xref: /linux/arch/arm64/kvm/hyp/nvhe/switch.c (revision e669e322c52c49c161e46492963e64319fbb53a8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9 
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 
29 #include <nvhe/mem_protect.h>
30 
31 /* Non-VHE specific context */
32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
35 
36 struct fgt_masks hfgrtr_masks;
37 struct fgt_masks hfgwtr_masks;
38 struct fgt_masks hfgitr_masks;
39 struct fgt_masks hdfgrtr_masks;
40 struct fgt_masks hdfgwtr_masks;
41 struct fgt_masks hafgrtr_masks;
42 struct fgt_masks hfgrtr2_masks;
43 struct fgt_masks hfgwtr2_masks;
44 struct fgt_masks hfgitr2_masks;
45 struct fgt_masks hdfgrtr2_masks;
46 struct fgt_masks hdfgwtr2_masks;
47 
48 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
49 
__activate_traps(struct kvm_vcpu * vcpu)50 static void __activate_traps(struct kvm_vcpu *vcpu)
51 {
52 	___activate_traps(vcpu, vcpu->arch.hcr_el2);
53 	__activate_traps_common(vcpu);
54 	__activate_cptr_traps(vcpu);
55 
56 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
57 
58 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
59 		struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
60 
61 		isb();
62 		/*
63 		 * At this stage, and thanks to the above isb(), S2 is
64 		 * configured and enabled. We can now restore the guest's S1
65 		 * configuration: SCTLR, and only then TCR.
66 		 */
67 		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
68 		isb();
69 		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
70 	}
71 }
72 
__deactivate_traps(struct kvm_vcpu * vcpu)73 static void __deactivate_traps(struct kvm_vcpu *vcpu)
74 {
75 	extern char __kvm_hyp_host_vector[];
76 
77 	___deactivate_traps(vcpu);
78 
79 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
80 		u64 val;
81 
82 		/*
83 		 * Set the TCR and SCTLR registers in the exact opposite
84 		 * sequence as __activate_traps (first prevent walks,
85 		 * then force the MMU on). A generous sprinkling of isb()
86 		 * ensure that things happen in this exact order.
87 		 */
88 		val = read_sysreg_el1(SYS_TCR);
89 		write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
90 		isb();
91 		val = read_sysreg_el1(SYS_SCTLR);
92 		write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
93 		isb();
94 	}
95 
96 	__deactivate_traps_common(vcpu);
97 
98 	write_sysreg_hcr(this_cpu_ptr(&kvm_init_params)->hcr_el2);
99 
100 	__deactivate_cptr_traps(vcpu);
101 	write_sysreg(__kvm_hyp_host_vector, vbar_el2);
102 }
103 
104 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)105 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
106 {
107 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
108 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
109 		__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
110 	}
111 }
112 
113 /* Restore VGICv3 state on non-VHE systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)114 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
115 {
116 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
117 		__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
118 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
119 	}
120 }
121 
122 /*
123  * Disable host events, enable guest events
124  */
125 #ifdef CONFIG_HW_PERF_EVENTS
__pmu_switch_to_guest(struct kvm_vcpu * vcpu)126 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
127 {
128 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
129 
130 	if (pmu->events_host)
131 		write_sysreg(pmu->events_host, pmcntenclr_el0);
132 
133 	if (pmu->events_guest)
134 		write_sysreg(pmu->events_guest, pmcntenset_el0);
135 
136 	return (pmu->events_host || pmu->events_guest);
137 }
138 
139 /*
140  * Disable guest events, enable host events
141  */
__pmu_switch_to_host(struct kvm_vcpu * vcpu)142 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
143 {
144 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
145 
146 	if (pmu->events_guest)
147 		write_sysreg(pmu->events_guest, pmcntenclr_el0);
148 
149 	if (pmu->events_host)
150 		write_sysreg(pmu->events_host, pmcntenset_el0);
151 }
152 #else
153 #define __pmu_switch_to_guest(v)	({ false; })
154 #define __pmu_switch_to_host(v)		do {} while (0)
155 #endif
156 
157 /*
158  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
159  *
160  * Returns true if the hypervisor has handled the exit, and control should go
161  * back to the guest, or false if it hasn't.
162  */
kvm_handle_pvm_sys64(struct kvm_vcpu * vcpu,u64 * exit_code)163 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
164 {
165 	/*
166 	 * Make sure we handle the exit for workarounds before the pKVM
167 	 * handling, as the latter could decide to UNDEF.
168 	 */
169 	return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
170 		kvm_handle_pvm_sysreg(vcpu, exit_code));
171 }
172 
173 static const exit_handler_fn hyp_exit_handlers[] = {
174 	[0 ... ESR_ELx_EC_MAX]		= NULL,
175 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
176 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
177 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
178 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
179 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
180 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
181 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
182 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
183 };
184 
185 static const exit_handler_fn pvm_exit_handlers[] = {
186 	[0 ... ESR_ELx_EC_MAX]		= NULL,
187 	[ESR_ELx_EC_SYS64]		= kvm_handle_pvm_sys64,
188 	[ESR_ELx_EC_SVE]		= kvm_handle_pvm_restricted,
189 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
190 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
191 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
192 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
193 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
194 };
195 
kvm_get_exit_handler_array(struct kvm_vcpu * vcpu)196 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
197 {
198 	if (unlikely(vcpu_is_protected(vcpu)))
199 		return pvm_exit_handlers;
200 
201 	return hyp_exit_handlers;
202 }
203 
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)204 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
205 {
206 	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
207 
208 	synchronize_vcpu_pstate(vcpu, exit_code);
209 
210 	/*
211 	 * Some guests (e.g., protected VMs) are not be allowed to run in
212 	 * AArch32.  The ARMv8 architecture does not give the hypervisor a
213 	 * mechanism to prevent a guest from dropping to AArch32 EL0 if
214 	 * implemented by the CPU. If the hypervisor spots a guest in such a
215 	 * state ensure it is handled, and don't trust the host to spot or fix
216 	 * it.  The check below is based on the one in
217 	 * kvm_arch_vcpu_ioctl_run().
218 	 */
219 	if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) {
220 		/*
221 		 * As we have caught the guest red-handed, decide that it isn't
222 		 * fit for purpose anymore by making the vcpu invalid. The VMM
223 		 * can try and fix it by re-initializing the vcpu with
224 		 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
225 		 * protected VMs.
226 		 */
227 		vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
228 		*exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
229 		*exit_code |= ARM_EXCEPTION_IL;
230 	}
231 
232 	return __fixup_guest_exit(vcpu, exit_code, handlers);
233 }
234 
235 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run(struct kvm_vcpu * vcpu)236 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
237 {
238 	struct kvm_cpu_context *host_ctxt;
239 	struct kvm_cpu_context *guest_ctxt;
240 	struct kvm_s2_mmu *mmu;
241 	bool pmu_switch_needed;
242 	u64 exit_code;
243 
244 	/*
245 	 * Having IRQs masked via PMR when entering the guest means the GIC
246 	 * will not signal the CPU of interrupts of lower priority, and the
247 	 * only way to get out will be via guest exceptions.
248 	 * Naturally, we want to avoid this.
249 	 */
250 	if (system_uses_irq_prio_masking()) {
251 		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
252 		pmr_sync();
253 	}
254 
255 	host_ctxt = host_data_ptr(host_ctxt);
256 	host_ctxt->__hyp_running_vcpu = vcpu;
257 	guest_ctxt = &vcpu->arch.ctxt;
258 
259 	pmu_switch_needed = __pmu_switch_to_guest(vcpu);
260 
261 	__sysreg_save_state_nvhe(host_ctxt);
262 	/*
263 	 * We must flush and disable the SPE buffer for nVHE, as
264 	 * the translation regime(EL1&0) is going to be loaded with
265 	 * that of the guest. And we must do this before we change the
266 	 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
267 	 * before we load guest Stage1.
268 	 */
269 	__debug_save_host_buffers_nvhe(vcpu);
270 
271 	/*
272 	 * We're about to restore some new MMU state. Make sure
273 	 * ongoing page-table walks that have started before we
274 	 * trapped to EL2 have completed. This also synchronises the
275 	 * above disabling of SPE and TRBE.
276 	 *
277 	 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
278 	 * rule R_LFHQG and subsequent information statements.
279 	 */
280 	dsb(nsh);
281 
282 	__kvm_adjust_pc(vcpu);
283 
284 	/*
285 	 * We must restore the 32-bit state before the sysregs, thanks
286 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
287 	 *
288 	 * Also, and in order to be able to deal with erratum #1319537 (A57)
289 	 * and #1319367 (A72), we must ensure that all VM-related sysreg are
290 	 * restored before we enable S2 translation.
291 	 */
292 	__sysreg32_restore_state(vcpu);
293 	__sysreg_restore_state_nvhe(guest_ctxt);
294 
295 	mmu = kern_hyp_va(vcpu->arch.hw_mmu);
296 	__load_stage2(mmu, kern_hyp_va(mmu->arch));
297 	__activate_traps(vcpu);
298 
299 	__hyp_vgic_restore_state(vcpu);
300 	__timer_enable_traps(vcpu);
301 
302 	__debug_switch_to_guest(vcpu);
303 
304 	do {
305 		/* Jump in the fire! */
306 		exit_code = __guest_enter(vcpu);
307 
308 		/* And we're baaack! */
309 	} while (fixup_guest_exit(vcpu, &exit_code));
310 
311 	__sysreg_save_state_nvhe(guest_ctxt);
312 	__sysreg32_save_state(vcpu);
313 	__timer_disable_traps(vcpu);
314 	__hyp_vgic_save_state(vcpu);
315 
316 	/*
317 	 * Same thing as before the guest run: we're about to switch
318 	 * the MMU context, so let's make sure we don't have any
319 	 * ongoing EL1&0 translations.
320 	 */
321 	dsb(nsh);
322 
323 	__deactivate_traps(vcpu);
324 	__load_host_stage2();
325 
326 	__sysreg_restore_state_nvhe(host_ctxt);
327 
328 	if (guest_owns_fp_regs())
329 		__fpsimd_save_fpexc32(vcpu);
330 
331 	__debug_switch_to_host(vcpu);
332 	/*
333 	 * This must come after restoring the host sysregs, since a non-VHE
334 	 * system may enable SPE here and make use of the TTBRs.
335 	 */
336 	__debug_restore_host_buffers_nvhe(vcpu);
337 
338 	if (pmu_switch_needed)
339 		__pmu_switch_to_host(vcpu);
340 
341 	/* Returning to host will clear PSR.I, remask PMR if needed */
342 	if (system_uses_irq_prio_masking())
343 		gic_write_pmr(GIC_PRIO_IRQOFF);
344 
345 	host_ctxt->__hyp_running_vcpu = NULL;
346 
347 	return exit_code;
348 }
349 
hyp_panic(void)350 asmlinkage void __noreturn hyp_panic(void)
351 {
352 	u64 spsr = read_sysreg_el2(SYS_SPSR);
353 	u64 elr = read_sysreg_el2(SYS_ELR);
354 	u64 par = read_sysreg_par();
355 	struct kvm_cpu_context *host_ctxt;
356 	struct kvm_vcpu *vcpu;
357 
358 	host_ctxt = host_data_ptr(host_ctxt);
359 	vcpu = host_ctxt->__hyp_running_vcpu;
360 
361 	if (vcpu) {
362 		__timer_disable_traps(vcpu);
363 		__deactivate_traps(vcpu);
364 		__load_host_stage2();
365 		__sysreg_restore_state_nvhe(host_ctxt);
366 	}
367 
368 	/* Prepare to dump kvm nvhe hyp stacktrace */
369 	kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
370 				   _THIS_IP_);
371 
372 	__hyp_do_panic(host_ctxt, spsr, elr, par);
373 	unreachable();
374 }
375 
hyp_panic_bad_stack(void)376 asmlinkage void __noreturn hyp_panic_bad_stack(void)
377 {
378 	hyp_panic();
379 }
380 
kvm_unexpected_el2_exception(void)381 asmlinkage void kvm_unexpected_el2_exception(void)
382 {
383 	__kvm_unexpected_el2_exception();
384 }
385