1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object trees 18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The 19 * object_list is the main list holding the metadata (struct 20 * kmemleak_object) for the allocated memory blocks. The object trees are 21 * red black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The kmemleak_object structures are added to 23 * the object_list and the object tree root in the create_object() function 24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in 25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback 26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 27 * Accesses to the metadata (e.g. count) are protected by this lock. Note 28 * that some members of this structure may be protected by other means 29 * (atomic or kmemleak_lock). This lock is also held when scanning the 30 * corresponding memory block to avoid the kernel freeing it via the 31 * kmemleak_free() callback. This is less heavyweight than holding a global 32 * lock like kmemleak_lock during scanning. 33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 34 * unreferenced objects at a time. The gray_list contains the objects which 35 * are already referenced or marked as false positives and need to be 36 * scanned. This list is only modified during a scanning episode when the 37 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 38 * Note that the kmemleak_object.use_count is incremented when an object is 39 * added to the gray_list and therefore cannot be freed. This mutex also 40 * prevents multiple users of the "kmemleak" debugfs file together with 41 * modifications to the memory scanning parameters including the scan_thread 42 * pointer 43 * 44 * Locks and mutexes are acquired/nested in the following order: 45 * 46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 47 * 48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 49 * regions. 50 * 51 * The kmemleak_object structures have a use_count incremented or decremented 52 * using the get_object()/put_object() functions. When the use_count becomes 53 * 0, this count can no longer be incremented and put_object() schedules the 54 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 55 * function must be protected by rcu_read_lock() to avoid accessing a freed 56 * structure. 57 */ 58 59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 60 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/list.h> 64 #include <linux/sched/signal.h> 65 #include <linux/sched/task.h> 66 #include <linux/sched/task_stack.h> 67 #include <linux/jiffies.h> 68 #include <linux/delay.h> 69 #include <linux/export.h> 70 #include <linux/kthread.h> 71 #include <linux/rbtree.h> 72 #include <linux/fs.h> 73 #include <linux/debugfs.h> 74 #include <linux/seq_file.h> 75 #include <linux/cpumask.h> 76 #include <linux/spinlock.h> 77 #include <linux/module.h> 78 #include <linux/mutex.h> 79 #include <linux/rcupdate.h> 80 #include <linux/stacktrace.h> 81 #include <linux/stackdepot.h> 82 #include <linux/cache.h> 83 #include <linux/percpu.h> 84 #include <linux/memblock.h> 85 #include <linux/pfn.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kfence.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* scanning area inside a memory block */ 118 struct kmemleak_scan_area { 119 struct hlist_node node; 120 unsigned long start; 121 size_t size; 122 }; 123 124 #define KMEMLEAK_GREY 0 125 #define KMEMLEAK_BLACK -1 126 127 /* 128 * Structure holding the metadata for each allocated memory block. 129 * Modifications to such objects should be made while holding the 130 * object->lock. Insertions or deletions from object_list, gray_list or 131 * rb_node are already protected by the corresponding locks or mutex (see 132 * the notes on locking above). These objects are reference-counted 133 * (use_count) and freed using the RCU mechanism. 134 */ 135 struct kmemleak_object { 136 raw_spinlock_t lock; 137 unsigned int flags; /* object status flags */ 138 struct list_head object_list; 139 struct list_head gray_list; 140 struct rb_node rb_node; 141 struct rcu_head rcu; /* object_list lockless traversal */ 142 /* object usage count; object freed when use_count == 0 */ 143 atomic_t use_count; 144 unsigned int del_state; /* deletion state */ 145 unsigned long pointer; 146 size_t size; 147 /* pass surplus references to this pointer */ 148 unsigned long excess_ref; 149 /* minimum number of a pointers found before it is considered leak */ 150 int min_count; 151 /* the total number of pointers found pointing to this object */ 152 int count; 153 /* checksum for detecting modified objects */ 154 u32 checksum; 155 depot_stack_handle_t trace_handle; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long jiffies; /* creation timestamp */ 159 pid_t pid; /* pid of the current task */ 160 char comm[TASK_COMM_LEN]; /* executable name */ 161 }; 162 163 /* flag representing the memory block allocation status */ 164 #define OBJECT_ALLOCATED (1 << 0) 165 /* flag set after the first reporting of an unreference object */ 166 #define OBJECT_REPORTED (1 << 1) 167 /* flag set to not scan the object */ 168 #define OBJECT_NO_SCAN (1 << 2) 169 /* flag set to fully scan the object when scan_area allocation failed */ 170 #define OBJECT_FULL_SCAN (1 << 3) 171 /* flag set for object allocated with physical address */ 172 #define OBJECT_PHYS (1 << 4) 173 /* flag set for per-CPU pointers */ 174 #define OBJECT_PERCPU (1 << 5) 175 176 /* set when __remove_object() called */ 177 #define DELSTATE_REMOVED (1 << 0) 178 /* set to temporarily prevent deletion from object_list */ 179 #define DELSTATE_NO_DELETE (1 << 1) 180 181 #define HEX_PREFIX " " 182 /* number of bytes to print per line; must be 16 or 32 */ 183 #define HEX_ROW_SIZE 16 184 /* number of bytes to print at a time (1, 2, 4, 8) */ 185 #define HEX_GROUP_SIZE 1 186 /* include ASCII after the hex output */ 187 #define HEX_ASCII 1 188 /* max number of lines to be printed */ 189 #define HEX_MAX_LINES 2 190 191 /* the list of all allocated objects */ 192 static LIST_HEAD(object_list); 193 /* the list of gray-colored objects (see color_gray comment below) */ 194 static LIST_HEAD(gray_list); 195 /* memory pool allocation */ 196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 198 static LIST_HEAD(mem_pool_free_list); 199 /* search tree for object boundaries */ 200 static struct rb_root object_tree_root = RB_ROOT; 201 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 202 static struct rb_root object_phys_tree_root = RB_ROOT; 203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */ 204 static struct rb_root object_percpu_tree_root = RB_ROOT; 205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 206 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 207 208 /* allocation caches for kmemleak internal data */ 209 static struct kmem_cache *object_cache; 210 static struct kmem_cache *scan_area_cache; 211 212 /* set if tracing memory operations is enabled */ 213 static int kmemleak_enabled __read_mostly = 1; 214 /* same as above but only for the kmemleak_free() callback */ 215 static int kmemleak_free_enabled __read_mostly = 1; 216 /* set in the late_initcall if there were no errors */ 217 static int kmemleak_late_initialized; 218 /* set if a fatal kmemleak error has occurred */ 219 static int kmemleak_error; 220 221 /* minimum and maximum address that may be valid pointers */ 222 static unsigned long min_addr = ULONG_MAX; 223 static unsigned long max_addr; 224 225 /* minimum and maximum address that may be valid per-CPU pointers */ 226 static unsigned long min_percpu_addr = ULONG_MAX; 227 static unsigned long max_percpu_addr; 228 229 static struct task_struct *scan_thread; 230 /* used to avoid reporting of recently allocated objects */ 231 static unsigned long jiffies_min_age; 232 static unsigned long jiffies_last_scan; 233 /* delay between automatic memory scannings */ 234 static unsigned long jiffies_scan_wait; 235 /* enables or disables the task stacks scanning */ 236 static int kmemleak_stack_scan = 1; 237 /* protects the memory scanning, parameters and debug/kmemleak file access */ 238 static DEFINE_MUTEX(scan_mutex); 239 /* setting kmemleak=on, will set this var, skipping the disable */ 240 static int kmemleak_skip_disable; 241 /* If there are leaks that can be reported */ 242 static bool kmemleak_found_leaks; 243 244 static bool kmemleak_verbose; 245 module_param_named(verbose, kmemleak_verbose, bool, 0600); 246 247 static void kmemleak_disable(void); 248 249 /* 250 * Print a warning and dump the stack trace. 251 */ 252 #define kmemleak_warn(x...) do { \ 253 pr_warn(x); \ 254 dump_stack(); \ 255 } while (0) 256 257 /* 258 * Macro invoked when a serious kmemleak condition occurred and cannot be 259 * recovered from. Kmemleak will be disabled and further allocation/freeing 260 * tracing no longer available. 261 */ 262 #define kmemleak_stop(x...) do { \ 263 kmemleak_warn(x); \ 264 kmemleak_disable(); \ 265 } while (0) 266 267 #define warn_or_seq_printf(seq, fmt, ...) do { \ 268 if (seq) \ 269 seq_printf(seq, fmt, ##__VA_ARGS__); \ 270 else \ 271 pr_warn(fmt, ##__VA_ARGS__); \ 272 } while (0) 273 274 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 275 int rowsize, int groupsize, const void *buf, 276 size_t len, bool ascii) 277 { 278 if (seq) 279 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 280 buf, len, ascii); 281 else 282 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 283 rowsize, groupsize, buf, len, ascii); 284 } 285 286 /* 287 * Printing of the objects hex dump to the seq file. The number of lines to be 288 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 289 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 290 * with the object->lock held. 291 */ 292 static void hex_dump_object(struct seq_file *seq, 293 struct kmemleak_object *object) 294 { 295 const u8 *ptr = (const u8 *)object->pointer; 296 size_t len; 297 298 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 299 return; 300 301 if (object->flags & OBJECT_PERCPU) 302 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer); 303 304 /* limit the number of lines to HEX_MAX_LINES */ 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 306 307 if (object->flags & OBJECT_PERCPU) 308 warn_or_seq_printf(seq, " hex dump (first %zu bytes on cpu %d):\n", 309 len, raw_smp_processor_id()); 310 else 311 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 312 kasan_disable_current(); 313 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 314 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 315 kasan_enable_current(); 316 } 317 318 /* 319 * Object colors, encoded with count and min_count: 320 * - white - orphan object, not enough references to it (count < min_count) 321 * - gray - not orphan, not marked as false positive (min_count == 0) or 322 * sufficient references to it (count >= min_count) 323 * - black - ignore, it doesn't contain references (e.g. text section) 324 * (min_count == -1). No function defined for this color. 325 */ 326 static bool color_white(const struct kmemleak_object *object) 327 { 328 return object->count != KMEMLEAK_BLACK && 329 object->count < object->min_count; 330 } 331 332 static bool color_gray(const struct kmemleak_object *object) 333 { 334 return object->min_count != KMEMLEAK_BLACK && 335 object->count >= object->min_count; 336 } 337 338 /* 339 * Objects are considered unreferenced only if their color is white, they have 340 * not be deleted and have a minimum age to avoid false positives caused by 341 * pointers temporarily stored in CPU registers. 342 */ 343 static bool unreferenced_object(struct kmemleak_object *object) 344 { 345 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 346 time_before_eq(object->jiffies + jiffies_min_age, 347 jiffies_last_scan); 348 } 349 350 static const char *__object_type_str(struct kmemleak_object *object) 351 { 352 if (object->flags & OBJECT_PHYS) 353 return " (phys)"; 354 if (object->flags & OBJECT_PERCPU) 355 return " (percpu)"; 356 return ""; 357 } 358 359 /* 360 * Printing of the unreferenced objects information to the seq file. The 361 * print_unreferenced function must be called with the object->lock held. 362 */ 363 static void print_unreferenced(struct seq_file *seq, 364 struct kmemleak_object *object) 365 { 366 int i; 367 unsigned long *entries; 368 unsigned int nr_entries; 369 370 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 371 warn_or_seq_printf(seq, "unreferenced object%s 0x%08lx (size %zu):\n", 372 __object_type_str(object), 373 object->pointer, object->size); 374 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", 375 object->comm, object->pid, object->jiffies); 376 hex_dump_object(seq, object); 377 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum); 378 379 for (i = 0; i < nr_entries; i++) { 380 void *ptr = (void *)entries[i]; 381 warn_or_seq_printf(seq, " %pS\n", ptr); 382 } 383 } 384 385 /* 386 * Print the kmemleak_object information. This function is used mainly for 387 * debugging special cases when kmemleak operations. It must be called with 388 * the object->lock held. 389 */ 390 static void dump_object_info(struct kmemleak_object *object) 391 { 392 pr_notice("Object%s 0x%08lx (size %zu):\n", 393 __object_type_str(object), object->pointer, object->size); 394 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 395 object->comm, object->pid, object->jiffies); 396 pr_notice(" min_count = %d\n", object->min_count); 397 pr_notice(" count = %d\n", object->count); 398 pr_notice(" flags = 0x%x\n", object->flags); 399 pr_notice(" checksum = %u\n", object->checksum); 400 pr_notice(" backtrace:\n"); 401 if (object->trace_handle) 402 stack_depot_print(object->trace_handle); 403 } 404 405 static struct rb_root *object_tree(unsigned long objflags) 406 { 407 if (objflags & OBJECT_PHYS) 408 return &object_phys_tree_root; 409 if (objflags & OBJECT_PERCPU) 410 return &object_percpu_tree_root; 411 return &object_tree_root; 412 } 413 414 /* 415 * Look-up a memory block metadata (kmemleak_object) in the object search 416 * tree based on a pointer value. If alias is 0, only values pointing to the 417 * beginning of the memory block are allowed. The kmemleak_lock must be held 418 * when calling this function. 419 */ 420 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 421 unsigned int objflags) 422 { 423 struct rb_node *rb = object_tree(objflags)->rb_node; 424 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 425 426 while (rb) { 427 struct kmemleak_object *object; 428 unsigned long untagged_objp; 429 430 object = rb_entry(rb, struct kmemleak_object, rb_node); 431 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 432 433 if (untagged_ptr < untagged_objp) 434 rb = object->rb_node.rb_left; 435 else if (untagged_objp + object->size <= untagged_ptr) 436 rb = object->rb_node.rb_right; 437 else if (untagged_objp == untagged_ptr || alias) 438 return object; 439 else { 440 /* 441 * Printk deferring due to the kmemleak_lock held. 442 * This is done to avoid deadlock. 443 */ 444 printk_deferred_enter(); 445 kmemleak_warn("Found object by alias at 0x%08lx\n", 446 ptr); 447 dump_object_info(object); 448 printk_deferred_exit(); 449 break; 450 } 451 } 452 return NULL; 453 } 454 455 /* Look-up a kmemleak object which allocated with virtual address. */ 456 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 457 { 458 return __lookup_object(ptr, alias, 0); 459 } 460 461 /* 462 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 463 * that once an object's use_count reached 0, the RCU freeing was already 464 * registered and the object should no longer be used. This function must be 465 * called under the protection of rcu_read_lock(). 466 */ 467 static int get_object(struct kmemleak_object *object) 468 { 469 return atomic_inc_not_zero(&object->use_count); 470 } 471 472 /* 473 * Memory pool allocation and freeing. kmemleak_lock must not be held. 474 */ 475 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 476 { 477 unsigned long flags; 478 struct kmemleak_object *object; 479 bool warn = false; 480 481 /* try the slab allocator first */ 482 if (object_cache) { 483 object = kmem_cache_alloc_noprof(object_cache, 484 gfp_nested_mask(gfp)); 485 if (object) 486 return object; 487 } 488 489 /* slab allocation failed, try the memory pool */ 490 raw_spin_lock_irqsave(&kmemleak_lock, flags); 491 object = list_first_entry_or_null(&mem_pool_free_list, 492 typeof(*object), object_list); 493 if (object) 494 list_del(&object->object_list); 495 else if (mem_pool_free_count) 496 object = &mem_pool[--mem_pool_free_count]; 497 else 498 warn = true; 499 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 500 if (warn) 501 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 502 503 return object; 504 } 505 506 /* 507 * Return the object to either the slab allocator or the memory pool. 508 */ 509 static void mem_pool_free(struct kmemleak_object *object) 510 { 511 unsigned long flags; 512 513 if (object < mem_pool || object >= ARRAY_END(mem_pool)) { 514 kmem_cache_free(object_cache, object); 515 return; 516 } 517 518 /* add the object to the memory pool free list */ 519 raw_spin_lock_irqsave(&kmemleak_lock, flags); 520 list_add(&object->object_list, &mem_pool_free_list); 521 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 522 } 523 524 /* 525 * RCU callback to free a kmemleak_object. 526 */ 527 static void free_object_rcu(struct rcu_head *rcu) 528 { 529 struct hlist_node *tmp; 530 struct kmemleak_scan_area *area; 531 struct kmemleak_object *object = 532 container_of(rcu, struct kmemleak_object, rcu); 533 534 /* 535 * Once use_count is 0 (guaranteed by put_object), there is no other 536 * code accessing this object, hence no need for locking. 537 */ 538 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 539 hlist_del(&area->node); 540 kmem_cache_free(scan_area_cache, area); 541 } 542 mem_pool_free(object); 543 } 544 545 /* 546 * Decrement the object use_count. Once the count is 0, free the object using 547 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 548 * delete_object() path, the delayed RCU freeing ensures that there is no 549 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 550 * is also possible. 551 */ 552 static void put_object(struct kmemleak_object *object) 553 { 554 if (!atomic_dec_and_test(&object->use_count)) 555 return; 556 557 /* should only get here after delete_object was called */ 558 WARN_ON(object->flags & OBJECT_ALLOCATED); 559 560 /* 561 * It may be too early for the RCU callbacks, however, there is no 562 * concurrent object_list traversal when !object_cache and all objects 563 * came from the memory pool. Free the object directly. 564 */ 565 if (object_cache) 566 call_rcu(&object->rcu, free_object_rcu); 567 else 568 free_object_rcu(&object->rcu); 569 } 570 571 /* 572 * Look up an object in the object search tree and increase its use_count. 573 */ 574 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 575 unsigned int objflags) 576 { 577 unsigned long flags; 578 struct kmemleak_object *object; 579 580 rcu_read_lock(); 581 raw_spin_lock_irqsave(&kmemleak_lock, flags); 582 object = __lookup_object(ptr, alias, objflags); 583 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 584 585 /* check whether the object is still available */ 586 if (object && !get_object(object)) 587 object = NULL; 588 rcu_read_unlock(); 589 590 return object; 591 } 592 593 /* Look up and get an object which allocated with virtual address. */ 594 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 595 { 596 return __find_and_get_object(ptr, alias, 0); 597 } 598 599 /* 600 * Remove an object from its object tree and object_list. Must be called with 601 * the kmemleak_lock held _if_ kmemleak is still enabled. 602 */ 603 static void __remove_object(struct kmemleak_object *object) 604 { 605 rb_erase(&object->rb_node, object_tree(object->flags)); 606 if (!(object->del_state & DELSTATE_NO_DELETE)) 607 list_del_rcu(&object->object_list); 608 object->del_state |= DELSTATE_REMOVED; 609 } 610 611 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, 612 int alias, 613 unsigned int objflags) 614 { 615 struct kmemleak_object *object; 616 617 object = __lookup_object(ptr, alias, objflags); 618 if (object) 619 __remove_object(object); 620 621 return object; 622 } 623 624 /* 625 * Look up an object in the object search tree and remove it from both object 626 * tree root and object_list. The returned object's use_count should be at 627 * least 1, as initially set by create_object(). 628 */ 629 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 630 unsigned int objflags) 631 { 632 unsigned long flags; 633 struct kmemleak_object *object; 634 635 raw_spin_lock_irqsave(&kmemleak_lock, flags); 636 object = __find_and_remove_object(ptr, alias, objflags); 637 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 638 639 return object; 640 } 641 642 static noinline depot_stack_handle_t set_track_prepare(void) 643 { 644 depot_stack_handle_t trace_handle; 645 unsigned long entries[MAX_TRACE]; 646 unsigned int nr_entries; 647 648 /* 649 * Use object_cache to determine whether kmemleak_init() has 650 * been invoked. stack_depot_early_init() is called before 651 * kmemleak_init() in mm_core_init(). 652 */ 653 if (!object_cache) 654 return 0; 655 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 656 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 657 658 return trace_handle; 659 } 660 661 static struct kmemleak_object *__alloc_object(gfp_t gfp) 662 { 663 struct kmemleak_object *object; 664 665 object = mem_pool_alloc(gfp); 666 if (!object) { 667 pr_warn("Cannot allocate a kmemleak_object structure\n"); 668 kmemleak_disable(); 669 return NULL; 670 } 671 672 INIT_LIST_HEAD(&object->object_list); 673 INIT_LIST_HEAD(&object->gray_list); 674 INIT_HLIST_HEAD(&object->area_list); 675 raw_spin_lock_init(&object->lock); 676 atomic_set(&object->use_count, 1); 677 object->excess_ref = 0; 678 object->count = 0; /* white color initially */ 679 object->checksum = 0; 680 object->del_state = 0; 681 682 /* task information */ 683 if (in_hardirq()) { 684 object->pid = 0; 685 strscpy(object->comm, "hardirq"); 686 } else if (in_serving_softirq()) { 687 object->pid = 0; 688 strscpy(object->comm, "softirq"); 689 } else { 690 object->pid = current->pid; 691 /* 692 * There is a small chance of a race with set_task_comm(), 693 * however using get_task_comm() here may cause locking 694 * dependency issues with current->alloc_lock. In the worst 695 * case, the command line is not correct. 696 */ 697 strscpy(object->comm, current->comm); 698 } 699 700 /* kernel backtrace */ 701 object->trace_handle = set_track_prepare(); 702 703 return object; 704 } 705 706 static int __link_object(struct kmemleak_object *object, unsigned long ptr, 707 size_t size, int min_count, unsigned int objflags) 708 { 709 710 struct kmemleak_object *parent; 711 struct rb_node **link, *rb_parent; 712 unsigned long untagged_ptr; 713 unsigned long untagged_objp; 714 715 object->flags = OBJECT_ALLOCATED | objflags; 716 object->pointer = ptr; 717 object->size = kfence_ksize((void *)ptr) ?: size; 718 object->min_count = min_count; 719 object->jiffies = jiffies; 720 721 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 722 /* 723 * Only update min_addr and max_addr with object storing virtual 724 * address. And update min_percpu_addr max_percpu_addr for per-CPU 725 * objects. 726 */ 727 if (objflags & OBJECT_PERCPU) { 728 min_percpu_addr = min(min_percpu_addr, untagged_ptr); 729 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size); 730 } else if (!(objflags & OBJECT_PHYS)) { 731 min_addr = min(min_addr, untagged_ptr); 732 max_addr = max(max_addr, untagged_ptr + size); 733 } 734 link = &object_tree(objflags)->rb_node; 735 rb_parent = NULL; 736 while (*link) { 737 rb_parent = *link; 738 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 739 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 740 if (untagged_ptr + size <= untagged_objp) 741 link = &parent->rb_node.rb_left; 742 else if (untagged_objp + parent->size <= untagged_ptr) 743 link = &parent->rb_node.rb_right; 744 else { 745 /* 746 * Printk deferring due to the kmemleak_lock held. 747 * This is done to avoid deadlock. 748 */ 749 printk_deferred_enter(); 750 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 751 ptr); 752 /* 753 * No need for parent->lock here since "parent" cannot 754 * be freed while the kmemleak_lock is held. 755 */ 756 dump_object_info(parent); 757 printk_deferred_exit(); 758 return -EEXIST; 759 } 760 } 761 rb_link_node(&object->rb_node, rb_parent, link); 762 rb_insert_color(&object->rb_node, object_tree(objflags)); 763 list_add_tail_rcu(&object->object_list, &object_list); 764 765 return 0; 766 } 767 768 /* 769 * Create the metadata (struct kmemleak_object) corresponding to an allocated 770 * memory block and add it to the object_list and object tree. 771 */ 772 static void __create_object(unsigned long ptr, size_t size, 773 int min_count, gfp_t gfp, unsigned int objflags) 774 { 775 struct kmemleak_object *object; 776 unsigned long flags; 777 int ret; 778 779 object = __alloc_object(gfp); 780 if (!object) 781 return; 782 783 raw_spin_lock_irqsave(&kmemleak_lock, flags); 784 ret = __link_object(object, ptr, size, min_count, objflags); 785 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 786 if (ret) 787 mem_pool_free(object); 788 } 789 790 /* Create kmemleak object which allocated with virtual address. */ 791 static void create_object(unsigned long ptr, size_t size, 792 int min_count, gfp_t gfp) 793 { 794 __create_object(ptr, size, min_count, gfp, 0); 795 } 796 797 /* Create kmemleak object which allocated with physical address. */ 798 static void create_object_phys(unsigned long ptr, size_t size, 799 int min_count, gfp_t gfp) 800 { 801 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS); 802 } 803 804 /* Create kmemleak object corresponding to a per-CPU allocation. */ 805 static void create_object_percpu(unsigned long ptr, size_t size, 806 int min_count, gfp_t gfp) 807 { 808 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU); 809 } 810 811 /* 812 * Mark the object as not allocated and schedule RCU freeing via put_object(). 813 */ 814 static void __delete_object(struct kmemleak_object *object) 815 { 816 unsigned long flags; 817 818 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 819 WARN_ON(atomic_read(&object->use_count) < 1); 820 821 /* 822 * Locking here also ensures that the corresponding memory block 823 * cannot be freed when it is being scanned. 824 */ 825 raw_spin_lock_irqsave(&object->lock, flags); 826 object->flags &= ~OBJECT_ALLOCATED; 827 raw_spin_unlock_irqrestore(&object->lock, flags); 828 put_object(object); 829 } 830 831 /* 832 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 833 * delete it. 834 */ 835 static void delete_object_full(unsigned long ptr, unsigned int objflags) 836 { 837 struct kmemleak_object *object; 838 839 object = find_and_remove_object(ptr, 0, objflags); 840 if (!object) 841 /* 842 * kmalloc_nolock() -> kfree() calls kmemleak_free() 843 * without kmemleak_alloc(). 844 */ 845 return; 846 __delete_object(object); 847 } 848 849 /* 850 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 851 * delete it. If the memory block is partially freed, the function may create 852 * additional metadata for the remaining parts of the block. 853 */ 854 static void delete_object_part(unsigned long ptr, size_t size, 855 unsigned int objflags) 856 { 857 struct kmemleak_object *object, *object_l, *object_r; 858 unsigned long start, end, flags; 859 860 object_l = __alloc_object(GFP_KERNEL); 861 if (!object_l) 862 return; 863 864 object_r = __alloc_object(GFP_KERNEL); 865 if (!object_r) 866 goto out; 867 868 raw_spin_lock_irqsave(&kmemleak_lock, flags); 869 object = __find_and_remove_object(ptr, 1, objflags); 870 if (!object) 871 goto unlock; 872 873 /* 874 * Create one or two objects that may result from the memory block 875 * split. Note that partial freeing is only done by free_bootmem() and 876 * this happens before kmemleak_init() is called. 877 */ 878 start = object->pointer; 879 end = object->pointer + object->size; 880 if ((ptr > start) && 881 !__link_object(object_l, start, ptr - start, 882 object->min_count, objflags)) 883 object_l = NULL; 884 if ((ptr + size < end) && 885 !__link_object(object_r, ptr + size, end - ptr - size, 886 object->min_count, objflags)) 887 object_r = NULL; 888 889 unlock: 890 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 891 if (object) { 892 __delete_object(object); 893 } else { 894 #ifdef DEBUG 895 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 896 ptr, size); 897 #endif 898 } 899 900 out: 901 if (object_l) 902 mem_pool_free(object_l); 903 if (object_r) 904 mem_pool_free(object_r); 905 } 906 907 static void __paint_it(struct kmemleak_object *object, int color) 908 { 909 object->min_count = color; 910 if (color == KMEMLEAK_BLACK) 911 object->flags |= OBJECT_NO_SCAN; 912 } 913 914 static void paint_it(struct kmemleak_object *object, int color) 915 { 916 unsigned long flags; 917 918 raw_spin_lock_irqsave(&object->lock, flags); 919 __paint_it(object, color); 920 raw_spin_unlock_irqrestore(&object->lock, flags); 921 } 922 923 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags) 924 { 925 struct kmemleak_object *object; 926 927 object = __find_and_get_object(ptr, 0, objflags); 928 if (!object) 929 /* 930 * kmalloc_nolock() -> kfree_rcu() calls kmemleak_ignore() 931 * without kmemleak_alloc(). 932 */ 933 return; 934 paint_it(object, color); 935 put_object(object); 936 } 937 938 /* 939 * Mark an object permanently as gray-colored so that it can no longer be 940 * reported as a leak. This is used in general to mark a false positive. 941 */ 942 static void make_gray_object(unsigned long ptr) 943 { 944 paint_ptr(ptr, KMEMLEAK_GREY, 0); 945 } 946 947 /* 948 * Mark the object as black-colored so that it is ignored from scans and 949 * reporting. 950 */ 951 static void make_black_object(unsigned long ptr, unsigned int objflags) 952 { 953 paint_ptr(ptr, KMEMLEAK_BLACK, objflags); 954 } 955 956 /* 957 * Reset the checksum of an object. The immediate effect is that it will not 958 * be reported as a leak during the next scan until its checksum is updated. 959 */ 960 static void reset_checksum(unsigned long ptr) 961 { 962 unsigned long flags; 963 struct kmemleak_object *object; 964 965 object = find_and_get_object(ptr, 0); 966 if (!object) { 967 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n", 968 ptr); 969 return; 970 } 971 972 raw_spin_lock_irqsave(&object->lock, flags); 973 object->checksum = 0; 974 raw_spin_unlock_irqrestore(&object->lock, flags); 975 put_object(object); 976 } 977 978 /* 979 * Add a scanning area to the object. If at least one such area is added, 980 * kmemleak will only scan these ranges rather than the whole memory block. 981 */ 982 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 983 { 984 unsigned long flags; 985 struct kmemleak_object *object; 986 struct kmemleak_scan_area *area = NULL; 987 unsigned long untagged_ptr; 988 unsigned long untagged_objp; 989 990 object = find_and_get_object(ptr, 1); 991 if (!object) { 992 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 993 ptr); 994 return; 995 } 996 997 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 998 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 999 1000 if (scan_area_cache) 1001 area = kmem_cache_alloc_noprof(scan_area_cache, 1002 gfp_nested_mask(gfp)); 1003 1004 raw_spin_lock_irqsave(&object->lock, flags); 1005 if (!area) { 1006 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 1007 /* mark the object for full scan to avoid false positives */ 1008 object->flags |= OBJECT_FULL_SCAN; 1009 goto out_unlock; 1010 } 1011 if (size == SIZE_MAX) { 1012 size = untagged_objp + object->size - untagged_ptr; 1013 } else if (untagged_ptr + size > untagged_objp + object->size) { 1014 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 1015 dump_object_info(object); 1016 kmem_cache_free(scan_area_cache, area); 1017 goto out_unlock; 1018 } 1019 1020 INIT_HLIST_NODE(&area->node); 1021 area->start = ptr; 1022 area->size = size; 1023 1024 hlist_add_head(&area->node, &object->area_list); 1025 out_unlock: 1026 raw_spin_unlock_irqrestore(&object->lock, flags); 1027 put_object(object); 1028 } 1029 1030 /* 1031 * Any surplus references (object already gray) to 'ptr' are passed to 1032 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 1033 * vm_struct may be used as an alternative reference to the vmalloc'ed object 1034 * (see free_thread_stack()). 1035 */ 1036 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 1037 { 1038 unsigned long flags; 1039 struct kmemleak_object *object; 1040 1041 object = find_and_get_object(ptr, 0); 1042 if (!object) { 1043 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 1044 ptr); 1045 return; 1046 } 1047 1048 raw_spin_lock_irqsave(&object->lock, flags); 1049 object->excess_ref = excess_ref; 1050 raw_spin_unlock_irqrestore(&object->lock, flags); 1051 put_object(object); 1052 } 1053 1054 /* 1055 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given 1056 * pointer. Such object will not be scanned by kmemleak but references to it 1057 * are searched. 1058 */ 1059 static void object_no_scan(unsigned long ptr) 1060 { 1061 unsigned long flags; 1062 struct kmemleak_object *object; 1063 1064 object = find_and_get_object(ptr, 0); 1065 if (!object) { 1066 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 1067 return; 1068 } 1069 1070 raw_spin_lock_irqsave(&object->lock, flags); 1071 object->flags |= OBJECT_NO_SCAN; 1072 raw_spin_unlock_irqrestore(&object->lock, flags); 1073 put_object(object); 1074 } 1075 1076 /** 1077 * kmemleak_alloc - register a newly allocated object 1078 * @ptr: pointer to beginning of the object 1079 * @size: size of the object 1080 * @min_count: minimum number of references to this object. If during memory 1081 * scanning a number of references less than @min_count is found, 1082 * the object is reported as a memory leak. If @min_count is 0, 1083 * the object is never reported as a leak. If @min_count is -1, 1084 * the object is ignored (not scanned and not reported as a leak) 1085 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1086 * 1087 * This function is called from the kernel allocators when a new object 1088 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 1089 */ 1090 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 1091 gfp_t gfp) 1092 { 1093 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); 1094 1095 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1096 create_object((unsigned long)ptr, size, min_count, gfp); 1097 } 1098 EXPORT_SYMBOL_GPL(kmemleak_alloc); 1099 1100 /** 1101 * kmemleak_alloc_percpu - register a newly allocated __percpu object 1102 * @ptr: __percpu pointer to beginning of the object 1103 * @size: size of the object 1104 * @gfp: flags used for kmemleak internal memory allocations 1105 * 1106 * This function is called from the kernel percpu allocator when a new object 1107 * (memory block) is allocated (alloc_percpu). 1108 */ 1109 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 1110 gfp_t gfp) 1111 { 1112 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); 1113 1114 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr)) 1115 create_object_percpu((__force unsigned long)ptr, size, 1, gfp); 1116 } 1117 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1118 1119 /** 1120 * kmemleak_vmalloc - register a newly vmalloc'ed object 1121 * @area: pointer to vm_struct 1122 * @size: size of the object 1123 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1124 * 1125 * This function is called from the vmalloc() kernel allocator when a new 1126 * object (memory block) is allocated. 1127 */ 1128 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1129 { 1130 pr_debug("%s(0x%px, %zu)\n", __func__, area, size); 1131 1132 /* 1133 * A min_count = 2 is needed because vm_struct contains a reference to 1134 * the virtual address of the vmalloc'ed block. 1135 */ 1136 if (kmemleak_enabled) { 1137 create_object((unsigned long)area->addr, size, 2, gfp); 1138 object_set_excess_ref((unsigned long)area, 1139 (unsigned long)area->addr); 1140 } 1141 } 1142 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1143 1144 /** 1145 * kmemleak_free - unregister a previously registered object 1146 * @ptr: pointer to beginning of the object 1147 * 1148 * This function is called from the kernel allocators when an object (memory 1149 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1150 */ 1151 void __ref kmemleak_free(const void *ptr) 1152 { 1153 pr_debug("%s(0x%px)\n", __func__, ptr); 1154 1155 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1156 delete_object_full((unsigned long)ptr, 0); 1157 } 1158 EXPORT_SYMBOL_GPL(kmemleak_free); 1159 1160 /** 1161 * kmemleak_free_part - partially unregister a previously registered object 1162 * @ptr: pointer to the beginning or inside the object. This also 1163 * represents the start of the range to be freed 1164 * @size: size to be unregistered 1165 * 1166 * This function is called when only a part of a memory block is freed 1167 * (usually from the bootmem allocator). 1168 */ 1169 void __ref kmemleak_free_part(const void *ptr, size_t size) 1170 { 1171 pr_debug("%s(0x%px)\n", __func__, ptr); 1172 1173 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1174 delete_object_part((unsigned long)ptr, size, 0); 1175 } 1176 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1177 1178 /** 1179 * kmemleak_free_percpu - unregister a previously registered __percpu object 1180 * @ptr: __percpu pointer to beginning of the object 1181 * 1182 * This function is called from the kernel percpu allocator when an object 1183 * (memory block) is freed (free_percpu). 1184 */ 1185 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1186 { 1187 pr_debug("%s(0x%px)\n", __func__, ptr); 1188 1189 if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr)) 1190 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU); 1191 } 1192 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1193 1194 /** 1195 * kmemleak_update_trace - update object allocation stack trace 1196 * @ptr: pointer to beginning of the object 1197 * 1198 * Override the object allocation stack trace for cases where the actual 1199 * allocation place is not always useful. 1200 */ 1201 void __ref kmemleak_update_trace(const void *ptr) 1202 { 1203 struct kmemleak_object *object; 1204 depot_stack_handle_t trace_handle; 1205 unsigned long flags; 1206 1207 pr_debug("%s(0x%px)\n", __func__, ptr); 1208 1209 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1210 return; 1211 1212 object = find_and_get_object((unsigned long)ptr, 1); 1213 if (!object) { 1214 #ifdef DEBUG 1215 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1216 ptr); 1217 #endif 1218 return; 1219 } 1220 1221 trace_handle = set_track_prepare(); 1222 raw_spin_lock_irqsave(&object->lock, flags); 1223 object->trace_handle = trace_handle; 1224 raw_spin_unlock_irqrestore(&object->lock, flags); 1225 1226 put_object(object); 1227 } 1228 EXPORT_SYMBOL(kmemleak_update_trace); 1229 1230 /** 1231 * kmemleak_not_leak - mark an allocated object as false positive 1232 * @ptr: pointer to beginning of the object 1233 * 1234 * Calling this function on an object will cause the memory block to no longer 1235 * be reported as leak and always be scanned. 1236 */ 1237 void __ref kmemleak_not_leak(const void *ptr) 1238 { 1239 pr_debug("%s(0x%px)\n", __func__, ptr); 1240 1241 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1242 make_gray_object((unsigned long)ptr); 1243 } 1244 EXPORT_SYMBOL(kmemleak_not_leak); 1245 1246 /** 1247 * kmemleak_transient_leak - mark an allocated object as transient false positive 1248 * @ptr: pointer to beginning of the object 1249 * 1250 * Calling this function on an object will cause the memory block to not be 1251 * reported as a leak temporarily. This may happen, for example, if the object 1252 * is part of a singly linked list and the ->next reference to it is changed. 1253 */ 1254 void __ref kmemleak_transient_leak(const void *ptr) 1255 { 1256 pr_debug("%s(0x%px)\n", __func__, ptr); 1257 1258 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1259 reset_checksum((unsigned long)ptr); 1260 } 1261 EXPORT_SYMBOL(kmemleak_transient_leak); 1262 1263 /** 1264 * kmemleak_ignore_percpu - similar to kmemleak_ignore but taking a percpu 1265 * address argument 1266 * @ptr: percpu address of the object 1267 */ 1268 void __ref kmemleak_ignore_percpu(const void __percpu *ptr) 1269 { 1270 pr_debug("%s(0x%px)\n", __func__, ptr); 1271 1272 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr)) 1273 make_black_object((unsigned long)ptr, OBJECT_PERCPU); 1274 } 1275 EXPORT_SYMBOL_GPL(kmemleak_ignore_percpu); 1276 1277 /** 1278 * kmemleak_ignore - ignore an allocated object 1279 * @ptr: pointer to beginning of the object 1280 * 1281 * Calling this function on an object will cause the memory block to be 1282 * ignored (not scanned and not reported as a leak). This is usually done when 1283 * it is known that the corresponding block is not a leak and does not contain 1284 * any references to other allocated memory blocks. 1285 */ 1286 void __ref kmemleak_ignore(const void *ptr) 1287 { 1288 pr_debug("%s(0x%px)\n", __func__, ptr); 1289 1290 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1291 make_black_object((unsigned long)ptr, 0); 1292 } 1293 EXPORT_SYMBOL(kmemleak_ignore); 1294 1295 /** 1296 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1297 * @ptr: pointer to beginning or inside the object. This also 1298 * represents the start of the scan area 1299 * @size: size of the scan area 1300 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1301 * 1302 * This function is used when it is known that only certain parts of an object 1303 * contain references to other objects. Kmemleak will only scan these areas 1304 * reducing the number false negatives. 1305 */ 1306 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1307 { 1308 pr_debug("%s(0x%px)\n", __func__, ptr); 1309 1310 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1311 add_scan_area((unsigned long)ptr, size, gfp); 1312 } 1313 EXPORT_SYMBOL(kmemleak_scan_area); 1314 1315 /** 1316 * kmemleak_no_scan - do not scan an allocated object 1317 * @ptr: pointer to beginning of the object 1318 * 1319 * This function notifies kmemleak not to scan the given memory block. Useful 1320 * in situations where it is known that the given object does not contain any 1321 * references to other objects. Kmemleak will not scan such objects reducing 1322 * the number of false negatives. 1323 */ 1324 void __ref kmemleak_no_scan(const void *ptr) 1325 { 1326 pr_debug("%s(0x%px)\n", __func__, ptr); 1327 1328 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1329 object_no_scan((unsigned long)ptr); 1330 } 1331 EXPORT_SYMBOL(kmemleak_no_scan); 1332 1333 /** 1334 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1335 * address argument 1336 * @phys: physical address of the object 1337 * @size: size of the object 1338 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1339 */ 1340 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1341 { 1342 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); 1343 1344 if (kmemleak_enabled) 1345 /* 1346 * Create object with OBJECT_PHYS flag and 1347 * assume min_count 0. 1348 */ 1349 create_object_phys((unsigned long)phys, size, 0, gfp); 1350 } 1351 EXPORT_SYMBOL(kmemleak_alloc_phys); 1352 1353 /** 1354 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1355 * physical address argument 1356 * @phys: physical address if the beginning or inside an object. This 1357 * also represents the start of the range to be freed 1358 * @size: size to be unregistered 1359 */ 1360 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1361 { 1362 pr_debug("%s(0x%px)\n", __func__, &phys); 1363 1364 if (kmemleak_enabled) 1365 delete_object_part((unsigned long)phys, size, OBJECT_PHYS); 1366 } 1367 EXPORT_SYMBOL(kmemleak_free_part_phys); 1368 1369 /** 1370 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1371 * address argument 1372 * @phys: physical address of the object 1373 */ 1374 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1375 { 1376 pr_debug("%s(0x%px)\n", __func__, &phys); 1377 1378 if (kmemleak_enabled) 1379 make_black_object((unsigned long)phys, OBJECT_PHYS); 1380 } 1381 EXPORT_SYMBOL(kmemleak_ignore_phys); 1382 1383 /* 1384 * Update an object's checksum and return true if it was modified. 1385 */ 1386 static bool update_checksum(struct kmemleak_object *object) 1387 { 1388 u32 old_csum = object->checksum; 1389 1390 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1391 return false; 1392 1393 kasan_disable_current(); 1394 kcsan_disable_current(); 1395 if (object->flags & OBJECT_PERCPU) { 1396 unsigned int cpu; 1397 1398 object->checksum = 0; 1399 for_each_possible_cpu(cpu) { 1400 void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1401 1402 object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size); 1403 } 1404 } else { 1405 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1406 } 1407 kasan_enable_current(); 1408 kcsan_enable_current(); 1409 1410 return object->checksum != old_csum; 1411 } 1412 1413 /* 1414 * Update an object's references. object->lock must be held by the caller. 1415 */ 1416 static void update_refs(struct kmemleak_object *object) 1417 { 1418 if (!color_white(object)) { 1419 /* non-orphan, ignored or new */ 1420 return; 1421 } 1422 1423 /* 1424 * Increase the object's reference count (number of pointers to the 1425 * memory block). If this count reaches the required minimum, the 1426 * object's color will become gray and it will be added to the 1427 * gray_list. 1428 */ 1429 object->count++; 1430 if (color_gray(object)) { 1431 /* put_object() called when removing from gray_list */ 1432 WARN_ON(!get_object(object)); 1433 list_add_tail(&object->gray_list, &gray_list); 1434 } 1435 } 1436 1437 static void pointer_update_refs(struct kmemleak_object *scanned, 1438 unsigned long pointer, unsigned int objflags) 1439 { 1440 struct kmemleak_object *object; 1441 unsigned long untagged_ptr; 1442 unsigned long excess_ref; 1443 1444 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1445 if (objflags & OBJECT_PERCPU) { 1446 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr) 1447 return; 1448 } else { 1449 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1450 return; 1451 } 1452 1453 /* 1454 * No need for get_object() here since we hold kmemleak_lock. 1455 * object->use_count cannot be dropped to 0 while the object 1456 * is still present in object_tree_root and object_list 1457 * (with updates protected by kmemleak_lock). 1458 */ 1459 object = __lookup_object(pointer, 1, objflags); 1460 if (!object) 1461 return; 1462 if (object == scanned) 1463 /* self referenced, ignore */ 1464 return; 1465 1466 /* 1467 * Avoid the lockdep recursive warning on object->lock being 1468 * previously acquired in scan_object(). These locks are 1469 * enclosed by scan_mutex. 1470 */ 1471 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1472 /* only pass surplus references (object already gray) */ 1473 if (color_gray(object)) { 1474 excess_ref = object->excess_ref; 1475 /* no need for update_refs() if object already gray */ 1476 } else { 1477 excess_ref = 0; 1478 update_refs(object); 1479 } 1480 raw_spin_unlock(&object->lock); 1481 1482 if (excess_ref) { 1483 object = lookup_object(excess_ref, 0); 1484 if (!object) 1485 return; 1486 if (object == scanned) 1487 /* circular reference, ignore */ 1488 return; 1489 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1490 update_refs(object); 1491 raw_spin_unlock(&object->lock); 1492 } 1493 } 1494 1495 /* 1496 * Memory scanning is a long process and it needs to be interruptible. This 1497 * function checks whether such interrupt condition occurred. 1498 */ 1499 static int scan_should_stop(void) 1500 { 1501 if (!kmemleak_enabled) 1502 return 1; 1503 1504 /* 1505 * This function may be called from either process or kthread context, 1506 * hence the need to check for both stop conditions. 1507 */ 1508 if (current->mm) 1509 return signal_pending(current); 1510 else 1511 return kthread_should_stop(); 1512 1513 return 0; 1514 } 1515 1516 /* 1517 * Scan a memory block (exclusive range) for valid pointers and add those 1518 * found to the gray list. 1519 */ 1520 static void scan_block(void *_start, void *_end, 1521 struct kmemleak_object *scanned) 1522 { 1523 unsigned long *ptr; 1524 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1525 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1526 unsigned long flags; 1527 1528 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1529 for (ptr = start; ptr < end; ptr++) { 1530 unsigned long pointer; 1531 1532 if (scan_should_stop()) 1533 break; 1534 1535 kasan_disable_current(); 1536 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1537 kasan_enable_current(); 1538 1539 pointer_update_refs(scanned, pointer, 0); 1540 pointer_update_refs(scanned, pointer, OBJECT_PERCPU); 1541 } 1542 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1543 } 1544 1545 /* 1546 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1547 */ 1548 #ifdef CONFIG_SMP 1549 static void scan_large_block(void *start, void *end) 1550 { 1551 void *next; 1552 1553 while (start < end) { 1554 next = min(start + MAX_SCAN_SIZE, end); 1555 scan_block(start, next, NULL); 1556 start = next; 1557 cond_resched(); 1558 } 1559 } 1560 #endif 1561 1562 /* 1563 * Scan a memory block corresponding to a kmemleak_object. A condition is 1564 * that object->use_count >= 1. 1565 */ 1566 static void scan_object(struct kmemleak_object *object) 1567 { 1568 struct kmemleak_scan_area *area; 1569 unsigned long flags; 1570 1571 /* 1572 * Once the object->lock is acquired, the corresponding memory block 1573 * cannot be freed (the same lock is acquired in delete_object). 1574 */ 1575 raw_spin_lock_irqsave(&object->lock, flags); 1576 if (object->flags & OBJECT_NO_SCAN) 1577 goto out; 1578 if (!(object->flags & OBJECT_ALLOCATED)) 1579 /* already freed object */ 1580 goto out; 1581 1582 if (object->flags & OBJECT_PERCPU) { 1583 unsigned int cpu; 1584 1585 for_each_possible_cpu(cpu) { 1586 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1587 void *end = start + object->size; 1588 1589 scan_block(start, end, object); 1590 1591 raw_spin_unlock_irqrestore(&object->lock, flags); 1592 cond_resched(); 1593 raw_spin_lock_irqsave(&object->lock, flags); 1594 if (!(object->flags & OBJECT_ALLOCATED)) 1595 break; 1596 } 1597 } else if (hlist_empty(&object->area_list) || 1598 object->flags & OBJECT_FULL_SCAN) { 1599 void *start = object->flags & OBJECT_PHYS ? 1600 __va((phys_addr_t)object->pointer) : 1601 (void *)object->pointer; 1602 void *end = start + object->size; 1603 void *next; 1604 1605 do { 1606 next = min(start + MAX_SCAN_SIZE, end); 1607 scan_block(start, next, object); 1608 1609 start = next; 1610 if (start >= end) 1611 break; 1612 1613 raw_spin_unlock_irqrestore(&object->lock, flags); 1614 cond_resched(); 1615 raw_spin_lock_irqsave(&object->lock, flags); 1616 } while (object->flags & OBJECT_ALLOCATED); 1617 } else { 1618 hlist_for_each_entry(area, &object->area_list, node) 1619 scan_block((void *)area->start, 1620 (void *)(area->start + area->size), 1621 object); 1622 } 1623 out: 1624 raw_spin_unlock_irqrestore(&object->lock, flags); 1625 } 1626 1627 /* 1628 * Scan the objects already referenced (gray objects). More objects will be 1629 * referenced and, if there are no memory leaks, all the objects are scanned. 1630 */ 1631 static void scan_gray_list(void) 1632 { 1633 struct kmemleak_object *object, *tmp; 1634 1635 /* 1636 * The list traversal is safe for both tail additions and removals 1637 * from inside the loop. The kmemleak objects cannot be freed from 1638 * outside the loop because their use_count was incremented. 1639 */ 1640 object = list_entry(gray_list.next, typeof(*object), gray_list); 1641 while (&object->gray_list != &gray_list) { 1642 cond_resched(); 1643 1644 /* may add new objects to the list */ 1645 if (!scan_should_stop()) 1646 scan_object(object); 1647 1648 tmp = list_entry(object->gray_list.next, typeof(*object), 1649 gray_list); 1650 1651 /* remove the object from the list and release it */ 1652 list_del(&object->gray_list); 1653 put_object(object); 1654 1655 object = tmp; 1656 } 1657 WARN_ON(!list_empty(&gray_list)); 1658 } 1659 1660 /* 1661 * Conditionally call resched() in an object iteration loop while making sure 1662 * that the given object won't go away without RCU read lock by performing a 1663 * get_object() if necessaary. 1664 */ 1665 static void kmemleak_cond_resched(struct kmemleak_object *object) 1666 { 1667 if (!get_object(object)) 1668 return; /* Try next object */ 1669 1670 raw_spin_lock_irq(&kmemleak_lock); 1671 if (object->del_state & DELSTATE_REMOVED) 1672 goto unlock_put; /* Object removed */ 1673 object->del_state |= DELSTATE_NO_DELETE; 1674 raw_spin_unlock_irq(&kmemleak_lock); 1675 1676 rcu_read_unlock(); 1677 cond_resched(); 1678 rcu_read_lock(); 1679 1680 raw_spin_lock_irq(&kmemleak_lock); 1681 if (object->del_state & DELSTATE_REMOVED) 1682 list_del_rcu(&object->object_list); 1683 object->del_state &= ~DELSTATE_NO_DELETE; 1684 unlock_put: 1685 raw_spin_unlock_irq(&kmemleak_lock); 1686 put_object(object); 1687 } 1688 1689 /* 1690 * Scan data sections and all the referenced memory blocks allocated via the 1691 * kernel's standard allocators. This function must be called with the 1692 * scan_mutex held. 1693 */ 1694 static void kmemleak_scan(void) 1695 { 1696 struct kmemleak_object *object; 1697 struct zone *zone; 1698 int __maybe_unused i; 1699 int new_leaks = 0; 1700 1701 jiffies_last_scan = jiffies; 1702 1703 /* prepare the kmemleak_object's */ 1704 rcu_read_lock(); 1705 list_for_each_entry_rcu(object, &object_list, object_list) { 1706 raw_spin_lock_irq(&object->lock); 1707 #ifdef DEBUG 1708 /* 1709 * With a few exceptions there should be a maximum of 1710 * 1 reference to any object at this point. 1711 */ 1712 if (atomic_read(&object->use_count) > 1) { 1713 pr_debug("object->use_count = %d\n", 1714 atomic_read(&object->use_count)); 1715 dump_object_info(object); 1716 } 1717 #endif 1718 1719 /* ignore objects outside lowmem (paint them black) */ 1720 if ((object->flags & OBJECT_PHYS) && 1721 !(object->flags & OBJECT_NO_SCAN)) { 1722 unsigned long phys = object->pointer; 1723 1724 if (PHYS_PFN(phys) < min_low_pfn || 1725 PHYS_PFN(phys + object->size) > max_low_pfn) 1726 __paint_it(object, KMEMLEAK_BLACK); 1727 } 1728 1729 /* reset the reference count (whiten the object) */ 1730 object->count = 0; 1731 if (color_gray(object) && get_object(object)) 1732 list_add_tail(&object->gray_list, &gray_list); 1733 1734 raw_spin_unlock_irq(&object->lock); 1735 1736 if (need_resched()) 1737 kmemleak_cond_resched(object); 1738 } 1739 rcu_read_unlock(); 1740 1741 #ifdef CONFIG_SMP 1742 /* per-cpu sections scanning */ 1743 for_each_possible_cpu(i) 1744 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1745 __per_cpu_end + per_cpu_offset(i)); 1746 #endif 1747 1748 /* 1749 * Struct page scanning for each node. 1750 */ 1751 get_online_mems(); 1752 for_each_populated_zone(zone) { 1753 unsigned long start_pfn = zone->zone_start_pfn; 1754 unsigned long end_pfn = zone_end_pfn(zone); 1755 unsigned long pfn; 1756 1757 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1758 struct page *page = pfn_to_online_page(pfn); 1759 1760 if (!(pfn & 63)) 1761 cond_resched(); 1762 1763 if (!page) 1764 continue; 1765 1766 /* only scan pages belonging to this zone */ 1767 if (page_zone(page) != zone) 1768 continue; 1769 /* only scan if page is in use */ 1770 if (page_count(page) == 0) 1771 continue; 1772 scan_block(page, page + 1, NULL); 1773 } 1774 } 1775 put_online_mems(); 1776 1777 /* 1778 * Scanning the task stacks (may introduce false negatives). 1779 */ 1780 if (kmemleak_stack_scan) { 1781 struct task_struct *p, *g; 1782 1783 rcu_read_lock(); 1784 for_each_process_thread(g, p) { 1785 void *stack = try_get_task_stack(p); 1786 if (stack) { 1787 scan_block(stack, stack + THREAD_SIZE, NULL); 1788 put_task_stack(p); 1789 } 1790 } 1791 rcu_read_unlock(); 1792 } 1793 1794 /* 1795 * Scan the objects already referenced from the sections scanned 1796 * above. 1797 */ 1798 scan_gray_list(); 1799 1800 /* 1801 * Check for new or unreferenced objects modified since the previous 1802 * scan and color them gray until the next scan. 1803 */ 1804 rcu_read_lock(); 1805 list_for_each_entry_rcu(object, &object_list, object_list) { 1806 if (need_resched()) 1807 kmemleak_cond_resched(object); 1808 1809 /* 1810 * This is racy but we can save the overhead of lock/unlock 1811 * calls. The missed objects, if any, should be caught in 1812 * the next scan. 1813 */ 1814 if (!color_white(object)) 1815 continue; 1816 raw_spin_lock_irq(&object->lock); 1817 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1818 && update_checksum(object) && get_object(object)) { 1819 /* color it gray temporarily */ 1820 object->count = object->min_count; 1821 list_add_tail(&object->gray_list, &gray_list); 1822 } 1823 raw_spin_unlock_irq(&object->lock); 1824 } 1825 rcu_read_unlock(); 1826 1827 /* 1828 * Re-scan the gray list for modified unreferenced objects. 1829 */ 1830 scan_gray_list(); 1831 1832 /* 1833 * If scanning was stopped do not report any new unreferenced objects. 1834 */ 1835 if (scan_should_stop()) 1836 return; 1837 1838 /* 1839 * Scanning result reporting. 1840 */ 1841 rcu_read_lock(); 1842 list_for_each_entry_rcu(object, &object_list, object_list) { 1843 if (need_resched()) 1844 kmemleak_cond_resched(object); 1845 1846 /* 1847 * This is racy but we can save the overhead of lock/unlock 1848 * calls. The missed objects, if any, should be caught in 1849 * the next scan. 1850 */ 1851 if (!color_white(object)) 1852 continue; 1853 raw_spin_lock_irq(&object->lock); 1854 if (unreferenced_object(object) && 1855 !(object->flags & OBJECT_REPORTED)) { 1856 object->flags |= OBJECT_REPORTED; 1857 1858 if (kmemleak_verbose) 1859 print_unreferenced(NULL, object); 1860 1861 new_leaks++; 1862 } 1863 raw_spin_unlock_irq(&object->lock); 1864 } 1865 rcu_read_unlock(); 1866 1867 if (new_leaks) { 1868 kmemleak_found_leaks = true; 1869 1870 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1871 new_leaks); 1872 } 1873 1874 } 1875 1876 /* 1877 * Thread function performing automatic memory scanning. Unreferenced objects 1878 * at the end of a memory scan are reported but only the first time. 1879 */ 1880 static int kmemleak_scan_thread(void *arg) 1881 { 1882 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1883 1884 pr_info("Automatic memory scanning thread started\n"); 1885 set_user_nice(current, 10); 1886 1887 /* 1888 * Wait before the first scan to allow the system to fully initialize. 1889 */ 1890 if (first_run) { 1891 signed long timeout = secs_to_jiffies(SECS_FIRST_SCAN); 1892 first_run = 0; 1893 while (timeout && !kthread_should_stop()) 1894 timeout = schedule_timeout_interruptible(timeout); 1895 } 1896 1897 while (!kthread_should_stop()) { 1898 signed long timeout = READ_ONCE(jiffies_scan_wait); 1899 1900 mutex_lock(&scan_mutex); 1901 kmemleak_scan(); 1902 mutex_unlock(&scan_mutex); 1903 1904 /* wait before the next scan */ 1905 while (timeout && !kthread_should_stop()) 1906 timeout = schedule_timeout_interruptible(timeout); 1907 } 1908 1909 pr_info("Automatic memory scanning thread ended\n"); 1910 1911 return 0; 1912 } 1913 1914 /* 1915 * Start the automatic memory scanning thread. This function must be called 1916 * with the scan_mutex held. 1917 */ 1918 static void start_scan_thread(void) 1919 { 1920 if (scan_thread) 1921 return; 1922 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1923 if (IS_ERR(scan_thread)) { 1924 pr_warn("Failed to create the scan thread\n"); 1925 scan_thread = NULL; 1926 } 1927 } 1928 1929 /* 1930 * Stop the automatic memory scanning thread. 1931 */ 1932 static void stop_scan_thread(void) 1933 { 1934 if (scan_thread) { 1935 kthread_stop(scan_thread); 1936 scan_thread = NULL; 1937 } 1938 } 1939 1940 /* 1941 * Iterate over the object_list and return the first valid object at or after 1942 * the required position with its use_count incremented. The function triggers 1943 * a memory scanning when the pos argument points to the first position. 1944 */ 1945 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1946 { 1947 struct kmemleak_object *object; 1948 loff_t n = *pos; 1949 int err; 1950 1951 err = mutex_lock_interruptible(&scan_mutex); 1952 if (err < 0) 1953 return ERR_PTR(err); 1954 1955 rcu_read_lock(); 1956 list_for_each_entry_rcu(object, &object_list, object_list) { 1957 if (n-- > 0) 1958 continue; 1959 if (get_object(object)) 1960 goto out; 1961 } 1962 object = NULL; 1963 out: 1964 return object; 1965 } 1966 1967 /* 1968 * Return the next object in the object_list. The function decrements the 1969 * use_count of the previous object and increases that of the next one. 1970 */ 1971 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1972 { 1973 struct kmemleak_object *prev_obj = v; 1974 struct kmemleak_object *next_obj = NULL; 1975 struct kmemleak_object *obj = prev_obj; 1976 1977 ++(*pos); 1978 1979 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1980 if (get_object(obj)) { 1981 next_obj = obj; 1982 break; 1983 } 1984 } 1985 1986 put_object(prev_obj); 1987 return next_obj; 1988 } 1989 1990 /* 1991 * Decrement the use_count of the last object required, if any. 1992 */ 1993 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1994 { 1995 if (!IS_ERR(v)) { 1996 /* 1997 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1998 * waiting was interrupted, so only release it if !IS_ERR. 1999 */ 2000 rcu_read_unlock(); 2001 mutex_unlock(&scan_mutex); 2002 if (v) 2003 put_object(v); 2004 } 2005 } 2006 2007 /* 2008 * Print the information for an unreferenced object to the seq file. 2009 */ 2010 static int kmemleak_seq_show(struct seq_file *seq, void *v) 2011 { 2012 struct kmemleak_object *object = v; 2013 unsigned long flags; 2014 2015 raw_spin_lock_irqsave(&object->lock, flags); 2016 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 2017 print_unreferenced(seq, object); 2018 raw_spin_unlock_irqrestore(&object->lock, flags); 2019 return 0; 2020 } 2021 2022 static const struct seq_operations kmemleak_seq_ops = { 2023 .start = kmemleak_seq_start, 2024 .next = kmemleak_seq_next, 2025 .stop = kmemleak_seq_stop, 2026 .show = kmemleak_seq_show, 2027 }; 2028 2029 static int kmemleak_open(struct inode *inode, struct file *file) 2030 { 2031 return seq_open(file, &kmemleak_seq_ops); 2032 } 2033 2034 static bool __dump_str_object_info(unsigned long addr, unsigned int objflags) 2035 { 2036 unsigned long flags; 2037 struct kmemleak_object *object; 2038 2039 object = __find_and_get_object(addr, 1, objflags); 2040 if (!object) 2041 return false; 2042 2043 raw_spin_lock_irqsave(&object->lock, flags); 2044 dump_object_info(object); 2045 raw_spin_unlock_irqrestore(&object->lock, flags); 2046 2047 put_object(object); 2048 2049 return true; 2050 } 2051 2052 static int dump_str_object_info(const char *str) 2053 { 2054 unsigned long addr; 2055 bool found = false; 2056 2057 if (kstrtoul(str, 0, &addr)) 2058 return -EINVAL; 2059 2060 found |= __dump_str_object_info(addr, 0); 2061 found |= __dump_str_object_info(addr, OBJECT_PHYS); 2062 found |= __dump_str_object_info(addr, OBJECT_PERCPU); 2063 2064 if (!found) { 2065 pr_info("Unknown object at 0x%08lx\n", addr); 2066 return -EINVAL; 2067 } 2068 2069 return 0; 2070 } 2071 2072 /* 2073 * We use grey instead of black to ensure we can do future scans on the same 2074 * objects. If we did not do future scans these black objects could 2075 * potentially contain references to newly allocated objects in the future and 2076 * we'd end up with false positives. 2077 */ 2078 static void kmemleak_clear(void) 2079 { 2080 struct kmemleak_object *object; 2081 2082 rcu_read_lock(); 2083 list_for_each_entry_rcu(object, &object_list, object_list) { 2084 raw_spin_lock_irq(&object->lock); 2085 if ((object->flags & OBJECT_REPORTED) && 2086 unreferenced_object(object)) 2087 __paint_it(object, KMEMLEAK_GREY); 2088 raw_spin_unlock_irq(&object->lock); 2089 } 2090 rcu_read_unlock(); 2091 2092 kmemleak_found_leaks = false; 2093 } 2094 2095 static void __kmemleak_do_cleanup(void); 2096 2097 /* 2098 * File write operation to configure kmemleak at run-time. The following 2099 * commands can be written to the /sys/kernel/debug/kmemleak file: 2100 * off - disable kmemleak (irreversible) 2101 * stack=on - enable the task stacks scanning 2102 * stack=off - disable the tasks stacks scanning 2103 * scan=on - start the automatic memory scanning thread 2104 * scan=off - stop the automatic memory scanning thread 2105 * scan=... - set the automatic memory scanning period in seconds (0 to 2106 * disable it) 2107 * scan - trigger a memory scan 2108 * clear - mark all current reported unreferenced kmemleak objects as 2109 * grey to ignore printing them, or free all kmemleak objects 2110 * if kmemleak has been disabled. 2111 * dump=... - dump information about the object found at the given address 2112 */ 2113 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 2114 size_t size, loff_t *ppos) 2115 { 2116 char buf[64]; 2117 int buf_size; 2118 int ret; 2119 2120 buf_size = min(size, (sizeof(buf) - 1)); 2121 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 2122 return -EFAULT; 2123 buf[buf_size] = 0; 2124 2125 ret = mutex_lock_interruptible(&scan_mutex); 2126 if (ret < 0) 2127 return ret; 2128 2129 if (strncmp(buf, "clear", 5) == 0) { 2130 if (kmemleak_enabled) 2131 kmemleak_clear(); 2132 else 2133 __kmemleak_do_cleanup(); 2134 goto out; 2135 } 2136 2137 if (!kmemleak_enabled) { 2138 ret = -EPERM; 2139 goto out; 2140 } 2141 2142 if (strncmp(buf, "off", 3) == 0) 2143 kmemleak_disable(); 2144 else if (strncmp(buf, "stack=on", 8) == 0) 2145 kmemleak_stack_scan = 1; 2146 else if (strncmp(buf, "stack=off", 9) == 0) 2147 kmemleak_stack_scan = 0; 2148 else if (strncmp(buf, "scan=on", 7) == 0) 2149 start_scan_thread(); 2150 else if (strncmp(buf, "scan=off", 8) == 0) 2151 stop_scan_thread(); 2152 else if (strncmp(buf, "scan=", 5) == 0) { 2153 unsigned secs; 2154 unsigned long msecs; 2155 2156 ret = kstrtouint(buf + 5, 0, &secs); 2157 if (ret < 0) 2158 goto out; 2159 2160 msecs = secs * MSEC_PER_SEC; 2161 if (msecs > UINT_MAX) 2162 msecs = UINT_MAX; 2163 2164 stop_scan_thread(); 2165 if (msecs) { 2166 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 2167 start_scan_thread(); 2168 } 2169 } else if (strncmp(buf, "scan", 4) == 0) 2170 kmemleak_scan(); 2171 else if (strncmp(buf, "dump=", 5) == 0) 2172 ret = dump_str_object_info(buf + 5); 2173 else 2174 ret = -EINVAL; 2175 2176 out: 2177 mutex_unlock(&scan_mutex); 2178 if (ret < 0) 2179 return ret; 2180 2181 /* ignore the rest of the buffer, only one command at a time */ 2182 *ppos += size; 2183 return size; 2184 } 2185 2186 static const struct file_operations kmemleak_fops = { 2187 .owner = THIS_MODULE, 2188 .open = kmemleak_open, 2189 .read = seq_read, 2190 .write = kmemleak_write, 2191 .llseek = seq_lseek, 2192 .release = seq_release, 2193 }; 2194 2195 static void __kmemleak_do_cleanup(void) 2196 { 2197 struct kmemleak_object *object, *tmp; 2198 unsigned int cnt = 0; 2199 2200 /* 2201 * Kmemleak has already been disabled, no need for RCU list traversal 2202 * or kmemleak_lock held. 2203 */ 2204 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2205 __remove_object(object); 2206 __delete_object(object); 2207 2208 /* Call cond_resched() once per 64 iterations to avoid soft lockup */ 2209 if (!(++cnt & 0x3f)) 2210 cond_resched(); 2211 } 2212 } 2213 2214 /* 2215 * Stop the memory scanning thread and free the kmemleak internal objects if 2216 * no previous scan thread (otherwise, kmemleak may still have some useful 2217 * information on memory leaks). 2218 */ 2219 static void kmemleak_do_cleanup(struct work_struct *work) 2220 { 2221 stop_scan_thread(); 2222 2223 mutex_lock(&scan_mutex); 2224 /* 2225 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2226 * longer track object freeing. Ordering of the scan thread stopping and 2227 * the memory accesses below is guaranteed by the kthread_stop() 2228 * function. 2229 */ 2230 kmemleak_free_enabled = 0; 2231 mutex_unlock(&scan_mutex); 2232 2233 if (!kmemleak_found_leaks) 2234 __kmemleak_do_cleanup(); 2235 else 2236 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2237 } 2238 2239 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2240 2241 /* 2242 * Disable kmemleak. No memory allocation/freeing will be traced once this 2243 * function is called. Disabling kmemleak is an irreversible operation. 2244 */ 2245 static void kmemleak_disable(void) 2246 { 2247 /* atomically check whether it was already invoked */ 2248 if (cmpxchg(&kmemleak_error, 0, 1)) 2249 return; 2250 2251 /* stop any memory operation tracing */ 2252 kmemleak_enabled = 0; 2253 2254 /* check whether it is too early for a kernel thread */ 2255 if (kmemleak_late_initialized) 2256 schedule_work(&cleanup_work); 2257 else 2258 kmemleak_free_enabled = 0; 2259 2260 pr_info("Kernel memory leak detector disabled\n"); 2261 } 2262 2263 /* 2264 * Allow boot-time kmemleak disabling (enabled by default). 2265 */ 2266 static int __init kmemleak_boot_config(char *str) 2267 { 2268 if (!str) 2269 return -EINVAL; 2270 if (strcmp(str, "off") == 0) 2271 kmemleak_disable(); 2272 else if (strcmp(str, "on") == 0) { 2273 kmemleak_skip_disable = 1; 2274 stack_depot_request_early_init(); 2275 } 2276 else 2277 return -EINVAL; 2278 return 0; 2279 } 2280 early_param("kmemleak", kmemleak_boot_config); 2281 2282 /* 2283 * Kmemleak initialization. 2284 */ 2285 void __init kmemleak_init(void) 2286 { 2287 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2288 if (!kmemleak_skip_disable) { 2289 kmemleak_disable(); 2290 return; 2291 } 2292 #endif 2293 2294 if (kmemleak_error) 2295 return; 2296 2297 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2298 jiffies_scan_wait = secs_to_jiffies(SECS_SCAN_WAIT); 2299 2300 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2301 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2302 2303 /* register the data/bss sections */ 2304 create_object((unsigned long)_sdata, _edata - _sdata, 2305 KMEMLEAK_GREY, GFP_ATOMIC); 2306 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2307 KMEMLEAK_GREY, GFP_ATOMIC); 2308 /* only register .data..ro_after_init if not within .data */ 2309 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2310 create_object((unsigned long)__start_ro_after_init, 2311 __end_ro_after_init - __start_ro_after_init, 2312 KMEMLEAK_GREY, GFP_ATOMIC); 2313 } 2314 2315 /* 2316 * Late initialization function. 2317 */ 2318 static int __init kmemleak_late_init(void) 2319 { 2320 kmemleak_late_initialized = 1; 2321 2322 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2323 2324 if (kmemleak_error) { 2325 /* 2326 * Some error occurred and kmemleak was disabled. There is a 2327 * small chance that kmemleak_disable() was called immediately 2328 * after setting kmemleak_late_initialized and we may end up with 2329 * two clean-up threads but serialized by scan_mutex. 2330 */ 2331 schedule_work(&cleanup_work); 2332 return -ENOMEM; 2333 } 2334 2335 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2336 mutex_lock(&scan_mutex); 2337 start_scan_thread(); 2338 mutex_unlock(&scan_mutex); 2339 } 2340 2341 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2342 mem_pool_free_count); 2343 2344 return 0; 2345 } 2346 late_initcall(kmemleak_late_init); 2347