xref: /linux/mm/hmm.c (revision dd91b5e1d6448794c07378d1be12e3261c8769e7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/hmm-dma.h>
14 #include <linux/init.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/mmzone.h>
20 #include <linux/pagemap.h>
21 #include <linux/swapops.h>
22 #include <linux/hugetlb.h>
23 #include <linux/memremap.h>
24 #include <linux/sched/mm.h>
25 #include <linux/jump_label.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/pci-p2pdma.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memory_hotplug.h>
30 
31 #include "internal.h"
32 
33 struct hmm_vma_walk {
34 	struct hmm_range	*range;
35 	unsigned long		last;
36 };
37 
38 enum {
39 	HMM_NEED_FAULT = 1 << 0,
40 	HMM_NEED_WRITE_FAULT = 1 << 1,
41 	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
42 };
43 
44 enum {
45 	/* These flags are carried from input-to-output */
46 	HMM_PFN_INOUT_FLAGS = HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA |
47 			      HMM_PFN_P2PDMA_BUS,
48 };
49 
hmm_pfns_fill(unsigned long addr,unsigned long end,struct hmm_range * range,unsigned long cpu_flags)50 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
51 			 struct hmm_range *range, unsigned long cpu_flags)
52 {
53 	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
54 
55 	for (; addr < end; addr += PAGE_SIZE, i++) {
56 		range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
57 		range->hmm_pfns[i] |= cpu_flags;
58 	}
59 	return 0;
60 }
61 
62 /*
63  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
64  * @addr: range virtual start address (inclusive)
65  * @end: range virtual end address (exclusive)
66  * @required_fault: HMM_NEED_* flags
67  * @walk: mm_walk structure
68  * Return: -EBUSY after page fault, or page fault error
69  *
70  * This function will be called whenever pmd_none() or pte_none() returns true,
71  * or whenever there is no page directory covering the virtual address range.
72  */
hmm_vma_fault(unsigned long addr,unsigned long end,unsigned int required_fault,struct mm_walk * walk)73 static int hmm_vma_fault(unsigned long addr, unsigned long end,
74 			 unsigned int required_fault, struct mm_walk *walk)
75 {
76 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
77 	struct vm_area_struct *vma = walk->vma;
78 	unsigned int fault_flags = FAULT_FLAG_REMOTE;
79 
80 	WARN_ON_ONCE(!required_fault);
81 	hmm_vma_walk->last = addr;
82 
83 	if (required_fault & HMM_NEED_WRITE_FAULT) {
84 		if (!(vma->vm_flags & VM_WRITE))
85 			return -EPERM;
86 		fault_flags |= FAULT_FLAG_WRITE;
87 	}
88 
89 	for (; addr < end; addr += PAGE_SIZE)
90 		if (handle_mm_fault(vma, addr, fault_flags, NULL) &
91 		    VM_FAULT_ERROR)
92 			return -EFAULT;
93 	return -EBUSY;
94 }
95 
hmm_pte_need_fault(const struct hmm_vma_walk * hmm_vma_walk,unsigned long pfn_req_flags,unsigned long cpu_flags)96 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
97 				       unsigned long pfn_req_flags,
98 				       unsigned long cpu_flags)
99 {
100 	struct hmm_range *range = hmm_vma_walk->range;
101 
102 	/*
103 	 * So we not only consider the individual per page request we also
104 	 * consider the default flags requested for the range. The API can
105 	 * be used 2 ways. The first one where the HMM user coalesces
106 	 * multiple page faults into one request and sets flags per pfn for
107 	 * those faults. The second one where the HMM user wants to pre-
108 	 * fault a range with specific flags. For the latter one it is a
109 	 * waste to have the user pre-fill the pfn arrays with a default
110 	 * flags value.
111 	 */
112 	pfn_req_flags &= range->pfn_flags_mask;
113 	pfn_req_flags |= range->default_flags;
114 
115 	/* We aren't ask to do anything ... */
116 	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
117 		return 0;
118 
119 	/* Need to write fault ? */
120 	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
121 	    !(cpu_flags & HMM_PFN_WRITE))
122 		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
123 
124 	/* If CPU page table is not valid then we need to fault */
125 	if (!(cpu_flags & HMM_PFN_VALID))
126 		return HMM_NEED_FAULT;
127 	return 0;
128 }
129 
130 static unsigned int
hmm_range_need_fault(const struct hmm_vma_walk * hmm_vma_walk,const unsigned long hmm_pfns[],unsigned long npages,unsigned long cpu_flags)131 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
132 		     const unsigned long hmm_pfns[], unsigned long npages,
133 		     unsigned long cpu_flags)
134 {
135 	struct hmm_range *range = hmm_vma_walk->range;
136 	unsigned int required_fault = 0;
137 	unsigned long i;
138 
139 	/*
140 	 * If the default flags do not request to fault pages, and the mask does
141 	 * not allow for individual pages to be faulted, then
142 	 * hmm_pte_need_fault() will always return 0.
143 	 */
144 	if (!((range->default_flags | range->pfn_flags_mask) &
145 	      HMM_PFN_REQ_FAULT))
146 		return 0;
147 
148 	for (i = 0; i < npages; ++i) {
149 		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
150 						     cpu_flags);
151 		if (required_fault == HMM_NEED_ALL_BITS)
152 			return required_fault;
153 	}
154 	return required_fault;
155 }
156 
hmm_vma_walk_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)157 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
158 			     __always_unused int depth, struct mm_walk *walk)
159 {
160 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
161 	struct hmm_range *range = hmm_vma_walk->range;
162 	unsigned int required_fault;
163 	unsigned long i, npages;
164 	unsigned long *hmm_pfns;
165 
166 	i = (addr - range->start) >> PAGE_SHIFT;
167 	npages = (end - addr) >> PAGE_SHIFT;
168 	hmm_pfns = &range->hmm_pfns[i];
169 	required_fault =
170 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
171 	if (!walk->vma) {
172 		if (required_fault)
173 			return -EFAULT;
174 		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
175 	}
176 	if (required_fault)
177 		return hmm_vma_fault(addr, end, required_fault, walk);
178 	return hmm_pfns_fill(addr, end, range, 0);
179 }
180 
hmm_pfn_flags_order(unsigned long order)181 static inline unsigned long hmm_pfn_flags_order(unsigned long order)
182 {
183 	return order << HMM_PFN_ORDER_SHIFT;
184 }
185 
pmd_to_hmm_pfn_flags(struct hmm_range * range,pmd_t pmd)186 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
187 						 pmd_t pmd)
188 {
189 	if (pmd_protnone(pmd))
190 		return 0;
191 	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
192 				 HMM_PFN_VALID) |
193 	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
194 }
195 
196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
hmm_vma_handle_pmd(struct mm_walk * walk,unsigned long addr,unsigned long end,unsigned long hmm_pfns[],pmd_t pmd)197 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
198 			      unsigned long end, unsigned long hmm_pfns[],
199 			      pmd_t pmd)
200 {
201 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
202 	struct hmm_range *range = hmm_vma_walk->range;
203 	unsigned long pfn, npages, i;
204 	unsigned int required_fault;
205 	unsigned long cpu_flags;
206 
207 	npages = (end - addr) >> PAGE_SHIFT;
208 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
209 	required_fault =
210 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
211 	if (required_fault)
212 		return hmm_vma_fault(addr, end, required_fault, walk);
213 
214 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
215 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
216 		hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
217 		hmm_pfns[i] |= pfn | cpu_flags;
218 	}
219 	return 0;
220 }
221 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
222 /* stub to allow the code below to compile */
223 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
224 		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
225 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
226 
pte_to_hmm_pfn_flags(struct hmm_range * range,pte_t pte)227 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
228 						 pte_t pte)
229 {
230 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
231 		return 0;
232 	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
233 }
234 
hmm_vma_handle_pte(struct mm_walk * walk,unsigned long addr,unsigned long end,pmd_t * pmdp,pte_t * ptep,unsigned long * hmm_pfn)235 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
236 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
237 			      unsigned long *hmm_pfn)
238 {
239 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
240 	struct hmm_range *range = hmm_vma_walk->range;
241 	unsigned int required_fault;
242 	unsigned long cpu_flags;
243 	pte_t pte = ptep_get(ptep);
244 	uint64_t pfn_req_flags = *hmm_pfn;
245 	uint64_t new_pfn_flags = 0;
246 
247 	if (pte_none_mostly(pte)) {
248 		required_fault =
249 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
250 		if (required_fault)
251 			goto fault;
252 		goto out;
253 	}
254 
255 	if (!pte_present(pte)) {
256 		swp_entry_t entry = pte_to_swp_entry(pte);
257 
258 		/*
259 		 * Don't fault in device private pages owned by the caller,
260 		 * just report the PFN.
261 		 */
262 		if (is_device_private_entry(entry) &&
263 		    page_pgmap(pfn_swap_entry_to_page(entry))->owner ==
264 		    range->dev_private_owner) {
265 			cpu_flags = HMM_PFN_VALID;
266 			if (is_writable_device_private_entry(entry))
267 				cpu_flags |= HMM_PFN_WRITE;
268 			new_pfn_flags = swp_offset_pfn(entry) | cpu_flags;
269 			goto out;
270 		}
271 
272 		required_fault =
273 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
274 		if (!required_fault)
275 			goto out;
276 
277 		if (!non_swap_entry(entry))
278 			goto fault;
279 
280 		if (is_device_private_entry(entry))
281 			goto fault;
282 
283 		if (is_device_exclusive_entry(entry))
284 			goto fault;
285 
286 		if (is_migration_entry(entry)) {
287 			pte_unmap(ptep);
288 			hmm_vma_walk->last = addr;
289 			migration_entry_wait(walk->mm, pmdp, addr);
290 			return -EBUSY;
291 		}
292 
293 		/* Report error for everything else */
294 		pte_unmap(ptep);
295 		return -EFAULT;
296 	}
297 
298 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
299 	required_fault =
300 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
301 	if (required_fault)
302 		goto fault;
303 
304 	/*
305 	 * Bypass devmap pte such as DAX page when all pfn requested
306 	 * flags(pfn_req_flags) are fulfilled.
307 	 * Since each architecture defines a struct page for the zero page, just
308 	 * fall through and treat it like a normal page.
309 	 */
310 	if (!vm_normal_page(walk->vma, addr, pte) &&
311 	    !pte_devmap(pte) &&
312 	    !is_zero_pfn(pte_pfn(pte))) {
313 		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
314 			pte_unmap(ptep);
315 			return -EFAULT;
316 		}
317 		new_pfn_flags = HMM_PFN_ERROR;
318 		goto out;
319 	}
320 
321 	new_pfn_flags = pte_pfn(pte) | cpu_flags;
322 out:
323 	*hmm_pfn = (*hmm_pfn & HMM_PFN_INOUT_FLAGS) | new_pfn_flags;
324 	return 0;
325 
326 fault:
327 	pte_unmap(ptep);
328 	/* Fault any virtual address we were asked to fault */
329 	return hmm_vma_fault(addr, end, required_fault, walk);
330 }
331 
hmm_vma_walk_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)332 static int hmm_vma_walk_pmd(pmd_t *pmdp,
333 			    unsigned long start,
334 			    unsigned long end,
335 			    struct mm_walk *walk)
336 {
337 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
338 	struct hmm_range *range = hmm_vma_walk->range;
339 	unsigned long *hmm_pfns =
340 		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
341 	unsigned long npages = (end - start) >> PAGE_SHIFT;
342 	unsigned long addr = start;
343 	pte_t *ptep;
344 	pmd_t pmd;
345 
346 again:
347 	pmd = pmdp_get_lockless(pmdp);
348 	if (pmd_none(pmd))
349 		return hmm_vma_walk_hole(start, end, -1, walk);
350 
351 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
352 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
353 			hmm_vma_walk->last = addr;
354 			pmd_migration_entry_wait(walk->mm, pmdp);
355 			return -EBUSY;
356 		}
357 		return hmm_pfns_fill(start, end, range, 0);
358 	}
359 
360 	if (!pmd_present(pmd)) {
361 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
362 			return -EFAULT;
363 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
364 	}
365 
366 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
367 		/*
368 		 * No need to take pmd_lock here, even if some other thread
369 		 * is splitting the huge pmd we will get that event through
370 		 * mmu_notifier callback.
371 		 *
372 		 * So just read pmd value and check again it's a transparent
373 		 * huge or device mapping one and compute corresponding pfn
374 		 * values.
375 		 */
376 		pmd = pmdp_get_lockless(pmdp);
377 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
378 			goto again;
379 
380 		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
381 	}
382 
383 	/*
384 	 * We have handled all the valid cases above ie either none, migration,
385 	 * huge or transparent huge. At this point either it is a valid pmd
386 	 * entry pointing to pte directory or it is a bad pmd that will not
387 	 * recover.
388 	 */
389 	if (pmd_bad(pmd)) {
390 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
391 			return -EFAULT;
392 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
393 	}
394 
395 	ptep = pte_offset_map(pmdp, addr);
396 	if (!ptep)
397 		goto again;
398 	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
399 		int r;
400 
401 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
402 		if (r) {
403 			/* hmm_vma_handle_pte() did pte_unmap() */
404 			return r;
405 		}
406 	}
407 	pte_unmap(ptep - 1);
408 	return 0;
409 }
410 
411 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
412     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_to_hmm_pfn_flags(struct hmm_range * range,pud_t pud)413 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
414 						 pud_t pud)
415 {
416 	if (!pud_present(pud))
417 		return 0;
418 	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
419 				 HMM_PFN_VALID) |
420 	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
421 }
422 
hmm_vma_walk_pud(pud_t * pudp,unsigned long start,unsigned long end,struct mm_walk * walk)423 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
424 		struct mm_walk *walk)
425 {
426 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
427 	struct hmm_range *range = hmm_vma_walk->range;
428 	unsigned long addr = start;
429 	pud_t pud;
430 	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
431 
432 	if (!ptl)
433 		return 0;
434 
435 	/* Normally we don't want to split the huge page */
436 	walk->action = ACTION_CONTINUE;
437 
438 	pud = READ_ONCE(*pudp);
439 	if (!pud_present(pud)) {
440 		spin_unlock(ptl);
441 		return hmm_vma_walk_hole(start, end, -1, walk);
442 	}
443 
444 	if (pud_leaf(pud) && pud_devmap(pud)) {
445 		unsigned long i, npages, pfn;
446 		unsigned int required_fault;
447 		unsigned long *hmm_pfns;
448 		unsigned long cpu_flags;
449 
450 		i = (addr - range->start) >> PAGE_SHIFT;
451 		npages = (end - addr) >> PAGE_SHIFT;
452 		hmm_pfns = &range->hmm_pfns[i];
453 
454 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
455 		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
456 						      npages, cpu_flags);
457 		if (required_fault) {
458 			spin_unlock(ptl);
459 			return hmm_vma_fault(addr, end, required_fault, walk);
460 		}
461 
462 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
463 		for (i = 0; i < npages; ++i, ++pfn) {
464 			hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
465 			hmm_pfns[i] |= pfn | cpu_flags;
466 		}
467 		goto out_unlock;
468 	}
469 
470 	/* Ask for the PUD to be split */
471 	walk->action = ACTION_SUBTREE;
472 
473 out_unlock:
474 	spin_unlock(ptl);
475 	return 0;
476 }
477 #else
478 #define hmm_vma_walk_pud	NULL
479 #endif
480 
481 #ifdef CONFIG_HUGETLB_PAGE
hmm_vma_walk_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long start,unsigned long end,struct mm_walk * walk)482 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
483 				      unsigned long start, unsigned long end,
484 				      struct mm_walk *walk)
485 {
486 	unsigned long addr = start, i, pfn;
487 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
488 	struct hmm_range *range = hmm_vma_walk->range;
489 	struct vm_area_struct *vma = walk->vma;
490 	unsigned int required_fault;
491 	unsigned long pfn_req_flags;
492 	unsigned long cpu_flags;
493 	spinlock_t *ptl;
494 	pte_t entry;
495 
496 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
497 	entry = huge_ptep_get(walk->mm, addr, pte);
498 
499 	i = (start - range->start) >> PAGE_SHIFT;
500 	pfn_req_flags = range->hmm_pfns[i];
501 	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
502 		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
503 	required_fault =
504 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
505 	if (required_fault) {
506 		int ret;
507 
508 		spin_unlock(ptl);
509 		hugetlb_vma_unlock_read(vma);
510 		/*
511 		 * Avoid deadlock: drop the vma lock before calling
512 		 * hmm_vma_fault(), which will itself potentially take and
513 		 * drop the vma lock. This is also correct from a
514 		 * protection point of view, because there is no further
515 		 * use here of either pte or ptl after dropping the vma
516 		 * lock.
517 		 */
518 		ret = hmm_vma_fault(addr, end, required_fault, walk);
519 		hugetlb_vma_lock_read(vma);
520 		return ret;
521 	}
522 
523 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
524 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++) {
525 		range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
526 		range->hmm_pfns[i] |= pfn | cpu_flags;
527 	}
528 
529 	spin_unlock(ptl);
530 	return 0;
531 }
532 #else
533 #define hmm_vma_walk_hugetlb_entry NULL
534 #endif /* CONFIG_HUGETLB_PAGE */
535 
hmm_vma_walk_test(unsigned long start,unsigned long end,struct mm_walk * walk)536 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
537 			     struct mm_walk *walk)
538 {
539 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
540 	struct hmm_range *range = hmm_vma_walk->range;
541 	struct vm_area_struct *vma = walk->vma;
542 
543 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
544 	    vma->vm_flags & VM_READ)
545 		return 0;
546 
547 	/*
548 	 * vma ranges that don't have struct page backing them or map I/O
549 	 * devices directly cannot be handled by hmm_range_fault().
550 	 *
551 	 * If the vma does not allow read access, then assume that it does not
552 	 * allow write access either. HMM does not support architectures that
553 	 * allow write without read.
554 	 *
555 	 * If a fault is requested for an unsupported range then it is a hard
556 	 * failure.
557 	 */
558 	if (hmm_range_need_fault(hmm_vma_walk,
559 				 range->hmm_pfns +
560 					 ((start - range->start) >> PAGE_SHIFT),
561 				 (end - start) >> PAGE_SHIFT, 0))
562 		return -EFAULT;
563 
564 	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
565 
566 	/* Skip this vma and continue processing the next vma. */
567 	return 1;
568 }
569 
570 static const struct mm_walk_ops hmm_walk_ops = {
571 	.pud_entry	= hmm_vma_walk_pud,
572 	.pmd_entry	= hmm_vma_walk_pmd,
573 	.pte_hole	= hmm_vma_walk_hole,
574 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
575 	.test_walk	= hmm_vma_walk_test,
576 	.walk_lock	= PGWALK_RDLOCK,
577 };
578 
579 /**
580  * hmm_range_fault - try to fault some address in a virtual address range
581  * @range:	argument structure
582  *
583  * Returns 0 on success or one of the following error codes:
584  *
585  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
586  *		(e.g., device file vma).
587  * -ENOMEM:	Out of memory.
588  * -EPERM:	Invalid permission (e.g., asking for write and range is read
589  *		only).
590  * -EBUSY:	The range has been invalidated and the caller needs to wait for
591  *		the invalidation to finish.
592  * -EFAULT:     A page was requested to be valid and could not be made valid
593  *              ie it has no backing VMA or it is illegal to access
594  *
595  * This is similar to get_user_pages(), except that it can read the page tables
596  * without mutating them (ie causing faults).
597  */
hmm_range_fault(struct hmm_range * range)598 int hmm_range_fault(struct hmm_range *range)
599 {
600 	struct hmm_vma_walk hmm_vma_walk = {
601 		.range = range,
602 		.last = range->start,
603 	};
604 	struct mm_struct *mm = range->notifier->mm;
605 	int ret;
606 
607 	mmap_assert_locked(mm);
608 
609 	do {
610 		/* If range is no longer valid force retry. */
611 		if (mmu_interval_check_retry(range->notifier,
612 					     range->notifier_seq))
613 			return -EBUSY;
614 		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
615 				      &hmm_walk_ops, &hmm_vma_walk);
616 		/*
617 		 * When -EBUSY is returned the loop restarts with
618 		 * hmm_vma_walk.last set to an address that has not been stored
619 		 * in pfns. All entries < last in the pfn array are set to their
620 		 * output, and all >= are still at their input values.
621 		 */
622 	} while (ret == -EBUSY);
623 	return ret;
624 }
625 EXPORT_SYMBOL(hmm_range_fault);
626 
627 /**
628  * hmm_dma_map_alloc - Allocate HMM map structure
629  * @dev: device to allocate structure for
630  * @map: HMM map to allocate
631  * @nr_entries: number of entries in the map
632  * @dma_entry_size: size of the DMA entry in the map
633  *
634  * Allocate the HMM map structure and all the lists it contains.
635  * Return 0 on success, -ENOMEM on failure.
636  */
hmm_dma_map_alloc(struct device * dev,struct hmm_dma_map * map,size_t nr_entries,size_t dma_entry_size)637 int hmm_dma_map_alloc(struct device *dev, struct hmm_dma_map *map,
638 		      size_t nr_entries, size_t dma_entry_size)
639 {
640 	bool dma_need_sync = false;
641 	bool use_iova;
642 
643 	WARN_ON_ONCE(!(nr_entries * PAGE_SIZE / dma_entry_size));
644 
645 	/*
646 	 * The HMM API violates our normal DMA buffer ownership rules and can't
647 	 * transfer buffer ownership.  The dma_addressing_limited() check is a
648 	 * best approximation to ensure no swiotlb buffering happens.
649 	 */
650 #ifdef CONFIG_DMA_NEED_SYNC
651 	dma_need_sync = !dev->dma_skip_sync;
652 #endif /* CONFIG_DMA_NEED_SYNC */
653 	if (dma_need_sync || dma_addressing_limited(dev))
654 		return -EOPNOTSUPP;
655 
656 	map->dma_entry_size = dma_entry_size;
657 	map->pfn_list = kvcalloc(nr_entries, sizeof(*map->pfn_list),
658 				 GFP_KERNEL | __GFP_NOWARN);
659 	if (!map->pfn_list)
660 		return -ENOMEM;
661 
662 	use_iova = dma_iova_try_alloc(dev, &map->state, 0,
663 			nr_entries * PAGE_SIZE);
664 	if (!use_iova && dma_need_unmap(dev)) {
665 		map->dma_list = kvcalloc(nr_entries, sizeof(*map->dma_list),
666 					 GFP_KERNEL | __GFP_NOWARN);
667 		if (!map->dma_list)
668 			goto err_dma;
669 	}
670 	return 0;
671 
672 err_dma:
673 	kvfree(map->pfn_list);
674 	return -ENOMEM;
675 }
676 EXPORT_SYMBOL_GPL(hmm_dma_map_alloc);
677 
678 /**
679  * hmm_dma_map_free - iFree HMM map structure
680  * @dev: device to free structure from
681  * @map: HMM map containing the various lists and state
682  *
683  * Free the HMM map structure and all the lists it contains.
684  */
hmm_dma_map_free(struct device * dev,struct hmm_dma_map * map)685 void hmm_dma_map_free(struct device *dev, struct hmm_dma_map *map)
686 {
687 	if (dma_use_iova(&map->state))
688 		dma_iova_free(dev, &map->state);
689 	kvfree(map->pfn_list);
690 	kvfree(map->dma_list);
691 }
692 EXPORT_SYMBOL_GPL(hmm_dma_map_free);
693 
694 /**
695  * hmm_dma_map_pfn - Map a physical HMM page to DMA address
696  * @dev: Device to map the page for
697  * @map: HMM map
698  * @idx: Index into the PFN and dma address arrays
699  * @p2pdma_state: PCI P2P state.
700  *
701  * dma_alloc_iova() allocates IOVA based on the size specified by their use in
702  * iova->size. Call this function after IOVA allocation to link whole @page
703  * to get the DMA address. Note that very first call to this function
704  * will have @offset set to 0 in the IOVA space allocated from
705  * dma_alloc_iova(). For subsequent calls to this function on same @iova,
706  * @offset needs to be advanced by the caller with the size of previous
707  * page that was linked + DMA address returned for the previous page that was
708  * linked by this function.
709  */
hmm_dma_map_pfn(struct device * dev,struct hmm_dma_map * map,size_t idx,struct pci_p2pdma_map_state * p2pdma_state)710 dma_addr_t hmm_dma_map_pfn(struct device *dev, struct hmm_dma_map *map,
711 			   size_t idx,
712 			   struct pci_p2pdma_map_state *p2pdma_state)
713 {
714 	struct dma_iova_state *state = &map->state;
715 	dma_addr_t *dma_addrs = map->dma_list;
716 	unsigned long *pfns = map->pfn_list;
717 	struct page *page = hmm_pfn_to_page(pfns[idx]);
718 	phys_addr_t paddr = hmm_pfn_to_phys(pfns[idx]);
719 	size_t offset = idx * map->dma_entry_size;
720 	unsigned long attrs = 0;
721 	dma_addr_t dma_addr;
722 	int ret;
723 
724 	if ((pfns[idx] & HMM_PFN_DMA_MAPPED) &&
725 	    !(pfns[idx] & HMM_PFN_P2PDMA_BUS)) {
726 		/*
727 		 * We are in this flow when there is a need to resync flags,
728 		 * for example when page was already linked in prefetch call
729 		 * with READ flag and now we need to add WRITE flag
730 		 *
731 		 * This page was already programmed to HW and we don't want/need
732 		 * to unlink and link it again just to resync flags.
733 		 */
734 		if (dma_use_iova(state))
735 			return state->addr + offset;
736 
737 		/*
738 		 * Without dma_need_unmap, the dma_addrs array is NULL, thus we
739 		 * need to regenerate the address below even if there already
740 		 * was a mapping. But !dma_need_unmap implies that the
741 		 * mapping stateless, so this is fine.
742 		 */
743 		if (dma_need_unmap(dev))
744 			return dma_addrs[idx];
745 
746 		/* Continue to remapping */
747 	}
748 
749 	switch (pci_p2pdma_state(p2pdma_state, dev, page)) {
750 	case PCI_P2PDMA_MAP_NONE:
751 		break;
752 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
753 		attrs |= DMA_ATTR_SKIP_CPU_SYNC;
754 		pfns[idx] |= HMM_PFN_P2PDMA;
755 		break;
756 	case PCI_P2PDMA_MAP_BUS_ADDR:
757 		pfns[idx] |= HMM_PFN_P2PDMA_BUS | HMM_PFN_DMA_MAPPED;
758 		return pci_p2pdma_bus_addr_map(p2pdma_state, paddr);
759 	default:
760 		return DMA_MAPPING_ERROR;
761 	}
762 
763 	if (dma_use_iova(state)) {
764 		ret = dma_iova_link(dev, state, paddr, offset,
765 				    map->dma_entry_size, DMA_BIDIRECTIONAL,
766 				    attrs);
767 		if (ret)
768 			goto error;
769 
770 		ret = dma_iova_sync(dev, state, offset, map->dma_entry_size);
771 		if (ret) {
772 			dma_iova_unlink(dev, state, offset, map->dma_entry_size,
773 					DMA_BIDIRECTIONAL, attrs);
774 			goto error;
775 		}
776 
777 		dma_addr = state->addr + offset;
778 	} else {
779 		if (WARN_ON_ONCE(dma_need_unmap(dev) && !dma_addrs))
780 			goto error;
781 
782 		dma_addr = dma_map_page(dev, page, 0, map->dma_entry_size,
783 					DMA_BIDIRECTIONAL);
784 		if (dma_mapping_error(dev, dma_addr))
785 			goto error;
786 
787 		if (dma_need_unmap(dev))
788 			dma_addrs[idx] = dma_addr;
789 	}
790 	pfns[idx] |= HMM_PFN_DMA_MAPPED;
791 	return dma_addr;
792 error:
793 	pfns[idx] &= ~HMM_PFN_P2PDMA;
794 	return DMA_MAPPING_ERROR;
795 
796 }
797 EXPORT_SYMBOL_GPL(hmm_dma_map_pfn);
798 
799 /**
800  * hmm_dma_unmap_pfn - Unmap a physical HMM page from DMA address
801  * @dev: Device to unmap the page from
802  * @map: HMM map
803  * @idx: Index of the PFN to unmap
804  *
805  * Returns true if the PFN was mapped and has been unmapped, false otherwise.
806  */
hmm_dma_unmap_pfn(struct device * dev,struct hmm_dma_map * map,size_t idx)807 bool hmm_dma_unmap_pfn(struct device *dev, struct hmm_dma_map *map, size_t idx)
808 {
809 	const unsigned long valid_dma = HMM_PFN_VALID | HMM_PFN_DMA_MAPPED;
810 	struct dma_iova_state *state = &map->state;
811 	dma_addr_t *dma_addrs = map->dma_list;
812 	unsigned long *pfns = map->pfn_list;
813 	unsigned long attrs = 0;
814 
815 	if ((pfns[idx] & valid_dma) != valid_dma)
816 		return false;
817 
818 	if (pfns[idx] & HMM_PFN_P2PDMA_BUS)
819 		; /* no need to unmap bus address P2P mappings */
820 	else if (dma_use_iova(state)) {
821 		if (pfns[idx] & HMM_PFN_P2PDMA)
822 			attrs |= DMA_ATTR_SKIP_CPU_SYNC;
823 		dma_iova_unlink(dev, state, idx * map->dma_entry_size,
824 				map->dma_entry_size, DMA_BIDIRECTIONAL, attrs);
825 	} else if (dma_need_unmap(dev))
826 		dma_unmap_page(dev, dma_addrs[idx], map->dma_entry_size,
827 			       DMA_BIDIRECTIONAL);
828 
829 	pfns[idx] &=
830 		~(HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | HMM_PFN_P2PDMA_BUS);
831 	return true;
832 }
833 EXPORT_SYMBOL_GPL(hmm_dma_unmap_pfn);
834