1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclgevf_regs.h"
10 #include "hclge_mbx.h"
11 #include "hnae3.h"
12 #include "hclgevf_devlink.h"
13 #include "hclge_comm_rss.h"
14 #include "hclgevf_trace.h"
15
16 #define HCLGEVF_NAME "hclgevf"
17
18 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
19
20 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
21 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
22 unsigned long delay);
23
24 static struct hnae3_ae_algo ae_algovf;
25
26 static struct workqueue_struct *hclgevf_wq;
27
28 static const struct pci_device_id ae_algovf_pci_tbl[] = {
29 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
30 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
31 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
32 /* required last entry */
33 {0, }
34 };
35
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37
38 /* hclgevf_cmd_send - send command to command queue
39 * @hw: pointer to the hw struct
40 * @desc: prefilled descriptor for describing the command
41 * @num : the number of descriptors to be sent
42 *
43 * This is the main send command for command queue, it
44 * sends the queue, cleans the queue, etc
45 */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclge_desc * desc,int num)46 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
47 {
48 return hclge_comm_cmd_send(&hw->hw, desc, num);
49 }
50
hclgevf_trace_cmd_send(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)51 static void hclgevf_trace_cmd_send(struct hclge_comm_hw *hw, struct hclge_desc *desc,
52 int num, bool is_special)
53 {
54 int i;
55
56 trace_hclge_vf_cmd_send(hw, desc, 0, num);
57
58 if (is_special)
59 return;
60
61 for (i = 1; i < num; i++)
62 trace_hclge_vf_cmd_send(hw, &desc[i], i, num);
63 }
64
hclgevf_trace_cmd_get(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)65 static void hclgevf_trace_cmd_get(struct hclge_comm_hw *hw, struct hclge_desc *desc,
66 int num, bool is_special)
67 {
68 int i;
69
70 if (!HCLGE_COMM_SEND_SYNC(le16_to_cpu(desc->flag)))
71 return;
72
73 trace_hclge_vf_cmd_get(hw, desc, 0, num);
74
75 if (is_special)
76 return;
77
78 for (i = 1; i < num; i++)
79 trace_hclge_vf_cmd_get(hw, &desc[i], i, num);
80 }
81
82 static const struct hclge_comm_cmq_ops hclgevf_cmq_ops = {
83 .trace_cmd_send = hclgevf_trace_cmd_send,
84 .trace_cmd_get = hclgevf_trace_cmd_get,
85 };
86
hclgevf_arq_init(struct hclgevf_dev * hdev)87 void hclgevf_arq_init(struct hclgevf_dev *hdev)
88 {
89 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
90
91 spin_lock(&cmdq->crq.lock);
92 /* initialize the pointers of async rx queue of mailbox */
93 hdev->arq.hdev = hdev;
94 hdev->arq.head = 0;
95 hdev->arq.tail = 0;
96 atomic_set(&hdev->arq.count, 0);
97 spin_unlock(&cmdq->crq.lock);
98 }
99
hclgevf_ae_get_hdev(struct hnae3_handle * handle)100 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
101 {
102 if (!handle->client)
103 return container_of(handle, struct hclgevf_dev, nic);
104 else if (handle->client->type == HNAE3_CLIENT_ROCE)
105 return container_of(handle, struct hclgevf_dev, roce);
106 else
107 return container_of(handle, struct hclgevf_dev, nic);
108 }
109
hclgevf_update_stats(struct hnae3_handle * handle)110 static void hclgevf_update_stats(struct hnae3_handle *handle)
111 {
112 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
113 int status;
114
115 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
116 if (status)
117 dev_err(&hdev->pdev->dev,
118 "VF update of TQPS stats fail, status = %d.\n",
119 status);
120 }
121
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)122 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
123 {
124 if (strset == ETH_SS_TEST)
125 return -EOPNOTSUPP;
126 else if (strset == ETH_SS_STATS)
127 return hclge_comm_tqps_get_sset_count(handle);
128
129 return 0;
130 }
131
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 ** data)132 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
133 u8 **data)
134 {
135 if (strset == ETH_SS_STATS)
136 hclge_comm_tqps_get_strings(handle, data);
137 }
138
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)139 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
140 {
141 hclge_comm_tqps_get_stats(handle, data);
142 }
143
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)144 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
145 u8 subcode)
146 {
147 if (msg) {
148 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
149 msg->code = code;
150 msg->subcode = subcode;
151 }
152 }
153
hclgevf_get_basic_info(struct hclgevf_dev * hdev)154 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
155 {
156 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
157 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
158 struct hclge_basic_info *basic_info;
159 struct hclge_vf_to_pf_msg send_msg;
160 unsigned long caps;
161 int status;
162
163 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
164 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
165 sizeof(resp_msg));
166 if (status) {
167 dev_err(&hdev->pdev->dev,
168 "failed to get basic info from pf, ret = %d", status);
169 return status;
170 }
171
172 basic_info = (struct hclge_basic_info *)resp_msg;
173
174 hdev->hw_tc_map = basic_info->hw_tc_map;
175 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
176 caps = le32_to_cpu(basic_info->pf_caps);
177 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
178 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
179
180 return 0;
181 }
182
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)183 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
184 {
185 struct hnae3_handle *nic = &hdev->nic;
186 struct hclge_vf_to_pf_msg send_msg;
187 u8 resp_msg;
188 int ret;
189
190 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
191 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
192 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
193 sizeof(u8));
194 if (ret) {
195 dev_err(&hdev->pdev->dev,
196 "VF request to get port based vlan state failed %d",
197 ret);
198 return ret;
199 }
200
201 nic->port_base_vlan_state = resp_msg;
202
203 return 0;
204 }
205
hclgevf_get_queue_info(struct hclgevf_dev * hdev)206 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
207 {
208 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
209
210 struct hclge_mbx_vf_queue_info *queue_info;
211 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
212 struct hclge_vf_to_pf_msg send_msg;
213 int status;
214
215 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
216 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
217 HCLGEVF_TQPS_RSS_INFO_LEN);
218 if (status) {
219 dev_err(&hdev->pdev->dev,
220 "VF request to get tqp info from PF failed %d",
221 status);
222 return status;
223 }
224
225 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
226 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
227 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
228 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
229
230 return 0;
231 }
232
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)233 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
234 {
235 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
236
237 struct hclge_mbx_vf_queue_depth *queue_depth;
238 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
239 struct hclge_vf_to_pf_msg send_msg;
240 int ret;
241
242 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
243 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
244 HCLGEVF_TQPS_DEPTH_INFO_LEN);
245 if (ret) {
246 dev_err(&hdev->pdev->dev,
247 "VF request to get tqp depth info from PF failed %d",
248 ret);
249 return ret;
250 }
251
252 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
253 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
254 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
255
256 return 0;
257 }
258
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)259 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
260 {
261 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
262 struct hclge_vf_to_pf_msg send_msg;
263 u16 qid_in_pf = 0;
264 u8 resp_data[2];
265 int ret;
266
267 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
268 *(__le16 *)send_msg.data = cpu_to_le16(queue_id);
269 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
270 sizeof(resp_data));
271 if (!ret)
272 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
273
274 return qid_in_pf;
275 }
276
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)277 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
278 {
279 struct hclge_vf_to_pf_msg send_msg;
280 u8 resp_msg[2];
281 int ret;
282
283 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
284 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
285 sizeof(resp_msg));
286 if (ret) {
287 dev_err(&hdev->pdev->dev,
288 "VF request to get the pf port media type failed %d",
289 ret);
290 return ret;
291 }
292
293 hdev->hw.mac.media_type = resp_msg[0];
294 hdev->hw.mac.module_type = resp_msg[1];
295
296 return 0;
297 }
298
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)299 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
300 {
301 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
302 struct hclge_comm_tqp *tqp;
303 int i;
304
305 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
306 sizeof(struct hclge_comm_tqp), GFP_KERNEL);
307 if (!hdev->htqp)
308 return -ENOMEM;
309
310 tqp = hdev->htqp;
311
312 for (i = 0; i < hdev->num_tqps; i++) {
313 tqp->dev = &hdev->pdev->dev;
314 tqp->index = i;
315
316 tqp->q.ae_algo = &ae_algovf;
317 tqp->q.buf_size = hdev->rx_buf_len;
318 tqp->q.tx_desc_num = hdev->num_tx_desc;
319 tqp->q.rx_desc_num = hdev->num_rx_desc;
320
321 /* need an extended offset to configure queues >=
322 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
323 */
324 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
325 tqp->q.io_base = hdev->hw.hw.io_base +
326 HCLGEVF_TQP_REG_OFFSET +
327 i * HCLGEVF_TQP_REG_SIZE;
328 else
329 tqp->q.io_base = hdev->hw.hw.io_base +
330 HCLGEVF_TQP_REG_OFFSET +
331 HCLGEVF_TQP_EXT_REG_OFFSET +
332 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
333 HCLGEVF_TQP_REG_SIZE;
334
335 /* when device supports tx push and has device memory,
336 * the queue can execute push mode or doorbell mode on
337 * device memory.
338 */
339 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
340 tqp->q.mem_base = hdev->hw.hw.mem_base +
341 HCLGEVF_TQP_MEM_OFFSET(hdev, i);
342
343 tqp++;
344 }
345
346 return 0;
347 }
348
hclgevf_knic_setup(struct hclgevf_dev * hdev)349 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
350 {
351 struct hnae3_handle *nic = &hdev->nic;
352 struct hnae3_knic_private_info *kinfo;
353 u16 new_tqps = hdev->num_tqps;
354 unsigned int i;
355 u8 num_tc = 0;
356
357 kinfo = &nic->kinfo;
358 kinfo->num_tx_desc = hdev->num_tx_desc;
359 kinfo->num_rx_desc = hdev->num_rx_desc;
360 kinfo->rx_buf_len = hdev->rx_buf_len;
361 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
362 if (hdev->hw_tc_map & BIT(i))
363 num_tc++;
364
365 num_tc = num_tc ? num_tc : 1;
366 kinfo->tc_info.num_tc = num_tc;
367 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
368 new_tqps = kinfo->rss_size * num_tc;
369 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
370
371 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
372 sizeof(struct hnae3_queue *), GFP_KERNEL);
373 if (!kinfo->tqp)
374 return -ENOMEM;
375
376 for (i = 0; i < kinfo->num_tqps; i++) {
377 hdev->htqp[i].q.handle = &hdev->nic;
378 hdev->htqp[i].q.tqp_index = i;
379 kinfo->tqp[i] = &hdev->htqp[i].q;
380 }
381
382 /* after init the max rss_size and tqps, adjust the default tqp numbers
383 * and rss size with the actual vector numbers
384 */
385 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
386 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
387 kinfo->rss_size);
388
389 return 0;
390 }
391
hclgevf_request_link_info(struct hclgevf_dev * hdev)392 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
393 {
394 struct hclge_vf_to_pf_msg send_msg;
395 int status;
396
397 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
398 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
399 if (status)
400 dev_err(&hdev->pdev->dev,
401 "VF failed to fetch link status(%d) from PF", status);
402 }
403
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)404 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
405 {
406 struct hnae3_handle *rhandle = &hdev->roce;
407 struct hnae3_handle *handle = &hdev->nic;
408 struct hnae3_client *rclient;
409 struct hnae3_client *client;
410
411 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
412 return;
413
414 client = handle->client;
415 rclient = hdev->roce_client;
416
417 link_state =
418 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
419 if (link_state != hdev->hw.mac.link) {
420 hdev->hw.mac.link = link_state;
421 client->ops->link_status_change(handle, !!link_state);
422 if (rclient && rclient->ops->link_status_change)
423 rclient->ops->link_status_change(rhandle, !!link_state);
424 }
425
426 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
427 }
428
hclgevf_update_link_mode(struct hclgevf_dev * hdev)429 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
430 {
431 #define HCLGEVF_ADVERTISING 0
432 #define HCLGEVF_SUPPORTED 1
433
434 struct hclge_vf_to_pf_msg send_msg;
435
436 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
437 send_msg.data[0] = HCLGEVF_ADVERTISING;
438 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
439 send_msg.data[0] = HCLGEVF_SUPPORTED;
440 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
441 }
442
hclgevf_set_handle_info(struct hclgevf_dev * hdev)443 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
444 {
445 struct hnae3_handle *nic = &hdev->nic;
446 int ret;
447
448 nic->ae_algo = &ae_algovf;
449 nic->pdev = hdev->pdev;
450 bitmap_copy(nic->numa_node_mask.bits, hdev->numa_node_mask.bits,
451 MAX_NUMNODES);
452 nic->flags |= HNAE3_SUPPORT_VF;
453 nic->kinfo.io_base = hdev->hw.hw.io_base;
454
455 ret = hclgevf_knic_setup(hdev);
456 if (ret)
457 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
458 ret);
459 return ret;
460 }
461
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)462 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
463 {
464 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
465 dev_warn(&hdev->pdev->dev,
466 "vector(vector_id %d) has been freed.\n", vector_id);
467 return;
468 }
469
470 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
471 hdev->num_msi_left += 1;
472 hdev->num_msi_used -= 1;
473 }
474
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)475 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
476 struct hnae3_vector_info *vector_info)
477 {
478 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
479 struct hnae3_vector_info *vector = vector_info;
480 int alloc = 0;
481 int i, j;
482
483 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
484 vector_num = min(hdev->num_msi_left, vector_num);
485
486 for (j = 0; j < vector_num; j++) {
487 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
488 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
489 vector->vector = pci_irq_vector(hdev->pdev, i);
490 vector->io_addr = hdev->hw.hw.io_base +
491 HCLGEVF_VECTOR_REG_BASE +
492 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
493 hdev->vector_status[i] = 0;
494 hdev->vector_irq[i] = vector->vector;
495
496 vector++;
497 alloc++;
498
499 break;
500 }
501 }
502 }
503 hdev->num_msi_left -= alloc;
504 hdev->num_msi_used += alloc;
505
506 return alloc;
507 }
508
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)509 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
510 {
511 int i;
512
513 for (i = 0; i < hdev->num_msi; i++)
514 if (vector == hdev->vector_irq[i])
515 return i;
516
517 return -EINVAL;
518 }
519
520 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)521 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
522 {
523 #define HCLGEVF_RSS_MBX_RESP_LEN 8
524 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
525 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
526 struct hclge_vf_to_pf_msg send_msg;
527 u16 msg_num, hash_key_index;
528 u8 index;
529 int ret;
530
531 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
532 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
533 HCLGEVF_RSS_MBX_RESP_LEN;
534 for (index = 0; index < msg_num; index++) {
535 send_msg.data[0] = index;
536 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
537 HCLGEVF_RSS_MBX_RESP_LEN);
538 if (ret) {
539 dev_err(&hdev->pdev->dev,
540 "VF get rss hash key from PF failed, ret=%d",
541 ret);
542 return ret;
543 }
544
545 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
546 if (index == msg_num - 1)
547 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
548 &resp_msg[0],
549 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
550 else
551 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
552 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
553 }
554
555 return 0;
556 }
557
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)558 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
559 u8 *hfunc)
560 {
561 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
562 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
563 int ret;
564
565 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
566 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
567 } else {
568 if (hfunc)
569 *hfunc = ETH_RSS_HASH_TOP;
570 if (key) {
571 ret = hclgevf_get_rss_hash_key(hdev);
572 if (ret)
573 return ret;
574 memcpy(key, rss_cfg->rss_hash_key,
575 HCLGE_COMM_RSS_KEY_SIZE);
576 }
577 }
578
579 hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
580 hdev->ae_dev->dev_specs.rss_ind_tbl_size);
581
582 return 0;
583 }
584
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)585 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
586 const u8 *key, const u8 hfunc)
587 {
588 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
589 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
590 int ret, i;
591
592 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
593 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
594 hfunc);
595 if (ret)
596 return ret;
597 }
598
599 /* update the shadow RSS table with user specified qids */
600 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
601 rss_cfg->rss_indirection_tbl[i] = indir[i];
602
603 /* update the hardware */
604 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
605 rss_cfg->rss_indirection_tbl);
606 }
607
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)608 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
609 struct ethtool_rxnfc *nfc)
610 {
611 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
612 int ret;
613
614 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
615 return -EOPNOTSUPP;
616
617 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
618 &hdev->rss_cfg, nfc);
619 if (ret)
620 dev_err(&hdev->pdev->dev,
621 "failed to set rss tuple, ret = %d.\n", ret);
622
623 return ret;
624 }
625
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)626 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
627 struct ethtool_rxnfc *nfc)
628 {
629 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
630 u8 tuple_sets;
631 int ret;
632
633 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
634 return -EOPNOTSUPP;
635
636 nfc->data = 0;
637
638 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
639 &tuple_sets);
640 if (ret || !tuple_sets)
641 return ret;
642
643 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
644
645 return 0;
646 }
647
hclgevf_get_tc_size(struct hnae3_handle * handle)648 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
649 {
650 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
651 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
652
653 return rss_cfg->rss_size;
654 }
655
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)656 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
657 int vector_id,
658 struct hnae3_ring_chain_node *ring_chain)
659 {
660 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
661 struct hclge_vf_to_pf_msg send_msg;
662 struct hnae3_ring_chain_node *node;
663 int status;
664 int i = 0;
665
666 memset(&send_msg, 0, sizeof(send_msg));
667 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
668 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
669 send_msg.vector_id = vector_id;
670
671 for (node = ring_chain; node; node = node->next) {
672 send_msg.param[i].ring_type =
673 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
674
675 send_msg.param[i].tqp_index = node->tqp_index;
676 send_msg.param[i].int_gl_index =
677 hnae3_get_field(node->int_gl_idx,
678 HNAE3_RING_GL_IDX_M,
679 HNAE3_RING_GL_IDX_S);
680
681 i++;
682 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
683 send_msg.ring_num = i;
684
685 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
686 NULL, 0);
687 if (status) {
688 dev_err(&hdev->pdev->dev,
689 "Map TQP fail, status is %d.\n",
690 status);
691 return status;
692 }
693 i = 0;
694 }
695 }
696
697 return 0;
698 }
699
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)700 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
701 struct hnae3_ring_chain_node *ring_chain)
702 {
703 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
704 int vector_id;
705
706 vector_id = hclgevf_get_vector_index(hdev, vector);
707 if (vector_id < 0) {
708 dev_err(&handle->pdev->dev,
709 "Get vector index fail. ret =%d\n", vector_id);
710 return vector_id;
711 }
712
713 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
714 }
715
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)716 static int hclgevf_unmap_ring_from_vector(
717 struct hnae3_handle *handle,
718 int vector,
719 struct hnae3_ring_chain_node *ring_chain)
720 {
721 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
722 int ret, vector_id;
723
724 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
725 return 0;
726
727 vector_id = hclgevf_get_vector_index(hdev, vector);
728 if (vector_id < 0) {
729 dev_err(&handle->pdev->dev,
730 "Get vector index fail. ret =%d\n", vector_id);
731 return vector_id;
732 }
733
734 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
735 if (ret)
736 dev_err(&handle->pdev->dev,
737 "Unmap ring from vector fail. vector=%d, ret =%d\n",
738 vector_id,
739 ret);
740
741 return ret;
742 }
743
hclgevf_put_vector(struct hnae3_handle * handle,int vector)744 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
745 {
746 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
747 int vector_id;
748
749 vector_id = hclgevf_get_vector_index(hdev, vector);
750 if (vector_id < 0) {
751 dev_err(&handle->pdev->dev,
752 "hclgevf_put_vector get vector index fail. ret =%d\n",
753 vector_id);
754 return vector_id;
755 }
756
757 hclgevf_free_vector(hdev, vector_id);
758
759 return 0;
760 }
761
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)762 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
763 bool en_uc_pmc, bool en_mc_pmc,
764 bool en_bc_pmc)
765 {
766 struct hnae3_handle *handle = &hdev->nic;
767 struct hclge_vf_to_pf_msg send_msg;
768 int ret;
769
770 memset(&send_msg, 0, sizeof(send_msg));
771 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
772 send_msg.en_bc = en_bc_pmc ? 1 : 0;
773 send_msg.en_uc = en_uc_pmc ? 1 : 0;
774 send_msg.en_mc = en_mc_pmc ? 1 : 0;
775 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
776 &handle->priv_flags) ? 1 : 0;
777
778 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
779 if (ret)
780 dev_err(&hdev->pdev->dev,
781 "Set promisc mode fail, status is %d.\n", ret);
782
783 return ret;
784 }
785
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)786 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
787 bool en_mc_pmc)
788 {
789 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
790 bool en_bc_pmc;
791
792 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
793
794 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
795 en_bc_pmc);
796 }
797
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)798 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
799 {
800 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
801
802 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
803 hclgevf_task_schedule(hdev, 0);
804 }
805
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)806 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
807 {
808 struct hnae3_handle *handle = &hdev->nic;
809 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
810 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
811 int ret;
812
813 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
814 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
815 if (!ret)
816 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
817 }
818 }
819
hclgevf_tqp_enable_cmd_send(struct hclgevf_dev * hdev,u16 tqp_id,u16 stream_id,bool enable)820 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
821 u16 stream_id, bool enable)
822 {
823 struct hclgevf_cfg_com_tqp_queue_cmd *req;
824 struct hclge_desc desc;
825
826 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
827
828 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
829 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
830 req->stream_id = cpu_to_le16(stream_id);
831 if (enable)
832 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
833
834 return hclgevf_cmd_send(&hdev->hw, &desc, 1);
835 }
836
hclgevf_tqp_enable(struct hnae3_handle * handle,bool enable)837 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
838 {
839 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
840 int ret;
841 u16 i;
842
843 for (i = 0; i < handle->kinfo.num_tqps; i++) {
844 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
845 if (ret)
846 return ret;
847 }
848
849 return 0;
850 }
851
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)852 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
853 {
854 struct hclge_vf_to_pf_msg send_msg;
855 u8 host_mac[ETH_ALEN];
856 int status;
857
858 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
859 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
860 ETH_ALEN);
861 if (status) {
862 dev_err(&hdev->pdev->dev,
863 "fail to get VF MAC from host %d", status);
864 return status;
865 }
866
867 ether_addr_copy(p, host_mac);
868
869 return 0;
870 }
871
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)872 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
873 {
874 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
875 u8 host_mac_addr[ETH_ALEN];
876
877 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
878 return;
879
880 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
881 if (hdev->has_pf_mac)
882 ether_addr_copy(p, host_mac_addr);
883 else
884 ether_addr_copy(p, hdev->hw.mac.mac_addr);
885 }
886
hclgevf_set_mac_addr(struct hnae3_handle * handle,const void * p,bool is_first)887 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
888 bool is_first)
889 {
890 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
892 struct hclge_vf_to_pf_msg send_msg;
893 u8 *new_mac_addr = (u8 *)p;
894 int status;
895
896 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
897 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
898 ether_addr_copy(send_msg.data, new_mac_addr);
899 if (is_first && !hdev->has_pf_mac)
900 eth_zero_addr(&send_msg.data[ETH_ALEN]);
901 else
902 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
903 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
904 if (!status)
905 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
906
907 return status;
908 }
909
910 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)911 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
912 {
913 struct hclgevf_mac_addr_node *mac_node, *tmp;
914
915 list_for_each_entry_safe(mac_node, tmp, list, node)
916 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
917 return mac_node;
918
919 return NULL;
920 }
921
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)922 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
923 enum HCLGEVF_MAC_NODE_STATE state)
924 {
925 switch (state) {
926 /* from set_rx_mode or tmp_add_list */
927 case HCLGEVF_MAC_TO_ADD:
928 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
929 mac_node->state = HCLGEVF_MAC_ACTIVE;
930 break;
931 /* only from set_rx_mode */
932 case HCLGEVF_MAC_TO_DEL:
933 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
934 list_del(&mac_node->node);
935 kfree(mac_node);
936 } else {
937 mac_node->state = HCLGEVF_MAC_TO_DEL;
938 }
939 break;
940 /* only from tmp_add_list, the mac_node->state won't be
941 * HCLGEVF_MAC_ACTIVE
942 */
943 case HCLGEVF_MAC_ACTIVE:
944 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
945 mac_node->state = HCLGEVF_MAC_ACTIVE;
946 break;
947 }
948 }
949
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)950 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
951 enum HCLGEVF_MAC_NODE_STATE state,
952 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
953 const unsigned char *addr)
954 {
955 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
956 struct hclgevf_mac_addr_node *mac_node;
957 struct list_head *list;
958
959 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
960 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
961
962 spin_lock_bh(&hdev->mac_table.mac_list_lock);
963
964 /* if the mac addr is already in the mac list, no need to add a new
965 * one into it, just check the mac addr state, convert it to a new
966 * state, or just remove it, or do nothing.
967 */
968 mac_node = hclgevf_find_mac_node(list, addr);
969 if (mac_node) {
970 hclgevf_update_mac_node(mac_node, state);
971 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
972 return 0;
973 }
974 /* if this address is never added, unnecessary to delete */
975 if (state == HCLGEVF_MAC_TO_DEL) {
976 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
977 return -ENOENT;
978 }
979
980 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
981 if (!mac_node) {
982 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
983 return -ENOMEM;
984 }
985
986 mac_node->state = state;
987 ether_addr_copy(mac_node->mac_addr, addr);
988 list_add_tail(&mac_node->node, list);
989
990 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
991 return 0;
992 }
993
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)994 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
995 const unsigned char *addr)
996 {
997 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
998 HCLGEVF_MAC_ADDR_UC, addr);
999 }
1000
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1001 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1002 const unsigned char *addr)
1003 {
1004 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1005 HCLGEVF_MAC_ADDR_UC, addr);
1006 }
1007
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1008 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1009 const unsigned char *addr)
1010 {
1011 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1012 HCLGEVF_MAC_ADDR_MC, addr);
1013 }
1014
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1015 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1016 const unsigned char *addr)
1017 {
1018 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1019 HCLGEVF_MAC_ADDR_MC, addr);
1020 }
1021
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1022 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1023 struct hclgevf_mac_addr_node *mac_node,
1024 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1025 {
1026 struct hclge_vf_to_pf_msg send_msg;
1027 u8 code, subcode;
1028
1029 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1030 code = HCLGE_MBX_SET_UNICAST;
1031 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1032 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1033 else
1034 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1035 } else {
1036 code = HCLGE_MBX_SET_MULTICAST;
1037 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1038 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1039 else
1040 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1041 }
1042
1043 hclgevf_build_send_msg(&send_msg, code, subcode);
1044 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1045 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1046 }
1047
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1048 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1049 struct list_head *list,
1050 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1051 {
1052 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1053 struct hclgevf_mac_addr_node *mac_node, *tmp;
1054 int ret;
1055
1056 list_for_each_entry_safe(mac_node, tmp, list, node) {
1057 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1058 if (ret) {
1059 hnae3_format_mac_addr(format_mac_addr,
1060 mac_node->mac_addr);
1061 dev_err(&hdev->pdev->dev,
1062 "failed to configure mac %s, state = %d, ret = %d\n",
1063 format_mac_addr, mac_node->state, ret);
1064 return;
1065 }
1066 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1067 mac_node->state = HCLGEVF_MAC_ACTIVE;
1068 } else {
1069 list_del(&mac_node->node);
1070 kfree(mac_node);
1071 }
1072 }
1073 }
1074
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1075 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1076 struct list_head *mac_list)
1077 {
1078 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1079
1080 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1081 /* if the mac address from tmp_add_list is not in the
1082 * uc/mc_mac_list, it means have received a TO_DEL request
1083 * during the time window of sending mac config request to PF
1084 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1085 * then it will be removed at next time. If is TO_ADD, it means
1086 * send TO_ADD request failed, so just remove the mac node.
1087 */
1088 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1089 if (new_node) {
1090 hclgevf_update_mac_node(new_node, mac_node->state);
1091 list_del(&mac_node->node);
1092 kfree(mac_node);
1093 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1094 mac_node->state = HCLGEVF_MAC_TO_DEL;
1095 list_move_tail(&mac_node->node, mac_list);
1096 } else {
1097 list_del(&mac_node->node);
1098 kfree(mac_node);
1099 }
1100 }
1101 }
1102
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1103 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1104 struct list_head *mac_list)
1105 {
1106 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1107
1108 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1109 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1110 if (new_node) {
1111 /* If the mac addr is exist in the mac list, it means
1112 * received a new request TO_ADD during the time window
1113 * of sending mac addr configurrequest to PF, so just
1114 * change the mac state to ACTIVE.
1115 */
1116 new_node->state = HCLGEVF_MAC_ACTIVE;
1117 list_del(&mac_node->node);
1118 kfree(mac_node);
1119 } else {
1120 list_move_tail(&mac_node->node, mac_list);
1121 }
1122 }
1123 }
1124
hclgevf_clear_list(struct list_head * list)1125 static void hclgevf_clear_list(struct list_head *list)
1126 {
1127 struct hclgevf_mac_addr_node *mac_node, *tmp;
1128
1129 list_for_each_entry_safe(mac_node, tmp, list, node) {
1130 list_del(&mac_node->node);
1131 kfree(mac_node);
1132 }
1133 }
1134
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1135 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1136 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1137 {
1138 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1139 struct list_head tmp_add_list, tmp_del_list;
1140 struct list_head *list;
1141
1142 INIT_LIST_HEAD(&tmp_add_list);
1143 INIT_LIST_HEAD(&tmp_del_list);
1144
1145 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1146 * we can add/delete these mac addr outside the spin lock
1147 */
1148 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1149 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1150
1151 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1152
1153 list_for_each_entry_safe(mac_node, tmp, list, node) {
1154 switch (mac_node->state) {
1155 case HCLGEVF_MAC_TO_DEL:
1156 list_move_tail(&mac_node->node, &tmp_del_list);
1157 break;
1158 case HCLGEVF_MAC_TO_ADD:
1159 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1160 if (!new_node)
1161 goto stop_traverse;
1162
1163 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1164 new_node->state = mac_node->state;
1165 list_add_tail(&new_node->node, &tmp_add_list);
1166 break;
1167 default:
1168 break;
1169 }
1170 }
1171
1172 stop_traverse:
1173 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1174
1175 /* delete first, in order to get max mac table space for adding */
1176 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1177 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1178
1179 /* if some mac addresses were added/deleted fail, move back to the
1180 * mac_list, and retry at next time.
1181 */
1182 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1183
1184 hclgevf_sync_from_del_list(&tmp_del_list, list);
1185 hclgevf_sync_from_add_list(&tmp_add_list, list);
1186
1187 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1188 }
1189
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1190 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1191 {
1192 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1193 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1194 }
1195
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1196 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1197 {
1198 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1199
1200 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1201 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1202
1203 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1204 }
1205
hclgevf_enable_vlan_filter(struct hnae3_handle * handle,bool enable)1206 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1207 {
1208 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1209 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1210 struct hclge_vf_to_pf_msg send_msg;
1211
1212 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1213 return -EOPNOTSUPP;
1214
1215 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1216 HCLGE_MBX_ENABLE_VLAN_FILTER);
1217 send_msg.data[0] = enable ? 1 : 0;
1218
1219 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1220 }
1221
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1222 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1223 __be16 proto, u16 vlan_id,
1224 bool is_kill)
1225 {
1226 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1227 struct hclge_mbx_vlan_filter *vlan_filter;
1228 struct hclge_vf_to_pf_msg send_msg;
1229 int ret;
1230
1231 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1232 return -EINVAL;
1233
1234 if (proto != htons(ETH_P_8021Q))
1235 return -EPROTONOSUPPORT;
1236
1237 /* When device is resetting or reset failed, firmware is unable to
1238 * handle mailbox. Just record the vlan id, and remove it after
1239 * reset finished.
1240 */
1241 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1242 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1243 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1244 return -EBUSY;
1245 } else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) {
1246 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1247 }
1248
1249 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1250 HCLGE_MBX_VLAN_FILTER);
1251 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1252 vlan_filter->is_kill = is_kill;
1253 vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1254 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1255
1256 /* when remove hw vlan filter failed, record the vlan id,
1257 * and try to remove it from hw later, to be consistence
1258 * with stack.
1259 */
1260 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1261 if (is_kill && ret)
1262 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1263
1264 return ret;
1265 }
1266
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1267 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1268 {
1269 #define HCLGEVF_MAX_SYNC_COUNT 60
1270 struct hnae3_handle *handle = &hdev->nic;
1271 int ret, sync_cnt = 0;
1272 u16 vlan_id;
1273
1274 if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID))
1275 return;
1276
1277 rtnl_lock();
1278 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1279 while (vlan_id != VLAN_N_VID) {
1280 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1281 vlan_id, true);
1282 if (ret)
1283 break;
1284
1285 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1286 sync_cnt++;
1287 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1288 break;
1289
1290 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1291 }
1292 rtnl_unlock();
1293 }
1294
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1295 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1296 {
1297 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1298 struct hclge_vf_to_pf_msg send_msg;
1299
1300 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1301 HCLGE_MBX_VLAN_RX_OFF_CFG);
1302 send_msg.data[0] = enable ? 1 : 0;
1303 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1304 }
1305
hclgevf_reset_tqp(struct hnae3_handle * handle)1306 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1307 {
1308 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U
1309 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1310 struct hclge_vf_to_pf_msg send_msg;
1311 u8 return_status = 0;
1312 int ret;
1313 u16 i;
1314
1315 /* disable vf queue before send queue reset msg to PF */
1316 ret = hclgevf_tqp_enable(handle, false);
1317 if (ret) {
1318 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1319 ret);
1320 return ret;
1321 }
1322
1323 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1324
1325 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1326 sizeof(return_status));
1327 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1328 return ret;
1329
1330 for (i = 1; i < handle->kinfo.num_tqps; i++) {
1331 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1332 *(__le16 *)send_msg.data = cpu_to_le16(i);
1333 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1334 if (ret)
1335 return ret;
1336 }
1337
1338 return 0;
1339 }
1340
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1341 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1342 {
1343 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1344 struct hclge_mbx_mtu_info *mtu_info;
1345 struct hclge_vf_to_pf_msg send_msg;
1346
1347 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1348 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1349 mtu_info->mtu = cpu_to_le32(new_mtu);
1350
1351 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1352 }
1353
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1354 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1355 enum hnae3_reset_notify_type type)
1356 {
1357 struct hnae3_client *client = hdev->nic_client;
1358 struct hnae3_handle *handle = &hdev->nic;
1359 int ret;
1360
1361 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1362 !client)
1363 return 0;
1364
1365 if (!client->ops->reset_notify)
1366 return -EOPNOTSUPP;
1367
1368 ret = client->ops->reset_notify(handle, type);
1369 if (ret)
1370 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1371 type, ret);
1372
1373 return ret;
1374 }
1375
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1376 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1377 enum hnae3_reset_notify_type type)
1378 {
1379 struct hnae3_client *client = hdev->roce_client;
1380 struct hnae3_handle *handle = &hdev->roce;
1381 int ret;
1382
1383 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1384 return 0;
1385
1386 if (!client->ops->reset_notify)
1387 return -EOPNOTSUPP;
1388
1389 ret = client->ops->reset_notify(handle, type);
1390 if (ret)
1391 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1392 type, ret);
1393 return ret;
1394 }
1395
hclgevf_set_reset_pending(struct hclgevf_dev * hdev,enum hnae3_reset_type reset_type)1396 static void hclgevf_set_reset_pending(struct hclgevf_dev *hdev,
1397 enum hnae3_reset_type reset_type)
1398 {
1399 /* When an incorrect reset type is executed, the get_reset_level
1400 * function generates the HNAE3_NONE_RESET flag. As a result, this
1401 * type do not need to pending.
1402 */
1403 if (reset_type != HNAE3_NONE_RESET)
1404 set_bit(reset_type, &hdev->reset_pending);
1405 }
1406
hclgevf_reset_wait(struct hclgevf_dev * hdev)1407 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1408 {
1409 #define HCLGEVF_RESET_WAIT_US 20000
1410 #define HCLGEVF_RESET_WAIT_CNT 2000
1411 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1412 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1413
1414 u32 val;
1415 int ret;
1416
1417 if (hdev->reset_type == HNAE3_VF_RESET)
1418 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1419 HCLGEVF_VF_RST_ING, val,
1420 !(val & HCLGEVF_VF_RST_ING_BIT),
1421 HCLGEVF_RESET_WAIT_US,
1422 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1423 else
1424 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1425 HCLGEVF_RST_ING, val,
1426 !(val & HCLGEVF_RST_ING_BITS),
1427 HCLGEVF_RESET_WAIT_US,
1428 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1429
1430 /* hardware completion status should be available by this time */
1431 if (ret) {
1432 dev_err(&hdev->pdev->dev,
1433 "couldn't get reset done status from h/w, timeout!\n");
1434 return ret;
1435 }
1436
1437 /* we will wait a bit more to let reset of the stack to complete. This
1438 * might happen in case reset assertion was made by PF. Yes, this also
1439 * means we might end up waiting bit more even for VF reset.
1440 */
1441 if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1442 msleep(5000);
1443 else
1444 msleep(500);
1445
1446 return 0;
1447 }
1448
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1449 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1450 {
1451 u32 reg_val;
1452
1453 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1454 if (enable)
1455 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1456 else
1457 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1458
1459 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1460 reg_val);
1461 }
1462
hclgevf_reset_stack(struct hclgevf_dev * hdev)1463 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1464 {
1465 int ret;
1466
1467 /* uninitialize the nic client */
1468 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1469 if (ret)
1470 return ret;
1471
1472 /* re-initialize the hclge device */
1473 ret = hclgevf_reset_hdev(hdev);
1474 if (ret) {
1475 dev_err(&hdev->pdev->dev,
1476 "hclge device re-init failed, VF is disabled!\n");
1477 return ret;
1478 }
1479
1480 /* bring up the nic client again */
1481 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1482 if (ret)
1483 return ret;
1484
1485 /* clear handshake status with IMP */
1486 hclgevf_reset_handshake(hdev, false);
1487
1488 /* bring up the nic to enable TX/RX again */
1489 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1490 }
1491
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1492 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1493 {
1494 #define HCLGEVF_RESET_SYNC_TIME 100
1495
1496 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1497 struct hclge_vf_to_pf_msg send_msg;
1498 int ret;
1499
1500 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1501 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1502 if (ret) {
1503 dev_err(&hdev->pdev->dev,
1504 "failed to assert VF reset, ret = %d\n", ret);
1505 return ret;
1506 }
1507 hdev->rst_stats.vf_func_rst_cnt++;
1508 }
1509
1510 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1511 /* inform hardware that preparatory work is done */
1512 msleep(HCLGEVF_RESET_SYNC_TIME);
1513 hclgevf_reset_handshake(hdev, true);
1514 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1515 hdev->reset_type);
1516
1517 return 0;
1518 }
1519
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1520 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1521 {
1522 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1523 hdev->rst_stats.vf_func_rst_cnt);
1524 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1525 hdev->rst_stats.flr_rst_cnt);
1526 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1527 hdev->rst_stats.vf_rst_cnt);
1528 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1529 hdev->rst_stats.rst_done_cnt);
1530 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1531 hdev->rst_stats.hw_rst_done_cnt);
1532 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1533 hdev->rst_stats.rst_cnt);
1534 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1535 hdev->rst_stats.rst_fail_cnt);
1536 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1537 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1538 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1539 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1540 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1541 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1542 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1543 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1544 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1545 }
1546
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1547 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1548 {
1549 /* recover handshake status with IMP when reset fail */
1550 hclgevf_reset_handshake(hdev, true);
1551 hdev->rst_stats.rst_fail_cnt++;
1552 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1553 hdev->rst_stats.rst_fail_cnt);
1554
1555 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1556 hclgevf_set_reset_pending(hdev, hdev->reset_type);
1557
1558 if (hclgevf_is_reset_pending(hdev)) {
1559 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1560 hclgevf_reset_task_schedule(hdev);
1561 } else {
1562 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1563 hclgevf_dump_rst_info(hdev);
1564 }
1565 }
1566
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1567 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1568 {
1569 int ret;
1570
1571 hdev->rst_stats.rst_cnt++;
1572
1573 /* perform reset of the stack & ae device for a client */
1574 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1575 if (ret)
1576 return ret;
1577
1578 rtnl_lock();
1579 /* bring down the nic to stop any ongoing TX/RX */
1580 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1581 rtnl_unlock();
1582 if (ret)
1583 return ret;
1584
1585 return hclgevf_reset_prepare_wait(hdev);
1586 }
1587
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1588 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1589 {
1590 int ret;
1591
1592 hdev->rst_stats.hw_rst_done_cnt++;
1593 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1594 if (ret)
1595 return ret;
1596
1597 rtnl_lock();
1598 /* now, re-initialize the nic client and ae device */
1599 ret = hclgevf_reset_stack(hdev);
1600 rtnl_unlock();
1601 if (ret) {
1602 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1603 return ret;
1604 }
1605
1606 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1607 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1608 * times
1609 */
1610 if (ret &&
1611 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1612 return ret;
1613
1614 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1615 if (ret)
1616 return ret;
1617
1618 hdev->last_reset_time = jiffies;
1619 hdev->rst_stats.rst_done_cnt++;
1620 hdev->rst_stats.rst_fail_cnt = 0;
1621 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1622
1623 return 0;
1624 }
1625
hclgevf_reset(struct hclgevf_dev * hdev)1626 static void hclgevf_reset(struct hclgevf_dev *hdev)
1627 {
1628 if (hclgevf_reset_prepare(hdev))
1629 goto err_reset;
1630
1631 /* check if VF could successfully fetch the hardware reset completion
1632 * status from the hardware
1633 */
1634 if (hclgevf_reset_wait(hdev)) {
1635 /* can't do much in this situation, will disable VF */
1636 dev_err(&hdev->pdev->dev,
1637 "failed to fetch H/W reset completion status\n");
1638 goto err_reset;
1639 }
1640
1641 if (hclgevf_reset_rebuild(hdev))
1642 goto err_reset;
1643
1644 return;
1645
1646 err_reset:
1647 hclgevf_reset_err_handle(hdev);
1648 }
1649
hclgevf_get_reset_level(unsigned long * addr)1650 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
1651 {
1652 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1653
1654 /* return the highest priority reset level amongst all */
1655 if (test_bit(HNAE3_VF_RESET, addr)) {
1656 rst_level = HNAE3_VF_RESET;
1657 clear_bit(HNAE3_VF_RESET, addr);
1658 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1659 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1660 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1661 rst_level = HNAE3_VF_FULL_RESET;
1662 clear_bit(HNAE3_VF_FULL_RESET, addr);
1663 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1664 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1665 rst_level = HNAE3_VF_PF_FUNC_RESET;
1666 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1667 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1668 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1669 rst_level = HNAE3_VF_FUNC_RESET;
1670 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1671 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1672 rst_level = HNAE3_FLR_RESET;
1673 clear_bit(HNAE3_FLR_RESET, addr);
1674 }
1675
1676 clear_bit(HNAE3_NONE_RESET, addr);
1677
1678 return rst_level;
1679 }
1680
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)1681 static void hclgevf_reset_event(struct pci_dev *pdev,
1682 struct hnae3_handle *handle)
1683 {
1684 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1685 struct hclgevf_dev *hdev = ae_dev->priv;
1686
1687 if (hdev->default_reset_request)
1688 hdev->reset_level =
1689 hclgevf_get_reset_level(&hdev->default_reset_request);
1690 else
1691 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1692
1693 dev_info(&hdev->pdev->dev, "received reset request from VF enet, reset level is %d\n",
1694 hdev->reset_level);
1695
1696 /* reset of this VF requested */
1697 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1698 hclgevf_reset_task_schedule(hdev);
1699
1700 hdev->last_reset_time = jiffies;
1701 }
1702
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1703 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1704 enum hnae3_reset_type rst_type)
1705 {
1706 #define HCLGEVF_SUPPORT_RESET_TYPE \
1707 (BIT(HNAE3_VF_RESET) | BIT(HNAE3_VF_FUNC_RESET) | \
1708 BIT(HNAE3_VF_PF_FUNC_RESET) | BIT(HNAE3_VF_FULL_RESET) | \
1709 BIT(HNAE3_FLR_RESET) | BIT(HNAE3_VF_EXP_RESET))
1710
1711 struct hclgevf_dev *hdev = ae_dev->priv;
1712
1713 if (!(BIT(rst_type) & HCLGEVF_SUPPORT_RESET_TYPE)) {
1714 /* To prevent reset triggered by hclge_reset_event */
1715 set_bit(HNAE3_NONE_RESET, &hdev->default_reset_request);
1716 dev_info(&hdev->pdev->dev, "unsupported reset type %d\n",
1717 rst_type);
1718 return;
1719 }
1720 set_bit(rst_type, &hdev->default_reset_request);
1721 }
1722
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)1723 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1724 {
1725 writel(en ? 1 : 0, vector->addr);
1726 }
1727
hclgevf_reset_prepare_general(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1728 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1729 enum hnae3_reset_type rst_type)
1730 {
1731 #define HCLGEVF_RESET_RETRY_WAIT_MS 500
1732 #define HCLGEVF_RESET_RETRY_CNT 5
1733
1734 struct hclgevf_dev *hdev = ae_dev->priv;
1735 int retry_cnt = 0;
1736 int ret;
1737
1738 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1739 down(&hdev->reset_sem);
1740 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1741 hdev->reset_type = rst_type;
1742 ret = hclgevf_reset_prepare(hdev);
1743 if (!ret && !hdev->reset_pending)
1744 break;
1745
1746 dev_err(&hdev->pdev->dev,
1747 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1748 ret, hdev->reset_pending, retry_cnt);
1749 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1750 up(&hdev->reset_sem);
1751 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1752 }
1753
1754 /* disable misc vector before reset done */
1755 hclgevf_enable_vector(&hdev->misc_vector, false);
1756
1757 if (hdev->reset_type == HNAE3_FLR_RESET)
1758 hdev->rst_stats.flr_rst_cnt++;
1759 }
1760
hclgevf_reset_done(struct hnae3_ae_dev * ae_dev)1761 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1762 {
1763 struct hclgevf_dev *hdev = ae_dev->priv;
1764 int ret;
1765
1766 hclgevf_enable_vector(&hdev->misc_vector, true);
1767
1768 ret = hclgevf_reset_rebuild(hdev);
1769 if (ret)
1770 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1771 ret);
1772
1773 hdev->reset_type = HNAE3_NONE_RESET;
1774 if (test_and_clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1775 up(&hdev->reset_sem);
1776 }
1777
hclgevf_get_fw_version(struct hnae3_handle * handle)1778 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1779 {
1780 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1781
1782 return hdev->fw_version;
1783 }
1784
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)1785 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1786 {
1787 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1788
1789 vector->vector_irq = pci_irq_vector(hdev->pdev,
1790 HCLGEVF_MISC_VECTOR_NUM);
1791 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1792 /* vector status always valid for Vector 0 */
1793 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1794 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1795
1796 hdev->num_msi_left -= 1;
1797 hdev->num_msi_used += 1;
1798 }
1799
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)1800 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1801 {
1802 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1803 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1804 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1805 &hdev->state))
1806 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1807 }
1808
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)1809 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1810 {
1811 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1812 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1813 &hdev->state))
1814 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1815 }
1816
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)1817 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1818 unsigned long delay)
1819 {
1820 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1821 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1822 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1823 }
1824
hclgevf_reset_service_task(struct hclgevf_dev * hdev)1825 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1826 {
1827 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
1828
1829 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1830 return;
1831
1832 down(&hdev->reset_sem);
1833 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1834
1835 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1836 &hdev->reset_state)) {
1837 /* PF has intimated that it is about to reset the hardware.
1838 * We now have to poll & check if hardware has actually
1839 * completed the reset sequence. On hardware reset completion,
1840 * VF needs to reset the client and ae device.
1841 */
1842 hdev->reset_attempts = 0;
1843
1844 hdev->last_reset_time = jiffies;
1845 hdev->reset_type =
1846 hclgevf_get_reset_level(&hdev->reset_pending);
1847 if (hdev->reset_type != HNAE3_NONE_RESET)
1848 hclgevf_reset(hdev);
1849 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1850 &hdev->reset_state)) {
1851 /* we could be here when either of below happens:
1852 * 1. reset was initiated due to watchdog timeout caused by
1853 * a. IMP was earlier reset and our TX got choked down and
1854 * which resulted in watchdog reacting and inducing VF
1855 * reset. This also means our cmdq would be unreliable.
1856 * b. problem in TX due to other lower layer(example link
1857 * layer not functioning properly etc.)
1858 * 2. VF reset might have been initiated due to some config
1859 * change.
1860 *
1861 * NOTE: Theres no clear way to detect above cases than to react
1862 * to the response of PF for this reset request. PF will ack the
1863 * 1b and 2. cases but we will not get any intimation about 1a
1864 * from PF as cmdq would be in unreliable state i.e. mailbox
1865 * communication between PF and VF would be broken.
1866 *
1867 * if we are never geting into pending state it means either:
1868 * 1. PF is not receiving our request which could be due to IMP
1869 * reset
1870 * 2. PF is screwed
1871 * We cannot do much for 2. but to check first we can try reset
1872 * our PCIe + stack and see if it alleviates the problem.
1873 */
1874 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1875 /* prepare for full reset of stack + pcie interface */
1876 hclgevf_set_reset_pending(hdev, HNAE3_VF_FULL_RESET);
1877
1878 /* "defer" schedule the reset task again */
1879 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1880 } else {
1881 hdev->reset_attempts++;
1882
1883 hclgevf_set_reset_pending(hdev, hdev->reset_level);
1884 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1885 }
1886 hclgevf_reset_task_schedule(hdev);
1887 }
1888
1889 hdev->reset_type = HNAE3_NONE_RESET;
1890 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1891 up(&hdev->reset_sem);
1892 }
1893
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)1894 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1895 {
1896 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1897 return;
1898
1899 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1900 return;
1901
1902 hclgevf_mbx_async_handler(hdev);
1903
1904 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1905 }
1906
hclgevf_keep_alive(struct hclgevf_dev * hdev)1907 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1908 {
1909 struct hclge_vf_to_pf_msg send_msg;
1910 int ret;
1911
1912 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1913 return;
1914
1915 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1916 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1917 if (ret)
1918 dev_err(&hdev->pdev->dev,
1919 "VF sends keep alive cmd failed(=%d)\n", ret);
1920 }
1921
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)1922 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1923 {
1924 unsigned long delta = round_jiffies_relative(HZ);
1925 struct hnae3_handle *handle = &hdev->nic;
1926
1927 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1928 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1929 return;
1930
1931 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1932 delta = jiffies - hdev->last_serv_processed;
1933
1934 if (delta < round_jiffies_relative(HZ)) {
1935 delta = round_jiffies_relative(HZ) - delta;
1936 goto out;
1937 }
1938 }
1939
1940 hdev->serv_processed_cnt++;
1941 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1942 hclgevf_keep_alive(hdev);
1943
1944 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1945 hdev->last_serv_processed = jiffies;
1946 goto out;
1947 }
1948
1949 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1950 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1951
1952 /* VF does not need to request link status when this bit is set, because
1953 * PF will push its link status to VFs when link status changed.
1954 */
1955 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1956 hclgevf_request_link_info(hdev);
1957
1958 hclgevf_update_link_mode(hdev);
1959
1960 hclgevf_sync_vlan_filter(hdev);
1961
1962 hclgevf_sync_mac_table(hdev);
1963
1964 hclgevf_sync_promisc_mode(hdev);
1965
1966 hdev->last_serv_processed = jiffies;
1967
1968 out:
1969 hclgevf_task_schedule(hdev, delta);
1970 }
1971
hclgevf_service_task(struct work_struct * work)1972 static void hclgevf_service_task(struct work_struct *work)
1973 {
1974 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1975 service_task.work);
1976
1977 hclgevf_reset_service_task(hdev);
1978 hclgevf_mailbox_service_task(hdev);
1979 hclgevf_periodic_service_task(hdev);
1980
1981 /* Handle reset and mbx again in case periodical task delays the
1982 * handling by calling hclgevf_task_schedule() in
1983 * hclgevf_periodic_service_task()
1984 */
1985 hclgevf_reset_service_task(hdev);
1986 hclgevf_mailbox_service_task(hdev);
1987 }
1988
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)1989 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1990 {
1991 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1992 }
1993
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)1994 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1995 u32 *clearval)
1996 {
1997 u32 val, cmdq_stat_reg, rst_ing_reg;
1998
1999 /* fetch the events from their corresponding regs */
2000 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2001 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
2002 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2003 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2004 dev_info(&hdev->pdev->dev,
2005 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2006 hclgevf_set_reset_pending(hdev, HNAE3_VF_RESET);
2007 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2008 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
2009 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2010 hdev->rst_stats.vf_rst_cnt++;
2011 /* set up VF hardware reset status, its PF will clear
2012 * this status when PF has initialized done.
2013 */
2014 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2015 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2016 val | HCLGEVF_VF_RST_ING_BIT);
2017 return HCLGEVF_VECTOR0_EVENT_RST;
2018 }
2019
2020 /* check for vector0 mailbox(=CMDQ RX) event source */
2021 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2022 /* for revision 0x21, clearing interrupt is writing bit 0
2023 * to the clear register, writing bit 1 means to keep the
2024 * old value.
2025 * for revision 0x20, the clear register is a read & write
2026 * register, so we should just write 0 to the bit we are
2027 * handling, and keep other bits as cmdq_stat_reg.
2028 */
2029 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2030 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2031 else
2032 *clearval = cmdq_stat_reg &
2033 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2034
2035 return HCLGEVF_VECTOR0_EVENT_MBX;
2036 }
2037
2038 /* print other vector0 event source */
2039 dev_info(&hdev->pdev->dev,
2040 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2041 cmdq_stat_reg);
2042
2043 return HCLGEVF_VECTOR0_EVENT_OTHER;
2044 }
2045
hclgevf_reset_timer(struct timer_list * t)2046 static void hclgevf_reset_timer(struct timer_list *t)
2047 {
2048 struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer);
2049
2050 hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST);
2051 hclgevf_reset_task_schedule(hdev);
2052 }
2053
hclgevf_misc_irq_handle(int irq,void * data)2054 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2055 {
2056 #define HCLGEVF_RESET_DELAY 5
2057
2058 enum hclgevf_evt_cause event_cause;
2059 struct hclgevf_dev *hdev = data;
2060 u32 clearval;
2061
2062 hclgevf_enable_vector(&hdev->misc_vector, false);
2063 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2064 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2065 hclgevf_clear_event_cause(hdev, clearval);
2066
2067 switch (event_cause) {
2068 case HCLGEVF_VECTOR0_EVENT_RST:
2069 mod_timer(&hdev->reset_timer,
2070 jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY));
2071 break;
2072 case HCLGEVF_VECTOR0_EVENT_MBX:
2073 hclgevf_mbx_handler(hdev);
2074 break;
2075 default:
2076 break;
2077 }
2078
2079 hclgevf_enable_vector(&hdev->misc_vector, true);
2080
2081 return IRQ_HANDLED;
2082 }
2083
hclgevf_configure(struct hclgevf_dev * hdev)2084 static int hclgevf_configure(struct hclgevf_dev *hdev)
2085 {
2086 int ret;
2087
2088 hdev->gro_en = true;
2089
2090 ret = hclgevf_get_basic_info(hdev);
2091 if (ret)
2092 return ret;
2093
2094 /* get current port based vlan state from PF */
2095 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2096 if (ret)
2097 return ret;
2098
2099 /* get queue configuration from PF */
2100 ret = hclgevf_get_queue_info(hdev);
2101 if (ret)
2102 return ret;
2103
2104 /* get queue depth info from PF */
2105 ret = hclgevf_get_queue_depth(hdev);
2106 if (ret)
2107 return ret;
2108
2109 return hclgevf_get_pf_media_type(hdev);
2110 }
2111
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2112 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2113 {
2114 struct pci_dev *pdev = ae_dev->pdev;
2115 struct hclgevf_dev *hdev;
2116
2117 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2118 if (!hdev)
2119 return -ENOMEM;
2120
2121 hdev->pdev = pdev;
2122 hdev->ae_dev = ae_dev;
2123 ae_dev->priv = hdev;
2124
2125 return 0;
2126 }
2127
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2128 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2129 {
2130 struct hnae3_handle *roce = &hdev->roce;
2131 struct hnae3_handle *nic = &hdev->nic;
2132
2133 roce->rinfo.num_vectors = hdev->num_roce_msix;
2134
2135 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2136 hdev->num_msi_left == 0)
2137 return -EINVAL;
2138
2139 roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2140
2141 roce->rinfo.netdev = nic->kinfo.netdev;
2142 roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2143 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2144
2145 roce->pdev = nic->pdev;
2146 roce->ae_algo = nic->ae_algo;
2147 bitmap_copy(roce->numa_node_mask.bits, nic->numa_node_mask.bits,
2148 MAX_NUMNODES);
2149 return 0;
2150 }
2151
hclgevf_config_gro(struct hclgevf_dev * hdev)2152 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2153 {
2154 struct hclgevf_cfg_gro_status_cmd *req;
2155 struct hclge_desc desc;
2156 int ret;
2157
2158 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2159 return 0;
2160
2161 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2162 false);
2163 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2164
2165 req->gro_en = hdev->gro_en ? 1 : 0;
2166
2167 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2168 if (ret)
2169 dev_err(&hdev->pdev->dev,
2170 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2171
2172 return ret;
2173 }
2174
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2175 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2176 {
2177 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2178 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2179 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2180 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2181 int ret;
2182
2183 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2184 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2185 rss_cfg->rss_algo,
2186 rss_cfg->rss_hash_key);
2187 if (ret)
2188 return ret;
2189
2190 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg);
2191 if (ret)
2192 return ret;
2193 }
2194
2195 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2196 rss_cfg->rss_indirection_tbl);
2197 if (ret)
2198 return ret;
2199
2200 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2201 tc_offset, tc_valid, tc_size);
2202
2203 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2204 tc_valid, tc_size);
2205 }
2206
hclgevf_init_vlan_config(struct hclgevf_dev * hdev)2207 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2208 {
2209 struct hnae3_handle *nic = &hdev->nic;
2210 int ret;
2211
2212 ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2213 if (ret) {
2214 dev_err(&hdev->pdev->dev,
2215 "failed to enable rx vlan offload, ret = %d\n", ret);
2216 return ret;
2217 }
2218
2219 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2220 false);
2221 }
2222
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2223 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2224 {
2225 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2226
2227 unsigned long last = hdev->serv_processed_cnt;
2228 int i = 0;
2229
2230 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2231 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2232 last == hdev->serv_processed_cnt)
2233 usleep_range(1, 1);
2234 }
2235
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2236 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2237 {
2238 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2239
2240 if (enable) {
2241 hclgevf_task_schedule(hdev, 0);
2242 } else {
2243 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2244
2245 smp_mb__after_atomic(); /* flush memory to make sure DOWN is seen by service task */
2246 hclgevf_flush_link_update(hdev);
2247 }
2248 }
2249
hclgevf_ae_start(struct hnae3_handle * handle)2250 static int hclgevf_ae_start(struct hnae3_handle *handle)
2251 {
2252 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2253
2254 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2255 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2256
2257 hclge_comm_reset_tqp_stats(handle);
2258
2259 hclgevf_request_link_info(hdev);
2260
2261 hclgevf_update_link_mode(hdev);
2262
2263 return 0;
2264 }
2265
hclgevf_ae_stop(struct hnae3_handle * handle)2266 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2267 {
2268 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2269
2270 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2271
2272 if (hdev->reset_type != HNAE3_VF_RESET)
2273 hclgevf_reset_tqp(handle);
2274
2275 hclge_comm_reset_tqp_stats(handle);
2276 hclgevf_update_link_status(hdev, 0);
2277 }
2278
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2279 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2280 {
2281 #define HCLGEVF_STATE_ALIVE 1
2282 #define HCLGEVF_STATE_NOT_ALIVE 0
2283
2284 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2285 struct hclge_vf_to_pf_msg send_msg;
2286
2287 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2288 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2289 HCLGEVF_STATE_NOT_ALIVE;
2290 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2291 }
2292
hclgevf_client_start(struct hnae3_handle * handle)2293 static int hclgevf_client_start(struct hnae3_handle *handle)
2294 {
2295 return hclgevf_set_alive(handle, true);
2296 }
2297
hclgevf_client_stop(struct hnae3_handle * handle)2298 static void hclgevf_client_stop(struct hnae3_handle *handle)
2299 {
2300 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2301 int ret;
2302
2303 ret = hclgevf_set_alive(handle, false);
2304 if (ret)
2305 dev_warn(&hdev->pdev->dev,
2306 "%s failed %d\n", __func__, ret);
2307 }
2308
hclgevf_state_init(struct hclgevf_dev * hdev)2309 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2310 {
2311 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2312 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2313 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2314
2315 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2316 /* timer needs to be initialized before misc irq */
2317 timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
2318
2319 mutex_init(&hdev->mbx_resp.mbx_mutex);
2320 sema_init(&hdev->reset_sem, 1);
2321
2322 spin_lock_init(&hdev->mac_table.mac_list_lock);
2323 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2324 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2325
2326 /* bring the device down */
2327 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2328 }
2329
hclgevf_state_uninit(struct hclgevf_dev * hdev)2330 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2331 {
2332 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2333 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2334
2335 if (hdev->service_task.work.func)
2336 cancel_delayed_work_sync(&hdev->service_task);
2337
2338 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2339 }
2340
hclgevf_init_msi(struct hclgevf_dev * hdev)2341 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2342 {
2343 struct pci_dev *pdev = hdev->pdev;
2344 int vectors;
2345 int i;
2346
2347 if (hnae3_dev_roce_supported(hdev))
2348 vectors = pci_alloc_irq_vectors(pdev,
2349 hdev->roce_base_msix_offset + 1,
2350 hdev->num_msi,
2351 PCI_IRQ_MSIX);
2352 else
2353 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2354 hdev->num_msi,
2355 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2356
2357 if (vectors < 0) {
2358 dev_err(&pdev->dev,
2359 "failed(%d) to allocate MSI/MSI-X vectors\n",
2360 vectors);
2361 return vectors;
2362 }
2363 if (vectors < hdev->num_msi)
2364 dev_warn(&hdev->pdev->dev,
2365 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2366 hdev->num_msi, vectors);
2367
2368 hdev->num_msi = vectors;
2369 hdev->num_msi_left = vectors;
2370
2371 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2372 sizeof(u16), GFP_KERNEL);
2373 if (!hdev->vector_status) {
2374 pci_free_irq_vectors(pdev);
2375 return -ENOMEM;
2376 }
2377
2378 for (i = 0; i < hdev->num_msi; i++)
2379 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2380
2381 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2382 sizeof(int), GFP_KERNEL);
2383 if (!hdev->vector_irq) {
2384 devm_kfree(&pdev->dev, hdev->vector_status);
2385 pci_free_irq_vectors(pdev);
2386 return -ENOMEM;
2387 }
2388
2389 return 0;
2390 }
2391
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2392 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2393 {
2394 struct pci_dev *pdev = hdev->pdev;
2395
2396 devm_kfree(&pdev->dev, hdev->vector_status);
2397 devm_kfree(&pdev->dev, hdev->vector_irq);
2398 pci_free_irq_vectors(pdev);
2399 }
2400
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2401 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2402 {
2403 int ret;
2404
2405 hclgevf_get_misc_vector(hdev);
2406
2407 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2408 HCLGEVF_NAME, pci_name(hdev->pdev));
2409 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2410 0, hdev->misc_vector.name, hdev);
2411 if (ret) {
2412 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2413 hdev->misc_vector.vector_irq);
2414 return ret;
2415 }
2416
2417 hclgevf_clear_event_cause(hdev, 0);
2418
2419 /* enable misc. vector(vector 0) */
2420 hclgevf_enable_vector(&hdev->misc_vector, true);
2421
2422 return ret;
2423 }
2424
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2425 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2426 {
2427 /* disable misc vector(vector 0) */
2428 hclgevf_enable_vector(&hdev->misc_vector, false);
2429 synchronize_irq(hdev->misc_vector.vector_irq);
2430 free_irq(hdev->misc_vector.vector_irq, hdev);
2431 hclgevf_free_vector(hdev, 0);
2432 }
2433
hclgevf_info_show(struct hclgevf_dev * hdev)2434 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2435 {
2436 struct device *dev = &hdev->pdev->dev;
2437
2438 dev_info(dev, "VF info begin:\n");
2439
2440 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2441 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2442 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2443 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2444 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2445 dev_info(dev, "PF media type of this VF: %u\n",
2446 hdev->hw.mac.media_type);
2447
2448 dev_info(dev, "VF info end.\n");
2449 }
2450
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2451 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2452 struct hnae3_client *client)
2453 {
2454 struct hclgevf_dev *hdev = ae_dev->priv;
2455 int rst_cnt = hdev->rst_stats.rst_cnt;
2456 int ret;
2457
2458 ret = client->ops->init_instance(&hdev->nic);
2459 if (ret)
2460 return ret;
2461
2462 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2463 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2464 rst_cnt != hdev->rst_stats.rst_cnt) {
2465 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2466
2467 client->ops->uninit_instance(&hdev->nic, 0);
2468 return -EBUSY;
2469 }
2470
2471 hnae3_set_client_init_flag(client, ae_dev, 1);
2472
2473 if (netif_msg_drv(&hdev->nic))
2474 hclgevf_info_show(hdev);
2475
2476 return 0;
2477 }
2478
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2479 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2480 struct hnae3_client *client)
2481 {
2482 struct hclgevf_dev *hdev = ae_dev->priv;
2483 int ret;
2484
2485 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2486 !hdev->nic_client)
2487 return 0;
2488
2489 ret = hclgevf_init_roce_base_info(hdev);
2490 if (ret)
2491 return ret;
2492
2493 ret = client->ops->init_instance(&hdev->roce);
2494 if (ret)
2495 return ret;
2496
2497 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2498 hnae3_set_client_init_flag(client, ae_dev, 1);
2499
2500 return 0;
2501 }
2502
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2503 static int hclgevf_init_client_instance(struct hnae3_client *client,
2504 struct hnae3_ae_dev *ae_dev)
2505 {
2506 struct hclgevf_dev *hdev = ae_dev->priv;
2507 int ret;
2508
2509 switch (client->type) {
2510 case HNAE3_CLIENT_KNIC:
2511 hdev->nic_client = client;
2512 hdev->nic.client = client;
2513
2514 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2515 if (ret)
2516 goto clear_nic;
2517
2518 ret = hclgevf_init_roce_client_instance(ae_dev,
2519 hdev->roce_client);
2520 if (ret)
2521 goto clear_roce;
2522
2523 break;
2524 case HNAE3_CLIENT_ROCE:
2525 if (hnae3_dev_roce_supported(hdev)) {
2526 hdev->roce_client = client;
2527 hdev->roce.client = client;
2528 }
2529
2530 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2531 if (ret)
2532 goto clear_roce;
2533
2534 break;
2535 default:
2536 return -EINVAL;
2537 }
2538
2539 return 0;
2540
2541 clear_nic:
2542 hdev->nic_client = NULL;
2543 hdev->nic.client = NULL;
2544 return ret;
2545 clear_roce:
2546 hdev->roce_client = NULL;
2547 hdev->roce.client = NULL;
2548 return ret;
2549 }
2550
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2551 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2552 struct hnae3_ae_dev *ae_dev)
2553 {
2554 struct hclgevf_dev *hdev = ae_dev->priv;
2555
2556 /* un-init roce, if it exists */
2557 if (hdev->roce_client) {
2558 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2559 msleep(HCLGEVF_WAIT_RESET_DONE);
2560 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2561
2562 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2563 hdev->roce_client = NULL;
2564 hdev->roce.client = NULL;
2565 }
2566
2567 /* un-init nic/unic, if this was not called by roce client */
2568 if (client->ops->uninit_instance && hdev->nic_client &&
2569 client->type != HNAE3_CLIENT_ROCE) {
2570 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2571 msleep(HCLGEVF_WAIT_RESET_DONE);
2572 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2573
2574 client->ops->uninit_instance(&hdev->nic, 0);
2575 hdev->nic_client = NULL;
2576 hdev->nic.client = NULL;
2577 }
2578 }
2579
hclgevf_dev_mem_map(struct hclgevf_dev * hdev)2580 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2581 {
2582 struct pci_dev *pdev = hdev->pdev;
2583 struct hclgevf_hw *hw = &hdev->hw;
2584
2585 /* for device does not have device memory, return directly */
2586 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2587 return 0;
2588
2589 hw->hw.mem_base =
2590 devm_ioremap_wc(&pdev->dev,
2591 pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2592 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2593 if (!hw->hw.mem_base) {
2594 dev_err(&pdev->dev, "failed to map device memory\n");
2595 return -EFAULT;
2596 }
2597
2598 return 0;
2599 }
2600
hclgevf_pci_init(struct hclgevf_dev * hdev)2601 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2602 {
2603 struct pci_dev *pdev = hdev->pdev;
2604 struct hclgevf_hw *hw;
2605 int ret;
2606
2607 ret = pci_enable_device(pdev);
2608 if (ret) {
2609 dev_err(&pdev->dev, "failed to enable PCI device\n");
2610 return ret;
2611 }
2612
2613 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2614 if (ret) {
2615 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2616 goto err_disable_device;
2617 }
2618
2619 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2620 if (ret) {
2621 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2622 goto err_disable_device;
2623 }
2624
2625 pci_set_master(pdev);
2626 hw = &hdev->hw;
2627 hw->hw.io_base = pci_iomap(pdev, 2, 0);
2628 if (!hw->hw.io_base) {
2629 dev_err(&pdev->dev, "can't map configuration register space\n");
2630 ret = -ENOMEM;
2631 goto err_release_regions;
2632 }
2633
2634 ret = hclgevf_dev_mem_map(hdev);
2635 if (ret)
2636 goto err_unmap_io_base;
2637
2638 return 0;
2639
2640 err_unmap_io_base:
2641 pci_iounmap(pdev, hdev->hw.hw.io_base);
2642 err_release_regions:
2643 pci_release_regions(pdev);
2644 err_disable_device:
2645 pci_disable_device(pdev);
2646
2647 return ret;
2648 }
2649
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2650 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2651 {
2652 struct pci_dev *pdev = hdev->pdev;
2653
2654 if (hdev->hw.hw.mem_base)
2655 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2656
2657 pci_iounmap(pdev, hdev->hw.hw.io_base);
2658 pci_release_regions(pdev);
2659 pci_disable_device(pdev);
2660 }
2661
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2662 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2663 {
2664 struct hclgevf_query_res_cmd *req;
2665 struct hclge_desc desc;
2666 int ret;
2667
2668 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2669 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2670 if (ret) {
2671 dev_err(&hdev->pdev->dev,
2672 "query vf resource failed, ret = %d.\n", ret);
2673 return ret;
2674 }
2675
2676 req = (struct hclgevf_query_res_cmd *)desc.data;
2677
2678 if (hnae3_dev_roce_supported(hdev)) {
2679 hdev->roce_base_msix_offset =
2680 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2681 HCLGEVF_MSIX_OFT_ROCEE_M,
2682 HCLGEVF_MSIX_OFT_ROCEE_S);
2683 hdev->num_roce_msix =
2684 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2685 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2686
2687 /* nic's msix numbers is always equals to the roce's. */
2688 hdev->num_nic_msix = hdev->num_roce_msix;
2689
2690 /* VF should have NIC vectors and Roce vectors, NIC vectors
2691 * are queued before Roce vectors. The offset is fixed to 64.
2692 */
2693 hdev->num_msi = hdev->num_roce_msix +
2694 hdev->roce_base_msix_offset;
2695 } else {
2696 hdev->num_msi =
2697 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2698 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2699
2700 hdev->num_nic_msix = hdev->num_msi;
2701 }
2702
2703 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2704 dev_err(&hdev->pdev->dev,
2705 "Just %u msi resources, not enough for vf(min:2).\n",
2706 hdev->num_nic_msix);
2707 return -EINVAL;
2708 }
2709
2710 return 0;
2711 }
2712
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)2713 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2714 {
2715 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
2716
2717 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2718
2719 ae_dev->dev_specs.max_non_tso_bd_num =
2720 HCLGEVF_MAX_NON_TSO_BD_NUM;
2721 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2722 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2723 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2724 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2725 }
2726
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclge_desc * desc)2727 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2728 struct hclge_desc *desc)
2729 {
2730 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2731 struct hclgevf_dev_specs_0_cmd *req0;
2732 struct hclgevf_dev_specs_1_cmd *req1;
2733
2734 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2735 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2736
2737 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2738 ae_dev->dev_specs.rss_ind_tbl_size =
2739 le16_to_cpu(req0->rss_ind_tbl_size);
2740 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2741 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2742 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2743 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2744 }
2745
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)2746 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2747 {
2748 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2749
2750 if (!dev_specs->max_non_tso_bd_num)
2751 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2752 if (!dev_specs->rss_ind_tbl_size)
2753 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2754 if (!dev_specs->rss_key_size)
2755 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2756 if (!dev_specs->max_int_gl)
2757 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2758 if (!dev_specs->max_frm_size)
2759 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2760 }
2761
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)2762 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2763 {
2764 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2765 int ret;
2766 int i;
2767
2768 /* set default specifications as devices lower than version V3 do not
2769 * support querying specifications from firmware.
2770 */
2771 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2772 hclgevf_set_default_dev_specs(hdev);
2773 return 0;
2774 }
2775
2776 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2777 hclgevf_cmd_setup_basic_desc(&desc[i],
2778 HCLGE_OPC_QUERY_DEV_SPECS, true);
2779 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2780 }
2781 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2782
2783 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2784 if (ret)
2785 return ret;
2786
2787 hclgevf_parse_dev_specs(hdev, desc);
2788 hclgevf_check_dev_specs(hdev);
2789
2790 return 0;
2791 }
2792
hclgevf_pci_reset(struct hclgevf_dev * hdev)2793 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2794 {
2795 struct pci_dev *pdev = hdev->pdev;
2796 int ret = 0;
2797
2798 if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2799 hdev->reset_type == HNAE3_FLR_RESET) &&
2800 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2801 hclgevf_misc_irq_uninit(hdev);
2802 hclgevf_uninit_msi(hdev);
2803 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2804 }
2805
2806 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2807 pci_set_master(pdev);
2808 ret = hclgevf_init_msi(hdev);
2809 if (ret) {
2810 dev_err(&pdev->dev,
2811 "failed(%d) to init MSI/MSI-X\n", ret);
2812 return ret;
2813 }
2814
2815 ret = hclgevf_misc_irq_init(hdev);
2816 if (ret) {
2817 hclgevf_uninit_msi(hdev);
2818 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2819 ret);
2820 return ret;
2821 }
2822
2823 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2824 }
2825
2826 return ret;
2827 }
2828
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)2829 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2830 {
2831 struct hclge_vf_to_pf_msg send_msg;
2832
2833 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2834 HCLGE_MBX_VPORT_LIST_CLEAR);
2835 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2836 }
2837
hclgevf_init_rxd_adv_layout(struct hclgevf_dev * hdev)2838 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2839 {
2840 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2841 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2842 }
2843
hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev * hdev)2844 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2845 {
2846 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2847 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2848 }
2849
hclgevf_reset_hdev(struct hclgevf_dev * hdev)2850 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2851 {
2852 struct pci_dev *pdev = hdev->pdev;
2853 int ret;
2854
2855 ret = hclgevf_pci_reset(hdev);
2856 if (ret) {
2857 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2858 return ret;
2859 }
2860
2861 hclgevf_arq_init(hdev);
2862
2863 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2864 &hdev->fw_version, false,
2865 hdev->reset_pending);
2866 if (ret) {
2867 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2868 return ret;
2869 }
2870
2871 ret = hclgevf_rss_init_hw(hdev);
2872 if (ret) {
2873 dev_err(&hdev->pdev->dev,
2874 "failed(%d) to initialize RSS\n", ret);
2875 return ret;
2876 }
2877
2878 ret = hclgevf_config_gro(hdev);
2879 if (ret)
2880 return ret;
2881
2882 ret = hclgevf_init_vlan_config(hdev);
2883 if (ret) {
2884 dev_err(&hdev->pdev->dev,
2885 "failed(%d) to initialize VLAN config\n", ret);
2886 return ret;
2887 }
2888
2889 /* get current port based vlan state from PF */
2890 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2891 if (ret)
2892 return ret;
2893
2894 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2895
2896 hclgevf_init_rxd_adv_layout(hdev);
2897
2898 dev_info(&hdev->pdev->dev, "Reset done\n");
2899
2900 return 0;
2901 }
2902
hclgevf_init_hdev(struct hclgevf_dev * hdev)2903 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2904 {
2905 struct pci_dev *pdev = hdev->pdev;
2906 int ret;
2907
2908 ret = hclgevf_pci_init(hdev);
2909 if (ret)
2910 return ret;
2911
2912 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2913 if (ret)
2914 goto err_cmd_queue_init;
2915
2916 hclgevf_arq_init(hdev);
2917
2918 hclge_comm_cmd_init_ops(&hdev->hw.hw, &hclgevf_cmq_ops);
2919 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2920 &hdev->fw_version, false,
2921 hdev->reset_pending);
2922 if (ret)
2923 goto err_cmd_init;
2924
2925 /* Get vf resource */
2926 ret = hclgevf_query_vf_resource(hdev);
2927 if (ret)
2928 goto err_cmd_init;
2929
2930 ret = hclgevf_query_dev_specs(hdev);
2931 if (ret) {
2932 dev_err(&pdev->dev,
2933 "failed to query dev specifications, ret = %d\n", ret);
2934 goto err_cmd_init;
2935 }
2936
2937 ret = hclgevf_init_msi(hdev);
2938 if (ret) {
2939 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2940 goto err_cmd_init;
2941 }
2942
2943 hclgevf_state_init(hdev);
2944 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2945 hdev->reset_type = HNAE3_NONE_RESET;
2946
2947 ret = hclgevf_misc_irq_init(hdev);
2948 if (ret)
2949 goto err_misc_irq_init;
2950
2951 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2952
2953 ret = hclgevf_configure(hdev);
2954 if (ret) {
2955 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2956 goto err_config;
2957 }
2958
2959 ret = hclgevf_alloc_tqps(hdev);
2960 if (ret) {
2961 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2962 goto err_config;
2963 }
2964
2965 ret = hclgevf_set_handle_info(hdev);
2966 if (ret)
2967 goto err_config;
2968
2969 ret = hclgevf_config_gro(hdev);
2970 if (ret)
2971 goto err_config;
2972
2973 /* Initialize RSS for this VF */
2974 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2975 &hdev->rss_cfg);
2976 if (ret) {
2977 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2978 goto err_config;
2979 }
2980
2981 ret = hclgevf_rss_init_hw(hdev);
2982 if (ret) {
2983 dev_err(&hdev->pdev->dev,
2984 "failed(%d) to initialize RSS\n", ret);
2985 goto err_config;
2986 }
2987
2988 /* ensure vf tbl list as empty before init */
2989 ret = hclgevf_clear_vport_list(hdev);
2990 if (ret) {
2991 dev_err(&pdev->dev,
2992 "failed to clear tbl list configuration, ret = %d.\n",
2993 ret);
2994 goto err_config;
2995 }
2996
2997 ret = hclgevf_init_vlan_config(hdev);
2998 if (ret) {
2999 dev_err(&hdev->pdev->dev,
3000 "failed(%d) to initialize VLAN config\n", ret);
3001 goto err_config;
3002 }
3003
3004 hclgevf_init_rxd_adv_layout(hdev);
3005
3006 ret = hclgevf_devlink_init(hdev);
3007 if (ret)
3008 goto err_config;
3009
3010 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
3011
3012 hdev->last_reset_time = jiffies;
3013 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3014 HCLGEVF_DRIVER_NAME);
3015
3016 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3017
3018 return 0;
3019
3020 err_config:
3021 hclgevf_misc_irq_uninit(hdev);
3022 err_misc_irq_init:
3023 hclgevf_state_uninit(hdev);
3024 hclgevf_uninit_msi(hdev);
3025 err_cmd_init:
3026 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3027 err_cmd_queue_init:
3028 hclgevf_pci_uninit(hdev);
3029 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3030 return ret;
3031 }
3032
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3033 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3034 {
3035 struct hclge_vf_to_pf_msg send_msg;
3036
3037 hclgevf_state_uninit(hdev);
3038 hclgevf_uninit_rxd_adv_layout(hdev);
3039
3040 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3041 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3042
3043 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3044 hclgevf_misc_irq_uninit(hdev);
3045 hclgevf_uninit_msi(hdev);
3046 }
3047
3048 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3049 hclgevf_devlink_uninit(hdev);
3050 hclgevf_pci_uninit(hdev);
3051 hclgevf_uninit_mac_list(hdev);
3052 }
3053
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3054 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3055 {
3056 struct pci_dev *pdev = ae_dev->pdev;
3057 int ret;
3058
3059 ret = hclgevf_alloc_hdev(ae_dev);
3060 if (ret) {
3061 dev_err(&pdev->dev, "hclge device allocation failed\n");
3062 return ret;
3063 }
3064
3065 ret = hclgevf_init_hdev(ae_dev->priv);
3066 if (ret) {
3067 dev_err(&pdev->dev, "hclge device initialization failed\n");
3068 return ret;
3069 }
3070
3071 return 0;
3072 }
3073
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3074 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3075 {
3076 struct hclgevf_dev *hdev = ae_dev->priv;
3077
3078 hclgevf_uninit_hdev(hdev);
3079 ae_dev->priv = NULL;
3080 }
3081
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3082 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3083 {
3084 struct hnae3_handle *nic = &hdev->nic;
3085 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3086
3087 return min_t(u32, hdev->rss_size_max,
3088 hdev->num_tqps / kinfo->tc_info.num_tc);
3089 }
3090
3091 /**
3092 * hclgevf_get_channels - Get the current channels enabled and max supported.
3093 * @handle: hardware information for network interface
3094 * @ch: ethtool channels structure
3095 *
3096 * We don't support separate tx and rx queues as channels. The other count
3097 * represents how many queues are being used for control. max_combined counts
3098 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3099 * q_vectors since we support a lot more queue pairs than q_vectors.
3100 **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3101 static void hclgevf_get_channels(struct hnae3_handle *handle,
3102 struct ethtool_channels *ch)
3103 {
3104 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3105
3106 ch->max_combined = hclgevf_get_max_channels(hdev);
3107 ch->other_count = 0;
3108 ch->max_other = 0;
3109 ch->combined_count = handle->kinfo.rss_size;
3110 }
3111
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3112 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3113 u16 *alloc_tqps, u16 *max_rss_size)
3114 {
3115 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3116
3117 *alloc_tqps = hdev->num_tqps;
3118 *max_rss_size = hdev->rss_size_max;
3119 }
3120
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3121 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3122 u32 new_tqps_num)
3123 {
3124 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3125 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3126 u16 max_rss_size;
3127
3128 kinfo->req_rss_size = new_tqps_num;
3129
3130 max_rss_size = min_t(u16, hdev->rss_size_max,
3131 hdev->num_tqps / kinfo->tc_info.num_tc);
3132
3133 /* Use the user's configuration when it is not larger than
3134 * max_rss_size, otherwise, use the maximum specification value.
3135 */
3136 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3137 kinfo->req_rss_size <= max_rss_size)
3138 kinfo->rss_size = kinfo->req_rss_size;
3139 else if (kinfo->rss_size > max_rss_size ||
3140 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3141 kinfo->rss_size = max_rss_size;
3142
3143 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3144 }
3145
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3146 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3147 bool rxfh_configured)
3148 {
3149 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3150 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3151 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3152 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3153 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3154 u16 cur_rss_size = kinfo->rss_size;
3155 u16 cur_tqps = kinfo->num_tqps;
3156 u32 *rss_indir;
3157 unsigned int i;
3158 int ret;
3159
3160 hclgevf_update_rss_size(handle, new_tqps_num);
3161
3162 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3163 tc_offset, tc_valid, tc_size);
3164 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3165 tc_valid, tc_size);
3166 if (ret)
3167 return ret;
3168
3169 /* RSS indirection table has been configured by user */
3170 if (rxfh_configured)
3171 goto out;
3172
3173 /* Reinitializes the rss indirect table according to the new RSS size */
3174 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3175 sizeof(u32), GFP_KERNEL);
3176 if (!rss_indir)
3177 return -ENOMEM;
3178
3179 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3180 rss_indir[i] = i % kinfo->rss_size;
3181
3182 hdev->rss_cfg.rss_size = kinfo->rss_size;
3183
3184 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3185 if (ret)
3186 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3187 ret);
3188
3189 kfree(rss_indir);
3190
3191 out:
3192 if (!ret)
3193 dev_info(&hdev->pdev->dev,
3194 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3195 cur_rss_size, kinfo->rss_size,
3196 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3197
3198 return ret;
3199 }
3200
hclgevf_get_status(struct hnae3_handle * handle)3201 static int hclgevf_get_status(struct hnae3_handle *handle)
3202 {
3203 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3204
3205 return hdev->hw.mac.link;
3206 }
3207
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex,u32 * lane_num)3208 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3209 u8 *auto_neg, u32 *speed,
3210 u8 *duplex, u32 *lane_num)
3211 {
3212 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3213
3214 if (speed)
3215 *speed = hdev->hw.mac.speed;
3216 if (duplex)
3217 *duplex = hdev->hw.mac.duplex;
3218 if (auto_neg)
3219 *auto_neg = AUTONEG_DISABLE;
3220 }
3221
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3222 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3223 u8 duplex)
3224 {
3225 hdev->hw.mac.speed = speed;
3226 hdev->hw.mac.duplex = duplex;
3227 }
3228
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3229 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3230 {
3231 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3232 bool gro_en_old = hdev->gro_en;
3233 int ret;
3234
3235 hdev->gro_en = enable;
3236 ret = hclgevf_config_gro(hdev);
3237 if (ret)
3238 hdev->gro_en = gro_en_old;
3239
3240 return ret;
3241 }
3242
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3243 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3244 u8 *module_type)
3245 {
3246 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3247
3248 if (media_type)
3249 *media_type = hdev->hw.mac.media_type;
3250
3251 if (module_type)
3252 *module_type = hdev->hw.mac.module_type;
3253 }
3254
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3255 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3256 {
3257 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3258
3259 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3260 }
3261
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3262 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3263 {
3264 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3265
3266 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3267 }
3268
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3269 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3270 {
3271 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3272
3273 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3274 }
3275
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3276 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3277 {
3278 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3279
3280 return hdev->rst_stats.hw_rst_done_cnt;
3281 }
3282
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3283 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3284 unsigned long *supported,
3285 unsigned long *advertising)
3286 {
3287 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3288
3289 *supported = hdev->hw.mac.supported;
3290 *advertising = hdev->hw.mac.advertising;
3291 }
3292
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,struct hclge_mbx_port_base_vlan * port_base_vlan)3293 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3294 struct hclge_mbx_port_base_vlan *port_base_vlan)
3295 {
3296 struct hnae3_handle *nic = &hdev->nic;
3297 struct hclge_vf_to_pf_msg send_msg;
3298 int ret;
3299
3300 rtnl_lock();
3301
3302 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3303 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3304 dev_warn(&hdev->pdev->dev,
3305 "is resetting when updating port based vlan info\n");
3306 rtnl_unlock();
3307 return;
3308 }
3309
3310 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3311 if (ret) {
3312 rtnl_unlock();
3313 return;
3314 }
3315
3316 /* send msg to PF and wait update port based vlan info */
3317 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3318 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3319 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3320 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3321 if (!ret) {
3322 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3323 nic->port_base_vlan_state = state;
3324 else
3325 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3326 }
3327
3328 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3329 rtnl_unlock();
3330 }
3331
3332 static const struct hnae3_ae_ops hclgevf_ops = {
3333 .init_ae_dev = hclgevf_init_ae_dev,
3334 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3335 .reset_prepare = hclgevf_reset_prepare_general,
3336 .reset_done = hclgevf_reset_done,
3337 .init_client_instance = hclgevf_init_client_instance,
3338 .uninit_client_instance = hclgevf_uninit_client_instance,
3339 .start = hclgevf_ae_start,
3340 .stop = hclgevf_ae_stop,
3341 .client_start = hclgevf_client_start,
3342 .client_stop = hclgevf_client_stop,
3343 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3344 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3345 .get_vector = hclgevf_get_vector,
3346 .put_vector = hclgevf_put_vector,
3347 .reset_queue = hclgevf_reset_tqp,
3348 .get_mac_addr = hclgevf_get_mac_addr,
3349 .set_mac_addr = hclgevf_set_mac_addr,
3350 .add_uc_addr = hclgevf_add_uc_addr,
3351 .rm_uc_addr = hclgevf_rm_uc_addr,
3352 .add_mc_addr = hclgevf_add_mc_addr,
3353 .rm_mc_addr = hclgevf_rm_mc_addr,
3354 .get_stats = hclgevf_get_stats,
3355 .update_stats = hclgevf_update_stats,
3356 .get_strings = hclgevf_get_strings,
3357 .get_sset_count = hclgevf_get_sset_count,
3358 .get_rss_key_size = hclge_comm_get_rss_key_size,
3359 .get_rss = hclgevf_get_rss,
3360 .set_rss = hclgevf_set_rss,
3361 .get_rss_tuple = hclgevf_get_rss_tuple,
3362 .set_rss_tuple = hclgevf_set_rss_tuple,
3363 .get_tc_size = hclgevf_get_tc_size,
3364 .get_fw_version = hclgevf_get_fw_version,
3365 .set_vlan_filter = hclgevf_set_vlan_filter,
3366 .enable_vlan_filter = hclgevf_enable_vlan_filter,
3367 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3368 .reset_event = hclgevf_reset_event,
3369 .set_default_reset_request = hclgevf_set_def_reset_request,
3370 .set_channels = hclgevf_set_channels,
3371 .get_channels = hclgevf_get_channels,
3372 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3373 .get_regs_len = hclgevf_get_regs_len,
3374 .get_regs = hclgevf_get_regs,
3375 .get_status = hclgevf_get_status,
3376 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3377 .get_media_type = hclgevf_get_media_type,
3378 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3379 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3380 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3381 .set_gro_en = hclgevf_gro_en,
3382 .set_mtu = hclgevf_set_mtu,
3383 .get_global_queue_id = hclgevf_get_qid_global,
3384 .set_timer_task = hclgevf_set_timer_task,
3385 .get_link_mode = hclgevf_get_link_mode,
3386 .set_promisc_mode = hclgevf_set_promisc_mode,
3387 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3388 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3389 };
3390
3391 static struct hnae3_ae_algo ae_algovf = {
3392 .ops = &hclgevf_ops,
3393 .pdev_id_table = ae_algovf_pci_tbl,
3394 };
3395
hclgevf_init(void)3396 static int __init hclgevf_init(void)
3397 {
3398 pr_info("%s is initializing\n", HCLGEVF_NAME);
3399
3400 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3401 if (!hclgevf_wq) {
3402 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3403 return -ENOMEM;
3404 }
3405
3406 hnae3_register_ae_algo(&ae_algovf);
3407
3408 return 0;
3409 }
3410
hclgevf_exit(void)3411 static void __exit hclgevf_exit(void)
3412 {
3413 hnae3_unregister_ae_algo(&ae_algovf);
3414 destroy_workqueue(hclgevf_wq);
3415 }
3416 module_init(hclgevf_init);
3417 module_exit(hclgevf_exit);
3418
3419 MODULE_LICENSE("GPL");
3420 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3421 MODULE_DESCRIPTION("HCLGEVF Driver");
3422 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3423