1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * HID Sensors Driver
4 * Copyright (c) 2012, Intel Corporation.
5 */
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/time.h>
9 #include <linux/units.h>
10
11 #include <linux/hid-sensor-hub.h>
12 #include <linux/iio/iio.h>
13
14 static struct {
15 u32 usage_id;
16 int unit; /* 0 for default others from HID sensor spec */
17 int scale_val0; /* scale, whole number */
18 int scale_val1; /* scale, fraction in nanos */
19 } unit_conversion[] = {
20 {HID_USAGE_SENSOR_ACCEL_3D, 0, 9, 806650000},
21 {HID_USAGE_SENSOR_ACCEL_3D,
22 HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
23 {HID_USAGE_SENSOR_ACCEL_3D,
24 HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
25
26 {HID_USAGE_SENSOR_GRAVITY_VECTOR, 0, 9, 806650000},
27 {HID_USAGE_SENSOR_GRAVITY_VECTOR,
28 HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
29 {HID_USAGE_SENSOR_GRAVITY_VECTOR,
30 HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
31
32 {HID_USAGE_SENSOR_GYRO_3D, 0, 0, 17453293},
33 {HID_USAGE_SENSOR_GYRO_3D,
34 HID_USAGE_SENSOR_UNITS_RADIANS_PER_SECOND, 1, 0},
35 {HID_USAGE_SENSOR_GYRO_3D,
36 HID_USAGE_SENSOR_UNITS_DEGREES_PER_SECOND, 0, 17453293},
37
38 {HID_USAGE_SENSOR_COMPASS_3D, 0, 0, 1000000},
39 {HID_USAGE_SENSOR_COMPASS_3D, HID_USAGE_SENSOR_UNITS_GAUSS, 1, 0},
40
41 {HID_USAGE_SENSOR_INCLINOMETER_3D, 0, 0, 17453293},
42 {HID_USAGE_SENSOR_INCLINOMETER_3D,
43 HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293},
44 {HID_USAGE_SENSOR_INCLINOMETER_3D,
45 HID_USAGE_SENSOR_UNITS_RADIANS, 1, 0},
46
47 {HID_USAGE_SENSOR_ALS, 0, 1, 0},
48 {HID_USAGE_SENSOR_ALS, HID_USAGE_SENSOR_UNITS_LUX, 1, 0},
49
50 {HID_USAGE_SENSOR_PRESSURE, 0, 100, 0},
51 {HID_USAGE_SENSOR_PRESSURE, HID_USAGE_SENSOR_UNITS_PASCAL, 0, 1000000},
52
53 {HID_USAGE_SENSOR_TIME_TIMESTAMP, 0, 1000000000, 0},
54 {HID_USAGE_SENSOR_TIME_TIMESTAMP, HID_USAGE_SENSOR_UNITS_MILLISECOND,
55 1000000, 0},
56
57 {HID_USAGE_SENSOR_DEVICE_ORIENTATION, 0, 1, 0},
58
59 {HID_USAGE_SENSOR_RELATIVE_ORIENTATION, 0, 1, 0},
60
61 {HID_USAGE_SENSOR_GEOMAGNETIC_ORIENTATION, 0, 1, 0},
62
63 {HID_USAGE_SENSOR_TEMPERATURE, 0, 1000, 0},
64 {HID_USAGE_SENSOR_TEMPERATURE, HID_USAGE_SENSOR_UNITS_DEGREES, 1000, 0},
65
66 {HID_USAGE_SENSOR_HUMIDITY, 0, 1000, 0},
67 {HID_USAGE_SENSOR_HINGE, 0, 0, 17453293},
68 {HID_USAGE_SENSOR_HINGE, HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293},
69
70 {HID_USAGE_SENSOR_HUMAN_PRESENCE, 0, 1, 0},
71 {HID_USAGE_SENSOR_HUMAN_PROXIMITY, 0, 1, 0},
72 {HID_USAGE_SENSOR_HUMAN_ATTENTION, 0, 1, 0},
73 };
74
simple_div(int dividend,int divisor,int * whole,int * micro_frac)75 static void simple_div(int dividend, int divisor, int *whole,
76 int *micro_frac)
77 {
78 int rem;
79 int exp = 0;
80
81 *micro_frac = 0;
82 if (divisor == 0) {
83 *whole = 0;
84 return;
85 }
86 *whole = dividend/divisor;
87 rem = dividend % divisor;
88 if (rem) {
89 while (rem <= divisor) {
90 rem *= 10;
91 exp++;
92 }
93 *micro_frac = (rem / divisor) * int_pow(10, 6 - exp);
94 }
95 }
96
split_micro_fraction(unsigned int no,int exp,int * val1,int * val2)97 static void split_micro_fraction(unsigned int no, int exp, int *val1, int *val2)
98 {
99 int divisor = int_pow(10, exp);
100
101 *val1 = no / divisor;
102 *val2 = no % divisor * int_pow(10, 6 - exp);
103 }
104
105 /*
106 VTF format uses exponent and variable size format.
107 For example if the size is 2 bytes
108 0x0067 with VTF16E14 format -> +1.03
109 To convert just change to 0x67 to decimal and use two decimal as E14 stands
110 for 10^-2.
111 Negative numbers are 2's complement
112 */
convert_from_vtf_format(u32 value,int size,int exp,int * val1,int * val2)113 static void convert_from_vtf_format(u32 value, int size, int exp,
114 int *val1, int *val2)
115 {
116 int sign = 1;
117
118 if (value & BIT(size*8 - 1)) {
119 value = ((1LL << (size * 8)) - value);
120 sign = -1;
121 }
122 exp = hid_sensor_convert_exponent(exp);
123 if (exp >= 0) {
124 *val1 = sign * value * int_pow(10, exp);
125 *val2 = 0;
126 } else {
127 split_micro_fraction(value, -exp, val1, val2);
128 if (*val1)
129 *val1 = sign * (*val1);
130 else
131 *val2 = sign * (*val2);
132 }
133 }
134
convert_to_vtf_format(int size,int exp,int val1,int val2)135 static u32 convert_to_vtf_format(int size, int exp, int val1, int val2)
136 {
137 int divisor;
138 u32 value;
139 int sign = 1;
140
141 if (val1 < 0 || val2 < 0)
142 sign = -1;
143 exp = hid_sensor_convert_exponent(exp);
144 if (exp < 0) {
145 divisor = int_pow(10, 6 + exp);
146 value = abs(val1) * int_pow(10, -exp);
147 value += abs(val2) / divisor;
148 } else {
149 divisor = int_pow(10, exp);
150 value = abs(val1) / divisor;
151 }
152 if (sign < 0)
153 value = ((1LL << (size * 8)) - value);
154
155 return value;
156 }
157
hid_sensor_read_poll_value(struct hid_sensor_common * st)158 s32 hid_sensor_read_poll_value(struct hid_sensor_common *st)
159 {
160 s32 value = 0;
161 int ret;
162
163 ret = sensor_hub_get_feature(st->hsdev,
164 st->poll.report_id,
165 st->poll.index, sizeof(value), &value);
166
167 if (ret < 0 || value < 0) {
168 return -EINVAL;
169 } else {
170 if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
171 value = value * 1000;
172 }
173
174 return value;
175 }
176 EXPORT_SYMBOL_NS(hid_sensor_read_poll_value, "IIO_HID_ATTRIBUTES");
177
hid_sensor_read_samp_freq_value(struct hid_sensor_common * st,int * val1,int * val2)178 int hid_sensor_read_samp_freq_value(struct hid_sensor_common *st,
179 int *val1, int *val2)
180 {
181 s32 value;
182 int ret;
183
184 ret = sensor_hub_get_feature(st->hsdev,
185 st->poll.report_id,
186 st->poll.index, sizeof(value), &value);
187 if (ret < 0 || value < 0) {
188 *val1 = *val2 = 0;
189 return -EINVAL;
190 } else {
191 if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
192 simple_div(1000, value, val1, val2);
193 else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
194 simple_div(1, value, val1, val2);
195 else {
196 *val1 = *val2 = 0;
197 return -EINVAL;
198 }
199 }
200
201 return IIO_VAL_INT_PLUS_MICRO;
202 }
203 EXPORT_SYMBOL_NS(hid_sensor_read_samp_freq_value, "IIO_HID");
204
hid_sensor_write_samp_freq_value(struct hid_sensor_common * st,int val1,int val2)205 int hid_sensor_write_samp_freq_value(struct hid_sensor_common *st,
206 int val1, int val2)
207 {
208 s32 value;
209 int ret;
210
211 if (val1 < 0 || val2 < 0)
212 return -EINVAL;
213
214 value = val1 * HZ_PER_MHZ + val2;
215 if (value) {
216 if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
217 value = NSEC_PER_SEC / value;
218 else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
219 value = USEC_PER_SEC / value;
220 else
221 value = 0;
222 }
223 ret = sensor_hub_set_feature(st->hsdev, st->poll.report_id,
224 st->poll.index, sizeof(value), &value);
225 if (ret < 0 || value < 0)
226 return -EINVAL;
227
228 ret = sensor_hub_get_feature(st->hsdev,
229 st->poll.report_id,
230 st->poll.index, sizeof(value), &value);
231 if (ret < 0 || value < 0)
232 return -EINVAL;
233
234 st->poll_interval = value;
235
236 return 0;
237 }
238 EXPORT_SYMBOL_NS(hid_sensor_write_samp_freq_value, "IIO_HID");
239
hid_sensor_read_raw_hyst_value(struct hid_sensor_common * st,int * val1,int * val2)240 int hid_sensor_read_raw_hyst_value(struct hid_sensor_common *st,
241 int *val1, int *val2)
242 {
243 s32 value;
244 int ret;
245
246 ret = sensor_hub_get_feature(st->hsdev,
247 st->sensitivity.report_id,
248 st->sensitivity.index, sizeof(value),
249 &value);
250 if (ret < 0 || value < 0) {
251 *val1 = *val2 = 0;
252 return -EINVAL;
253 } else {
254 convert_from_vtf_format(value, st->sensitivity.size,
255 st->sensitivity.unit_expo,
256 val1, val2);
257 }
258
259 return IIO_VAL_INT_PLUS_MICRO;
260 }
261 EXPORT_SYMBOL_NS(hid_sensor_read_raw_hyst_value, "IIO_HID");
262
hid_sensor_read_raw_hyst_rel_value(struct hid_sensor_common * st,int * val1,int * val2)263 int hid_sensor_read_raw_hyst_rel_value(struct hid_sensor_common *st, int *val1,
264 int *val2)
265 {
266 s32 value;
267 int ret;
268
269 ret = sensor_hub_get_feature(st->hsdev,
270 st->sensitivity_rel.report_id,
271 st->sensitivity_rel.index, sizeof(value),
272 &value);
273 if (ret < 0 || value < 0) {
274 *val1 = *val2 = 0;
275 return -EINVAL;
276 }
277
278 convert_from_vtf_format(value, st->sensitivity_rel.size,
279 st->sensitivity_rel.unit_expo, val1, val2);
280
281 return IIO_VAL_INT_PLUS_MICRO;
282 }
283 EXPORT_SYMBOL_NS(hid_sensor_read_raw_hyst_rel_value, "IIO_HID");
284
285
hid_sensor_write_raw_hyst_value(struct hid_sensor_common * st,int val1,int val2)286 int hid_sensor_write_raw_hyst_value(struct hid_sensor_common *st,
287 int val1, int val2)
288 {
289 s32 value;
290 int ret;
291
292 if (val1 < 0 || val2 < 0)
293 return -EINVAL;
294
295 value = convert_to_vtf_format(st->sensitivity.size,
296 st->sensitivity.unit_expo,
297 val1, val2);
298 ret = sensor_hub_set_feature(st->hsdev, st->sensitivity.report_id,
299 st->sensitivity.index, sizeof(value),
300 &value);
301 if (ret < 0 || value < 0)
302 return -EINVAL;
303
304 ret = sensor_hub_get_feature(st->hsdev,
305 st->sensitivity.report_id,
306 st->sensitivity.index, sizeof(value),
307 &value);
308 if (ret < 0 || value < 0)
309 return -EINVAL;
310
311 st->raw_hystersis = value;
312
313 return 0;
314 }
315 EXPORT_SYMBOL_NS(hid_sensor_write_raw_hyst_value, "IIO_HID");
316
hid_sensor_write_raw_hyst_rel_value(struct hid_sensor_common * st,int val1,int val2)317 int hid_sensor_write_raw_hyst_rel_value(struct hid_sensor_common *st,
318 int val1, int val2)
319 {
320 s32 value;
321 int ret;
322
323 if (val1 < 0 || val2 < 0)
324 return -EINVAL;
325
326 value = convert_to_vtf_format(st->sensitivity_rel.size,
327 st->sensitivity_rel.unit_expo,
328 val1, val2);
329 ret = sensor_hub_set_feature(st->hsdev, st->sensitivity_rel.report_id,
330 st->sensitivity_rel.index, sizeof(value),
331 &value);
332 if (ret < 0 || value < 0)
333 return -EINVAL;
334
335 ret = sensor_hub_get_feature(st->hsdev,
336 st->sensitivity_rel.report_id,
337 st->sensitivity_rel.index, sizeof(value),
338 &value);
339 if (ret < 0 || value < 0)
340 return -EINVAL;
341
342 st->raw_hystersis = value;
343
344 return 0;
345 }
346 EXPORT_SYMBOL_NS(hid_sensor_write_raw_hyst_rel_value, "IIO_HID");
347
348 /*
349 * This fuction applies the unit exponent to the scale.
350 * For example:
351 * 9.806650000 ->exp:2-> val0[980]val1[665000000]
352 * 9.000806000 ->exp:2-> val0[900]val1[80600000]
353 * 0.174535293 ->exp:2-> val0[17]val1[453529300]
354 * 1.001745329 ->exp:0-> val0[1]val1[1745329]
355 * 1.001745329 ->exp:2-> val0[100]val1[174532900]
356 * 1.001745329 ->exp:4-> val0[10017]val1[453290000]
357 * 9.806650000 ->exp:-2-> val0[0]val1[98066500]
358 */
adjust_exponent_nano(int * val0,int * val1,int scale0,int scale1,int exp)359 static void adjust_exponent_nano(int *val0, int *val1, int scale0,
360 int scale1, int exp)
361 {
362 int divisor;
363 int i;
364 int x;
365 int res;
366 int rem;
367
368 if (exp > 0) {
369 *val0 = scale0 * int_pow(10, exp);
370 res = 0;
371 if (exp > 9) {
372 *val1 = 0;
373 return;
374 }
375 for (i = 0; i < exp; ++i) {
376 divisor = int_pow(10, 8 - i);
377 x = scale1 / divisor;
378 res += int_pow(10, exp - 1 - i) * x;
379 scale1 = scale1 % divisor;
380 }
381 *val0 += res;
382 *val1 = scale1 * int_pow(10, exp);
383 } else if (exp < 0) {
384 exp = abs(exp);
385 if (exp > 9) {
386 *val0 = *val1 = 0;
387 return;
388 }
389 divisor = int_pow(10, exp);
390 *val0 = scale0 / divisor;
391 rem = scale0 % divisor;
392 res = 0;
393 for (i = 0; i < (9 - exp); ++i) {
394 divisor = int_pow(10, 8 - i);
395 x = scale1 / divisor;
396 res += int_pow(10, 8 - exp - i) * x;
397 scale1 = scale1 % divisor;
398 }
399 *val1 = rem * int_pow(10, 9 - exp) + res;
400 } else {
401 *val0 = scale0;
402 *val1 = scale1;
403 }
404 }
405
hid_sensor_format_scale(u32 usage_id,struct hid_sensor_hub_attribute_info * attr_info,int * val0,int * val1)406 int hid_sensor_format_scale(u32 usage_id,
407 struct hid_sensor_hub_attribute_info *attr_info,
408 int *val0, int *val1)
409 {
410 int i;
411 int exp;
412
413 *val0 = 1;
414 *val1 = 0;
415
416 for (i = 0; i < ARRAY_SIZE(unit_conversion); ++i) {
417 if (unit_conversion[i].usage_id == usage_id &&
418 unit_conversion[i].unit == attr_info->units) {
419 exp = hid_sensor_convert_exponent(
420 attr_info->unit_expo);
421 adjust_exponent_nano(val0, val1,
422 unit_conversion[i].scale_val0,
423 unit_conversion[i].scale_val1, exp);
424 break;
425 }
426 }
427
428 return IIO_VAL_INT_PLUS_NANO;
429 }
430 EXPORT_SYMBOL_NS(hid_sensor_format_scale, "IIO_HID");
431
hid_sensor_convert_timestamp(struct hid_sensor_common * st,int64_t raw_value)432 int64_t hid_sensor_convert_timestamp(struct hid_sensor_common *st,
433 int64_t raw_value)
434 {
435 return st->timestamp_ns_scale * raw_value;
436 }
437 EXPORT_SYMBOL_NS(hid_sensor_convert_timestamp, "IIO_HID");
438
439 static
hid_sensor_get_reporting_interval(struct hid_sensor_hub_device * hsdev,u32 usage_id,struct hid_sensor_common * st)440 int hid_sensor_get_reporting_interval(struct hid_sensor_hub_device *hsdev,
441 u32 usage_id,
442 struct hid_sensor_common *st)
443 {
444 sensor_hub_input_get_attribute_info(hsdev,
445 HID_FEATURE_REPORT, usage_id,
446 HID_USAGE_SENSOR_PROP_REPORT_INTERVAL,
447 &st->poll);
448 /* Default unit of measure is milliseconds */
449 if (st->poll.units == 0)
450 st->poll.units = HID_USAGE_SENSOR_UNITS_MILLISECOND;
451
452 st->poll_interval = -1;
453
454 return 0;
455
456 }
457
hid_sensor_get_report_latency_info(struct hid_sensor_hub_device * hsdev,u32 usage_id,struct hid_sensor_common * st)458 static void hid_sensor_get_report_latency_info(struct hid_sensor_hub_device *hsdev,
459 u32 usage_id,
460 struct hid_sensor_common *st)
461 {
462 sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT,
463 usage_id,
464 HID_USAGE_SENSOR_PROP_REPORT_LATENCY,
465 &st->report_latency);
466
467 hid_dbg(hsdev->hdev, "Report latency attributes: %x:%x\n",
468 st->report_latency.index, st->report_latency.report_id);
469 }
470
hid_sensor_get_report_latency(struct hid_sensor_common * st)471 int hid_sensor_get_report_latency(struct hid_sensor_common *st)
472 {
473 int ret;
474 int value;
475
476 ret = sensor_hub_get_feature(st->hsdev, st->report_latency.report_id,
477 st->report_latency.index, sizeof(value),
478 &value);
479 if (ret < 0)
480 return ret;
481
482 return value;
483 }
484 EXPORT_SYMBOL_NS(hid_sensor_get_report_latency, "IIO_HID_ATTRIBUTES");
485
hid_sensor_set_report_latency(struct hid_sensor_common * st,int latency_ms)486 int hid_sensor_set_report_latency(struct hid_sensor_common *st, int latency_ms)
487 {
488 return sensor_hub_set_feature(st->hsdev, st->report_latency.report_id,
489 st->report_latency.index,
490 sizeof(latency_ms), &latency_ms);
491 }
492 EXPORT_SYMBOL_NS(hid_sensor_set_report_latency, "IIO_HID_ATTRIBUTES");
493
hid_sensor_batch_mode_supported(struct hid_sensor_common * st)494 bool hid_sensor_batch_mode_supported(struct hid_sensor_common *st)
495 {
496 return st->report_latency.index > 0 && st->report_latency.report_id > 0;
497 }
498 EXPORT_SYMBOL_NS(hid_sensor_batch_mode_supported, "IIO_HID_ATTRIBUTES");
499
hid_sensor_parse_common_attributes(struct hid_sensor_hub_device * hsdev,u32 usage_id,struct hid_sensor_common * st,const u32 * sensitivity_addresses,u32 sensitivity_addresses_len)500 int hid_sensor_parse_common_attributes(struct hid_sensor_hub_device *hsdev,
501 u32 usage_id,
502 struct hid_sensor_common *st,
503 const u32 *sensitivity_addresses,
504 u32 sensitivity_addresses_len)
505 {
506
507 struct hid_sensor_hub_attribute_info timestamp;
508 s32 value;
509 int ret;
510 int i;
511
512 hid_sensor_get_reporting_interval(hsdev, usage_id, st);
513
514 sensor_hub_input_get_attribute_info(hsdev,
515 HID_FEATURE_REPORT, usage_id,
516 HID_USAGE_SENSOR_PROP_REPORT_STATE,
517 &st->report_state);
518
519 sensor_hub_input_get_attribute_info(hsdev,
520 HID_FEATURE_REPORT, usage_id,
521 HID_USAGE_SENSOR_PROY_POWER_STATE,
522 &st->power_state);
523
524 st->power_state.logical_minimum = 1;
525 st->report_state.logical_minimum = 1;
526
527 sensor_hub_input_get_attribute_info(hsdev,
528 HID_FEATURE_REPORT, usage_id,
529 HID_USAGE_SENSOR_PROP_SENSITIVITY_ABS,
530 &st->sensitivity);
531
532 sensor_hub_input_get_attribute_info(hsdev,
533 HID_FEATURE_REPORT, usage_id,
534 HID_USAGE_SENSOR_PROP_SENSITIVITY_REL_PCT,
535 &st->sensitivity_rel);
536 /*
537 * Set Sensitivity field ids, when there is no individual modifier, will
538 * check absolute sensitivity and relative sensitivity of data field
539 */
540 for (i = 0; i < sensitivity_addresses_len; i++) {
541 if (st->sensitivity.index < 0)
542 sensor_hub_input_get_attribute_info(
543 hsdev, HID_FEATURE_REPORT, usage_id,
544 HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS |
545 sensitivity_addresses[i],
546 &st->sensitivity);
547
548 if (st->sensitivity_rel.index < 0)
549 sensor_hub_input_get_attribute_info(
550 hsdev, HID_FEATURE_REPORT, usage_id,
551 HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_REL_PCT |
552 sensitivity_addresses[i],
553 &st->sensitivity_rel);
554 }
555
556 st->raw_hystersis = -1;
557
558 sensor_hub_input_get_attribute_info(hsdev,
559 HID_INPUT_REPORT, usage_id,
560 HID_USAGE_SENSOR_TIME_TIMESTAMP,
561 ×tamp);
562 if (timestamp.index >= 0 && timestamp.report_id) {
563 int val0, val1;
564
565 hid_sensor_format_scale(HID_USAGE_SENSOR_TIME_TIMESTAMP,
566 ×tamp, &val0, &val1);
567 st->timestamp_ns_scale = val0;
568 } else
569 st->timestamp_ns_scale = 1000000000;
570
571 hid_sensor_get_report_latency_info(hsdev, usage_id, st);
572
573 hid_dbg(hsdev->hdev, "common attributes: %x:%x, %x:%x, %x:%x %x:%x %x:%x\n",
574 st->poll.index, st->poll.report_id,
575 st->report_state.index, st->report_state.report_id,
576 st->power_state.index, st->power_state.report_id,
577 st->sensitivity.index, st->sensitivity.report_id,
578 timestamp.index, timestamp.report_id);
579
580 ret = sensor_hub_get_feature(hsdev,
581 st->power_state.report_id,
582 st->power_state.index, sizeof(value), &value);
583 if (ret < 0)
584 return ret;
585 if (value < 0)
586 return -EINVAL;
587
588 return 0;
589 }
590 EXPORT_SYMBOL_NS(hid_sensor_parse_common_attributes, "IIO_HID");
591
592 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@intel.com>");
593 MODULE_DESCRIPTION("HID Sensor common attribute processing");
594 MODULE_LICENSE("GPL");
595