1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * page_pool.c
4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5 * Copyright (C) 2016 Red Hat, Inc.
6 */
7
8 #include <linux/error-injection.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/device.h>
13
14 #include <net/netdev_lock.h>
15 #include <net/netdev_rx_queue.h>
16 #include <net/page_pool/helpers.h>
17 #include <net/page_pool/memory_provider.h>
18 #include <net/xdp.h>
19
20 #include <linux/dma-direction.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/page-flags.h>
23 #include <linux/mm.h> /* for put_page() */
24 #include <linux/poison.h>
25 #include <linux/ethtool.h>
26 #include <linux/netdevice.h>
27
28 #include <trace/events/page_pool.h>
29
30 #include "dev.h"
31 #include "mp_dmabuf_devmem.h"
32 #include "netmem_priv.h"
33 #include "page_pool_priv.h"
34
35 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers);
36
37 #define DEFER_TIME (msecs_to_jiffies(1000))
38 #define DEFER_WARN_INTERVAL (60 * HZ)
39
40 #define BIAS_MAX (LONG_MAX >> 1)
41
42 #ifdef CONFIG_PAGE_POOL_STATS
43 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats);
44
45 /* alloc_stat_inc is intended to be used in softirq context */
46 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++)
47 /* recycle_stat_inc is safe to use when preemption is possible. */
48 #define recycle_stat_inc(pool, __stat) \
49 do { \
50 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
51 this_cpu_inc(s->__stat); \
52 } while (0)
53
54 #define recycle_stat_add(pool, __stat, val) \
55 do { \
56 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
57 this_cpu_add(s->__stat, val); \
58 } while (0)
59
60 static const char pp_stats[][ETH_GSTRING_LEN] = {
61 "rx_pp_alloc_fast",
62 "rx_pp_alloc_slow",
63 "rx_pp_alloc_slow_ho",
64 "rx_pp_alloc_empty",
65 "rx_pp_alloc_refill",
66 "rx_pp_alloc_waive",
67 "rx_pp_recycle_cached",
68 "rx_pp_recycle_cache_full",
69 "rx_pp_recycle_ring",
70 "rx_pp_recycle_ring_full",
71 "rx_pp_recycle_released_ref",
72 };
73
74 /**
75 * page_pool_get_stats() - fetch page pool stats
76 * @pool: pool from which page was allocated
77 * @stats: struct page_pool_stats to fill in
78 *
79 * Retrieve statistics about the page_pool. This API is only available
80 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
81 * A pointer to a caller allocated struct page_pool_stats structure
82 * is passed to this API which is filled in. The caller can then report
83 * those stats to the user (perhaps via ethtool, debugfs, etc.).
84 */
page_pool_get_stats(const struct page_pool * pool,struct page_pool_stats * stats)85 bool page_pool_get_stats(const struct page_pool *pool,
86 struct page_pool_stats *stats)
87 {
88 int cpu = 0;
89
90 if (!stats)
91 return false;
92
93 /* The caller is responsible to initialize stats. */
94 stats->alloc_stats.fast += pool->alloc_stats.fast;
95 stats->alloc_stats.slow += pool->alloc_stats.slow;
96 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
97 stats->alloc_stats.empty += pool->alloc_stats.empty;
98 stats->alloc_stats.refill += pool->alloc_stats.refill;
99 stats->alloc_stats.waive += pool->alloc_stats.waive;
100
101 for_each_possible_cpu(cpu) {
102 const struct page_pool_recycle_stats *pcpu =
103 per_cpu_ptr(pool->recycle_stats, cpu);
104
105 stats->recycle_stats.cached += pcpu->cached;
106 stats->recycle_stats.cache_full += pcpu->cache_full;
107 stats->recycle_stats.ring += pcpu->ring;
108 stats->recycle_stats.ring_full += pcpu->ring_full;
109 stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
110 }
111
112 return true;
113 }
114 EXPORT_SYMBOL(page_pool_get_stats);
115
page_pool_ethtool_stats_get_strings(u8 * data)116 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
117 {
118 int i;
119
120 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
121 memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
122 data += ETH_GSTRING_LEN;
123 }
124
125 return data;
126 }
127 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
128
page_pool_ethtool_stats_get_count(void)129 int page_pool_ethtool_stats_get_count(void)
130 {
131 return ARRAY_SIZE(pp_stats);
132 }
133 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
134
page_pool_ethtool_stats_get(u64 * data,const void * stats)135 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
136 {
137 const struct page_pool_stats *pool_stats = stats;
138
139 *data++ = pool_stats->alloc_stats.fast;
140 *data++ = pool_stats->alloc_stats.slow;
141 *data++ = pool_stats->alloc_stats.slow_high_order;
142 *data++ = pool_stats->alloc_stats.empty;
143 *data++ = pool_stats->alloc_stats.refill;
144 *data++ = pool_stats->alloc_stats.waive;
145 *data++ = pool_stats->recycle_stats.cached;
146 *data++ = pool_stats->recycle_stats.cache_full;
147 *data++ = pool_stats->recycle_stats.ring;
148 *data++ = pool_stats->recycle_stats.ring_full;
149 *data++ = pool_stats->recycle_stats.released_refcnt;
150
151 return data;
152 }
153 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
154
155 #else
156 #define alloc_stat_inc(...) do { } while (0)
157 #define recycle_stat_inc(...) do { } while (0)
158 #define recycle_stat_add(...) do { } while (0)
159 #endif
160
page_pool_producer_lock(struct page_pool * pool)161 static bool page_pool_producer_lock(struct page_pool *pool)
162 __acquires(&pool->ring.producer_lock)
163 {
164 bool in_softirq = in_softirq();
165
166 if (in_softirq)
167 spin_lock(&pool->ring.producer_lock);
168 else
169 spin_lock_bh(&pool->ring.producer_lock);
170
171 return in_softirq;
172 }
173
page_pool_producer_unlock(struct page_pool * pool,bool in_softirq)174 static void page_pool_producer_unlock(struct page_pool *pool,
175 bool in_softirq)
176 __releases(&pool->ring.producer_lock)
177 {
178 if (in_softirq)
179 spin_unlock(&pool->ring.producer_lock);
180 else
181 spin_unlock_bh(&pool->ring.producer_lock);
182 }
183
page_pool_struct_check(void)184 static void page_pool_struct_check(void)
185 {
186 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users);
187 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page);
188 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset);
189 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag,
190 PAGE_POOL_FRAG_GROUP_ALIGN);
191 }
192
page_pool_init(struct page_pool * pool,const struct page_pool_params * params,int cpuid)193 static int page_pool_init(struct page_pool *pool,
194 const struct page_pool_params *params,
195 int cpuid)
196 {
197 unsigned int ring_qsize = 1024; /* Default */
198 struct netdev_rx_queue *rxq;
199 int err;
200
201 page_pool_struct_check();
202
203 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p));
204 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow));
205
206 pool->cpuid = cpuid;
207 pool->dma_sync_for_cpu = true;
208
209 /* Validate only known flags were used */
210 if (pool->slow.flags & ~PP_FLAG_ALL)
211 return -EINVAL;
212
213 if (pool->p.pool_size)
214 ring_qsize = min(pool->p.pool_size, 16384);
215
216 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
217 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
218 * which is the XDP_TX use-case.
219 */
220 if (pool->slow.flags & PP_FLAG_DMA_MAP) {
221 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
222 (pool->p.dma_dir != DMA_BIDIRECTIONAL))
223 return -EINVAL;
224
225 pool->dma_map = true;
226 }
227
228 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) {
229 /* In order to request DMA-sync-for-device the page
230 * needs to be mapped
231 */
232 if (!(pool->slow.flags & PP_FLAG_DMA_MAP))
233 return -EINVAL;
234
235 if (!pool->p.max_len)
236 return -EINVAL;
237
238 pool->dma_sync = true;
239
240 /* pool->p.offset has to be set according to the address
241 * offset used by the DMA engine to start copying rx data
242 */
243 }
244
245 pool->has_init_callback = !!pool->slow.init_callback;
246
247 #ifdef CONFIG_PAGE_POOL_STATS
248 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) {
249 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
250 if (!pool->recycle_stats)
251 return -ENOMEM;
252 } else {
253 /* For system page pool instance we use a singular stats object
254 * instead of allocating a separate percpu variable for each
255 * (also percpu) page pool instance.
256 */
257 pool->recycle_stats = &pp_system_recycle_stats;
258 pool->system = true;
259 }
260 #endif
261
262 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
263 #ifdef CONFIG_PAGE_POOL_STATS
264 if (!pool->system)
265 free_percpu(pool->recycle_stats);
266 #endif
267 return -ENOMEM;
268 }
269
270 atomic_set(&pool->pages_state_release_cnt, 0);
271
272 /* Driver calling page_pool_create() also call page_pool_destroy() */
273 refcount_set(&pool->user_cnt, 1);
274
275 xa_init_flags(&pool->dma_mapped, XA_FLAGS_ALLOC1);
276
277 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) {
278 netdev_assert_locked(pool->slow.netdev);
279 rxq = __netif_get_rx_queue(pool->slow.netdev,
280 pool->slow.queue_idx);
281 pool->mp_priv = rxq->mp_params.mp_priv;
282 pool->mp_ops = rxq->mp_params.mp_ops;
283 }
284
285 if (pool->mp_ops) {
286 if (!pool->dma_map || !pool->dma_sync) {
287 err = -EOPNOTSUPP;
288 goto free_ptr_ring;
289 }
290
291 if (WARN_ON(!is_kernel_rodata((unsigned long)pool->mp_ops))) {
292 err = -EFAULT;
293 goto free_ptr_ring;
294 }
295
296 err = pool->mp_ops->init(pool);
297 if (err) {
298 pr_warn("%s() mem-provider init failed %d\n", __func__,
299 err);
300 goto free_ptr_ring;
301 }
302
303 static_branch_inc(&page_pool_mem_providers);
304 }
305
306 return 0;
307
308 free_ptr_ring:
309 ptr_ring_cleanup(&pool->ring, NULL);
310 #ifdef CONFIG_PAGE_POOL_STATS
311 if (!pool->system)
312 free_percpu(pool->recycle_stats);
313 #endif
314 return err;
315 }
316
page_pool_uninit(struct page_pool * pool)317 static void page_pool_uninit(struct page_pool *pool)
318 {
319 ptr_ring_cleanup(&pool->ring, NULL);
320 xa_destroy(&pool->dma_mapped);
321
322 #ifdef CONFIG_PAGE_POOL_STATS
323 if (!pool->system)
324 free_percpu(pool->recycle_stats);
325 #endif
326 }
327
328 /**
329 * page_pool_create_percpu() - create a page pool for a given cpu.
330 * @params: parameters, see struct page_pool_params
331 * @cpuid: cpu identifier
332 */
333 struct page_pool *
page_pool_create_percpu(const struct page_pool_params * params,int cpuid)334 page_pool_create_percpu(const struct page_pool_params *params, int cpuid)
335 {
336 struct page_pool *pool;
337 int err;
338
339 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
340 if (!pool)
341 return ERR_PTR(-ENOMEM);
342
343 err = page_pool_init(pool, params, cpuid);
344 if (err < 0)
345 goto err_free;
346
347 err = page_pool_list(pool);
348 if (err)
349 goto err_uninit;
350
351 return pool;
352
353 err_uninit:
354 page_pool_uninit(pool);
355 err_free:
356 pr_warn("%s() gave up with errno %d\n", __func__, err);
357 kfree(pool);
358 return ERR_PTR(err);
359 }
360 EXPORT_SYMBOL(page_pool_create_percpu);
361
362 /**
363 * page_pool_create() - create a page pool
364 * @params: parameters, see struct page_pool_params
365 */
page_pool_create(const struct page_pool_params * params)366 struct page_pool *page_pool_create(const struct page_pool_params *params)
367 {
368 return page_pool_create_percpu(params, -1);
369 }
370 EXPORT_SYMBOL(page_pool_create);
371
372 static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem);
373
page_pool_refill_alloc_cache(struct page_pool * pool)374 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool)
375 {
376 struct ptr_ring *r = &pool->ring;
377 netmem_ref netmem;
378 int pref_nid; /* preferred NUMA node */
379
380 /* Quicker fallback, avoid locks when ring is empty */
381 if (__ptr_ring_empty(r)) {
382 alloc_stat_inc(pool, empty);
383 return 0;
384 }
385
386 /* Softirq guarantee CPU and thus NUMA node is stable. This,
387 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
388 */
389 #ifdef CONFIG_NUMA
390 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
391 #else
392 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
393 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
394 #endif
395
396 /* Refill alloc array, but only if NUMA match */
397 do {
398 netmem = (__force netmem_ref)__ptr_ring_consume(r);
399 if (unlikely(!netmem))
400 break;
401
402 if (likely(netmem_is_pref_nid(netmem, pref_nid))) {
403 pool->alloc.cache[pool->alloc.count++] = netmem;
404 } else {
405 /* NUMA mismatch;
406 * (1) release 1 page to page-allocator and
407 * (2) break out to fallthrough to alloc_pages_node.
408 * This limit stress on page buddy alloactor.
409 */
410 page_pool_return_netmem(pool, netmem);
411 alloc_stat_inc(pool, waive);
412 netmem = 0;
413 break;
414 }
415 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
416
417 /* Return last page */
418 if (likely(pool->alloc.count > 0)) {
419 netmem = pool->alloc.cache[--pool->alloc.count];
420 alloc_stat_inc(pool, refill);
421 }
422
423 return netmem;
424 }
425
426 /* fast path */
__page_pool_get_cached(struct page_pool * pool)427 static netmem_ref __page_pool_get_cached(struct page_pool *pool)
428 {
429 netmem_ref netmem;
430
431 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
432 if (likely(pool->alloc.count)) {
433 /* Fast-path */
434 netmem = pool->alloc.cache[--pool->alloc.count];
435 alloc_stat_inc(pool, fast);
436 } else {
437 netmem = page_pool_refill_alloc_cache(pool);
438 }
439
440 return netmem;
441 }
442
__page_pool_dma_sync_for_device(const struct page_pool * pool,netmem_ref netmem,u32 dma_sync_size)443 static void __page_pool_dma_sync_for_device(const struct page_pool *pool,
444 netmem_ref netmem,
445 u32 dma_sync_size)
446 {
447 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
448 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem);
449
450 dma_sync_size = min(dma_sync_size, pool->p.max_len);
451 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset,
452 dma_sync_size, pool->p.dma_dir);
453 #endif
454 }
455
456 static __always_inline void
page_pool_dma_sync_for_device(const struct page_pool * pool,netmem_ref netmem,u32 dma_sync_size)457 page_pool_dma_sync_for_device(const struct page_pool *pool,
458 netmem_ref netmem,
459 u32 dma_sync_size)
460 {
461 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) {
462 rcu_read_lock();
463 /* re-check under rcu_read_lock() to sync with page_pool_scrub() */
464 if (pool->dma_sync)
465 __page_pool_dma_sync_for_device(pool, netmem,
466 dma_sync_size);
467 rcu_read_unlock();
468 }
469 }
470
page_pool_register_dma_index(struct page_pool * pool,netmem_ref netmem,gfp_t gfp)471 static int page_pool_register_dma_index(struct page_pool *pool,
472 netmem_ref netmem, gfp_t gfp)
473 {
474 int err = 0;
475 u32 id;
476
477 if (unlikely(!PP_DMA_INDEX_BITS))
478 goto out;
479
480 if (in_softirq())
481 err = xa_alloc(&pool->dma_mapped, &id, netmem_to_page(netmem),
482 PP_DMA_INDEX_LIMIT, gfp);
483 else
484 err = xa_alloc_bh(&pool->dma_mapped, &id, netmem_to_page(netmem),
485 PP_DMA_INDEX_LIMIT, gfp);
486 if (err) {
487 WARN_ONCE(err != -ENOMEM, "couldn't track DMA mapping, please report to netdev@");
488 goto out;
489 }
490
491 netmem_set_dma_index(netmem, id);
492 out:
493 return err;
494 }
495
page_pool_release_dma_index(struct page_pool * pool,netmem_ref netmem)496 static int page_pool_release_dma_index(struct page_pool *pool,
497 netmem_ref netmem)
498 {
499 struct page *old, *page = netmem_to_page(netmem);
500 unsigned long id;
501
502 if (unlikely(!PP_DMA_INDEX_BITS))
503 return 0;
504
505 id = netmem_get_dma_index(netmem);
506 if (!id)
507 return -1;
508
509 if (in_softirq())
510 old = xa_cmpxchg(&pool->dma_mapped, id, page, NULL, 0);
511 else
512 old = xa_cmpxchg_bh(&pool->dma_mapped, id, page, NULL, 0);
513 if (old != page)
514 return -1;
515
516 netmem_set_dma_index(netmem, 0);
517
518 return 0;
519 }
520
page_pool_dma_map(struct page_pool * pool,netmem_ref netmem,gfp_t gfp)521 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem, gfp_t gfp)
522 {
523 dma_addr_t dma;
524 int err;
525
526 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
527 * since dma_addr_t can be either 32 or 64 bits and does not always fit
528 * into page private data (i.e 32bit cpu with 64bit DMA caps)
529 * This mapping is kept for lifetime of page, until leaving pool.
530 */
531 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0,
532 (PAGE_SIZE << pool->p.order), pool->p.dma_dir,
533 DMA_ATTR_SKIP_CPU_SYNC |
534 DMA_ATTR_WEAK_ORDERING);
535 if (dma_mapping_error(pool->p.dev, dma))
536 return false;
537
538 if (page_pool_set_dma_addr_netmem(netmem, dma)) {
539 WARN_ONCE(1, "unexpected DMA address, please report to netdev@");
540 goto unmap_failed;
541 }
542
543 err = page_pool_register_dma_index(pool, netmem, gfp);
544 if (err)
545 goto unset_failed;
546
547 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len);
548
549 return true;
550
551 unset_failed:
552 page_pool_set_dma_addr_netmem(netmem, 0);
553 unmap_failed:
554 dma_unmap_page_attrs(pool->p.dev, dma,
555 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
556 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
557 return false;
558 }
559
__page_pool_alloc_page_order(struct page_pool * pool,gfp_t gfp)560 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
561 gfp_t gfp)
562 {
563 struct page *page;
564
565 gfp |= __GFP_COMP;
566 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
567 if (unlikely(!page))
568 return NULL;
569
570 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page), gfp))) {
571 put_page(page);
572 return NULL;
573 }
574
575 alloc_stat_inc(pool, slow_high_order);
576 page_pool_set_pp_info(pool, page_to_netmem(page));
577
578 /* Track how many pages are held 'in-flight' */
579 pool->pages_state_hold_cnt++;
580 trace_page_pool_state_hold(pool, page_to_netmem(page),
581 pool->pages_state_hold_cnt);
582 return page;
583 }
584
585 /* slow path */
__page_pool_alloc_netmems_slow(struct page_pool * pool,gfp_t gfp)586 static noinline netmem_ref __page_pool_alloc_netmems_slow(struct page_pool *pool,
587 gfp_t gfp)
588 {
589 const int bulk = PP_ALLOC_CACHE_REFILL;
590 unsigned int pp_order = pool->p.order;
591 bool dma_map = pool->dma_map;
592 netmem_ref netmem;
593 int i, nr_pages;
594
595 /* Unconditionally set NOWARN if allocating from NAPI.
596 * Drivers forget to set it, and OOM reports on packet Rx are useless.
597 */
598 if ((gfp & GFP_ATOMIC) == GFP_ATOMIC)
599 gfp |= __GFP_NOWARN;
600
601 /* Don't support bulk alloc for high-order pages */
602 if (unlikely(pp_order))
603 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp));
604
605 /* Unnecessary as alloc cache is empty, but guarantees zero count */
606 if (unlikely(pool->alloc.count > 0))
607 return pool->alloc.cache[--pool->alloc.count];
608
609 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */
610 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
611
612 nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk,
613 (struct page **)pool->alloc.cache);
614 if (unlikely(!nr_pages))
615 return 0;
616
617 /* Pages have been filled into alloc.cache array, but count is zero and
618 * page element have not been (possibly) DMA mapped.
619 */
620 for (i = 0; i < nr_pages; i++) {
621 netmem = pool->alloc.cache[i];
622 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem, gfp))) {
623 put_page(netmem_to_page(netmem));
624 continue;
625 }
626
627 page_pool_set_pp_info(pool, netmem);
628 pool->alloc.cache[pool->alloc.count++] = netmem;
629 /* Track how many pages are held 'in-flight' */
630 pool->pages_state_hold_cnt++;
631 trace_page_pool_state_hold(pool, netmem,
632 pool->pages_state_hold_cnt);
633 }
634
635 /* Return last page */
636 if (likely(pool->alloc.count > 0)) {
637 netmem = pool->alloc.cache[--pool->alloc.count];
638 alloc_stat_inc(pool, slow);
639 } else {
640 netmem = 0;
641 }
642
643 /* When page just alloc'ed is should/must have refcnt 1. */
644 return netmem;
645 }
646
647 /* For using page_pool replace: alloc_pages() API calls, but provide
648 * synchronization guarantee for allocation side.
649 */
page_pool_alloc_netmems(struct page_pool * pool,gfp_t gfp)650 netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp)
651 {
652 netmem_ref netmem;
653
654 /* Fast-path: Get a page from cache */
655 netmem = __page_pool_get_cached(pool);
656 if (netmem)
657 return netmem;
658
659 /* Slow-path: cache empty, do real allocation */
660 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
661 netmem = pool->mp_ops->alloc_netmems(pool, gfp);
662 else
663 netmem = __page_pool_alloc_netmems_slow(pool, gfp);
664 return netmem;
665 }
666 EXPORT_SYMBOL(page_pool_alloc_netmems);
667 ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL);
668
page_pool_alloc_pages(struct page_pool * pool,gfp_t gfp)669 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
670 {
671 return netmem_to_page(page_pool_alloc_netmems(pool, gfp));
672 }
673 EXPORT_SYMBOL(page_pool_alloc_pages);
674
675 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
676 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
677 */
678 #define _distance(a, b) (s32)((a) - (b))
679
page_pool_inflight(const struct page_pool * pool,bool strict)680 s32 page_pool_inflight(const struct page_pool *pool, bool strict)
681 {
682 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
683 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
684 s32 inflight;
685
686 inflight = _distance(hold_cnt, release_cnt);
687
688 if (strict) {
689 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
690 WARN(inflight < 0, "Negative(%d) inflight packet-pages",
691 inflight);
692 } else {
693 inflight = max(0, inflight);
694 }
695
696 return inflight;
697 }
698
page_pool_set_pp_info(struct page_pool * pool,netmem_ref netmem)699 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem)
700 {
701 netmem_set_pp(netmem, pool);
702 netmem_or_pp_magic(netmem, PP_SIGNATURE);
703
704 /* Ensuring all pages have been split into one fragment initially:
705 * page_pool_set_pp_info() is only called once for every page when it
706 * is allocated from the page allocator and page_pool_fragment_page()
707 * is dirtying the same cache line as the page->pp_magic above, so
708 * the overhead is negligible.
709 */
710 page_pool_fragment_netmem(netmem, 1);
711 if (pool->has_init_callback)
712 pool->slow.init_callback(netmem, pool->slow.init_arg);
713 }
714
page_pool_clear_pp_info(netmem_ref netmem)715 void page_pool_clear_pp_info(netmem_ref netmem)
716 {
717 netmem_clear_pp_magic(netmem);
718 netmem_set_pp(netmem, NULL);
719 }
720
__page_pool_release_netmem_dma(struct page_pool * pool,netmem_ref netmem)721 static __always_inline void __page_pool_release_netmem_dma(struct page_pool *pool,
722 netmem_ref netmem)
723 {
724 dma_addr_t dma;
725
726 if (!pool->dma_map)
727 /* Always account for inflight pages, even if we didn't
728 * map them
729 */
730 return;
731
732 if (page_pool_release_dma_index(pool, netmem))
733 return;
734
735 dma = page_pool_get_dma_addr_netmem(netmem);
736
737 /* When page is unmapped, it cannot be returned to our pool */
738 dma_unmap_page_attrs(pool->p.dev, dma,
739 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
740 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
741 page_pool_set_dma_addr_netmem(netmem, 0);
742 }
743
744 /* Disconnects a page (from a page_pool). API users can have a need
745 * to disconnect a page (from a page_pool), to allow it to be used as
746 * a regular page (that will eventually be returned to the normal
747 * page-allocator via put_page).
748 */
page_pool_return_netmem(struct page_pool * pool,netmem_ref netmem)749 static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem)
750 {
751 int count;
752 bool put;
753
754 put = true;
755 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
756 put = pool->mp_ops->release_netmem(pool, netmem);
757 else
758 __page_pool_release_netmem_dma(pool, netmem);
759
760 /* This may be the last page returned, releasing the pool, so
761 * it is not safe to reference pool afterwards.
762 */
763 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
764 trace_page_pool_state_release(pool, netmem, count);
765
766 if (put) {
767 page_pool_clear_pp_info(netmem);
768 put_page(netmem_to_page(netmem));
769 }
770 /* An optimization would be to call __free_pages(page, pool->p.order)
771 * knowing page is not part of page-cache (thus avoiding a
772 * __page_cache_release() call).
773 */
774 }
775
page_pool_recycle_in_ring(struct page_pool * pool,netmem_ref netmem)776 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem)
777 {
778 bool in_softirq, ret;
779
780 /* BH protection not needed if current is softirq */
781 in_softirq = page_pool_producer_lock(pool);
782 ret = !__ptr_ring_produce(&pool->ring, (__force void *)netmem);
783 if (ret)
784 recycle_stat_inc(pool, ring);
785 page_pool_producer_unlock(pool, in_softirq);
786
787 return ret;
788 }
789
790 /* Only allow direct recycling in special circumstances, into the
791 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
792 *
793 * Caller must provide appropriate safe context.
794 */
page_pool_recycle_in_cache(netmem_ref netmem,struct page_pool * pool)795 static bool page_pool_recycle_in_cache(netmem_ref netmem,
796 struct page_pool *pool)
797 {
798 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
799 recycle_stat_inc(pool, cache_full);
800 return false;
801 }
802
803 /* Caller MUST have verified/know (page_ref_count(page) == 1) */
804 pool->alloc.cache[pool->alloc.count++] = netmem;
805 recycle_stat_inc(pool, cached);
806 return true;
807 }
808
__page_pool_page_can_be_recycled(netmem_ref netmem)809 static bool __page_pool_page_can_be_recycled(netmem_ref netmem)
810 {
811 return netmem_is_net_iov(netmem) ||
812 (page_ref_count(netmem_to_page(netmem)) == 1 &&
813 !page_is_pfmemalloc(netmem_to_page(netmem)));
814 }
815
816 /* If the page refcnt == 1, this will try to recycle the page.
817 * If pool->dma_sync is set, we'll try to sync the DMA area for
818 * the configured size min(dma_sync_size, pool->max_len).
819 * If the page refcnt != 1, then the page will be returned to memory
820 * subsystem.
821 */
822 static __always_inline netmem_ref
__page_pool_put_page(struct page_pool * pool,netmem_ref netmem,unsigned int dma_sync_size,bool allow_direct)823 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem,
824 unsigned int dma_sync_size, bool allow_direct)
825 {
826 lockdep_assert_no_hardirq();
827
828 /* This allocator is optimized for the XDP mode that uses
829 * one-frame-per-page, but have fallbacks that act like the
830 * regular page allocator APIs.
831 *
832 * refcnt == 1 means page_pool owns page, and can recycle it.
833 *
834 * page is NOT reusable when allocated when system is under
835 * some pressure. (page_is_pfmemalloc)
836 */
837 if (likely(__page_pool_page_can_be_recycled(netmem))) {
838 /* Read barrier done in page_ref_count / READ_ONCE */
839
840 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
841
842 if (allow_direct && page_pool_recycle_in_cache(netmem, pool))
843 return 0;
844
845 /* Page found as candidate for recycling */
846 return netmem;
847 }
848
849 /* Fallback/non-XDP mode: API user have elevated refcnt.
850 *
851 * Many drivers split up the page into fragments, and some
852 * want to keep doing this to save memory and do refcnt based
853 * recycling. Support this use case too, to ease drivers
854 * switching between XDP/non-XDP.
855 *
856 * In-case page_pool maintains the DMA mapping, API user must
857 * call page_pool_put_page once. In this elevated refcnt
858 * case, the DMA is unmapped/released, as driver is likely
859 * doing refcnt based recycle tricks, meaning another process
860 * will be invoking put_page.
861 */
862 recycle_stat_inc(pool, released_refcnt);
863 page_pool_return_netmem(pool, netmem);
864
865 return 0;
866 }
867
page_pool_napi_local(const struct page_pool * pool)868 static bool page_pool_napi_local(const struct page_pool *pool)
869 {
870 const struct napi_struct *napi;
871 u32 cpuid;
872
873 /* On PREEMPT_RT the softirq can be preempted by the consumer */
874 if (IS_ENABLED(CONFIG_PREEMPT_RT))
875 return false;
876
877 if (unlikely(!in_softirq()))
878 return false;
879
880 /* Allow direct recycle if we have reasons to believe that we are
881 * in the same context as the consumer would run, so there's
882 * no possible race.
883 * __page_pool_put_page() makes sure we're not in hardirq context
884 * and interrupts are enabled prior to accessing the cache.
885 */
886 cpuid = smp_processor_id();
887 if (READ_ONCE(pool->cpuid) == cpuid)
888 return true;
889
890 napi = READ_ONCE(pool->p.napi);
891
892 return napi && READ_ONCE(napi->list_owner) == cpuid;
893 }
894
page_pool_put_unrefed_netmem(struct page_pool * pool,netmem_ref netmem,unsigned int dma_sync_size,bool allow_direct)895 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem,
896 unsigned int dma_sync_size, bool allow_direct)
897 {
898 if (!allow_direct)
899 allow_direct = page_pool_napi_local(pool);
900
901 netmem = __page_pool_put_page(pool, netmem, dma_sync_size,
902 allow_direct);
903 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) {
904 /* Cache full, fallback to free pages */
905 recycle_stat_inc(pool, ring_full);
906 page_pool_return_netmem(pool, netmem);
907 }
908 }
909 EXPORT_SYMBOL(page_pool_put_unrefed_netmem);
910
page_pool_put_unrefed_page(struct page_pool * pool,struct page * page,unsigned int dma_sync_size,bool allow_direct)911 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
912 unsigned int dma_sync_size, bool allow_direct)
913 {
914 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size,
915 allow_direct);
916 }
917 EXPORT_SYMBOL(page_pool_put_unrefed_page);
918
page_pool_recycle_ring_bulk(struct page_pool * pool,netmem_ref * bulk,u32 bulk_len)919 static void page_pool_recycle_ring_bulk(struct page_pool *pool,
920 netmem_ref *bulk,
921 u32 bulk_len)
922 {
923 bool in_softirq;
924 u32 i;
925
926 /* Bulk produce into ptr_ring page_pool cache */
927 in_softirq = page_pool_producer_lock(pool);
928
929 for (i = 0; i < bulk_len; i++) {
930 if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) {
931 /* ring full */
932 recycle_stat_inc(pool, ring_full);
933 break;
934 }
935 }
936
937 page_pool_producer_unlock(pool, in_softirq);
938 recycle_stat_add(pool, ring, i);
939
940 /* Hopefully all pages were returned into ptr_ring */
941 if (likely(i == bulk_len))
942 return;
943
944 /*
945 * ptr_ring cache is full, free remaining pages outside producer lock
946 * since put_page() with refcnt == 1 can be an expensive operation.
947 */
948 for (; i < bulk_len; i++)
949 page_pool_return_netmem(pool, bulk[i]);
950 }
951
952 /**
953 * page_pool_put_netmem_bulk() - release references on multiple netmems
954 * @data: array holding netmem references
955 * @count: number of entries in @data
956 *
957 * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring
958 * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk()
959 * will release leftover netmems to the memory provider.
960 * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx
961 * completion loop for the XDP_REDIRECT use case.
962 *
963 * Please note the caller must not use data area after running
964 * page_pool_put_netmem_bulk(), as this function overwrites it.
965 */
page_pool_put_netmem_bulk(netmem_ref * data,u32 count)966 void page_pool_put_netmem_bulk(netmem_ref *data, u32 count)
967 {
968 u32 bulk_len = 0;
969
970 for (u32 i = 0; i < count; i++) {
971 netmem_ref netmem = netmem_compound_head(data[i]);
972
973 if (page_pool_unref_and_test(netmem))
974 data[bulk_len++] = netmem;
975 }
976
977 count = bulk_len;
978 while (count) {
979 netmem_ref bulk[XDP_BULK_QUEUE_SIZE];
980 struct page_pool *pool = NULL;
981 bool allow_direct;
982 u32 foreign = 0;
983
984 bulk_len = 0;
985
986 for (u32 i = 0; i < count; i++) {
987 struct page_pool *netmem_pp;
988 netmem_ref netmem = data[i];
989
990 netmem_pp = netmem_get_pp(netmem);
991 if (unlikely(!pool)) {
992 pool = netmem_pp;
993 allow_direct = page_pool_napi_local(pool);
994 } else if (netmem_pp != pool) {
995 /*
996 * If the netmem belongs to a different
997 * page_pool, save it for another round.
998 */
999 data[foreign++] = netmem;
1000 continue;
1001 }
1002
1003 netmem = __page_pool_put_page(pool, netmem, -1,
1004 allow_direct);
1005 /* Approved for bulk recycling in ptr_ring cache */
1006 if (netmem)
1007 bulk[bulk_len++] = netmem;
1008 }
1009
1010 if (bulk_len)
1011 page_pool_recycle_ring_bulk(pool, bulk, bulk_len);
1012
1013 count = foreign;
1014 }
1015 }
1016 EXPORT_SYMBOL(page_pool_put_netmem_bulk);
1017
page_pool_drain_frag(struct page_pool * pool,netmem_ref netmem)1018 static netmem_ref page_pool_drain_frag(struct page_pool *pool,
1019 netmem_ref netmem)
1020 {
1021 long drain_count = BIAS_MAX - pool->frag_users;
1022
1023 /* Some user is still using the page frag */
1024 if (likely(page_pool_unref_netmem(netmem, drain_count)))
1025 return 0;
1026
1027 if (__page_pool_page_can_be_recycled(netmem)) {
1028 page_pool_dma_sync_for_device(pool, netmem, -1);
1029 return netmem;
1030 }
1031
1032 page_pool_return_netmem(pool, netmem);
1033 return 0;
1034 }
1035
page_pool_free_frag(struct page_pool * pool)1036 static void page_pool_free_frag(struct page_pool *pool)
1037 {
1038 long drain_count = BIAS_MAX - pool->frag_users;
1039 netmem_ref netmem = pool->frag_page;
1040
1041 pool->frag_page = 0;
1042
1043 if (!netmem || page_pool_unref_netmem(netmem, drain_count))
1044 return;
1045
1046 page_pool_return_netmem(pool, netmem);
1047 }
1048
page_pool_alloc_frag_netmem(struct page_pool * pool,unsigned int * offset,unsigned int size,gfp_t gfp)1049 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool,
1050 unsigned int *offset, unsigned int size,
1051 gfp_t gfp)
1052 {
1053 unsigned int max_size = PAGE_SIZE << pool->p.order;
1054 netmem_ref netmem = pool->frag_page;
1055
1056 if (WARN_ON(size > max_size))
1057 return 0;
1058
1059 size = ALIGN(size, dma_get_cache_alignment());
1060 *offset = pool->frag_offset;
1061
1062 if (netmem && *offset + size > max_size) {
1063 netmem = page_pool_drain_frag(pool, netmem);
1064 if (netmem) {
1065 recycle_stat_inc(pool, cached);
1066 alloc_stat_inc(pool, fast);
1067 goto frag_reset;
1068 }
1069 }
1070
1071 if (!netmem) {
1072 netmem = page_pool_alloc_netmems(pool, gfp);
1073 if (unlikely(!netmem)) {
1074 pool->frag_page = 0;
1075 return 0;
1076 }
1077
1078 pool->frag_page = netmem;
1079
1080 frag_reset:
1081 pool->frag_users = 1;
1082 *offset = 0;
1083 pool->frag_offset = size;
1084 page_pool_fragment_netmem(netmem, BIAS_MAX);
1085 return netmem;
1086 }
1087
1088 pool->frag_users++;
1089 pool->frag_offset = *offset + size;
1090 return netmem;
1091 }
1092 EXPORT_SYMBOL(page_pool_alloc_frag_netmem);
1093
page_pool_alloc_frag(struct page_pool * pool,unsigned int * offset,unsigned int size,gfp_t gfp)1094 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset,
1095 unsigned int size, gfp_t gfp)
1096 {
1097 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size,
1098 gfp));
1099 }
1100 EXPORT_SYMBOL(page_pool_alloc_frag);
1101
page_pool_empty_ring(struct page_pool * pool)1102 static void page_pool_empty_ring(struct page_pool *pool)
1103 {
1104 netmem_ref netmem;
1105
1106 /* Empty recycle ring */
1107 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) {
1108 /* Verify the refcnt invariant of cached pages */
1109 if (!(netmem_ref_count(netmem) == 1))
1110 pr_crit("%s() page_pool refcnt %d violation\n",
1111 __func__, netmem_ref_count(netmem));
1112
1113 page_pool_return_netmem(pool, netmem);
1114 }
1115 }
1116
__page_pool_destroy(struct page_pool * pool)1117 static void __page_pool_destroy(struct page_pool *pool)
1118 {
1119 if (pool->disconnect)
1120 pool->disconnect(pool);
1121
1122 page_pool_unlist(pool);
1123 page_pool_uninit(pool);
1124
1125 if (pool->mp_ops) {
1126 pool->mp_ops->destroy(pool);
1127 static_branch_dec(&page_pool_mem_providers);
1128 }
1129
1130 kfree(pool);
1131 }
1132
page_pool_empty_alloc_cache_once(struct page_pool * pool)1133 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
1134 {
1135 netmem_ref netmem;
1136
1137 if (pool->destroy_cnt)
1138 return;
1139
1140 /* Empty alloc cache, assume caller made sure this is
1141 * no-longer in use, and page_pool_alloc_pages() cannot be
1142 * call concurrently.
1143 */
1144 while (pool->alloc.count) {
1145 netmem = pool->alloc.cache[--pool->alloc.count];
1146 page_pool_return_netmem(pool, netmem);
1147 }
1148 }
1149
page_pool_scrub(struct page_pool * pool)1150 static void page_pool_scrub(struct page_pool *pool)
1151 {
1152 unsigned long id;
1153 void *ptr;
1154
1155 page_pool_empty_alloc_cache_once(pool);
1156 if (!pool->destroy_cnt++ && pool->dma_map) {
1157 if (pool->dma_sync) {
1158 /* Disable page_pool_dma_sync_for_device() */
1159 pool->dma_sync = false;
1160
1161 /* Make sure all concurrent returns that may see the old
1162 * value of dma_sync (and thus perform a sync) have
1163 * finished before doing the unmapping below. Skip the
1164 * wait if the device doesn't actually need syncing, or
1165 * if there are no outstanding mapped pages.
1166 */
1167 if (dma_dev_need_sync(pool->p.dev) &&
1168 !xa_empty(&pool->dma_mapped))
1169 synchronize_net();
1170 }
1171
1172 xa_for_each(&pool->dma_mapped, id, ptr)
1173 __page_pool_release_netmem_dma(pool, page_to_netmem((struct page *)ptr));
1174 }
1175
1176 /* No more consumers should exist, but producers could still
1177 * be in-flight.
1178 */
1179 page_pool_empty_ring(pool);
1180 }
1181
page_pool_release(struct page_pool * pool)1182 static int page_pool_release(struct page_pool *pool)
1183 {
1184 bool in_softirq;
1185 int inflight;
1186
1187 page_pool_scrub(pool);
1188 inflight = page_pool_inflight(pool, true);
1189 /* Acquire producer lock to make sure producers have exited. */
1190 in_softirq = page_pool_producer_lock(pool);
1191 page_pool_producer_unlock(pool, in_softirq);
1192 if (!inflight)
1193 __page_pool_destroy(pool);
1194
1195 return inflight;
1196 }
1197
page_pool_release_retry(struct work_struct * wq)1198 static void page_pool_release_retry(struct work_struct *wq)
1199 {
1200 struct delayed_work *dwq = to_delayed_work(wq);
1201 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
1202 void *netdev;
1203 int inflight;
1204
1205 inflight = page_pool_release(pool);
1206 /* In rare cases, a driver bug may cause inflight to go negative.
1207 * Don't reschedule release if inflight is 0 or negative.
1208 * - If 0, the page_pool has been destroyed
1209 * - if negative, we will never recover
1210 * in both cases no reschedule is necessary.
1211 */
1212 if (inflight <= 0)
1213 return;
1214
1215 /* Periodic warning for page pools the user can't see */
1216 netdev = READ_ONCE(pool->slow.netdev);
1217 if (time_after_eq(jiffies, pool->defer_warn) &&
1218 (!netdev || netdev == NET_PTR_POISON)) {
1219 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
1220
1221 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
1222 __func__, pool->user.id, inflight, sec);
1223 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1224 }
1225
1226 /* Still not ready to be disconnected, retry later */
1227 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1228 }
1229
page_pool_use_xdp_mem(struct page_pool * pool,void (* disconnect)(void *),const struct xdp_mem_info * mem)1230 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
1231 const struct xdp_mem_info *mem)
1232 {
1233 refcount_inc(&pool->user_cnt);
1234 pool->disconnect = disconnect;
1235 pool->xdp_mem_id = mem->id;
1236 }
1237
1238 /**
1239 * page_pool_enable_direct_recycling() - mark page pool as owned by NAPI
1240 * @pool: page pool to modify
1241 * @napi: NAPI instance to associate the page pool with
1242 *
1243 * Associate a page pool with a NAPI instance for lockless page recycling.
1244 * This is useful when a new page pool has to be added to a NAPI instance
1245 * without disabling that NAPI instance, to mark the point at which control
1246 * path "hands over" the page pool to the NAPI instance. In most cases driver
1247 * can simply set the @napi field in struct page_pool_params, and does not
1248 * have to call this helper.
1249 *
1250 * The function is idempotent, but does not implement any refcounting.
1251 * Single page_pool_disable_direct_recycling() will disable recycling,
1252 * no matter how many times enable was called.
1253 */
page_pool_enable_direct_recycling(struct page_pool * pool,struct napi_struct * napi)1254 void page_pool_enable_direct_recycling(struct page_pool *pool,
1255 struct napi_struct *napi)
1256 {
1257 if (READ_ONCE(pool->p.napi) == napi)
1258 return;
1259 WARN_ON(!napi || pool->p.napi);
1260
1261 mutex_lock(&page_pools_lock);
1262 WRITE_ONCE(pool->p.napi, napi);
1263 mutex_unlock(&page_pools_lock);
1264 }
1265 EXPORT_SYMBOL(page_pool_enable_direct_recycling);
1266
page_pool_disable_direct_recycling(struct page_pool * pool)1267 void page_pool_disable_direct_recycling(struct page_pool *pool)
1268 {
1269 /* Disable direct recycling based on pool->cpuid.
1270 * Paired with READ_ONCE() in page_pool_napi_local().
1271 */
1272 WRITE_ONCE(pool->cpuid, -1);
1273
1274 if (!pool->p.napi)
1275 return;
1276
1277 napi_assert_will_not_race(pool->p.napi);
1278
1279 mutex_lock(&page_pools_lock);
1280 WRITE_ONCE(pool->p.napi, NULL);
1281 mutex_unlock(&page_pools_lock);
1282 }
1283 EXPORT_SYMBOL(page_pool_disable_direct_recycling);
1284
page_pool_destroy(struct page_pool * pool)1285 void page_pool_destroy(struct page_pool *pool)
1286 {
1287 if (!pool)
1288 return;
1289
1290 if (!page_pool_put(pool))
1291 return;
1292
1293 page_pool_disable_direct_recycling(pool);
1294 page_pool_free_frag(pool);
1295
1296 if (!page_pool_release(pool))
1297 return;
1298
1299 page_pool_detached(pool);
1300 pool->defer_start = jiffies;
1301 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1302
1303 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
1304 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1305 }
1306 EXPORT_SYMBOL(page_pool_destroy);
1307
1308 /* Caller must provide appropriate safe context, e.g. NAPI. */
page_pool_update_nid(struct page_pool * pool,int new_nid)1309 void page_pool_update_nid(struct page_pool *pool, int new_nid)
1310 {
1311 netmem_ref netmem;
1312
1313 trace_page_pool_update_nid(pool, new_nid);
1314 pool->p.nid = new_nid;
1315
1316 /* Flush pool alloc cache, as refill will check NUMA node */
1317 while (pool->alloc.count) {
1318 netmem = pool->alloc.cache[--pool->alloc.count];
1319 page_pool_return_netmem(pool, netmem);
1320 }
1321 }
1322 EXPORT_SYMBOL(page_pool_update_nid);
1323
net_mp_niov_set_dma_addr(struct net_iov * niov,dma_addr_t addr)1324 bool net_mp_niov_set_dma_addr(struct net_iov *niov, dma_addr_t addr)
1325 {
1326 return page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov), addr);
1327 }
1328
1329 /* Associate a niov with a page pool. Should follow with a matching
1330 * net_mp_niov_clear_page_pool()
1331 */
net_mp_niov_set_page_pool(struct page_pool * pool,struct net_iov * niov)1332 void net_mp_niov_set_page_pool(struct page_pool *pool, struct net_iov *niov)
1333 {
1334 netmem_ref netmem = net_iov_to_netmem(niov);
1335
1336 page_pool_set_pp_info(pool, netmem);
1337
1338 pool->pages_state_hold_cnt++;
1339 trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt);
1340 }
1341
1342 /* Disassociate a niov from a page pool. Should only be used in the
1343 * ->release_netmem() path.
1344 */
net_mp_niov_clear_page_pool(struct net_iov * niov)1345 void net_mp_niov_clear_page_pool(struct net_iov *niov)
1346 {
1347 netmem_ref netmem = net_iov_to_netmem(niov);
1348
1349 page_pool_clear_pp_info(netmem);
1350 }
1351