1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Hardware Feedback Interface Driver
4 *
5 * Copyright (c) 2021, Intel Corporation.
6 *
7 * Authors: Aubrey Li <aubrey.li@linux.intel.com>
8 * Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
9 *
10 *
11 * The Hardware Feedback Interface provides a performance and energy efficiency
12 * capability information for each CPU in the system. Depending on the processor
13 * model, hardware may periodically update these capabilities as a result of
14 * changes in the operating conditions (e.g., power limits or thermal
15 * constraints). On other processor models, there is a single HFI update
16 * at boot.
17 *
18 * This file provides functionality to process HFI updates and relay these
19 * updates to userspace.
20 */
21
22 #define pr_fmt(fmt) "intel-hfi: " fmt
23
24 #include <linux/bitops.h>
25 #include <linux/cpufeature.h>
26 #include <linux/cpumask.h>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/io.h>
30 #include <linux/kernel.h>
31 #include <linux/math.h>
32 #include <linux/mutex.h>
33 #include <linux/percpu-defs.h>
34 #include <linux/printk.h>
35 #include <linux/processor.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/suspend.h>
39 #include <linux/string.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/topology.h>
42 #include <linux/workqueue.h>
43
44 #include <asm/msr.h>
45
46 #include "intel_hfi.h"
47 #include "thermal_interrupt.h"
48
49 #include "../thermal_netlink.h"
50
51 /* Hardware Feedback Interface MSR configuration bits */
52 #define HW_FEEDBACK_PTR_VALID_BIT BIT(0)
53 #define HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT BIT(0)
54
55 /* CPUID detection and enumeration definitions for HFI */
56
57 #define CPUID_HFI_LEAF 6
58
59 union hfi_capabilities {
60 struct {
61 u8 performance:1;
62 u8 energy_efficiency:1;
63 u8 __reserved:6;
64 } split;
65 u8 bits;
66 };
67
68 union cpuid6_edx {
69 struct {
70 union hfi_capabilities capabilities;
71 u32 table_pages:4;
72 u32 __reserved:4;
73 s32 index:16;
74 } split;
75 u32 full;
76 };
77
78 /**
79 * struct hfi_cpu_data - HFI capabilities per CPU
80 * @perf_cap: Performance capability
81 * @ee_cap: Energy efficiency capability
82 *
83 * Capabilities of a logical processor in the HFI table. These capabilities are
84 * unitless.
85 */
86 struct hfi_cpu_data {
87 u8 perf_cap;
88 u8 ee_cap;
89 } __packed;
90
91 /**
92 * struct hfi_hdr - Header of the HFI table
93 * @perf_updated: Hardware updated performance capabilities
94 * @ee_updated: Hardware updated energy efficiency capabilities
95 *
96 * Properties of the data in an HFI table.
97 */
98 struct hfi_hdr {
99 u8 perf_updated;
100 u8 ee_updated;
101 } __packed;
102
103 /**
104 * struct hfi_instance - Representation of an HFI instance (i.e., a table)
105 * @local_table: Base of the local copy of the HFI table
106 * @timestamp: Timestamp of the last update of the local table.
107 * Located at the base of the local table.
108 * @hdr: Base address of the header of the local table
109 * @data: Base address of the data of the local table
110 * @cpus: CPUs represented in this HFI table instance
111 * @hw_table: Pointer to the HFI table of this instance
112 * @update_work: Delayed work to process HFI updates
113 * @table_lock: Lock to protect acceses to the table of this instance
114 * @event_lock: Lock to process HFI interrupts
115 *
116 * A set of parameters to parse and navigate a specific HFI table.
117 */
118 struct hfi_instance {
119 union {
120 void *local_table;
121 u64 *timestamp;
122 };
123 void *hdr;
124 void *data;
125 cpumask_var_t cpus;
126 void *hw_table;
127 struct delayed_work update_work;
128 raw_spinlock_t table_lock;
129 raw_spinlock_t event_lock;
130 };
131
132 /**
133 * struct hfi_features - Supported HFI features
134 * @nr_table_pages: Size of the HFI table in 4KB pages
135 * @cpu_stride: Stride size to locate the capability data of a logical
136 * processor within the table (i.e., row stride)
137 * @hdr_size: Size of the table header
138 *
139 * Parameters and supported features that are common to all HFI instances
140 */
141 struct hfi_features {
142 size_t nr_table_pages;
143 unsigned int cpu_stride;
144 unsigned int hdr_size;
145 };
146
147 /**
148 * struct hfi_cpu_info - Per-CPU attributes to consume HFI data
149 * @index: Row of this CPU in its HFI table
150 * @hfi_instance: Attributes of the HFI table to which this CPU belongs
151 *
152 * Parameters to link a logical processor to an HFI table and a row within it.
153 */
154 struct hfi_cpu_info {
155 s16 index;
156 struct hfi_instance *hfi_instance;
157 };
158
159 static DEFINE_PER_CPU(struct hfi_cpu_info, hfi_cpu_info) = { .index = -1 };
160
161 static int max_hfi_instances;
162 static int hfi_clients_nr;
163 static struct hfi_instance *hfi_instances;
164
165 static struct hfi_features hfi_features;
166 static DEFINE_MUTEX(hfi_instance_lock);
167
168 static struct workqueue_struct *hfi_updates_wq;
169 #define HFI_UPDATE_DELAY_MS 100
170 #define HFI_THERMNL_CAPS_PER_EVENT 64
171
get_hfi_caps(struct hfi_instance * hfi_instance,struct thermal_genl_cpu_caps * cpu_caps)172 static void get_hfi_caps(struct hfi_instance *hfi_instance,
173 struct thermal_genl_cpu_caps *cpu_caps)
174 {
175 int cpu, i = 0;
176
177 raw_spin_lock_irq(&hfi_instance->table_lock);
178 for_each_cpu(cpu, hfi_instance->cpus) {
179 struct hfi_cpu_data *caps;
180 s16 index;
181
182 index = per_cpu(hfi_cpu_info, cpu).index;
183 caps = hfi_instance->data + index * hfi_features.cpu_stride;
184 cpu_caps[i].cpu = cpu;
185
186 /*
187 * Scale performance and energy efficiency to
188 * the [0, 1023] interval that thermal netlink uses.
189 */
190 cpu_caps[i].performance = caps->perf_cap << 2;
191 cpu_caps[i].efficiency = caps->ee_cap << 2;
192
193 ++i;
194 }
195 raw_spin_unlock_irq(&hfi_instance->table_lock);
196 }
197
198 /*
199 * Call update_capabilities() when there are changes in the HFI table.
200 */
update_capabilities(struct hfi_instance * hfi_instance)201 static void update_capabilities(struct hfi_instance *hfi_instance)
202 {
203 struct thermal_genl_cpu_caps *cpu_caps;
204 int i = 0, cpu_count;
205
206 /* CPUs may come online/offline while processing an HFI update. */
207 mutex_lock(&hfi_instance_lock);
208
209 cpu_count = cpumask_weight(hfi_instance->cpus);
210
211 /* No CPUs to report in this hfi_instance. */
212 if (!cpu_count)
213 goto out;
214
215 cpu_caps = kcalloc(cpu_count, sizeof(*cpu_caps), GFP_KERNEL);
216 if (!cpu_caps)
217 goto out;
218
219 get_hfi_caps(hfi_instance, cpu_caps);
220
221 if (cpu_count < HFI_THERMNL_CAPS_PER_EVENT)
222 goto last_cmd;
223
224 /* Process complete chunks of HFI_THERMNL_CAPS_PER_EVENT capabilities. */
225 for (i = 0;
226 (i + HFI_THERMNL_CAPS_PER_EVENT) <= cpu_count;
227 i += HFI_THERMNL_CAPS_PER_EVENT)
228 thermal_genl_cpu_capability_event(HFI_THERMNL_CAPS_PER_EVENT,
229 &cpu_caps[i]);
230
231 cpu_count = cpu_count - i;
232
233 last_cmd:
234 /* Process the remaining capabilities if any. */
235 if (cpu_count)
236 thermal_genl_cpu_capability_event(cpu_count, &cpu_caps[i]);
237
238 kfree(cpu_caps);
239 out:
240 mutex_unlock(&hfi_instance_lock);
241 }
242
hfi_update_work_fn(struct work_struct * work)243 static void hfi_update_work_fn(struct work_struct *work)
244 {
245 struct hfi_instance *hfi_instance;
246
247 hfi_instance = container_of(to_delayed_work(work), struct hfi_instance,
248 update_work);
249
250 update_capabilities(hfi_instance);
251 }
252
intel_hfi_process_event(__u64 pkg_therm_status_msr_val)253 void intel_hfi_process_event(__u64 pkg_therm_status_msr_val)
254 {
255 struct hfi_instance *hfi_instance;
256 int cpu = smp_processor_id();
257 struct hfi_cpu_info *info;
258 u64 new_timestamp, msr, hfi;
259
260 if (!pkg_therm_status_msr_val)
261 return;
262
263 info = &per_cpu(hfi_cpu_info, cpu);
264 if (!info)
265 return;
266
267 /*
268 * A CPU is linked to its HFI instance before the thermal vector in the
269 * local APIC is unmasked. Hence, info->hfi_instance cannot be NULL
270 * when receiving an HFI event.
271 */
272 hfi_instance = info->hfi_instance;
273 if (unlikely(!hfi_instance)) {
274 pr_debug("Received event on CPU %d but instance was null", cpu);
275 return;
276 }
277
278 /*
279 * On most systems, all CPUs in the package receive a package-level
280 * thermal interrupt when there is an HFI update. It is sufficient to
281 * let a single CPU to acknowledge the update and queue work to
282 * process it. The remaining CPUs can resume their work.
283 */
284 if (!raw_spin_trylock(&hfi_instance->event_lock))
285 return;
286
287 rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr);
288 hfi = msr & PACKAGE_THERM_STATUS_HFI_UPDATED;
289 if (!hfi) {
290 raw_spin_unlock(&hfi_instance->event_lock);
291 return;
292 }
293
294 /*
295 * Ack duplicate update. Since there is an active HFI
296 * status from HW, it must be a new event, not a case
297 * where a lagging CPU entered the locked region.
298 */
299 new_timestamp = *(u64 *)hfi_instance->hw_table;
300 if (*hfi_instance->timestamp == new_timestamp) {
301 thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED);
302 raw_spin_unlock(&hfi_instance->event_lock);
303 return;
304 }
305
306 raw_spin_lock(&hfi_instance->table_lock);
307
308 /*
309 * Copy the updated table into our local copy. This includes the new
310 * timestamp.
311 */
312 memcpy(hfi_instance->local_table, hfi_instance->hw_table,
313 hfi_features.nr_table_pages << PAGE_SHIFT);
314
315 /*
316 * Let hardware know that we are done reading the HFI table and it is
317 * free to update it again.
318 */
319 thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED);
320
321 raw_spin_unlock(&hfi_instance->table_lock);
322 raw_spin_unlock(&hfi_instance->event_lock);
323
324 queue_delayed_work(hfi_updates_wq, &hfi_instance->update_work,
325 msecs_to_jiffies(HFI_UPDATE_DELAY_MS));
326 }
327
init_hfi_cpu_index(struct hfi_cpu_info * info)328 static void init_hfi_cpu_index(struct hfi_cpu_info *info)
329 {
330 union cpuid6_edx edx;
331
332 /* Do not re-read @cpu's index if it has already been initialized. */
333 if (info->index > -1)
334 return;
335
336 edx.full = cpuid_edx(CPUID_HFI_LEAF);
337 info->index = edx.split.index;
338 }
339
340 /*
341 * The format of the HFI table depends on the number of capabilities that the
342 * hardware supports. Keep a data structure to navigate the table.
343 */
init_hfi_instance(struct hfi_instance * hfi_instance)344 static void init_hfi_instance(struct hfi_instance *hfi_instance)
345 {
346 /* The HFI header is below the time-stamp. */
347 hfi_instance->hdr = hfi_instance->local_table +
348 sizeof(*hfi_instance->timestamp);
349
350 /* The HFI data starts below the header. */
351 hfi_instance->data = hfi_instance->hdr + hfi_features.hdr_size;
352 }
353
354 /* Caller must hold hfi_instance_lock. */
hfi_enable(void)355 static void hfi_enable(void)
356 {
357 u64 msr_val;
358
359 rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
360 msr_val |= HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT;
361 wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
362 }
363
hfi_set_hw_table(struct hfi_instance * hfi_instance)364 static void hfi_set_hw_table(struct hfi_instance *hfi_instance)
365 {
366 phys_addr_t hw_table_pa;
367 u64 msr_val;
368
369 hw_table_pa = virt_to_phys(hfi_instance->hw_table);
370 msr_val = hw_table_pa | HW_FEEDBACK_PTR_VALID_BIT;
371 wrmsrl(MSR_IA32_HW_FEEDBACK_PTR, msr_val);
372 }
373
374 /* Caller must hold hfi_instance_lock. */
hfi_disable(void)375 static void hfi_disable(void)
376 {
377 u64 msr_val;
378 int i;
379
380 rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
381 msr_val &= ~HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT;
382 wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
383
384 /*
385 * Wait for hardware to acknowledge the disabling of HFI. Some
386 * processors may not do it. Wait for ~2ms. This is a reasonable
387 * time for hardware to complete any pending actions on the HFI
388 * memory.
389 */
390 for (i = 0; i < 2000; i++) {
391 rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val);
392 if (msr_val & PACKAGE_THERM_STATUS_HFI_UPDATED)
393 break;
394
395 udelay(1);
396 cpu_relax();
397 }
398 }
399
400 /**
401 * intel_hfi_online() - Enable HFI on @cpu
402 * @cpu: CPU in which the HFI will be enabled
403 *
404 * Enable the HFI to be used in @cpu. The HFI is enabled at the package
405 * level. The first CPU in the package to come online does the full HFI
406 * initialization. Subsequent CPUs will just link themselves to the HFI
407 * instance of their package.
408 *
409 * This function is called before enabling the thermal vector in the local APIC
410 * in order to ensure that @cpu has an associated HFI instance when it receives
411 * an HFI event.
412 */
intel_hfi_online(unsigned int cpu)413 void intel_hfi_online(unsigned int cpu)
414 {
415 struct hfi_instance *hfi_instance;
416 struct hfi_cpu_info *info;
417 u16 pkg_id;
418
419 /* Nothing to do if hfi_instances are missing. */
420 if (!hfi_instances)
421 return;
422
423 /*
424 * Link @cpu to the HFI instance of its package. It does not
425 * matter whether the instance has been initialized.
426 */
427 info = &per_cpu(hfi_cpu_info, cpu);
428 pkg_id = topology_logical_package_id(cpu);
429 hfi_instance = info->hfi_instance;
430 if (!hfi_instance) {
431 if (pkg_id >= max_hfi_instances)
432 return;
433
434 hfi_instance = &hfi_instances[pkg_id];
435 info->hfi_instance = hfi_instance;
436 }
437
438 init_hfi_cpu_index(info);
439
440 /*
441 * Now check if the HFI instance of the package of @cpu has been
442 * initialized (by checking its header). In such case, all we have to
443 * do is to add @cpu to this instance's cpumask and enable the instance
444 * if needed.
445 */
446 mutex_lock(&hfi_instance_lock);
447 if (hfi_instance->hdr)
448 goto enable;
449
450 /*
451 * Hardware is programmed with the physical address of the first page
452 * frame of the table. Hence, the allocated memory must be page-aligned.
453 *
454 * Some processors do not forget the initial address of the HFI table
455 * even after having been reprogrammed. Keep using the same pages. Do
456 * not free them.
457 */
458 hfi_instance->hw_table = alloc_pages_exact(hfi_features.nr_table_pages,
459 GFP_KERNEL | __GFP_ZERO);
460 if (!hfi_instance->hw_table)
461 goto unlock;
462
463 /*
464 * Allocate memory to keep a local copy of the table that
465 * hardware generates.
466 */
467 hfi_instance->local_table = kzalloc(hfi_features.nr_table_pages << PAGE_SHIFT,
468 GFP_KERNEL);
469 if (!hfi_instance->local_table)
470 goto free_hw_table;
471
472 init_hfi_instance(hfi_instance);
473
474 INIT_DELAYED_WORK(&hfi_instance->update_work, hfi_update_work_fn);
475 raw_spin_lock_init(&hfi_instance->table_lock);
476 raw_spin_lock_init(&hfi_instance->event_lock);
477
478 enable:
479 cpumask_set_cpu(cpu, hfi_instance->cpus);
480
481 /*
482 * Enable this HFI instance if this is its first online CPU and
483 * there are user-space clients of thermal events.
484 */
485 if (cpumask_weight(hfi_instance->cpus) == 1 && hfi_clients_nr > 0) {
486 hfi_set_hw_table(hfi_instance);
487 hfi_enable();
488 }
489
490 unlock:
491 mutex_unlock(&hfi_instance_lock);
492 return;
493
494 free_hw_table:
495 free_pages_exact(hfi_instance->hw_table, hfi_features.nr_table_pages);
496 goto unlock;
497 }
498
499 /**
500 * intel_hfi_offline() - Disable HFI on @cpu
501 * @cpu: CPU in which the HFI will be disabled
502 *
503 * Remove @cpu from those covered by its HFI instance.
504 *
505 * On some processors, hardware remembers previous programming settings even
506 * after being reprogrammed. Thus, keep HFI enabled even if all CPUs in the
507 * package of @cpu are offline. See note in intel_hfi_online().
508 */
intel_hfi_offline(unsigned int cpu)509 void intel_hfi_offline(unsigned int cpu)
510 {
511 struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, cpu);
512 struct hfi_instance *hfi_instance;
513
514 /*
515 * Check if @cpu as an associated, initialized (i.e., with a non-NULL
516 * header). Also, HFI instances are only initialized if X86_FEATURE_HFI
517 * is present.
518 */
519 hfi_instance = info->hfi_instance;
520 if (!hfi_instance)
521 return;
522
523 if (!hfi_instance->hdr)
524 return;
525
526 mutex_lock(&hfi_instance_lock);
527 cpumask_clear_cpu(cpu, hfi_instance->cpus);
528
529 if (!cpumask_weight(hfi_instance->cpus))
530 hfi_disable();
531
532 mutex_unlock(&hfi_instance_lock);
533 }
534
hfi_parse_features(void)535 static __init int hfi_parse_features(void)
536 {
537 unsigned int nr_capabilities;
538 union cpuid6_edx edx;
539
540 if (!boot_cpu_has(X86_FEATURE_HFI))
541 return -ENODEV;
542
543 /*
544 * If we are here we know that CPUID_HFI_LEAF exists. Parse the
545 * supported capabilities and the size of the HFI table.
546 */
547 edx.full = cpuid_edx(CPUID_HFI_LEAF);
548
549 if (!edx.split.capabilities.split.performance) {
550 pr_debug("Performance reporting not supported! Not using HFI\n");
551 return -ENODEV;
552 }
553
554 /*
555 * The number of supported capabilities determines the number of
556 * columns in the HFI table. Exclude the reserved bits.
557 */
558 edx.split.capabilities.split.__reserved = 0;
559 nr_capabilities = hweight8(edx.split.capabilities.bits);
560
561 /* The number of 4KB pages required by the table */
562 hfi_features.nr_table_pages = edx.split.table_pages + 1;
563
564 /*
565 * The header contains change indications for each supported feature.
566 * The size of the table header is rounded up to be a multiple of 8
567 * bytes.
568 */
569 hfi_features.hdr_size = DIV_ROUND_UP(nr_capabilities, 8) * 8;
570
571 /*
572 * Data of each logical processor is also rounded up to be a multiple
573 * of 8 bytes.
574 */
575 hfi_features.cpu_stride = DIV_ROUND_UP(nr_capabilities, 8) * 8;
576
577 return 0;
578 }
579
580 /*
581 * If concurrency is not prevented by other means, the HFI enable/disable
582 * routines must be called under hfi_instance_lock."
583 */
hfi_enable_instance(void * ptr)584 static void hfi_enable_instance(void *ptr)
585 {
586 hfi_set_hw_table(ptr);
587 hfi_enable();
588 }
589
hfi_disable_instance(void * ptr)590 static void hfi_disable_instance(void *ptr)
591 {
592 hfi_disable();
593 }
594
hfi_syscore_resume(void)595 static void hfi_syscore_resume(void)
596 {
597 /* This code runs only on the boot CPU. */
598 struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, 0);
599 struct hfi_instance *hfi_instance = info->hfi_instance;
600
601 /* No locking needed. There is no concurrency with CPU online. */
602 if (hfi_clients_nr > 0)
603 hfi_enable_instance(hfi_instance);
604 }
605
hfi_syscore_suspend(void)606 static int hfi_syscore_suspend(void)
607 {
608 /* No locking needed. There is no concurrency with CPU offline. */
609 hfi_disable();
610
611 return 0;
612 }
613
614 static struct syscore_ops hfi_pm_ops = {
615 .resume = hfi_syscore_resume,
616 .suspend = hfi_syscore_suspend,
617 };
618
hfi_thermal_notify(struct notifier_block * nb,unsigned long state,void * _notify)619 static int hfi_thermal_notify(struct notifier_block *nb, unsigned long state,
620 void *_notify)
621 {
622 struct thermal_genl_notify *notify = _notify;
623 struct hfi_instance *hfi_instance;
624 smp_call_func_t func = NULL;
625 unsigned int cpu;
626 int i;
627
628 if (notify->mcgrp != THERMAL_GENL_EVENT_GROUP)
629 return NOTIFY_DONE;
630
631 if (state != THERMAL_NOTIFY_BIND && state != THERMAL_NOTIFY_UNBIND)
632 return NOTIFY_DONE;
633
634 mutex_lock(&hfi_instance_lock);
635
636 switch (state) {
637 case THERMAL_NOTIFY_BIND:
638 if (++hfi_clients_nr == 1)
639 func = hfi_enable_instance;
640 break;
641 case THERMAL_NOTIFY_UNBIND:
642 if (--hfi_clients_nr == 0)
643 func = hfi_disable_instance;
644 break;
645 }
646
647 if (!func)
648 goto out;
649
650 for (i = 0; i < max_hfi_instances; i++) {
651 hfi_instance = &hfi_instances[i];
652 if (cpumask_empty(hfi_instance->cpus))
653 continue;
654
655 cpu = cpumask_any(hfi_instance->cpus);
656 smp_call_function_single(cpu, func, hfi_instance, true);
657 }
658
659 out:
660 mutex_unlock(&hfi_instance_lock);
661
662 return NOTIFY_OK;
663 }
664
665 static struct notifier_block hfi_thermal_nb = {
666 .notifier_call = hfi_thermal_notify,
667 };
668
intel_hfi_init(void)669 void __init intel_hfi_init(void)
670 {
671 struct hfi_instance *hfi_instance;
672 int i, j;
673
674 if (hfi_parse_features())
675 return;
676
677 /*
678 * Note: HFI resources are managed at the physical package scope.
679 * There could be platforms that enumerate packages as Linux dies.
680 * Special handling would be needed if this happens on an HFI-capable
681 * platform.
682 */
683 max_hfi_instances = topology_max_packages();
684
685 /*
686 * This allocation may fail. CPU hotplug callbacks must check
687 * for a null pointer.
688 */
689 hfi_instances = kcalloc(max_hfi_instances, sizeof(*hfi_instances),
690 GFP_KERNEL);
691 if (!hfi_instances)
692 return;
693
694 for (i = 0; i < max_hfi_instances; i++) {
695 hfi_instance = &hfi_instances[i];
696 if (!zalloc_cpumask_var(&hfi_instance->cpus, GFP_KERNEL))
697 goto err_nomem;
698 }
699
700 hfi_updates_wq = create_singlethread_workqueue("hfi-updates");
701 if (!hfi_updates_wq)
702 goto err_nomem;
703
704 /*
705 * Both thermal core and Intel HFI can not be build as modules.
706 * As kernel build-in drivers they are initialized before user-space
707 * starts, hence we can not miss BIND/UNBIND events when applications
708 * add/remove thermal multicast group to/from a netlink socket.
709 */
710 if (thermal_genl_register_notifier(&hfi_thermal_nb))
711 goto err_nl_notif;
712
713 register_syscore_ops(&hfi_pm_ops);
714
715 return;
716
717 err_nl_notif:
718 destroy_workqueue(hfi_updates_wq);
719
720 err_nomem:
721 for (j = 0; j < i; ++j) {
722 hfi_instance = &hfi_instances[j];
723 free_cpumask_var(hfi_instance->cpus);
724 }
725
726 kfree(hfi_instances);
727 hfi_instances = NULL;
728 }
729