the new VMSA */
3943 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
3944
3945 /* Mark the vCPU as runnable */
3946 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3947
3948 /*
3949 * gmem pages aren't currently migratable, but if this ever changes
3950 * then care should be taken to ensure svm->sev_es.vmsa is pinned
3951 * through some other means.
3952 */
3953 kvm_release_page_clean(page);
3954 }
3955
sev_snp_ap_creation(struct vcpu_svm * svm)3956 static int sev_snp_ap_creation(struct vcpu_svm *svm)
3957 {
3958 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
3959 struct kvm_vcpu *vcpu = &svm->vcpu;
3960 struct kvm_vcpu *target_vcpu;
3961 struct vcpu_svm *target_svm;
3962 unsigned int request;
3963 unsigned int apic_id;
3964
3965 request = lower_32_bits(svm->vmcb->control.exit_info_1);
3966 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
3967
3968 /* Validate the APIC ID */
3969 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
3970 if (!target_vcpu) {
3971 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
3972 apic_id);
3973 return -EINVAL;
3974 }
3975
3976 target_svm = to_svm(target_vcpu);
3977
3978 guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex);
3979
3980 switch (request) {
3981 case SVM_VMGEXIT_AP_CREATE_ON_INIT:
3982 case SVM_VMGEXIT_AP_CREATE:
3983 if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) {
3984 vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n",
3985 vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features);
3986 return -EINVAL;
3987 }
3988
3989 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
3990 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
3991 svm->vmcb->control.exit_info_2);
3992 return -EINVAL;
3993 }
3994
3995 /*
3996 * Malicious guest can RMPADJUST a large page into VMSA which
3997 * will hit the SNP erratum where the CPU will incorrectly signal
3998 * an RMP violation #PF if a hugepage collides with the RMP entry
3999 * of VMSA page, reject the AP CREATE request if VMSA address from
4000 * guest is 2M aligned.
4001 */
4002 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
4003 vcpu_unimpl(vcpu,
4004 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
4005 svm->vmcb->control.exit_info_2);
4006 return -EINVAL;
4007 }
4008
4009 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4010 break;
4011 case SVM_VMGEXIT_AP_DESTROY:
4012 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
4013 break;
4014 default:
4015 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4016 request);
4017 return -EINVAL;
4018 }
4019
4020 target_svm->sev_es.snp_ap_waiting_for_reset = true;
4021
4022 /*
4023 * Unless Creation is deferred until INIT, signal the vCPU to update
4024 * its state.
4025 */
4026 if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT)
4027 kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4028
4029 return 0;
4030 }
4031
snp_handle_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4032 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4033 {
4034 struct sev_data_snp_guest_request data = {0};
4035 struct kvm *kvm = svm->vcpu.kvm;
4036 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4037 sev_ret_code fw_err = 0;
4038 int ret;
4039
4040 if (!sev_snp_guest(kvm))
4041 return -EINVAL;
4042
4043 mutex_lock(&sev->guest_req_mutex);
4044
4045 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4046 ret = -EIO;
4047 goto out_unlock;
4048 }
4049
4050 data.gctx_paddr = __psp_pa(sev->snp_context);
4051 data.req_paddr = __psp_pa(sev->guest_req_buf);
4052 data.res_paddr = __psp_pa(sev->guest_resp_buf);
4053
4054 /*
4055 * Firmware failures are propagated on to guest, but any other failure
4056 * condition along the way should be reported to userspace. E.g. if
4057 * the PSP is dead and commands are timing out.
4058 */
4059 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4060 if (ret && !fw_err)
4061 goto out_unlock;
4062
4063 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4064 ret = -EIO;
4065 goto out_unlock;
4066 }
4067
4068 /* No action is requested *from KVM* if there was a firmware error. */
4069 svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err));
4070
4071 ret = 1; /* resume guest */
4072
4073 out_unlock:
4074 mutex_unlock(&sev->guest_req_mutex);
4075 return ret;
4076 }
4077
snp_handle_ext_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4078 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4079 {
4080 struct kvm *kvm = svm->vcpu.kvm;
4081 u8 msg_type;
4082
4083 if (!sev_snp_guest(kvm))
4084 return -EINVAL;
4085
4086 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4087 &msg_type, 1))
4088 return -EIO;
4089
4090 /*
4091 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4092 * additional certificate data to be provided alongside the attestation
4093 * report via the guest-provided data pages indicated by RAX/RBX. The
4094 * certificate data is optional and requires additional KVM enablement
4095 * to provide an interface for userspace to provide it, but KVM still
4096 * needs to be able to handle extended guest requests either way. So
4097 * provide a stub implementation that will always return an empty
4098 * certificate table in the guest-provided data pages.
4099 */
4100 if (msg_type == SNP_MSG_REPORT_REQ) {
4101 struct kvm_vcpu *vcpu = &svm->vcpu;
4102 u64 data_npages;
4103 gpa_t data_gpa;
4104
4105 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4106 goto request_invalid;
4107
4108 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4109 data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4110
4111 if (!PAGE_ALIGNED(data_gpa))
4112 goto request_invalid;
4113
4114 /*
4115 * As per GHCB spec (see "SNP Extended Guest Request"), the
4116 * certificate table is terminated by 24-bytes of zeroes.
4117 */
4118 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4119 return -EIO;
4120 }
4121
4122 return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4123
4124 request_invalid:
4125 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4126 return 1; /* resume guest */
4127 }
4128
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)4129 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4130 {
4131 struct vmcb_control_area *control = &svm->vmcb->control;
4132 struct kvm_vcpu *vcpu = &svm->vcpu;
4133 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4134 u64 ghcb_info;
4135 int ret = 1;
4136
4137 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4138
4139 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4140 control->ghcb_gpa);
4141
4142 switch (ghcb_info) {
4143 case GHCB_MSR_SEV_INFO_REQ:
4144 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4145 GHCB_VERSION_MIN,
4146 sev_enc_bit));
4147 break;
4148 case GHCB_MSR_CPUID_REQ: {
4149 u64 cpuid_fn, cpuid_reg, cpuid_value;
4150
4151 cpuid_fn = get_ghcb_msr_bits(svm,
4152 GHCB_MSR_CPUID_FUNC_MASK,
4153 GHCB_MSR_CPUID_FUNC_POS);
4154
4155 /* Initialize the registers needed by the CPUID intercept */
4156 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4157 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4158
4159 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4160 if (!ret) {
4161 /* Error, keep GHCB MSR value as-is */
4162 break;
4163 }
4164
4165 cpuid_reg = get_ghcb_msr_bits(svm,
4166 GHCB_MSR_CPUID_REG_MASK,
4167 GHCB_MSR_CPUID_REG_POS);
4168 if (cpuid_reg == 0)
4169 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4170 else if (cpuid_reg == 1)
4171 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4172 else if (cpuid_reg == 2)
4173 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4174 else
4175 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4176
4177 set_ghcb_msr_bits(svm, cpuid_value,
4178 GHCB_MSR_CPUID_VALUE_MASK,
4179 GHCB_MSR_CPUID_VALUE_POS);
4180
4181 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4182 GHCB_MSR_INFO_MASK,
4183 GHCB_MSR_INFO_POS);
4184 break;
4185 }
4186 case GHCB_MSR_AP_RESET_HOLD_REQ:
4187 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4188 ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4189
4190 /*
4191 * Preset the result to a non-SIPI return and then only set
4192 * the result to non-zero when delivering a SIPI.
4193 */
4194 set_ghcb_msr_bits(svm, 0,
4195 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4196 GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4197
4198 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4199 GHCB_MSR_INFO_MASK,
4200 GHCB_MSR_INFO_POS);
4201 break;
4202 case GHCB_MSR_HV_FT_REQ:
4203 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4204 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4205 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4206 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4207 break;
4208 case GHCB_MSR_PREF_GPA_REQ:
4209 if (!sev_snp_guest(vcpu->kvm))
4210 goto out_terminate;
4211
4212 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4213 GHCB_MSR_GPA_VALUE_POS);
4214 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4215 GHCB_MSR_INFO_POS);
4216 break;
4217 case GHCB_MSR_REG_GPA_REQ: {
4218 u64 gfn;
4219
4220 if (!sev_snp_guest(vcpu->kvm))
4221 goto out_terminate;
4222
4223 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4224 GHCB_MSR_GPA_VALUE_POS);
4225
4226 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4227
4228 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4229 GHCB_MSR_GPA_VALUE_POS);
4230 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4231 GHCB_MSR_INFO_POS);
4232 break;
4233 }
4234 case GHCB_MSR_PSC_REQ:
4235 if (!sev_snp_guest(vcpu->kvm))
4236 goto out_terminate;
4237
4238 ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4239 break;
4240 case GHCB_MSR_TERM_REQ: {
4241 u64 reason_set, reason_code;
4242
4243 reason_set = get_ghcb_msr_bits(svm,
4244 GHCB_MSR_TERM_REASON_SET_MASK,
4245 GHCB_MSR_TERM_REASON_SET_POS);
4246 reason_code = get_ghcb_msr_bits(svm,
4247 GHCB_MSR_TERM_REASON_MASK,
4248 GHCB_MSR_TERM_REASON_POS);
4249 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4250 reason_set, reason_code);
4251
4252 goto out_terminate;
4253 }
4254 default:
4255 /* Error, keep GHCB MSR value as-is */
4256 break;
4257 }
4258
4259 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4260 control->ghcb_gpa, ret);
4261
4262 return ret;
4263
4264 out_terminate:
4265 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4266 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4267 vcpu->run->system_event.ndata = 1;
4268 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4269
4270 return 0;
4271 }
4272
sev_handle_vmgexit(struct kvm_vcpu * vcpu)4273 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4274 {
4275 struct vcpu_svm *svm = to_svm(vcpu);
4276 struct vmcb_control_area *control = &svm->vmcb->control;
4277 u64 ghcb_gpa, exit_code;
4278 int ret;
4279
4280 /* Validate the GHCB */
4281 ghcb_gpa = control->ghcb_gpa;
4282 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4283 return sev_handle_vmgexit_msr_protocol(svm);
4284
4285 if (!ghcb_gpa) {
4286 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4287
4288 /* Without a GHCB, just return right back to the guest */
4289 return 1;
4290 }
4291
4292 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4293 /* Unable to map GHCB from guest */
4294 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4295 ghcb_gpa);
4296
4297 /* Without a GHCB, just return right back to the guest */
4298 return 1;
4299 }
4300
4301 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4302
4303 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4304
4305 sev_es_sync_from_ghcb(svm);
4306
4307 /* SEV-SNP guest requires that the GHCB GPA must be registered */
4308 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4309 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4310 return -EINVAL;
4311 }
4312
4313 ret = sev_es_validate_vmgexit(svm);
4314 if (ret)
4315 return ret;
4316
4317 svm_vmgexit_success(svm, 0);
4318
4319 exit_code = kvm_ghcb_get_sw_exit_code(control);
4320 switch (exit_code) {
4321 case SVM_VMGEXIT_MMIO_READ:
4322 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4323 if (ret)
4324 break;
4325
4326 ret = kvm_sev_es_mmio_read(vcpu,
4327 control->exit_info_1,
4328 control->exit_info_2,
4329 svm->sev_es.ghcb_sa);
4330 break;
4331 case SVM_VMGEXIT_MMIO_WRITE:
4332 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4333 if (ret)
4334 break;
4335
4336 ret = kvm_sev_es_mmio_write(vcpu,
4337 control->exit_info_1,
4338 control->exit_info_2,
4339 svm->sev_es.ghcb_sa);
4340 break;
4341 case SVM_VMGEXIT_NMI_COMPLETE:
4342 ++vcpu->stat.nmi_window_exits;
4343 svm->nmi_masked = false;
4344 kvm_make_request(KVM_REQ_EVENT, vcpu);
4345 ret = 1;
4346 break;
4347 case SVM_VMGEXIT_AP_HLT_LOOP:
4348 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4349 ret = kvm_emulate_ap_reset_hold(vcpu);
4350 break;
4351 case SVM_VMGEXIT_AP_JUMP_TABLE: {
4352 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4353
4354 switch (control->exit_info_1) {
4355 case 0:
4356 /* Set AP jump table address */
4357 sev->ap_jump_table = control->exit_info_2;
4358 break;
4359 case 1:
4360 /* Get AP jump table address */
4361 svm_vmgexit_success(svm, sev->ap_jump_table);
4362 break;
4363 default:
4364 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4365 control->exit_info_1);
4366 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4367 }
4368
4369 ret = 1;
4370 break;
4371 }
4372 case SVM_VMGEXIT_HV_FEATURES:
4373 svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED);
4374 ret = 1;
4375 break;
4376 case SVM_VMGEXIT_TERM_REQUEST:
4377 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4378 control->exit_info_1, control->exit_info_2);
4379 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4380 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4381 vcpu->run->system_event.ndata = 1;
4382 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4383 break;
4384 case SVM_VMGEXIT_PSC:
4385 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4386 if (ret)
4387 break;
4388
4389 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4390 break;
4391 case SVM_VMGEXIT_AP_CREATION:
4392 ret = sev_snp_ap_creation(svm);
4393 if (ret) {
4394 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4395 }
4396
4397 ret = 1;
4398 break;
4399 case SVM_VMGEXIT_GUEST_REQUEST:
4400 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4401 break;
4402 case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4403 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4404 break;
4405 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4406 vcpu_unimpl(vcpu,
4407 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4408 control->exit_info_1, control->exit_info_2);
4409 ret = -EINVAL;
4410 break;
4411 default:
4412 ret = svm_invoke_exit_handler(vcpu, exit_code);
4413 }
4414
4415 return ret;
4416 }
4417
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)4418 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4419 {
4420 int count;
4421 int bytes;
4422 int r;
4423
4424 if (svm->vmcb->control.exit_info_2 > INT_MAX)
4425 return -EINVAL;
4426
4427 count = svm->vmcb->control.exit_info_2;
4428 if (unlikely(check_mul_overflow(count, size, &bytes)))
4429 return -EINVAL;
4430
4431 r = setup_vmgexit_scratch(svm, in, bytes);
4432 if (r)
4433 return r;
4434
4435 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4436 count, in);
4437 }
4438
sev_es_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4439 void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4440 {
4441 /* Clear intercepts on MSRs that are context switched by hardware. */
4442 svm_disable_intercept_for_msr(vcpu, MSR_AMD64_SEV_ES_GHCB, MSR_TYPE_RW);
4443 svm_disable_intercept_for_msr(vcpu, MSR_EFER, MSR_TYPE_RW);
4444 svm_disable_intercept_for_msr(vcpu, MSR_IA32_CR_PAT, MSR_TYPE_RW);
4445
4446 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX))
4447 svm_set_intercept_for_msr(vcpu, MSR_TSC_AUX, MSR_TYPE_RW,
4448 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
4449 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID));
4450
4451 /*
4452 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4453 * the host/guest supports its use.
4454 *
4455 * KVM treats the guest as being capable of using XSAVES even if XSAVES
4456 * isn't enabled in guest CPUID as there is no intercept for XSAVES,
4457 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is
4458 * exposed to the guest and XSAVES is supported in hardware. Condition
4459 * full XSS passthrough on the guest being able to use XSAVES *and*
4460 * XSAVES being exposed to the guest so that KVM can at least honor
4461 * guest CPUID for RDMSR and WRMSR.
4462 */
4463 svm_set_intercept_for_msr(vcpu, MSR_IA32_XSS, MSR_TYPE_RW,
4464 !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) ||
4465 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES));
4466 }
4467
sev_vcpu_after_set_cpuid(struct vcpu_svm * svm)4468 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4469 {
4470 struct kvm_vcpu *vcpu = &svm->vcpu;
4471 struct kvm_cpuid_entry2 *best;
4472
4473 /* For sev guests, the memory encryption bit is not reserved in CR3. */
4474 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4475 if (best)
4476 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4477 }
4478
sev_es_init_vmcb(struct vcpu_svm * svm)4479 static void sev_es_init_vmcb(struct vcpu_svm *svm)
4480 {
4481 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
4482 struct vmcb *vmcb = svm->vmcb01.ptr;
4483
4484 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4485
4486 /*
4487 * An SEV-ES guest requires a VMSA area that is a separate from the
4488 * VMCB page. Do not include the encryption mask on the VMSA physical
4489 * address since hardware will access it using the guest key. Note,
4490 * the VMSA will be NULL if this vCPU is the destination for intrahost
4491 * migration, and will be copied later.
4492 */
4493 if (!svm->sev_es.snp_has_guest_vmsa) {
4494 if (svm->sev_es.vmsa)
4495 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4496 else
4497 svm->vmcb->control.vmsa_pa = INVALID_PAGE;
4498 }
4499
4500 if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES))
4501 svm->vmcb->control.allowed_sev_features = sev->vmsa_features |
4502 VMCB_ALLOWED_SEV_FEATURES_VALID;
4503
4504 /* Can't intercept CR register access, HV can't modify CR registers */
4505 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4506 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4507 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4508 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4509 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4510 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4511
4512 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4513
4514 /* Track EFER/CR register changes */
4515 svm_set_intercept(svm, TRAP_EFER_WRITE);
4516 svm_set_intercept(svm, TRAP_CR0_WRITE);
4517 svm_set_intercept(svm, TRAP_CR4_WRITE);
4518 svm_set_intercept(svm, TRAP_CR8_WRITE);
4519
4520 vmcb->control.intercepts[INTERCEPT_DR] = 0;
4521 if (!sev_vcpu_has_debug_swap(svm)) {
4522 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4523 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4524 recalc_intercepts(svm);
4525 } else {
4526 /*
4527 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't
4528 * allow debugging SEV-ES guests, and enables DebugSwap iff
4529 * NO_NESTED_DATA_BP is supported, so there's no reason to
4530 * intercept #DB when DebugSwap is enabled. For simplicity
4531 * with respect to guest debug, intercept #DB for other VMs
4532 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4533 * guest can't DoS the CPU with infinite #DB vectoring.
4534 */
4535 clr_exception_intercept(svm, DB_VECTOR);
4536 }
4537
4538 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
4539 svm_clr_intercept(svm, INTERCEPT_XSETBV);
4540 }
4541
sev_init_vmcb(struct vcpu_svm * svm)4542 void sev_init_vmcb(struct vcpu_svm *svm)
4543 {
4544 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4545 clr_exception_intercept(svm, UD_VECTOR);
4546
4547 /*
4548 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4549 * KVM can't decrypt guest memory to decode the faulting instruction.
4550 */
4551 clr_exception_intercept(svm, GP_VECTOR);
4552
4553 if (sev_es_guest(svm->vcpu.kvm))
4554 sev_es_init_vmcb(svm);
4555 }
4556
sev_es_vcpu_reset(struct vcpu_svm * svm)4557 void sev_es_vcpu_reset(struct vcpu_svm *svm)
4558 {
4559 struct kvm_vcpu *vcpu = &svm->vcpu;
4560 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4561
4562 /*
4563 * Set the GHCB MSR value as per the GHCB specification when emulating
4564 * vCPU RESET for an SEV-ES guest.
4565 */
4566 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4567 GHCB_VERSION_MIN,
4568 sev_enc_bit));
4569
4570 mutex_init(&svm->sev_es.snp_vmsa_mutex);
4571 }
4572
sev_es_prepare_switch_to_guest(struct vcpu_svm * svm,struct sev_es_save_area * hostsa)4573 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4574 {
4575 struct kvm *kvm = svm->vcpu.kvm;
4576
4577 /*
4578 * All host state for SEV-ES guests is categorized into three swap types
4579 * based on how it is handled by hardware during a world switch:
4580 *
4581 * A: VMRUN: Host state saved in host save area
4582 * VMEXIT: Host state loaded from host save area
4583 *
4584 * B: VMRUN: Host state _NOT_ saved in host save area
4585 * VMEXIT: Host state loaded from host save area
4586 *
4587 * C: VMRUN: Host state _NOT_ saved in host save area
4588 * VMEXIT: Host state initialized to default(reset) values
4589 *
4590 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4591 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4592 * by common SVM code).
4593 */
4594 hostsa->xcr0 = kvm_host.xcr0;
4595 hostsa->pkru = read_pkru();
4596 hostsa->xss = kvm_host.xss;
4597
4598 /*
4599 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4600 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does
4601 * not save or load debug registers. Sadly, KVM can't prevent SNP
4602 * guests from lying about DebugSwap on secondary vCPUs, i.e. the
4603 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what
4604 * the guest has actually enabled (or not!) in the VMSA.
4605 *
4606 * If DebugSwap is *possible*, save the masks so that they're restored
4607 * if the guest enables DebugSwap. But for the DRs themselves, do NOT
4608 * rely on the CPU to restore the host values; KVM will restore them as
4609 * needed in common code, via hw_breakpoint_restore(). Note, KVM does
4610 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs
4611 * don't need to be restored per se, KVM just needs to ensure they are
4612 * loaded with the correct values *if* the CPU writes the MSRs.
4613 */
4614 if (sev_vcpu_has_debug_swap(svm) ||
4615 (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) {
4616 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4617 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4618 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4619 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4620 }
4621 }
4622
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4623 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4624 {
4625 struct vcpu_svm *svm = to_svm(vcpu);
4626
4627 /* First SIPI: Use the values as initially set by the VMM */
4628 if (!svm->sev_es.received_first_sipi) {
4629 svm->sev_es.received_first_sipi = true;
4630 return;
4631 }
4632
4633 /* Subsequent SIPI */
4634 switch (svm->sev_es.ap_reset_hold_type) {
4635 case AP_RESET_HOLD_NAE_EVENT:
4636 /*
4637 * Return from an AP Reset Hold VMGEXIT, where the guest will
4638 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4639 */
4640 svm_vmgexit_success(svm, 1);
4641 break;
4642 case AP_RESET_HOLD_MSR_PROTO:
4643 /*
4644 * Return from an AP Reset Hold VMGEXIT, where the guest will
4645 * set the CS and RIP. Set GHCB data field to a non-zero value.
4646 */
4647 set_ghcb_msr_bits(svm, 1,
4648 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4649 GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4650
4651 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4652 GHCB_MSR_INFO_MASK,
4653 GHCB_MSR_INFO_POS);
4654 break;
4655 default:
4656 break;
4657 }
4658 }
4659
snp_safe_alloc_page_node(int node,gfp_t gfp)4660 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4661 {
4662 unsigned long pfn;
4663 struct page *p;
4664
4665 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4666 return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4667
4668 /*
4669 * Allocate an SNP-safe page to workaround the SNP erratum where
4670 * the CPU will incorrectly signal an RMP violation #PF if a
4671 * hugepage (2MB or 1GB) collides with the RMP entry of a
4672 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4673 *
4674 * Allocate one extra page, choose a page which is not
4675 * 2MB-aligned, and free the other.
4676 */
4677 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4678 if (!p)
4679 return NULL;
4680
4681 split_page(p, 1);
4682
4683 pfn = page_to_pfn(p);
4684 if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4685 __free_page(p++);
4686 else
4687 __free_page(p + 1);
4688
4689 return p;
4690 }
4691
sev_handle_rmp_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code)4692 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4693 {
4694 struct kvm_memory_slot *slot;
4695 struct kvm *kvm = vcpu->kvm;
4696 int order, rmp_level, ret;
4697 struct page *page;
4698 bool assigned;
4699 kvm_pfn_t pfn;
4700 gfn_t gfn;
4701
4702 gfn = gpa >> PAGE_SHIFT;
4703
4704 /*
4705 * The only time RMP faults occur for shared pages is when the guest is
4706 * triggering an RMP fault for an implicit page-state change from
4707 * shared->private. Implicit page-state changes are forwarded to
4708 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4709 * for shared pages should not end up here.
4710 */
4711 if (!kvm_mem_is_private(kvm, gfn)) {
4712 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4713 gpa);
4714 return;
4715 }
4716
4717 slot = gfn_to_memslot(kvm, gfn);
4718 if (!kvm_slot_can_be_private(slot)) {
4719 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4720 gpa);
4721 return;
4722 }
4723
4724 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order);
4725 if (ret) {
4726 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4727 gpa);
4728 return;
4729 }
4730
4731 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4732 if (ret || !assigned) {
4733 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4734 gpa, pfn, ret);
4735 goto out_no_trace;
4736 }
4737
4738 /*
4739 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4740 * with PFERR_GUEST_RMP_BIT set:
4741 *
4742 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4743 * bit set if the guest issues them with a smaller granularity than
4744 * what is indicated by the page-size bit in the 2MB RMP entry for
4745 * the PFN that backs the GPA.
4746 *
4747 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4748 * smaller than what is indicated by the 2MB RMP entry for the PFN
4749 * that backs the GPA.
4750 *
4751 * In both these cases, the corresponding 2M RMP entry needs to
4752 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already
4753 * split into 4K RMP entries, then this is likely a spurious case which
4754 * can occur when there are concurrent accesses by the guest to a 2MB
4755 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4756 * the process of being PMASH'd into 4K entries. These cases should
4757 * resolve automatically on subsequent accesses, so just ignore them
4758 * here.
4759 */
4760 if (rmp_level == PG_LEVEL_4K)
4761 goto out;
4762
4763 ret = snp_rmptable_psmash(pfn);
4764 if (ret) {
4765 /*
4766 * Look it up again. If it's 4K now then the PSMASH may have
4767 * raced with another process and the issue has already resolved
4768 * itself.
4769 */
4770 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4771 assigned && rmp_level == PG_LEVEL_4K)
4772 goto out;
4773
4774 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4775 gpa, pfn, ret);
4776 }
4777
4778 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4779 out:
4780 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4781 out_no_trace:
4782 kvm_release_page_unused(page);
4783 }
4784
is_pfn_range_shared(kvm_pfn_t start,kvm_pfn_t end)4785 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4786 {
4787 kvm_pfn_t pfn = start;
4788
4789 while (pfn < end) {
4790 int ret, rmp_level;
4791 bool assigned;
4792
4793 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4794 if (ret) {
4795 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4796 pfn, start, end, rmp_level, ret);
4797 return false;
4798 }
4799
4800 if (assigned) {
4801 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4802 __func__, pfn, start, end, rmp_level);
4803 return false;
4804 }
4805
4806 pfn++;
4807 }
4808
4809 return true;
4810 }
4811
max_level_for_order(int order)4812 static u8 max_level_for_order(int order)
4813 {
4814 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4815 return PG_LEVEL_2M;
4816
4817 return PG_LEVEL_4K;
4818 }
4819
is_large_rmp_possible(struct kvm * kvm,kvm_pfn_t pfn,int order)4820 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4821 {
4822 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4823
4824 /*
4825 * If this is a large folio, and the entire 2M range containing the
4826 * PFN is currently shared, then the entire 2M-aligned range can be
4827 * set to private via a single 2M RMP entry.
4828 */
4829 if (max_level_for_order(order) > PG_LEVEL_4K &&
4830 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4831 return true;
4832
4833 return false;
4834 }
4835
sev_gmem_prepare(struct kvm * kvm,kvm_pfn_t pfn,gfn_t gfn,int max_order)4836 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4837 {
4838 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4839 kvm_pfn_t pfn_aligned;
4840 gfn_t gfn_aligned;
4841 int level, rc;
4842 bool assigned;
4843
4844 if (!sev_snp_guest(kvm))
4845 return 0;
4846
4847 rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4848 if (rc) {
4849 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4850 gfn, pfn, rc);
4851 return -ENOENT;
4852 }
4853
4854 if (assigned) {
4855 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4856 __func__, gfn, pfn, max_order, level);
4857 return 0;
4858 }
4859
4860 if (is_large_rmp_possible(kvm, pfn, max_order)) {
4861 level = PG_LEVEL_2M;
4862 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4863 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4864 } else {
4865 level = PG_LEVEL_4K;
4866 pfn_aligned = pfn;
4867 gfn_aligned = gfn;
4868 }
4869
4870 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4871 if (rc) {
4872 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4873 gfn, pfn, level, rc);
4874 return -EINVAL;
4875 }
4876
4877 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4878 __func__, gfn, pfn, pfn_aligned, max_order, level);
4879
4880 return 0;
4881 }
4882
sev_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)4883 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4884 {
4885 kvm_pfn_t pfn;
4886
4887 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4888 return;
4889
4890 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4891
4892 for (pfn = start; pfn < end;) {
4893 bool use_2m_update = false;
4894 int rc, rmp_level;
4895 bool assigned;
4896
4897 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4898 if (rc || !assigned)
4899 goto next_pfn;
4900
4901 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
4902 end >= (pfn + PTRS_PER_PMD) &&
4903 rmp_level > PG_LEVEL_4K;
4904
4905 /*
4906 * If an unaligned PFN corresponds to a 2M region assigned as a
4907 * large page in the RMP table, PSMASH the region into individual
4908 * 4K RMP entries before attempting to convert a 4K sub-page.
4909 */
4910 if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
4911 /*
4912 * This shouldn't fail, but if it does, report it, but
4913 * still try to update RMP entry to shared and pray this
4914 * was a spurious error that can be addressed later.
4915 */
4916 rc = snp_rmptable_psmash(pfn);
4917 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
4918 pfn, rc);
4919 }
4920
4921 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
4922 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
4923 pfn, rc))
4924 goto next_pfn;
4925
4926 /*
4927 * SEV-ES avoids host/guest cache coherency issues through
4928 * WBNOINVD hooks issued via MMU notifiers during run-time, and
4929 * KVM's VM destroy path at shutdown. Those MMU notifier events
4930 * don't cover gmem since there is no requirement to map pages
4931 * to a HVA in order to use them for a running guest. While the
4932 * shutdown path would still likely cover things for SNP guests,
4933 * userspace may also free gmem pages during run-time via
4934 * hole-punching operations on the guest_memfd, so flush the
4935 * cache entries for these pages before free'ing them back to
4936 * the host.
4937 */
4938 clflush_cache_range(__va(pfn_to_hpa(pfn)),
4939 use_2m_update ? PMD_SIZE : PAGE_SIZE);
4940 next_pfn:
4941 pfn += use_2m_update ? PTRS_PER_PMD : 1;
4942 cond_resched();
4943 }
4944 }
4945
sev_private_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn)4946 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
4947 {
4948 int level, rc;
4949 bool assigned;
4950
4951 if (!sev_snp_guest(kvm))
4952 return 0;
4953
4954 rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4955 if (rc || !assigned)
4956 return PG_LEVEL_4K;
4957
4958 return level;
4959 }
4960
sev_decrypt_vmsa(struct kvm_vcpu * vcpu)4961 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
4962 {
4963 struct vcpu_svm *svm = to_svm(vcpu);
4964 struct vmcb_save_area *vmsa;
4965 struct kvm_sev_info *sev;
4966 int error = 0;
4967 int ret;
4968
4969 if (!sev_es_guest(vcpu->kvm))
4970 return NULL;
4971
4972 /*
4973 * If the VMSA has not yet been encrypted, return a pointer to the
4974 * current un-encrypted VMSA.
4975 */
4976 if (!vcpu->arch.guest_state_protected)
4977 return (struct vmcb_save_area *)svm->sev_es.vmsa;
4978
4979 sev = to_kvm_sev_info(vcpu->kvm);
4980
4981 /* Check if the SEV policy allows debugging */
4982 if (sev_snp_guest(vcpu->kvm)) {
4983 if (!(sev->policy & SNP_POLICY_DEBUG))
4984 return NULL;
4985 } else {
4986 if (sev->policy & SEV_POLICY_NODBG)
4987 return NULL;
4988 }
4989
4990 if (sev_snp_guest(vcpu->kvm)) {
4991 struct sev_data_snp_dbg dbg = {0};
4992
4993 vmsa = snp_alloc_firmware_page(__GFP_ZERO);
4994 if (!vmsa)
4995 return NULL;
4996
4997 dbg.gctx_paddr = __psp_pa(sev->snp_context);
4998 dbg.src_addr = svm->vmcb->control.vmsa_pa;
4999 dbg.dst_addr = __psp_pa(vmsa);
5000
5001 ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error);
5002
5003 /*
5004 * Return the target page to a hypervisor page no matter what.
5005 * If this fails, the page can't be used, so leak it and don't
5006 * try to use it.
5007 */
5008 if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa))))
5009 return NULL;
5010
5011 if (ret) {
5012 pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n",
5013 ret, error, error);
5014 free_page((unsigned long)vmsa);
5015
5016 return NULL;
5017 }
5018 } else {
5019 struct sev_data_dbg dbg = {0};
5020 struct page *vmsa_page;
5021
5022 vmsa_page = alloc_page(GFP_KERNEL);
5023 if (!vmsa_page)
5024 return NULL;
5025
5026 vmsa = page_address(vmsa_page);
5027
5028 dbg.handle = sev->handle;
5029 dbg.src_addr = svm->vmcb->control.vmsa_pa;
5030 dbg.dst_addr = __psp_pa(vmsa);
5031 dbg.len = PAGE_SIZE;
5032
5033 ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error);
5034 if (ret) {
5035 pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n",
5036 ret, error, error);
5037 __free_page(vmsa_page);
5038
5039 return NULL;
5040 }
5041 }
5042
5043 return vmsa;
5044 }
5045
sev_free_decrypted_vmsa(struct kvm_vcpu * vcpu,struct vmcb_save_area * vmsa)5046 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa)
5047 {
5048 /* If the VMSA has not yet been encrypted, nothing was allocated */
5049 if (!vcpu->arch.guest_state_protected || !vmsa)
5050 return;
5051
5052 free_page((unsigned long)vmsa);
5053 }
5054