xref: /linux/include/linux/rculist.h (revision 100ceb4817a2ac650e29f107cf97161ce3e2289a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RCULIST_H
3 #define _LINUX_RCULIST_H
4 
5 #ifdef __KERNEL__
6 
7 /*
8  * RCU-protected list version
9  */
10 #include <linux/list.h>
11 #include <linux/rcupdate.h>
12 
13 /*
14  * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
15  * @list: list to be initialized
16  *
17  * You should instead use INIT_LIST_HEAD() for normal initialization and
18  * cleanup tasks, when readers have no access to the list being initialized.
19  * However, if the list being initialized is visible to readers, you
20  * need to keep the compiler from being too mischievous.
21  */
INIT_LIST_HEAD_RCU(struct list_head * list)22 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
23 {
24 	WRITE_ONCE(list->next, list);
25 	WRITE_ONCE(list->prev, list);
26 }
27 
28 /*
29  * return the ->next pointer of a list_head in an rcu safe
30  * way, we must not access it directly
31  */
32 #define list_next_rcu(list)	(*((struct list_head __rcu **)(&(list)->next)))
33 /*
34  * Return the ->prev pointer of a list_head in an rcu safe way. Don't
35  * access it directly.
36  *
37  * Any list traversed with list_bidir_prev_rcu() must never use
38  * list_del_rcu().  Doing so will poison the ->prev pointer that
39  * list_bidir_prev_rcu() relies on, which will result in segfaults.
40  * To prevent these segfaults, use list_bidir_del_rcu() instead
41  * of list_del_rcu().
42  */
43 #define list_bidir_prev_rcu(list) (*((struct list_head __rcu **)(&(list)->prev)))
44 
45 /**
46  * list_tail_rcu - returns the prev pointer of the head of the list
47  * @head: the head of the list
48  *
49  * Note: This should only be used with the list header, and even then
50  * only if list_del() and similar primitives are not also used on the
51  * list header.
52  */
53 #define list_tail_rcu(head)	(*((struct list_head __rcu **)(&(head)->prev)))
54 
55 /*
56  * Check during list traversal that we are within an RCU reader
57  */
58 
59 #define check_arg_count_one(dummy)
60 
61 #ifdef CONFIG_PROVE_RCU_LIST
62 #define __list_check_rcu(dummy, cond, extra...)				\
63 	({								\
64 	check_arg_count_one(extra);					\
65 	RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(),		\
66 			 "RCU-list traversed in non-reader section!");	\
67 	})
68 
69 #define __list_check_srcu(cond)					 \
70 	({								 \
71 	RCU_LOCKDEP_WARN(!(cond),					 \
72 		"RCU-list traversed without holding the required lock!");\
73 	})
74 #else
75 #define __list_check_rcu(dummy, cond, extra...)				\
76 	({ check_arg_count_one(extra); })
77 
78 #define __list_check_srcu(cond) ({ })
79 #endif
80 
81 /*
82  * Insert a new entry between two known consecutive entries.
83  *
84  * This is only for internal list manipulation where we know
85  * the prev/next entries already!
86  */
__list_add_rcu(struct list_head * new,struct list_head * prev,struct list_head * next)87 static inline void __list_add_rcu(struct list_head *new,
88 		struct list_head *prev, struct list_head *next)
89 {
90 	if (!__list_add_valid(new, prev, next))
91 		return;
92 
93 	new->next = next;
94 	new->prev = prev;
95 	rcu_assign_pointer(list_next_rcu(prev), new);
96 	next->prev = new;
97 }
98 
99 /**
100  * list_add_rcu - add a new entry to rcu-protected list
101  * @new: new entry to be added
102  * @head: list head to add it after
103  *
104  * Insert a new entry after the specified head.
105  * This is good for implementing stacks.
106  *
107  * The caller must take whatever precautions are necessary
108  * (such as holding appropriate locks) to avoid racing
109  * with another list-mutation primitive, such as list_add_rcu()
110  * or list_del_rcu(), running on this same list.
111  * However, it is perfectly legal to run concurrently with
112  * the _rcu list-traversal primitives, such as
113  * list_for_each_entry_rcu().
114  */
list_add_rcu(struct list_head * new,struct list_head * head)115 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
116 {
117 	__list_add_rcu(new, head, head->next);
118 }
119 
120 /**
121  * list_add_tail_rcu - add a new entry to rcu-protected list
122  * @new: new entry to be added
123  * @head: list head to add it before
124  *
125  * Insert a new entry before the specified head.
126  * This is useful for implementing queues.
127  *
128  * The caller must take whatever precautions are necessary
129  * (such as holding appropriate locks) to avoid racing
130  * with another list-mutation primitive, such as list_add_tail_rcu()
131  * or list_del_rcu(), running on this same list.
132  * However, it is perfectly legal to run concurrently with
133  * the _rcu list-traversal primitives, such as
134  * list_for_each_entry_rcu().
135  */
list_add_tail_rcu(struct list_head * new,struct list_head * head)136 static inline void list_add_tail_rcu(struct list_head *new,
137 					struct list_head *head)
138 {
139 	__list_add_rcu(new, head->prev, head);
140 }
141 
142 /**
143  * list_del_rcu - deletes entry from list without re-initialization
144  * @entry: the element to delete from the list.
145  *
146  * Note: list_empty() on entry does not return true after this,
147  * the entry is in an undefined state. It is useful for RCU based
148  * lockfree traversal.
149  *
150  * In particular, it means that we can not poison the forward
151  * pointers that may still be used for walking the list.
152  *
153  * The caller must take whatever precautions are necessary
154  * (such as holding appropriate locks) to avoid racing
155  * with another list-mutation primitive, such as list_del_rcu()
156  * or list_add_rcu(), running on this same list.
157  * However, it is perfectly legal to run concurrently with
158  * the _rcu list-traversal primitives, such as
159  * list_for_each_entry_rcu().
160  *
161  * Note that the caller is not permitted to immediately free
162  * the newly deleted entry.  Instead, either synchronize_rcu()
163  * or call_rcu() must be used to defer freeing until an RCU
164  * grace period has elapsed.
165  */
list_del_rcu(struct list_head * entry)166 static inline void list_del_rcu(struct list_head *entry)
167 {
168 	__list_del_entry(entry);
169 	entry->prev = LIST_POISON2;
170 }
171 
172 /**
173  * list_bidir_del_rcu - deletes entry from list without re-initialization
174  * @entry: the element to delete from the list.
175  *
176  * In contrast to list_del_rcu() doesn't poison the prev pointer thus
177  * allowing backwards traversal via list_bidir_prev_rcu().
178  *
179  * Note: list_empty() on entry does not return true after this because
180  * the entry is in a special undefined state that permits RCU-based
181  * lockfree reverse traversal. In particular this means that we can not
182  * poison the forward and backwards pointers that may still be used for
183  * walking the list.
184  *
185  * The caller must take whatever precautions are necessary (such as
186  * holding appropriate locks) to avoid racing with another list-mutation
187  * primitive, such as list_bidir_del_rcu() or list_add_rcu(), running on
188  * this same list. However, it is perfectly legal to run concurrently
189  * with the _rcu list-traversal primitives, such as
190  * list_for_each_entry_rcu().
191  *
192  * Note that list_del_rcu() and list_bidir_del_rcu() must not be used on
193  * the same list.
194  *
195  * Note that the caller is not permitted to immediately free
196  * the newly deleted entry.  Instead, either synchronize_rcu()
197  * or call_rcu() must be used to defer freeing until an RCU
198  * grace period has elapsed.
199  */
list_bidir_del_rcu(struct list_head * entry)200 static inline void list_bidir_del_rcu(struct list_head *entry)
201 {
202 	__list_del_entry(entry);
203 }
204 
205 /**
206  * hlist_del_init_rcu - deletes entry from hash list with re-initialization
207  * @n: the element to delete from the hash list.
208  *
209  * Note: list_unhashed() on the node return true after this. It is
210  * useful for RCU based read lockfree traversal if the writer side
211  * must know if the list entry is still hashed or already unhashed.
212  *
213  * In particular, it means that we can not poison the forward pointers
214  * that may still be used for walking the hash list and we can only
215  * zero the pprev pointer so list_unhashed() will return true after
216  * this.
217  *
218  * The caller must take whatever precautions are necessary (such as
219  * holding appropriate locks) to avoid racing with another
220  * list-mutation primitive, such as hlist_add_head_rcu() or
221  * hlist_del_rcu(), running on this same list.  However, it is
222  * perfectly legal to run concurrently with the _rcu list-traversal
223  * primitives, such as hlist_for_each_entry_rcu().
224  */
hlist_del_init_rcu(struct hlist_node * n)225 static inline void hlist_del_init_rcu(struct hlist_node *n)
226 {
227 	if (!hlist_unhashed(n)) {
228 		__hlist_del(n);
229 		WRITE_ONCE(n->pprev, NULL);
230 	}
231 }
232 
233 /**
234  * list_replace_rcu - replace old entry by new one
235  * @old : the element to be replaced
236  * @new : the new element to insert
237  *
238  * The @old entry will be replaced with the @new entry atomically from
239  * the perspective of concurrent readers.  It is the caller's responsibility
240  * to synchronize with concurrent updaters, if any.
241  *
242  * Note: @old should not be empty.
243  */
list_replace_rcu(struct list_head * old,struct list_head * new)244 static inline void list_replace_rcu(struct list_head *old,
245 				struct list_head *new)
246 {
247 	new->next = old->next;
248 	new->prev = old->prev;
249 	rcu_assign_pointer(list_next_rcu(new->prev), new);
250 	new->next->prev = new;
251 	old->prev = LIST_POISON2;
252 }
253 
254 /**
255  * __list_splice_init_rcu - join an RCU-protected list into an existing list.
256  * @list:	the RCU-protected list to splice
257  * @prev:	points to the last element of the existing list
258  * @next:	points to the first element of the existing list
259  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
260  *
261  * The list pointed to by @prev and @next can be RCU-read traversed
262  * concurrently with this function.
263  *
264  * Note that this function blocks.
265  *
266  * Important note: the caller must take whatever action is necessary to prevent
267  * any other updates to the existing list.  In principle, it is possible to
268  * modify the list as soon as sync() begins execution. If this sort of thing
269  * becomes necessary, an alternative version based on call_rcu() could be
270  * created.  But only if -really- needed -- there is no shortage of RCU API
271  * members.
272  */
__list_splice_init_rcu(struct list_head * list,struct list_head * prev,struct list_head * next,void (* sync)(void))273 static inline void __list_splice_init_rcu(struct list_head *list,
274 					  struct list_head *prev,
275 					  struct list_head *next,
276 					  void (*sync)(void))
277 {
278 	struct list_head *first = list->next;
279 	struct list_head *last = list->prev;
280 
281 	/*
282 	 * "first" and "last" tracking list, so initialize it.  RCU readers
283 	 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
284 	 * instead of INIT_LIST_HEAD().
285 	 */
286 
287 	INIT_LIST_HEAD_RCU(list);
288 
289 	/*
290 	 * At this point, the list body still points to the source list.
291 	 * Wait for any readers to finish using the list before splicing
292 	 * the list body into the new list.  Any new readers will see
293 	 * an empty list.
294 	 */
295 
296 	sync();
297 	ASSERT_EXCLUSIVE_ACCESS(*first);
298 	ASSERT_EXCLUSIVE_ACCESS(*last);
299 
300 	/*
301 	 * Readers are finished with the source list, so perform splice.
302 	 * The order is important if the new list is global and accessible
303 	 * to concurrent RCU readers.  Note that RCU readers are not
304 	 * permitted to traverse the prev pointers without excluding
305 	 * this function.
306 	 */
307 
308 	last->next = next;
309 	rcu_assign_pointer(list_next_rcu(prev), first);
310 	first->prev = prev;
311 	next->prev = last;
312 }
313 
314 /**
315  * list_splice_init_rcu - splice an RCU-protected list into an existing list,
316  *                        designed for stacks.
317  * @list:	the RCU-protected list to splice
318  * @head:	the place in the existing list to splice the first list into
319  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
320  */
list_splice_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))321 static inline void list_splice_init_rcu(struct list_head *list,
322 					struct list_head *head,
323 					void (*sync)(void))
324 {
325 	if (!list_empty(list))
326 		__list_splice_init_rcu(list, head, head->next, sync);
327 }
328 
329 /**
330  * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
331  *                             list, designed for queues.
332  * @list:	the RCU-protected list to splice
333  * @head:	the place in the existing list to splice the first list into
334  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
335  */
list_splice_tail_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))336 static inline void list_splice_tail_init_rcu(struct list_head *list,
337 					     struct list_head *head,
338 					     void (*sync)(void))
339 {
340 	if (!list_empty(list))
341 		__list_splice_init_rcu(list, head->prev, head, sync);
342 }
343 
344 /**
345  * list_entry_rcu - get the struct for this entry
346  * @ptr:        the &struct list_head pointer.
347  * @type:       the type of the struct this is embedded in.
348  * @member:     the name of the list_head within the struct.
349  *
350  * This primitive may safely run concurrently with the _rcu list-mutation
351  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
352  */
353 #define list_entry_rcu(ptr, type, member) \
354 	container_of(READ_ONCE(ptr), type, member)
355 
356 /*
357  * Where are list_empty_rcu() and list_first_entry_rcu()?
358  *
359  * They do not exist because they would lead to subtle race conditions:
360  *
361  * if (!list_empty_rcu(mylist)) {
362  *	struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
363  *	do_something(bar);
364  * }
365  *
366  * The list might be non-empty when list_empty_rcu() checks it, but it
367  * might have become empty by the time that list_first_entry_rcu() rereads
368  * the ->next pointer, which would result in a SEGV.
369  *
370  * When not using RCU, it is OK for list_first_entry() to re-read that
371  * pointer because both functions should be protected by some lock that
372  * blocks writers.
373  *
374  * When using RCU, list_empty() uses READ_ONCE() to fetch the
375  * RCU-protected ->next pointer and then compares it to the address of the
376  * list head.  However, it neither dereferences this pointer nor provides
377  * this pointer to its caller.  Thus, READ_ONCE() suffices (that is,
378  * rcu_dereference() is not needed), which means that list_empty() can be
379  * used anywhere you would want to use list_empty_rcu().  Just don't
380  * expect anything useful to happen if you do a subsequent lockless
381  * call to list_first_entry_rcu()!!!
382  *
383  * See list_first_or_null_rcu for an alternative.
384  */
385 
386 /**
387  * list_first_or_null_rcu - get the first element from a list
388  * @ptr:        the list head to take the element from.
389  * @type:       the type of the struct this is embedded in.
390  * @member:     the name of the list_head within the struct.
391  *
392  * Note that if the list is empty, it returns NULL.
393  *
394  * This primitive may safely run concurrently with the _rcu list-mutation
395  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
396  */
397 #define list_first_or_null_rcu(ptr, type, member) \
398 ({ \
399 	struct list_head *__ptr = (ptr); \
400 	struct list_head *__next = READ_ONCE(__ptr->next); \
401 	likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
402 })
403 
404 /**
405  * list_next_or_null_rcu - get the next element from a list
406  * @head:	the head for the list.
407  * @ptr:        the list head to take the next element from.
408  * @type:       the type of the struct this is embedded in.
409  * @member:     the name of the list_head within the struct.
410  *
411  * Note that if the ptr is at the end of the list, NULL is returned.
412  *
413  * This primitive may safely run concurrently with the _rcu list-mutation
414  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
415  */
416 #define list_next_or_null_rcu(head, ptr, type, member) \
417 ({ \
418 	struct list_head *__head = (head); \
419 	struct list_head *__ptr = (ptr); \
420 	struct list_head *__next = READ_ONCE(__ptr->next); \
421 	likely(__next != __head) ? list_entry_rcu(__next, type, \
422 						  member) : NULL; \
423 })
424 
425 /**
426  * list_for_each_entry_rcu	-	iterate over rcu list of given type
427  * @pos:	the type * to use as a loop cursor.
428  * @head:	the head for your list.
429  * @member:	the name of the list_head within the struct.
430  * @cond:	optional lockdep expression if called from non-RCU protection.
431  *
432  * This list-traversal primitive may safely run concurrently with
433  * the _rcu list-mutation primitives such as list_add_rcu()
434  * as long as the traversal is guarded by rcu_read_lock().
435  */
436 #define list_for_each_entry_rcu(pos, head, member, cond...)		\
437 	for (__list_check_rcu(dummy, ## cond, 0),			\
438 	     pos = list_entry_rcu((head)->next, typeof(*pos), member);	\
439 		&pos->member != (head);					\
440 		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
441 
442 /**
443  * list_for_each_entry_srcu	-	iterate over rcu list of given type
444  * @pos:	the type * to use as a loop cursor.
445  * @head:	the head for your list.
446  * @member:	the name of the list_head within the struct.
447  * @cond:	lockdep expression for the lock required to traverse the list.
448  *
449  * This list-traversal primitive may safely run concurrently with
450  * the _rcu list-mutation primitives such as list_add_rcu()
451  * as long as the traversal is guarded by srcu_read_lock().
452  * The lockdep expression srcu_read_lock_held() can be passed as the
453  * cond argument from read side.
454  */
455 #define list_for_each_entry_srcu(pos, head, member, cond)		\
456 	for (__list_check_srcu(cond),					\
457 	     pos = list_entry_rcu((head)->next, typeof(*pos), member);	\
458 		&pos->member != (head);					\
459 		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
460 
461 /**
462  * list_entry_lockless - get the struct for this entry
463  * @ptr:        the &struct list_head pointer.
464  * @type:       the type of the struct this is embedded in.
465  * @member:     the name of the list_head within the struct.
466  *
467  * This primitive may safely run concurrently with the _rcu
468  * list-mutation primitives such as list_add_rcu(), but requires some
469  * implicit RCU read-side guarding.  One example is running within a special
470  * exception-time environment where preemption is disabled and where lockdep
471  * cannot be invoked.  Another example is when items are added to the list,
472  * but never deleted.
473  */
474 #define list_entry_lockless(ptr, type, member) \
475 	container_of((typeof(ptr))READ_ONCE(ptr), type, member)
476 
477 /**
478  * list_for_each_entry_lockless - iterate over rcu list of given type
479  * @pos:	the type * to use as a loop cursor.
480  * @head:	the head for your list.
481  * @member:	the name of the list_struct within the struct.
482  *
483  * This primitive may safely run concurrently with the _rcu
484  * list-mutation primitives such as list_add_rcu(), but requires some
485  * implicit RCU read-side guarding.  One example is running within a special
486  * exception-time environment where preemption is disabled and where lockdep
487  * cannot be invoked.  Another example is when items are added to the list,
488  * but never deleted.
489  */
490 #define list_for_each_entry_lockless(pos, head, member) \
491 	for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
492 	     &pos->member != (head); \
493 	     pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
494 
495 /**
496  * list_for_each_entry_continue_rcu - continue iteration over list of given type
497  * @pos:	the type * to use as a loop cursor.
498  * @head:	the head for your list.
499  * @member:	the name of the list_head within the struct.
500  *
501  * Continue to iterate over list of given type, continuing after
502  * the current position which must have been in the list when the RCU read
503  * lock was taken.
504  * This would typically require either that you obtained the node from a
505  * previous walk of the list in the same RCU read-side critical section, or
506  * that you held some sort of non-RCU reference (such as a reference count)
507  * to keep the node alive *and* in the list.
508  *
509  * This iterator is similar to list_for_each_entry_from_rcu() except
510  * this starts after the given position and that one starts at the given
511  * position.
512  */
513 #define list_for_each_entry_continue_rcu(pos, head, member) 		\
514 	for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
515 	     &pos->member != (head);	\
516 	     pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
517 
518 /**
519  * list_for_each_entry_from_rcu - iterate over a list from current point
520  * @pos:	the type * to use as a loop cursor.
521  * @head:	the head for your list.
522  * @member:	the name of the list_node within the struct.
523  *
524  * Iterate over the tail of a list starting from a given position,
525  * which must have been in the list when the RCU read lock was taken.
526  * This would typically require either that you obtained the node from a
527  * previous walk of the list in the same RCU read-side critical section, or
528  * that you held some sort of non-RCU reference (such as a reference count)
529  * to keep the node alive *and* in the list.
530  *
531  * This iterator is similar to list_for_each_entry_continue_rcu() except
532  * this starts from the given position and that one starts from the position
533  * after the given position.
534  */
535 #define list_for_each_entry_from_rcu(pos, head, member)			\
536 	for (; &(pos)->member != (head);					\
537 		pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
538 
539 /**
540  * hlist_del_rcu - deletes entry from hash list without re-initialization
541  * @n: the element to delete from the hash list.
542  *
543  * Note: list_unhashed() on entry does not return true after this,
544  * the entry is in an undefined state. It is useful for RCU based
545  * lockfree traversal.
546  *
547  * In particular, it means that we can not poison the forward
548  * pointers that may still be used for walking the hash list.
549  *
550  * The caller must take whatever precautions are necessary
551  * (such as holding appropriate locks) to avoid racing
552  * with another list-mutation primitive, such as hlist_add_head_rcu()
553  * or hlist_del_rcu(), running on this same list.
554  * However, it is perfectly legal to run concurrently with
555  * the _rcu list-traversal primitives, such as
556  * hlist_for_each_entry().
557  */
hlist_del_rcu(struct hlist_node * n)558 static inline void hlist_del_rcu(struct hlist_node *n)
559 {
560 	__hlist_del(n);
561 	WRITE_ONCE(n->pprev, LIST_POISON2);
562 }
563 
564 /**
565  * hlist_replace_rcu - replace old entry by new one
566  * @old : the element to be replaced
567  * @new : the new element to insert
568  *
569  * The @old entry will be replaced with the @new entry atomically from
570  * the perspective of concurrent readers.  It is the caller's responsibility
571  * to synchronize with concurrent updaters, if any.
572  */
hlist_replace_rcu(struct hlist_node * old,struct hlist_node * new)573 static inline void hlist_replace_rcu(struct hlist_node *old,
574 					struct hlist_node *new)
575 {
576 	struct hlist_node *next = old->next;
577 
578 	new->next = next;
579 	WRITE_ONCE(new->pprev, old->pprev);
580 	rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
581 	if (next)
582 		WRITE_ONCE(new->next->pprev, &new->next);
583 	WRITE_ONCE(old->pprev, LIST_POISON2);
584 }
585 
586 /**
587  * hlists_swap_heads_rcu - swap the lists the hlist heads point to
588  * @left:  The hlist head on the left
589  * @right: The hlist head on the right
590  *
591  * The lists start out as [@left  ][node1 ... ] and
592  *                        [@right ][node2 ... ]
593  * The lists end up as    [@left  ][node2 ... ]
594  *                        [@right ][node1 ... ]
595  */
hlists_swap_heads_rcu(struct hlist_head * left,struct hlist_head * right)596 static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right)
597 {
598 	struct hlist_node *node1 = left->first;
599 	struct hlist_node *node2 = right->first;
600 
601 	rcu_assign_pointer(left->first, node2);
602 	rcu_assign_pointer(right->first, node1);
603 	WRITE_ONCE(node2->pprev, &left->first);
604 	WRITE_ONCE(node1->pprev, &right->first);
605 }
606 
607 /*
608  * return the first or the next element in an RCU protected hlist
609  */
610 #define hlist_first_rcu(head)	(*((struct hlist_node __rcu **)(&(head)->first)))
611 #define hlist_next_rcu(node)	(*((struct hlist_node __rcu **)(&(node)->next)))
612 #define hlist_pprev_rcu(node)	(*((struct hlist_node __rcu **)((node)->pprev)))
613 
614 /**
615  * hlist_add_head_rcu
616  * @n: the element to add to the hash list.
617  * @h: the list to add to.
618  *
619  * Description:
620  * Adds the specified element to the specified hlist,
621  * while permitting racing traversals.
622  *
623  * The caller must take whatever precautions are necessary
624  * (such as holding appropriate locks) to avoid racing
625  * with another list-mutation primitive, such as hlist_add_head_rcu()
626  * or hlist_del_rcu(), running on this same list.
627  * However, it is perfectly legal to run concurrently with
628  * the _rcu list-traversal primitives, such as
629  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
630  * problems on Alpha CPUs.  Regardless of the type of CPU, the
631  * list-traversal primitive must be guarded by rcu_read_lock().
632  */
hlist_add_head_rcu(struct hlist_node * n,struct hlist_head * h)633 static inline void hlist_add_head_rcu(struct hlist_node *n,
634 					struct hlist_head *h)
635 {
636 	struct hlist_node *first = h->first;
637 
638 	n->next = first;
639 	WRITE_ONCE(n->pprev, &h->first);
640 	rcu_assign_pointer(hlist_first_rcu(h), n);
641 	if (first)
642 		WRITE_ONCE(first->pprev, &n->next);
643 }
644 
645 /**
646  * hlist_add_tail_rcu
647  * @n: the element to add to the hash list.
648  * @h: the list to add to.
649  *
650  * Description:
651  * Adds the specified element to the specified hlist,
652  * while permitting racing traversals.
653  *
654  * The caller must take whatever precautions are necessary
655  * (such as holding appropriate locks) to avoid racing
656  * with another list-mutation primitive, such as hlist_add_head_rcu()
657  * or hlist_del_rcu(), running on this same list.
658  * However, it is perfectly legal to run concurrently with
659  * the _rcu list-traversal primitives, such as
660  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
661  * problems on Alpha CPUs.  Regardless of the type of CPU, the
662  * list-traversal primitive must be guarded by rcu_read_lock().
663  */
hlist_add_tail_rcu(struct hlist_node * n,struct hlist_head * h)664 static inline void hlist_add_tail_rcu(struct hlist_node *n,
665 				      struct hlist_head *h)
666 {
667 	struct hlist_node *i, *last = NULL;
668 
669 	/* Note: write side code, so rcu accessors are not needed. */
670 	for (i = h->first; i; i = i->next)
671 		last = i;
672 
673 	if (last) {
674 		n->next = last->next;
675 		WRITE_ONCE(n->pprev, &last->next);
676 		rcu_assign_pointer(hlist_next_rcu(last), n);
677 	} else {
678 		hlist_add_head_rcu(n, h);
679 	}
680 }
681 
682 /**
683  * hlist_add_before_rcu
684  * @n: the new element to add to the hash list.
685  * @next: the existing element to add the new element before.
686  *
687  * Description:
688  * Adds the specified element to the specified hlist
689  * before the specified node while permitting racing traversals.
690  *
691  * The caller must take whatever precautions are necessary
692  * (such as holding appropriate locks) to avoid racing
693  * with another list-mutation primitive, such as hlist_add_head_rcu()
694  * or hlist_del_rcu(), running on this same list.
695  * However, it is perfectly legal to run concurrently with
696  * the _rcu list-traversal primitives, such as
697  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
698  * problems on Alpha CPUs.
699  */
hlist_add_before_rcu(struct hlist_node * n,struct hlist_node * next)700 static inline void hlist_add_before_rcu(struct hlist_node *n,
701 					struct hlist_node *next)
702 {
703 	WRITE_ONCE(n->pprev, next->pprev);
704 	n->next = next;
705 	rcu_assign_pointer(hlist_pprev_rcu(n), n);
706 	WRITE_ONCE(next->pprev, &n->next);
707 }
708 
709 /**
710  * hlist_add_behind_rcu
711  * @n: the new element to add to the hash list.
712  * @prev: the existing element to add the new element after.
713  *
714  * Description:
715  * Adds the specified element to the specified hlist
716  * after the specified node while permitting racing traversals.
717  *
718  * The caller must take whatever precautions are necessary
719  * (such as holding appropriate locks) to avoid racing
720  * with another list-mutation primitive, such as hlist_add_head_rcu()
721  * or hlist_del_rcu(), running on this same list.
722  * However, it is perfectly legal to run concurrently with
723  * the _rcu list-traversal primitives, such as
724  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
725  * problems on Alpha CPUs.
726  */
hlist_add_behind_rcu(struct hlist_node * n,struct hlist_node * prev)727 static inline void hlist_add_behind_rcu(struct hlist_node *n,
728 					struct hlist_node *prev)
729 {
730 	n->next = prev->next;
731 	WRITE_ONCE(n->pprev, &prev->next);
732 	rcu_assign_pointer(hlist_next_rcu(prev), n);
733 	if (n->next)
734 		WRITE_ONCE(n->next->pprev, &n->next);
735 }
736 
737 #define __hlist_for_each_rcu(pos, head)				\
738 	for (pos = rcu_dereference(hlist_first_rcu(head));	\
739 	     pos;						\
740 	     pos = rcu_dereference(hlist_next_rcu(pos)))
741 
742 /**
743  * hlist_for_each_entry_rcu - iterate over rcu list of given type
744  * @pos:	the type * to use as a loop cursor.
745  * @head:	the head for your list.
746  * @member:	the name of the hlist_node within the struct.
747  * @cond:	optional lockdep expression if called from non-RCU protection.
748  *
749  * This list-traversal primitive may safely run concurrently with
750  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
751  * as long as the traversal is guarded by rcu_read_lock().
752  */
753 #define hlist_for_each_entry_rcu(pos, head, member, cond...)		\
754 	for (__list_check_rcu(dummy, ## cond, 0),			\
755 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
756 			typeof(*(pos)), member);			\
757 		pos;							\
758 		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
759 			&(pos)->member)), typeof(*(pos)), member))
760 
761 /**
762  * hlist_for_each_entry_srcu - iterate over rcu list of given type
763  * @pos:	the type * to use as a loop cursor.
764  * @head:	the head for your list.
765  * @member:	the name of the hlist_node within the struct.
766  * @cond:	lockdep expression for the lock required to traverse the list.
767  *
768  * This list-traversal primitive may safely run concurrently with
769  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
770  * as long as the traversal is guarded by srcu_read_lock().
771  * The lockdep expression srcu_read_lock_held() can be passed as the
772  * cond argument from read side.
773  */
774 #define hlist_for_each_entry_srcu(pos, head, member, cond)		\
775 	for (__list_check_srcu(cond),					\
776 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
777 			typeof(*(pos)), member);			\
778 		pos;							\
779 		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
780 			&(pos)->member)), typeof(*(pos)), member))
781 
782 /**
783  * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
784  * @pos:	the type * to use as a loop cursor.
785  * @head:	the head for your list.
786  * @member:	the name of the hlist_node within the struct.
787  *
788  * This list-traversal primitive may safely run concurrently with
789  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
790  * as long as the traversal is guarded by rcu_read_lock().
791  *
792  * This is the same as hlist_for_each_entry_rcu() except that it does
793  * not do any RCU debugging or tracing.
794  */
795 #define hlist_for_each_entry_rcu_notrace(pos, head, member)			\
796 	for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
797 			typeof(*(pos)), member);			\
798 		pos;							\
799 		pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
800 			&(pos)->member)), typeof(*(pos)), member))
801 
802 /**
803  * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
804  * @pos:	the type * to use as a loop cursor.
805  * @head:	the head for your list.
806  * @member:	the name of the hlist_node within the struct.
807  *
808  * This list-traversal primitive may safely run concurrently with
809  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
810  * as long as the traversal is guarded by rcu_read_lock().
811  */
812 #define hlist_for_each_entry_rcu_bh(pos, head, member)			\
813 	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
814 			typeof(*(pos)), member);			\
815 		pos;							\
816 		pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
817 			&(pos)->member)), typeof(*(pos)), member))
818 
819 /**
820  * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
821  * @pos:	the type * to use as a loop cursor.
822  * @member:	the name of the hlist_node within the struct.
823  */
824 #define hlist_for_each_entry_continue_rcu(pos, member)			\
825 	for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
826 			&(pos)->member)), typeof(*(pos)), member);	\
827 	     pos;							\
828 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
829 			&(pos)->member)), typeof(*(pos)), member))
830 
831 /**
832  * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
833  * @pos:	the type * to use as a loop cursor.
834  * @member:	the name of the hlist_node within the struct.
835  */
836 #define hlist_for_each_entry_continue_rcu_bh(pos, member)		\
837 	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
838 			&(pos)->member)), typeof(*(pos)), member);	\
839 	     pos;							\
840 	     pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(	\
841 			&(pos)->member)), typeof(*(pos)), member))
842 
843 /**
844  * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
845  * @pos:	the type * to use as a loop cursor.
846  * @member:	the name of the hlist_node within the struct.
847  */
848 #define hlist_for_each_entry_from_rcu(pos, member)			\
849 	for (; pos;							\
850 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
851 			&(pos)->member)), typeof(*(pos)), member))
852 
853 #endif	/* __KERNEL__ */
854 #endif
855