1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2025 Intel Corporation 4 * Copyright (C) 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <net/mac80211.h> 8 9 #include "iwl-debug.h" 10 #include "iwl-io.h" 11 #include "iwl-prph.h" 12 #include "iwl-csr.h" 13 #include "mvm.h" 14 #include "fw/api/rs.h" 15 #include "fw/img.h" 16 17 /* 18 * Will return 0 even if the cmd failed when RFKILL is asserted unless 19 * CMD_WANT_SKB is set in cmd->flags. 20 */ 21 int iwl_mvm_send_cmd(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd) 22 { 23 int ret; 24 25 /* 26 * Synchronous commands from this op-mode must hold 27 * the mutex, this ensures we don't try to send two 28 * (or more) synchronous commands at a time. 29 */ 30 if (!(cmd->flags & CMD_ASYNC)) 31 lockdep_assert_held(&mvm->mutex); 32 33 ret = iwl_trans_send_cmd(mvm->trans, cmd); 34 35 /* 36 * If the caller wants the SKB, then don't hide any problems, the 37 * caller might access the response buffer which will be NULL if 38 * the command failed. 39 */ 40 if (cmd->flags & CMD_WANT_SKB) 41 return ret; 42 43 /* 44 * Silently ignore failures if RFKILL is asserted or 45 * we are in suspend\resume process 46 */ 47 if (!ret || ret == -ERFKILL || ret == -EHOSTDOWN) 48 return 0; 49 return ret; 50 } 51 52 int iwl_mvm_send_cmd_pdu(struct iwl_mvm *mvm, u32 id, 53 u32 flags, u16 len, const void *data) 54 { 55 struct iwl_host_cmd cmd = { 56 .id = id, 57 .len = { len, }, 58 .data = { data, }, 59 .flags = flags, 60 }; 61 62 return iwl_mvm_send_cmd(mvm, &cmd); 63 } 64 65 /* 66 * We assume that the caller set the status to the success value 67 */ 68 int iwl_mvm_send_cmd_status(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd, 69 u32 *status) 70 { 71 struct iwl_rx_packet *pkt; 72 struct iwl_cmd_response *resp; 73 int ret, resp_len; 74 75 lockdep_assert_held(&mvm->mutex); 76 77 /* 78 * Only synchronous commands can wait for status, 79 * we use WANT_SKB so the caller can't. 80 */ 81 if (WARN_ONCE(cmd->flags & (CMD_ASYNC | CMD_WANT_SKB), 82 "cmd flags %x", cmd->flags)) 83 return -EINVAL; 84 85 cmd->flags |= CMD_WANT_SKB; 86 87 ret = iwl_trans_send_cmd(mvm->trans, cmd); 88 if (ret == -ERFKILL) { 89 /* 90 * The command failed because of RFKILL, don't update 91 * the status, leave it as success and return 0. 92 */ 93 return 0; 94 } else if (ret) { 95 return ret; 96 } 97 98 pkt = cmd->resp_pkt; 99 100 resp_len = iwl_rx_packet_payload_len(pkt); 101 if (WARN_ON_ONCE(resp_len != sizeof(*resp))) { 102 ret = -EIO; 103 goto out_free_resp; 104 } 105 106 resp = (void *)pkt->data; 107 *status = le32_to_cpu(resp->status); 108 out_free_resp: 109 iwl_free_resp(cmd); 110 return ret; 111 } 112 113 /* 114 * We assume that the caller set the status to the sucess value 115 */ 116 int iwl_mvm_send_cmd_pdu_status(struct iwl_mvm *mvm, u32 id, u16 len, 117 const void *data, u32 *status) 118 { 119 struct iwl_host_cmd cmd = { 120 .id = id, 121 .len = { len, }, 122 .data = { data, }, 123 }; 124 125 return iwl_mvm_send_cmd_status(mvm, &cmd, status); 126 } 127 128 int iwl_mvm_legacy_hw_idx_to_mac80211_idx(u32 rate_n_flags, 129 enum nl80211_band band) 130 { 131 int format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 132 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK; 133 bool is_LB = band == NL80211_BAND_2GHZ; 134 135 if (format == RATE_MCS_MOD_TYPE_LEGACY_OFDM) 136 return is_LB ? rate + IWL_FIRST_OFDM_RATE : 137 rate; 138 139 /* CCK is not allowed in HB */ 140 return is_LB ? rate : -1; 141 } 142 143 int iwl_mvm_legacy_rate_to_mac80211_idx(u32 rate_n_flags, 144 enum nl80211_band band) 145 { 146 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK_V1; 147 int idx; 148 int band_offset = 0; 149 150 /* Legacy rate format, search for match in table */ 151 if (band != NL80211_BAND_2GHZ) 152 band_offset = IWL_FIRST_OFDM_RATE; 153 for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++) 154 if (iwl_fw_rate_idx_to_plcp(idx) == rate) 155 return idx - band_offset; 156 157 return -1; 158 } 159 160 u8 iwl_mvm_mac80211_idx_to_hwrate(const struct iwl_fw *fw, int rate_idx) 161 { 162 if (iwl_fw_lookup_cmd_ver(fw, TX_CMD, 0) > 8) 163 /* In the new rate legacy rates are indexed: 164 * 0 - 3 for CCK and 0 - 7 for OFDM. 165 */ 166 return (rate_idx >= IWL_FIRST_OFDM_RATE ? 167 rate_idx - IWL_FIRST_OFDM_RATE : 168 rate_idx); 169 170 return iwl_fw_rate_idx_to_plcp(rate_idx); 171 } 172 173 u8 iwl_mvm_mac80211_ac_to_ucode_ac(enum ieee80211_ac_numbers ac) 174 { 175 static const u8 mac80211_ac_to_ucode_ac[] = { 176 AC_VO, 177 AC_VI, 178 AC_BE, 179 AC_BK 180 }; 181 182 return mac80211_ac_to_ucode_ac[ac]; 183 } 184 185 void iwl_mvm_rx_fw_error(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb) 186 { 187 struct iwl_rx_packet *pkt = rxb_addr(rxb); 188 struct iwl_error_resp *err_resp = (void *)pkt->data; 189 190 IWL_ERR(mvm, "FW Error notification: type 0x%08X cmd_id 0x%02X\n", 191 le32_to_cpu(err_resp->error_type), err_resp->cmd_id); 192 IWL_ERR(mvm, "FW Error notification: seq 0x%04X service 0x%08X\n", 193 le16_to_cpu(err_resp->bad_cmd_seq_num), 194 le32_to_cpu(err_resp->error_service)); 195 IWL_ERR(mvm, "FW Error notification: timestamp 0x%016llX\n", 196 le64_to_cpu(err_resp->timestamp)); 197 } 198 199 /* 200 * Returns the first antenna as ANT_[ABC], as defined in iwl-config.h. 201 * The parameter should also be a combination of ANT_[ABC]. 202 */ 203 u8 first_antenna(u8 mask) 204 { 205 BUILD_BUG_ON(ANT_A != BIT(0)); /* using ffs is wrong if not */ 206 if (WARN_ON_ONCE(!mask)) /* ffs will return 0 if mask is zeroed */ 207 return BIT(0); 208 return BIT(ffs(mask) - 1); 209 } 210 211 #define MAX_ANT_NUM 2 212 /* 213 * Toggles between TX antennas to send the probe request on. 214 * Receives the bitmask of valid TX antennas and the *index* used 215 * for the last TX, and returns the next valid *index* to use. 216 * In order to set it in the tx_cmd, must do BIT(idx). 217 */ 218 u8 iwl_mvm_next_antenna(struct iwl_mvm *mvm, u8 valid, u8 last_idx) 219 { 220 u8 ind = last_idx; 221 int i; 222 223 for (i = 0; i < MAX_ANT_NUM; i++) { 224 ind = (ind + 1) % MAX_ANT_NUM; 225 if (valid & BIT(ind)) 226 return ind; 227 } 228 229 WARN_ONCE(1, "Failed to toggle between antennas 0x%x", valid); 230 return last_idx; 231 } 232 233 /** 234 * iwl_mvm_send_lq_cmd() - Send link quality command 235 * @mvm: Driver data. 236 * @lq: Link quality command to send. 237 * 238 * The link quality command is sent as the last step of station creation. 239 * This is the special case in which init is set and we call a callback in 240 * this case to clear the state indicating that station creation is in 241 * progress. 242 * 243 * Returns: an error code indicating success or failure 244 */ 245 int iwl_mvm_send_lq_cmd(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq) 246 { 247 struct iwl_host_cmd cmd = { 248 .id = LQ_CMD, 249 .len = { sizeof(struct iwl_lq_cmd), }, 250 .flags = CMD_ASYNC, 251 .data = { lq, }, 252 }; 253 254 if (WARN_ON(lq->sta_id == IWL_INVALID_STA || 255 iwl_mvm_has_tlc_offload(mvm))) 256 return -EINVAL; 257 258 return iwl_mvm_send_cmd(mvm, &cmd); 259 } 260 261 /** 262 * iwl_mvm_update_smps - Get a request to change the SMPS mode 263 * @mvm: Driver data. 264 * @vif: Pointer to the ieee80211_vif structure 265 * @req_type: The part of the driver who call for a change. 266 * @smps_request: The request to change the SMPS mode. 267 * @link_id: for MLO link_id, otherwise 0 (deflink) 268 * 269 * Get a requst to change the SMPS mode, 270 * and change it according to all other requests in the driver. 271 */ 272 void iwl_mvm_update_smps(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 273 enum iwl_mvm_smps_type_request req_type, 274 enum ieee80211_smps_mode smps_request, 275 unsigned int link_id) 276 { 277 struct iwl_mvm_vif *mvmvif; 278 enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_AUTOMATIC; 279 int i; 280 281 lockdep_assert_held(&mvm->mutex); 282 283 /* SMPS is irrelevant for NICs that don't have at least 2 RX antenna */ 284 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 285 return; 286 287 if (vif->type != NL80211_IFTYPE_STATION) 288 return; 289 290 /* SMPS is handled by firmware */ 291 if (iwl_mvm_has_rlc_offload(mvm)) 292 return; 293 294 mvmvif = iwl_mvm_vif_from_mac80211(vif); 295 296 if (WARN_ON_ONCE(!mvmvif->link[link_id])) 297 return; 298 299 mvmvif->link[link_id]->smps_requests[req_type] = smps_request; 300 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 301 if (mvmvif->link[link_id]->smps_requests[i] == 302 IEEE80211_SMPS_STATIC) { 303 smps_mode = IEEE80211_SMPS_STATIC; 304 break; 305 } 306 if (mvmvif->link[link_id]->smps_requests[i] == 307 IEEE80211_SMPS_DYNAMIC) 308 smps_mode = IEEE80211_SMPS_DYNAMIC; 309 } 310 311 ieee80211_request_smps(vif, link_id, smps_mode); 312 } 313 314 void iwl_mvm_update_smps_on_active_links(struct iwl_mvm *mvm, 315 struct ieee80211_vif *vif, 316 enum iwl_mvm_smps_type_request req_type, 317 enum ieee80211_smps_mode smps_request) 318 { 319 struct ieee80211_bss_conf *link_conf; 320 unsigned int link_id; 321 322 rcu_read_lock(); 323 for_each_vif_active_link(vif, link_conf, link_id) 324 iwl_mvm_update_smps(mvm, vif, req_type, smps_request, 325 link_id); 326 rcu_read_unlock(); 327 } 328 329 static bool iwl_wait_stats_complete(struct iwl_notif_wait_data *notif_wait, 330 struct iwl_rx_packet *pkt, void *data) 331 { 332 WARN_ON(pkt->hdr.cmd != STATISTICS_NOTIFICATION); 333 334 return true; 335 } 336 337 #define PERIODIC_STAT_RATE 5 338 339 int iwl_mvm_request_periodic_system_statistics(struct iwl_mvm *mvm, bool enable) 340 { 341 u32 flags = enable ? 0 : IWL_STATS_CFG_FLG_DISABLE_NTFY_MSK; 342 u32 type = enable ? (IWL_STATS_NTFY_TYPE_ID_OPER | 343 IWL_STATS_NTFY_TYPE_ID_OPER_PART1) : 0; 344 struct iwl_system_statistics_cmd system_cmd = { 345 .cfg_mask = cpu_to_le32(flags), 346 .config_time_sec = cpu_to_le32(enable ? 347 PERIODIC_STAT_RATE : 0), 348 .type_id_mask = cpu_to_le32(type), 349 }; 350 351 return iwl_mvm_send_cmd_pdu(mvm, 352 WIDE_ID(SYSTEM_GROUP, 353 SYSTEM_STATISTICS_CMD), 354 0, sizeof(system_cmd), &system_cmd); 355 } 356 357 static int iwl_mvm_request_system_statistics(struct iwl_mvm *mvm, bool clear, 358 u8 cmd_ver) 359 { 360 struct iwl_system_statistics_cmd system_cmd = { 361 .cfg_mask = clear ? 362 cpu_to_le32(IWL_STATS_CFG_FLG_ON_DEMAND_NTFY_MSK) : 363 cpu_to_le32(IWL_STATS_CFG_FLG_RESET_MSK | 364 IWL_STATS_CFG_FLG_ON_DEMAND_NTFY_MSK), 365 .type_id_mask = cpu_to_le32(IWL_STATS_NTFY_TYPE_ID_OPER | 366 IWL_STATS_NTFY_TYPE_ID_OPER_PART1), 367 }; 368 struct iwl_host_cmd cmd = { 369 .id = WIDE_ID(SYSTEM_GROUP, SYSTEM_STATISTICS_CMD), 370 .len[0] = sizeof(system_cmd), 371 .data[0] = &system_cmd, 372 }; 373 struct iwl_notification_wait stats_wait; 374 static const u16 stats_complete[] = { 375 WIDE_ID(SYSTEM_GROUP, SYSTEM_STATISTICS_END_NOTIF), 376 }; 377 int ret; 378 379 if (cmd_ver != 1) { 380 IWL_FW_CHECK_FAILED(mvm, 381 "Invalid system statistics command version:%d\n", 382 cmd_ver); 383 return -EOPNOTSUPP; 384 } 385 386 iwl_init_notification_wait(&mvm->notif_wait, &stats_wait, 387 stats_complete, ARRAY_SIZE(stats_complete), 388 NULL, NULL); 389 390 mvm->statistics_clear = clear; 391 ret = iwl_mvm_send_cmd(mvm, &cmd); 392 if (ret) { 393 iwl_remove_notification(&mvm->notif_wait, &stats_wait); 394 return ret; 395 } 396 397 /* 500ms for OPERATIONAL, PART1 and END notification should be enough 398 * for FW to collect data from all LMACs and send 399 * STATISTICS_NOTIFICATION to host 400 */ 401 ret = iwl_wait_notification(&mvm->notif_wait, &stats_wait, HZ / 2); 402 if (ret) 403 return ret; 404 405 if (clear) 406 iwl_mvm_accu_radio_stats(mvm); 407 408 return ret; 409 } 410 411 int iwl_mvm_request_statistics(struct iwl_mvm *mvm, bool clear) 412 { 413 struct iwl_statistics_cmd scmd = { 414 .flags = clear ? cpu_to_le32(IWL_STATISTICS_FLG_CLEAR) : 0, 415 }; 416 417 struct iwl_host_cmd cmd = { 418 .id = STATISTICS_CMD, 419 .len[0] = sizeof(scmd), 420 .data[0] = &scmd, 421 }; 422 u8 cmd_ver = iwl_fw_lookup_cmd_ver(mvm->fw, 423 WIDE_ID(SYSTEM_GROUP, 424 SYSTEM_STATISTICS_CMD), 425 IWL_FW_CMD_VER_UNKNOWN); 426 int ret; 427 428 /* 429 * Don't request statistics during restart, they'll not have any useful 430 * information right after restart, nor is clearing needed 431 */ 432 if (test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)) 433 return 0; 434 435 if (cmd_ver != IWL_FW_CMD_VER_UNKNOWN) 436 return iwl_mvm_request_system_statistics(mvm, clear, cmd_ver); 437 438 /* From version 15 - STATISTICS_NOTIFICATION, the reply for 439 * STATISTICS_CMD is empty, and the response is with 440 * STATISTICS_NOTIFICATION notification 441 */ 442 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 443 STATISTICS_NOTIFICATION, 0) < 15) { 444 cmd.flags = CMD_WANT_SKB; 445 446 ret = iwl_mvm_send_cmd(mvm, &cmd); 447 if (ret) 448 return ret; 449 450 iwl_mvm_handle_rx_statistics(mvm, cmd.resp_pkt); 451 iwl_free_resp(&cmd); 452 } else { 453 struct iwl_notification_wait stats_wait; 454 static const u16 stats_complete[] = { 455 STATISTICS_NOTIFICATION, 456 }; 457 458 iwl_init_notification_wait(&mvm->notif_wait, &stats_wait, 459 stats_complete, ARRAY_SIZE(stats_complete), 460 iwl_wait_stats_complete, NULL); 461 462 ret = iwl_mvm_send_cmd(mvm, &cmd); 463 if (ret) { 464 iwl_remove_notification(&mvm->notif_wait, &stats_wait); 465 return ret; 466 } 467 468 /* 200ms should be enough for FW to collect data from all 469 * LMACs and send STATISTICS_NOTIFICATION to host 470 */ 471 ret = iwl_wait_notification(&mvm->notif_wait, &stats_wait, HZ / 5); 472 if (ret) 473 return ret; 474 } 475 476 if (clear) 477 iwl_mvm_accu_radio_stats(mvm); 478 479 return 0; 480 } 481 482 void iwl_mvm_accu_radio_stats(struct iwl_mvm *mvm) 483 { 484 mvm->accu_radio_stats.rx_time += mvm->radio_stats.rx_time; 485 mvm->accu_radio_stats.tx_time += mvm->radio_stats.tx_time; 486 mvm->accu_radio_stats.on_time_rf += mvm->radio_stats.on_time_rf; 487 mvm->accu_radio_stats.on_time_scan += mvm->radio_stats.on_time_scan; 488 } 489 490 struct iwl_mvm_diversity_iter_data { 491 struct iwl_mvm_phy_ctxt *ctxt; 492 bool result; 493 }; 494 495 static void iwl_mvm_diversity_iter(void *_data, u8 *mac, 496 struct ieee80211_vif *vif) 497 { 498 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 499 struct iwl_mvm_diversity_iter_data *data = _data; 500 int i, link_id; 501 502 for_each_mvm_vif_valid_link(mvmvif, link_id) { 503 struct iwl_mvm_vif_link_info *link_info = mvmvif->link[link_id]; 504 505 if (link_info->phy_ctxt != data->ctxt) 506 continue; 507 508 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 509 if (link_info->smps_requests[i] == IEEE80211_SMPS_STATIC || 510 link_info->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) { 511 data->result = false; 512 break; 513 } 514 } 515 } 516 } 517 518 bool iwl_mvm_rx_diversity_allowed(struct iwl_mvm *mvm, 519 struct iwl_mvm_phy_ctxt *ctxt) 520 { 521 struct iwl_mvm_diversity_iter_data data = { 522 .ctxt = ctxt, 523 .result = true, 524 }; 525 526 lockdep_assert_held(&mvm->mutex); 527 528 if (iwlmvm_mod_params.power_scheme != IWL_POWER_SCHEME_CAM) 529 return false; 530 531 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 532 return false; 533 534 if (mvm->cfg->rx_with_siso_diversity) 535 return false; 536 537 ieee80211_iterate_active_interfaces_atomic( 538 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 539 iwl_mvm_diversity_iter, &data); 540 541 return data.result; 542 } 543 544 void iwl_mvm_send_low_latency_cmd(struct iwl_mvm *mvm, 545 bool low_latency, u16 mac_id) 546 { 547 struct iwl_mac_low_latency_cmd cmd = { 548 .mac_id = cpu_to_le32(mac_id) 549 }; 550 551 if (!fw_has_capa(&mvm->fw->ucode_capa, 552 IWL_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) 553 return; 554 555 if (low_latency) { 556 /* currently we don't care about the direction */ 557 cmd.low_latency_rx = 1; 558 cmd.low_latency_tx = 1; 559 } 560 561 if (iwl_mvm_send_cmd_pdu(mvm, WIDE_ID(MAC_CONF_GROUP, LOW_LATENCY_CMD), 562 0, sizeof(cmd), &cmd)) 563 IWL_ERR(mvm, "Failed to send low latency command\n"); 564 } 565 566 int iwl_mvm_update_low_latency(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 567 bool low_latency, 568 enum iwl_mvm_low_latency_cause cause) 569 { 570 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 571 int res; 572 bool prev; 573 574 lockdep_assert_held(&mvm->mutex); 575 576 prev = iwl_mvm_vif_low_latency(mvmvif); 577 iwl_mvm_vif_set_low_latency(mvmvif, low_latency, cause); 578 579 low_latency = iwl_mvm_vif_low_latency(mvmvif); 580 581 if (low_latency == prev) 582 return 0; 583 584 iwl_mvm_send_low_latency_cmd(mvm, low_latency, mvmvif->id); 585 586 res = iwl_mvm_update_quotas(mvm, false, NULL); 587 if (res) 588 return res; 589 590 iwl_mvm_bt_coex_vif_change(mvm); 591 592 return iwl_mvm_power_update_mac(mvm); 593 } 594 595 struct iwl_mvm_low_latency_iter { 596 bool result; 597 bool result_per_band[NUM_NL80211_BANDS]; 598 }; 599 600 static void iwl_mvm_ll_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 601 { 602 struct iwl_mvm_low_latency_iter *result = _data; 603 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 604 enum nl80211_band band; 605 606 if (iwl_mvm_vif_low_latency(mvmvif)) { 607 result->result = true; 608 609 if (!mvmvif->deflink.phy_ctxt) 610 return; 611 612 band = mvmvif->deflink.phy_ctxt->channel->band; 613 result->result_per_band[band] = true; 614 } 615 } 616 617 bool iwl_mvm_low_latency(struct iwl_mvm *mvm) 618 { 619 struct iwl_mvm_low_latency_iter data = {}; 620 621 ieee80211_iterate_active_interfaces_atomic( 622 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 623 iwl_mvm_ll_iter, &data); 624 625 return data.result; 626 } 627 628 bool iwl_mvm_low_latency_band(struct iwl_mvm *mvm, enum nl80211_band band) 629 { 630 struct iwl_mvm_low_latency_iter data = {}; 631 632 ieee80211_iterate_active_interfaces_atomic( 633 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 634 iwl_mvm_ll_iter, &data); 635 636 return data.result_per_band[band]; 637 } 638 639 struct iwl_bss_iter_data { 640 struct ieee80211_vif *vif; 641 bool error; 642 }; 643 644 static void iwl_mvm_bss_iface_iterator(void *_data, u8 *mac, 645 struct ieee80211_vif *vif) 646 { 647 struct iwl_bss_iter_data *data = _data; 648 649 if (vif->type != NL80211_IFTYPE_STATION || vif->p2p) 650 return; 651 652 if (data->vif) { 653 data->error = true; 654 return; 655 } 656 657 data->vif = vif; 658 } 659 660 struct ieee80211_vif *iwl_mvm_get_bss_vif(struct iwl_mvm *mvm) 661 { 662 struct iwl_bss_iter_data bss_iter_data = {}; 663 664 ieee80211_iterate_active_interfaces_atomic( 665 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 666 iwl_mvm_bss_iface_iterator, &bss_iter_data); 667 668 if (bss_iter_data.error) 669 return ERR_PTR(-EINVAL); 670 671 return bss_iter_data.vif; 672 } 673 674 struct iwl_bss_find_iter_data { 675 struct ieee80211_vif *vif; 676 u32 macid; 677 }; 678 679 static void iwl_mvm_bss_find_iface_iterator(void *_data, u8 *mac, 680 struct ieee80211_vif *vif) 681 { 682 struct iwl_bss_find_iter_data *data = _data; 683 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 684 685 if (mvmvif->id == data->macid) 686 data->vif = vif; 687 } 688 689 struct ieee80211_vif *iwl_mvm_get_vif_by_macid(struct iwl_mvm *mvm, u32 macid) 690 { 691 struct iwl_bss_find_iter_data data = { 692 .macid = macid, 693 }; 694 695 lockdep_assert_held(&mvm->mutex); 696 697 ieee80211_iterate_active_interfaces_atomic( 698 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 699 iwl_mvm_bss_find_iface_iterator, &data); 700 701 return data.vif; 702 } 703 704 struct iwl_sta_iter_data { 705 bool assoc; 706 }; 707 708 static void iwl_mvm_sta_iface_iterator(void *_data, u8 *mac, 709 struct ieee80211_vif *vif) 710 { 711 struct iwl_sta_iter_data *data = _data; 712 713 if (vif->type != NL80211_IFTYPE_STATION) 714 return; 715 716 if (vif->cfg.assoc) 717 data->assoc = true; 718 } 719 720 bool iwl_mvm_is_vif_assoc(struct iwl_mvm *mvm) 721 { 722 struct iwl_sta_iter_data data = { 723 .assoc = false, 724 }; 725 726 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 727 IEEE80211_IFACE_ITER_NORMAL, 728 iwl_mvm_sta_iface_iterator, 729 &data); 730 return data.assoc; 731 } 732 733 unsigned int iwl_mvm_get_wd_timeout(struct iwl_mvm *mvm, 734 struct ieee80211_vif *vif) 735 { 736 unsigned int default_timeout = 737 mvm->trans->mac_cfg->base->wd_timeout; 738 739 /* 740 * We can't know when the station is asleep or awake, so we 741 * must disable the queue hang detection. 742 */ 743 if (fw_has_capa(&mvm->fw->ucode_capa, 744 IWL_UCODE_TLV_CAPA_STA_PM_NOTIF) && 745 vif->type == NL80211_IFTYPE_AP) 746 return IWL_WATCHDOG_DISABLED; 747 return default_timeout; 748 } 749 750 void iwl_mvm_connection_loss(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 751 const char *errmsg) 752 { 753 struct iwl_fw_dbg_trigger_tlv *trig; 754 struct iwl_fw_dbg_trigger_mlme *trig_mlme; 755 756 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 757 FW_DBG_TRIGGER_MLME); 758 if (!trig) 759 goto out; 760 761 trig_mlme = (void *)trig->data; 762 763 if (trig_mlme->stop_connection_loss && 764 --trig_mlme->stop_connection_loss) 765 goto out; 766 767 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, "%s", errmsg); 768 769 out: 770 ieee80211_connection_loss(vif); 771 } 772 773 void iwl_mvm_event_frame_timeout_callback(struct iwl_mvm *mvm, 774 struct ieee80211_vif *vif, 775 const struct ieee80211_sta *sta, 776 u16 tid) 777 { 778 struct iwl_fw_dbg_trigger_tlv *trig; 779 struct iwl_fw_dbg_trigger_ba *ba_trig; 780 781 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 782 FW_DBG_TRIGGER_BA); 783 if (!trig) 784 return; 785 786 ba_trig = (void *)trig->data; 787 788 if (!(le16_to_cpu(ba_trig->frame_timeout) & BIT(tid))) 789 return; 790 791 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 792 "Frame from %pM timed out, tid %d", 793 sta->addr, tid); 794 } 795 796 u8 iwl_mvm_tcm_load_percentage(u32 airtime, u32 elapsed) 797 { 798 if (!elapsed) 799 return 0; 800 801 return (100 * airtime / elapsed) / USEC_PER_MSEC; 802 } 803 804 static enum iwl_mvm_traffic_load 805 iwl_mvm_tcm_load(struct iwl_mvm *mvm, u32 airtime, unsigned long elapsed) 806 { 807 u8 load = iwl_mvm_tcm_load_percentage(airtime, elapsed); 808 809 if (load > IWL_MVM_TCM_LOAD_HIGH_THRESH) 810 return IWL_MVM_TRAFFIC_HIGH; 811 if (load > IWL_MVM_TCM_LOAD_MEDIUM_THRESH) 812 return IWL_MVM_TRAFFIC_MEDIUM; 813 814 return IWL_MVM_TRAFFIC_LOW; 815 } 816 817 static void iwl_mvm_tcm_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 818 { 819 struct iwl_mvm *mvm = _data; 820 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 821 bool low_latency, prev = mvmvif->low_latency & LOW_LATENCY_TRAFFIC; 822 823 if (mvmvif->id >= NUM_MAC_INDEX_DRIVER) 824 return; 825 826 low_latency = mvm->tcm.result.low_latency[mvmvif->id]; 827 828 if (!mvm->tcm.result.change[mvmvif->id] && 829 prev == low_latency) { 830 iwl_mvm_update_quotas(mvm, false, NULL); 831 return; 832 } 833 834 if (prev != low_latency) { 835 /* this sends traffic load and updates quota as well */ 836 iwl_mvm_update_low_latency(mvm, vif, low_latency, 837 LOW_LATENCY_TRAFFIC); 838 } else { 839 iwl_mvm_update_quotas(mvm, false, NULL); 840 } 841 } 842 843 static void iwl_mvm_tcm_results(struct iwl_mvm *mvm) 844 { 845 guard(mvm)(mvm); 846 847 ieee80211_iterate_active_interfaces( 848 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 849 iwl_mvm_tcm_iter, mvm); 850 851 if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) 852 iwl_mvm_config_scan(mvm); 853 } 854 855 static void iwl_mvm_tcm_uapsd_nonagg_detected_wk(struct work_struct *wk) 856 { 857 struct iwl_mvm *mvm; 858 struct iwl_mvm_vif *mvmvif; 859 struct ieee80211_vif *vif; 860 861 mvmvif = container_of(wk, struct iwl_mvm_vif, 862 uapsd_nonagg_detected_wk.work); 863 vif = container_of((void *)mvmvif, struct ieee80211_vif, drv_priv); 864 mvm = mvmvif->mvm; 865 866 if (mvm->tcm.data[mvmvif->id].opened_rx_ba_sessions) 867 return; 868 869 /* remember that this AP is broken */ 870 memcpy(mvm->uapsd_noagg_bssids[mvm->uapsd_noagg_bssid_write_idx].addr, 871 vif->bss_conf.bssid, ETH_ALEN); 872 mvm->uapsd_noagg_bssid_write_idx++; 873 if (mvm->uapsd_noagg_bssid_write_idx >= IWL_MVM_UAPSD_NOAGG_LIST_LEN) 874 mvm->uapsd_noagg_bssid_write_idx = 0; 875 876 iwl_mvm_connection_loss(mvm, vif, 877 "AP isn't using AMPDU with uAPSD enabled"); 878 } 879 880 static void iwl_mvm_uapsd_agg_disconnect(struct iwl_mvm *mvm, 881 struct ieee80211_vif *vif) 882 { 883 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 884 885 if (vif->type != NL80211_IFTYPE_STATION) 886 return; 887 888 if (!vif->cfg.assoc) 889 return; 890 891 if (!mvmvif->deflink.queue_params[IEEE80211_AC_VO].uapsd && 892 !mvmvif->deflink.queue_params[IEEE80211_AC_VI].uapsd && 893 !mvmvif->deflink.queue_params[IEEE80211_AC_BE].uapsd && 894 !mvmvif->deflink.queue_params[IEEE80211_AC_BK].uapsd) 895 return; 896 897 if (mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected) 898 return; 899 900 mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected = true; 901 IWL_INFO(mvm, 902 "detected AP should do aggregation but isn't, likely due to U-APSD\n"); 903 schedule_delayed_work(&mvmvif->uapsd_nonagg_detected_wk, 904 15 * HZ); 905 } 906 907 static void iwl_mvm_check_uapsd_agg_expected_tpt(struct iwl_mvm *mvm, 908 unsigned int elapsed, 909 int mac) 910 { 911 u64 bytes = mvm->tcm.data[mac].uapsd_nonagg_detect.rx_bytes; 912 u64 tpt; 913 unsigned long rate; 914 struct ieee80211_vif *vif; 915 916 rate = ewma_rate_read(&mvm->tcm.data[mac].uapsd_nonagg_detect.rate); 917 918 if (!rate || mvm->tcm.data[mac].opened_rx_ba_sessions || 919 mvm->tcm.data[mac].uapsd_nonagg_detect.detected) 920 return; 921 922 if (iwl_mvm_has_new_rx_api(mvm)) { 923 tpt = 8 * bytes; /* kbps */ 924 do_div(tpt, elapsed); 925 rate *= 1000; /* kbps */ 926 if (tpt < 22 * rate / 100) 927 return; 928 } else { 929 /* 930 * the rate here is actually the threshold, in 100Kbps units, 931 * so do the needed conversion from bytes to 100Kbps: 932 * 100kb = bits / (100 * 1000), 933 * 100kbps = 100kb / (msecs / 1000) == 934 * (bits / (100 * 1000)) / (msecs / 1000) == 935 * bits / (100 * msecs) 936 */ 937 tpt = (8 * bytes); 938 do_div(tpt, elapsed * 100); 939 if (tpt < rate) 940 return; 941 } 942 943 rcu_read_lock(); 944 vif = rcu_dereference(mvm->vif_id_to_mac[mac]); 945 if (vif) 946 iwl_mvm_uapsd_agg_disconnect(mvm, vif); 947 rcu_read_unlock(); 948 } 949 950 static void iwl_mvm_tcm_iterator(void *_data, u8 *mac, 951 struct ieee80211_vif *vif) 952 { 953 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 954 u32 *band = _data; 955 956 if (!mvmvif->deflink.phy_ctxt) 957 return; 958 959 band[mvmvif->id] = mvmvif->deflink.phy_ctxt->channel->band; 960 } 961 962 static unsigned long iwl_mvm_calc_tcm_stats(struct iwl_mvm *mvm, 963 unsigned long ts, 964 bool handle_uapsd) 965 { 966 unsigned int elapsed = jiffies_to_msecs(ts - mvm->tcm.ts); 967 unsigned int uapsd_elapsed = 968 jiffies_to_msecs(ts - mvm->tcm.uapsd_nonagg_ts); 969 u32 total_airtime = 0; 970 u32 band_airtime[NUM_NL80211_BANDS] = {0}; 971 u32 band[NUM_MAC_INDEX_DRIVER] = {0}; 972 int ac, mac, i; 973 bool low_latency = false; 974 enum iwl_mvm_traffic_load load, band_load; 975 bool handle_ll = time_after(ts, mvm->tcm.ll_ts + MVM_LL_PERIOD); 976 977 if (handle_ll) 978 mvm->tcm.ll_ts = ts; 979 if (handle_uapsd) 980 mvm->tcm.uapsd_nonagg_ts = ts; 981 982 mvm->tcm.result.elapsed = elapsed; 983 984 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 985 IEEE80211_IFACE_ITER_NORMAL, 986 iwl_mvm_tcm_iterator, 987 &band); 988 989 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 990 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 991 u32 vo_vi_pkts = 0; 992 u32 airtime = mdata->rx.airtime + mdata->tx.airtime; 993 994 total_airtime += airtime; 995 band_airtime[band[mac]] += airtime; 996 997 load = iwl_mvm_tcm_load(mvm, airtime, elapsed); 998 mvm->tcm.result.change[mac] = load != mvm->tcm.result.load[mac]; 999 mvm->tcm.result.load[mac] = load; 1000 mvm->tcm.result.airtime[mac] = airtime; 1001 1002 for (ac = IEEE80211_AC_VO; ac <= IEEE80211_AC_VI; ac++) 1003 vo_vi_pkts += mdata->rx.pkts[ac] + 1004 mdata->tx.pkts[ac]; 1005 1006 /* enable immediately with enough packets but defer disabling */ 1007 if (vo_vi_pkts > IWL_MVM_TCM_LOWLAT_ENABLE_THRESH) 1008 mvm->tcm.result.low_latency[mac] = true; 1009 else if (handle_ll) 1010 mvm->tcm.result.low_latency[mac] = false; 1011 1012 if (handle_ll) { 1013 /* clear old data */ 1014 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1015 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1016 } 1017 low_latency |= mvm->tcm.result.low_latency[mac]; 1018 1019 if (!mvm->tcm.result.low_latency[mac] && handle_uapsd) 1020 iwl_mvm_check_uapsd_agg_expected_tpt(mvm, uapsd_elapsed, 1021 mac); 1022 /* clear old data */ 1023 if (handle_uapsd) 1024 mdata->uapsd_nonagg_detect.rx_bytes = 0; 1025 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1026 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1027 } 1028 1029 load = iwl_mvm_tcm_load(mvm, total_airtime, elapsed); 1030 mvm->tcm.result.global_load = load; 1031 1032 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1033 band_load = iwl_mvm_tcm_load(mvm, band_airtime[i], elapsed); 1034 mvm->tcm.result.band_load[i] = band_load; 1035 } 1036 1037 /* 1038 * If the current load isn't low we need to force re-evaluation 1039 * in the TCM period, so that we can return to low load if there 1040 * was no traffic at all (and thus iwl_mvm_recalc_tcm didn't get 1041 * triggered by traffic). 1042 */ 1043 if (load != IWL_MVM_TRAFFIC_LOW) 1044 return MVM_TCM_PERIOD; 1045 /* 1046 * If low-latency is active we need to force re-evaluation after 1047 * (the longer) MVM_LL_PERIOD, so that we can disable low-latency 1048 * when there's no traffic at all. 1049 */ 1050 if (low_latency) 1051 return MVM_LL_PERIOD; 1052 /* 1053 * Otherwise, we don't need to run the work struct because we're 1054 * in the default "idle" state - traffic indication is low (which 1055 * also covers the "no traffic" case) and low-latency is disabled 1056 * so there's no state that may need to be disabled when there's 1057 * no traffic at all. 1058 * 1059 * Note that this has no impact on the regular scheduling of the 1060 * updates triggered by traffic - those happen whenever one of the 1061 * two timeouts expire (if there's traffic at all.) 1062 */ 1063 return 0; 1064 } 1065 1066 void iwl_mvm_recalc_tcm(struct iwl_mvm *mvm) 1067 { 1068 unsigned long ts = jiffies; 1069 bool handle_uapsd = 1070 time_after(ts, mvm->tcm.uapsd_nonagg_ts + 1071 msecs_to_jiffies(IWL_MVM_UAPSD_NONAGG_PERIOD)); 1072 1073 spin_lock(&mvm->tcm.lock); 1074 if (mvm->tcm.paused || !time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1075 spin_unlock(&mvm->tcm.lock); 1076 return; 1077 } 1078 spin_unlock(&mvm->tcm.lock); 1079 1080 if (handle_uapsd && iwl_mvm_has_new_rx_api(mvm)) { 1081 guard(mvm)(mvm); 1082 if (iwl_mvm_request_statistics(mvm, true)) 1083 handle_uapsd = false; 1084 } 1085 1086 spin_lock(&mvm->tcm.lock); 1087 /* re-check if somebody else won the recheck race */ 1088 if (!mvm->tcm.paused && time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1089 /* calculate statistics */ 1090 unsigned long work_delay = iwl_mvm_calc_tcm_stats(mvm, ts, 1091 handle_uapsd); 1092 1093 /* the memset needs to be visible before the timestamp */ 1094 smp_mb(); 1095 mvm->tcm.ts = ts; 1096 if (work_delay) 1097 schedule_delayed_work(&mvm->tcm.work, work_delay); 1098 } 1099 spin_unlock(&mvm->tcm.lock); 1100 1101 iwl_mvm_tcm_results(mvm); 1102 } 1103 1104 void iwl_mvm_tcm_work(struct work_struct *work) 1105 { 1106 struct delayed_work *delayed_work = to_delayed_work(work); 1107 struct iwl_mvm *mvm = container_of(delayed_work, struct iwl_mvm, 1108 tcm.work); 1109 1110 iwl_mvm_recalc_tcm(mvm); 1111 } 1112 1113 void iwl_mvm_pause_tcm(struct iwl_mvm *mvm, bool with_cancel) 1114 { 1115 spin_lock_bh(&mvm->tcm.lock); 1116 mvm->tcm.paused = true; 1117 spin_unlock_bh(&mvm->tcm.lock); 1118 if (with_cancel) 1119 cancel_delayed_work_sync(&mvm->tcm.work); 1120 } 1121 1122 void iwl_mvm_resume_tcm(struct iwl_mvm *mvm) 1123 { 1124 int mac; 1125 bool low_latency = false; 1126 1127 spin_lock_bh(&mvm->tcm.lock); 1128 mvm->tcm.ts = jiffies; 1129 mvm->tcm.ll_ts = jiffies; 1130 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 1131 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 1132 1133 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1134 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1135 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1136 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1137 1138 if (mvm->tcm.result.low_latency[mac]) 1139 low_latency = true; 1140 } 1141 /* The TCM data needs to be reset before "paused" flag changes */ 1142 smp_mb(); 1143 mvm->tcm.paused = false; 1144 1145 /* 1146 * if the current load is not low or low latency is active, force 1147 * re-evaluation to cover the case of no traffic. 1148 */ 1149 if (mvm->tcm.result.global_load > IWL_MVM_TRAFFIC_LOW) 1150 schedule_delayed_work(&mvm->tcm.work, MVM_TCM_PERIOD); 1151 else if (low_latency) 1152 schedule_delayed_work(&mvm->tcm.work, MVM_LL_PERIOD); 1153 1154 spin_unlock_bh(&mvm->tcm.lock); 1155 } 1156 1157 void iwl_mvm_tcm_add_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1158 { 1159 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1160 1161 INIT_DELAYED_WORK(&mvmvif->uapsd_nonagg_detected_wk, 1162 iwl_mvm_tcm_uapsd_nonagg_detected_wk); 1163 } 1164 1165 void iwl_mvm_tcm_rm_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1166 { 1167 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1168 1169 cancel_delayed_work_sync(&mvmvif->uapsd_nonagg_detected_wk); 1170 } 1171 1172 u32 iwl_mvm_get_systime(struct iwl_mvm *mvm) 1173 { 1174 u32 reg_addr = DEVICE_SYSTEM_TIME_REG; 1175 1176 if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_22000 && 1177 mvm->trans->mac_cfg->base->gp2_reg_addr) 1178 reg_addr = mvm->trans->mac_cfg->base->gp2_reg_addr; 1179 1180 return iwl_read_prph(mvm->trans, reg_addr); 1181 } 1182 1183 void iwl_mvm_get_sync_time(struct iwl_mvm *mvm, int clock_type, 1184 u32 *gp2, u64 *boottime, ktime_t *realtime) 1185 { 1186 bool ps_disabled; 1187 1188 lockdep_assert_held(&mvm->mutex); 1189 1190 /* Disable power save when reading GP2 */ 1191 ps_disabled = mvm->ps_disabled; 1192 if (!ps_disabled) { 1193 mvm->ps_disabled = true; 1194 iwl_mvm_power_update_device(mvm); 1195 } 1196 1197 *gp2 = iwl_mvm_get_systime(mvm); 1198 1199 if (clock_type == CLOCK_BOOTTIME && boottime) 1200 *boottime = ktime_get_boottime_ns(); 1201 else if (clock_type == CLOCK_REALTIME && realtime) 1202 *realtime = ktime_get_real(); 1203 1204 if (!ps_disabled) { 1205 mvm->ps_disabled = ps_disabled; 1206 iwl_mvm_power_update_device(mvm); 1207 } 1208 } 1209 1210 /* Find if at least two links from different vifs use same channel 1211 * FIXME: consider having a refcount array in struct iwl_mvm_vif for 1212 * used phy_ctxt ids. 1213 */ 1214 bool iwl_mvm_have_links_same_channel(struct iwl_mvm_vif *vif1, 1215 struct iwl_mvm_vif *vif2) 1216 { 1217 unsigned int i, j; 1218 1219 for_each_mvm_vif_valid_link(vif1, i) { 1220 for_each_mvm_vif_valid_link(vif2, j) { 1221 if (vif1->link[i]->phy_ctxt == vif2->link[j]->phy_ctxt) 1222 return true; 1223 } 1224 } 1225 1226 return false; 1227 } 1228 1229 bool iwl_mvm_vif_is_active(struct iwl_mvm_vif *mvmvif) 1230 { 1231 unsigned int i; 1232 1233 /* FIXME: can it fail when phy_ctxt is assigned? */ 1234 for_each_mvm_vif_valid_link(mvmvif, i) { 1235 if (mvmvif->link[i]->phy_ctxt && 1236 mvmvif->link[i]->phy_ctxt->id < NUM_PHY_CTX) 1237 return true; 1238 } 1239 1240 return false; 1241 } 1242 1243 static u32 iwl_legacy_rate_to_fw_idx(u32 rate_n_flags) 1244 { 1245 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK_V1; 1246 int idx; 1247 bool ofdm = !(rate_n_flags & RATE_MCS_CCK_MSK_V1); 1248 int offset = ofdm ? IWL_FIRST_OFDM_RATE : 0; 1249 int last = ofdm ? IWL_RATE_COUNT_LEGACY : IWL_FIRST_OFDM_RATE; 1250 1251 for (idx = offset; idx < last; idx++) 1252 if (iwl_fw_rate_idx_to_plcp(idx) == rate) 1253 return idx - offset; 1254 return IWL_RATE_INVALID; 1255 } 1256 1257 u32 iwl_mvm_v3_rate_from_fw(__le32 rate, u8 rate_ver) 1258 { 1259 u32 rate_v3 = 0, rate_v1; 1260 u32 dup = 0; 1261 1262 if (rate_ver > 1) 1263 return iwl_v3_rate_from_v2_v3(rate, rate_ver >= 3); 1264 1265 rate_v1 = le32_to_cpu(rate); 1266 if (rate_v1 == 0) 1267 return rate_v1; 1268 /* convert rate */ 1269 if (rate_v1 & RATE_MCS_HT_MSK_V1) { 1270 u32 nss; 1271 1272 rate_v3 |= RATE_MCS_MOD_TYPE_HT; 1273 rate_v3 |= 1274 rate_v1 & RATE_HT_MCS_RATE_CODE_MSK_V1; 1275 nss = u32_get_bits(rate_v1, RATE_HT_MCS_MIMO2_MSK); 1276 rate_v3 |= u32_encode_bits(nss, RATE_MCS_NSS_MSK); 1277 } else if (rate_v1 & RATE_MCS_VHT_MSK_V1 || 1278 rate_v1 & RATE_MCS_HE_MSK_V1) { 1279 u32 nss = u32_get_bits(rate_v1, RATE_VHT_MCS_NSS_MSK); 1280 1281 rate_v3 |= rate_v1 & RATE_VHT_MCS_RATE_CODE_MSK; 1282 1283 rate_v3 |= u32_encode_bits(nss, RATE_MCS_NSS_MSK); 1284 1285 if (rate_v1 & RATE_MCS_HE_MSK_V1) { 1286 u32 he_type_bits = rate_v1 & RATE_MCS_HE_TYPE_MSK_V1; 1287 u32 he_type = he_type_bits >> RATE_MCS_HE_TYPE_POS_V1; 1288 u32 he_106t = (rate_v1 & RATE_MCS_HE_106T_MSK_V1) >> 1289 RATE_MCS_HE_106T_POS_V1; 1290 u32 he_gi_ltf = (rate_v1 & RATE_MCS_HE_GI_LTF_MSK_V1) >> 1291 RATE_MCS_HE_GI_LTF_POS; 1292 1293 if ((he_type_bits == RATE_MCS_HE_TYPE_SU || 1294 he_type_bits == RATE_MCS_HE_TYPE_EXT_SU) && 1295 he_gi_ltf == RATE_MCS_HE_SU_4_LTF) 1296 /* the new rate have an additional bit to 1297 * represent the value 4 rather then using SGI 1298 * bit for this purpose - as it was done in the 1299 * old rate 1300 */ 1301 he_gi_ltf += (rate_v1 & RATE_MCS_SGI_MSK_V1) >> 1302 RATE_MCS_SGI_POS_V1; 1303 1304 rate_v3 |= he_gi_ltf << RATE_MCS_HE_GI_LTF_POS; 1305 rate_v3 |= he_type << RATE_MCS_HE_TYPE_POS; 1306 rate_v3 |= he_106t << RATE_MCS_HE_106T_POS; 1307 rate_v3 |= rate_v1 & RATE_HE_DUAL_CARRIER_MODE_MSK; 1308 rate_v3 |= RATE_MCS_MOD_TYPE_HE; 1309 } else { 1310 rate_v3 |= RATE_MCS_MOD_TYPE_VHT; 1311 } 1312 /* if legacy format */ 1313 } else { 1314 u32 legacy_rate = iwl_legacy_rate_to_fw_idx(rate_v1); 1315 1316 if (WARN_ON_ONCE(legacy_rate == IWL_RATE_INVALID)) 1317 legacy_rate = (rate_v1 & RATE_MCS_CCK_MSK_V1) ? 1318 IWL_FIRST_CCK_RATE : IWL_FIRST_OFDM_RATE; 1319 1320 rate_v3 |= legacy_rate; 1321 if (!(rate_v1 & RATE_MCS_CCK_MSK_V1)) 1322 rate_v3 |= RATE_MCS_MOD_TYPE_LEGACY_OFDM; 1323 } 1324 1325 /* convert flags */ 1326 if (rate_v1 & RATE_MCS_LDPC_MSK_V1) 1327 rate_v3 |= RATE_MCS_LDPC_MSK; 1328 rate_v3 |= (rate_v1 & RATE_MCS_CHAN_WIDTH_MSK_V1) | 1329 (rate_v1 & RATE_MCS_ANT_AB_MSK) | 1330 (rate_v1 & RATE_MCS_STBC_MSK) | 1331 (rate_v1 & RATE_MCS_BF_MSK); 1332 1333 dup = (rate_v1 & RATE_MCS_DUP_MSK_V1) >> RATE_MCS_DUP_POS_V1; 1334 if (dup) { 1335 rate_v3 |= RATE_MCS_DUP_MSK; 1336 rate_v3 |= dup << RATE_MCS_CHAN_WIDTH_POS; 1337 } 1338 1339 if ((!(rate_v1 & RATE_MCS_HE_MSK_V1)) && 1340 (rate_v1 & RATE_MCS_SGI_MSK_V1)) 1341 rate_v3 |= RATE_MCS_SGI_MSK; 1342 1343 return rate_v3; 1344 } 1345 1346 __le32 iwl_mvm_v3_rate_to_fw(u32 rate, u8 rate_ver) 1347 { 1348 u32 result = 0; 1349 int rate_idx; 1350 1351 if (rate_ver > 1) 1352 return iwl_v3_rate_to_v2_v3(rate, rate_ver > 2); 1353 1354 switch (rate & RATE_MCS_MOD_TYPE_MSK) { 1355 case RATE_MCS_MOD_TYPE_CCK: 1356 result = RATE_MCS_CCK_MSK_V1; 1357 fallthrough; 1358 case RATE_MCS_MOD_TYPE_LEGACY_OFDM: 1359 rate_idx = u32_get_bits(rate, RATE_LEGACY_RATE_MSK); 1360 if (!(result & RATE_MCS_CCK_MSK_V1)) 1361 rate_idx += IWL_FIRST_OFDM_RATE; 1362 result |= u32_encode_bits(iwl_fw_rate_idx_to_plcp(rate_idx), 1363 RATE_LEGACY_RATE_MSK_V1); 1364 break; 1365 case RATE_MCS_MOD_TYPE_HT: 1366 result = RATE_MCS_HT_MSK_V1; 1367 result |= u32_encode_bits(u32_get_bits(rate, 1368 RATE_HT_MCS_CODE_MSK), 1369 RATE_HT_MCS_RATE_CODE_MSK_V1); 1370 result |= u32_encode_bits(u32_get_bits(rate, 1371 RATE_MCS_NSS_MSK), 1372 RATE_HT_MCS_MIMO2_MSK); 1373 break; 1374 case RATE_MCS_MOD_TYPE_VHT: 1375 result = RATE_MCS_VHT_MSK_V1; 1376 result |= u32_encode_bits(u32_get_bits(rate, 1377 RATE_VHT_MCS_NSS_MSK), 1378 RATE_MCS_CODE_MSK); 1379 result |= u32_encode_bits(u32_get_bits(rate, RATE_MCS_NSS_MSK), 1380 RATE_VHT_MCS_NSS_MSK); 1381 break; 1382 case RATE_MCS_MOD_TYPE_HE: /* not generated */ 1383 default: 1384 WARN_ONCE(1, "bad modulation type %d\n", 1385 u32_get_bits(rate, RATE_MCS_MOD_TYPE_MSK)); 1386 return 0; 1387 } 1388 1389 if (rate & RATE_MCS_LDPC_MSK) 1390 result |= RATE_MCS_LDPC_MSK_V1; 1391 WARN_ON_ONCE(u32_get_bits(rate, RATE_MCS_CHAN_WIDTH_MSK) > 1392 RATE_MCS_CHAN_WIDTH_160_VAL); 1393 result |= (rate & RATE_MCS_CHAN_WIDTH_MSK_V1) | 1394 (rate & RATE_MCS_ANT_AB_MSK) | 1395 (rate & RATE_MCS_STBC_MSK) | 1396 (rate & RATE_MCS_BF_MSK); 1397 1398 /* not handling DUP since we don't use it */ 1399 WARN_ON_ONCE(rate & RATE_MCS_DUP_MSK); 1400 1401 if (rate & RATE_MCS_SGI_MSK) 1402 result |= RATE_MCS_SGI_MSK_V1; 1403 1404 return cpu_to_le32(result); 1405 } 1406