xref: /linux/arch/arm/mach-omap2/omap-headsmp.S (revision 0898782247ae533d1f4e47a06bc5d4870931b284)
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Secondary CPU startup routine source file.
4 *
5 * Copyright (C) 2009-2014 Texas Instruments, Inc.
6 *
7 * Author:
8 *      Santosh Shilimkar <santosh.shilimkar@ti.com>
9 *
10 * Interface functions needed for the SMP. This file is based on arm
11 * realview smp platform.
12 * Copyright (c) 2003 ARM Limited.
13 */
14
15#include <linux/linkage.h>
16#include <linux/init.h>
17#include <asm/assembler.h>
18
19#include "omap44xx.h"
20
21/* Physical address needed since MMU not enabled yet on secondary core */
22#define AUX_CORE_BOOT0_PA			0x48281800
23#define API_HYP_ENTRY				0x102
24
25ENTRY(omap_secondary_startup)
26#ifdef CONFIG_SMP
27	b	secondary_startup
28#else
29/* Should never get here */
30again:	wfi
31	b	again
32#endif
33#ENDPROC(omap_secondary_startup)
34
35/*
36 * OMAP5 specific entry point for secondary CPU to jump from ROM
37 * code.  This routine also provides a holding flag into which
38 * secondary core is held until we're ready for it to initialise.
39 * The primary core will update this flag using a hardware
40 * register AuxCoreBoot0.
41 */
42ENTRY(omap5_secondary_startup)
43wait:	ldr	r2, =AUX_CORE_BOOT0_PA	@ read from AuxCoreBoot0
44	ldr	r0, [r2]
45	mov	r0, r0, lsr #5
46	mrc	p15, 0, r4, c0, c0, 5
47	and	r4, r4, #0x0f
48	cmp	r0, r4
49	bne	wait
50	b	omap_secondary_startup
51ENDPROC(omap5_secondary_startup)
52/*
53 * Same as omap5_secondary_startup except we call into the ROM to
54 * enable HYP mode first.  This is called instead of
55 * omap5_secondary_startup if the primary CPU was put into HYP mode by
56 * the boot loader.
57 */
58	.arch armv7-a
59	.arch_extension sec
60ENTRY(omap5_secondary_hyp_startup)
61wait_2:	ldr	r2, =AUX_CORE_BOOT0_PA	@ read from AuxCoreBoot0
62	ldr	r0, [r2]
63	mov	r0, r0, lsr #5
64	mrc	p15, 0, r4, c0, c0, 5
65	and	r4, r4, #0x0f
66	cmp	r0, r4
67	bne	wait_2
68	ldr	r12, =API_HYP_ENTRY
69	badr	r0, hyp_boot
70	smc	#0
71hyp_boot:
72	b	omap_secondary_startup
73ENDPROC(omap5_secondary_hyp_startup)
74/*
75 * OMAP4 specific entry point for secondary CPU to jump from ROM
76 * code.  This routine also provides a holding flag into which
77 * secondary core is held until we're ready for it to initialise.
78 * The primary core will update this flag using a hardware
79 * register AuxCoreBoot0.
80 */
81ENTRY(omap4_secondary_startup)
82hold:	ldr	r12,=0x103
83	dsb
84	smc	#0			@ read from AuxCoreBoot0
85	mov	r0, r0, lsr #9
86	mrc	p15, 0, r4, c0, c0, 5
87	and	r4, r4, #0x0f
88	cmp	r0, r4
89	bne	hold
90
91	/*
92	 * we've been released from the wait loop,secondary_stack
93	 * should now contain the SVC stack for this core
94	 */
95	b	omap_secondary_startup
96ENDPROC(omap4_secondary_startup)
97
98ENTRY(omap4460_secondary_startup)
99hold_2:	ldr	r12,=0x103
100	dsb
101	smc	#0			@ read from AuxCoreBoot0
102	mov	r0, r0, lsr #9
103	mrc	p15, 0, r4, c0, c0, 5
104	and	r4, r4, #0x0f
105	cmp	r0, r4
106	bne	hold_2
107
108	/*
109	 * GIC distributor control register has changed between
110	 * CortexA9 r1pX and r2pX. The Control Register secure
111	 * banked version is now composed of 2 bits:
112	 * bit 0 == Secure Enable
113	 * bit 1 == Non-Secure Enable
114	 * The Non-Secure banked register has not changed
115	 * Because the ROM Code is based on the r1pX GIC, the CPU1
116	 * GIC restoration will cause a problem to CPU0 Non-Secure SW.
117	 * The workaround must be:
118	 * 1) Before doing the CPU1 wakeup, CPU0 must disable
119	 * the GIC distributor
120	 * 2) CPU1 must re-enable the GIC distributor on
121	 * it's wakeup path.
122	 */
123	ldr	r1, =OMAP44XX_GIC_DIST_BASE
124	ldr	r0, [r1]
125	orr	r0, #1
126	str	r0, [r1]
127
128	/*
129	 * we've been released from the wait loop,secondary_stack
130	 * should now contain the SVC stack for this core
131	 */
132	b	omap_secondary_startup
133ENDPROC(omap4460_secondary_startup)
134