1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclgevf_regs.h"
10 #include "hclge_mbx.h"
11 #include "hnae3.h"
12 #include "hclgevf_devlink.h"
13 #include "hclge_comm_rss.h"
14 #include "hclgevf_trace.h"
15
16 #define HCLGEVF_NAME "hclgevf"
17
18 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
19
20 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
21 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
22 unsigned long delay);
23
24 static struct hnae3_ae_algo ae_algovf;
25
26 static struct workqueue_struct *hclgevf_wq;
27
28 static const struct pci_device_id ae_algovf_pci_tbl[] = {
29 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
30 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
31 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
32 /* required last entry */
33 {0, }
34 };
35
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37
38 /* hclgevf_cmd_send - send command to command queue
39 * @hw: pointer to the hw struct
40 * @desc: prefilled descriptor for describing the command
41 * @num : the number of descriptors to be sent
42 *
43 * This is the main send command for command queue, it
44 * sends the queue, cleans the queue, etc
45 */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclge_desc * desc,int num)46 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
47 {
48 return hclge_comm_cmd_send(&hw->hw, desc, num);
49 }
50
hclgevf_trace_cmd_send(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)51 static void hclgevf_trace_cmd_send(struct hclge_comm_hw *hw, struct hclge_desc *desc,
52 int num, bool is_special)
53 {
54 int i;
55
56 trace_hclge_vf_cmd_send(hw, desc, 0, num);
57
58 if (is_special)
59 return;
60
61 for (i = 1; i < num; i++)
62 trace_hclge_vf_cmd_send(hw, &desc[i], i, num);
63 }
64
hclgevf_trace_cmd_get(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)65 static void hclgevf_trace_cmd_get(struct hclge_comm_hw *hw, struct hclge_desc *desc,
66 int num, bool is_special)
67 {
68 int i;
69
70 if (!HCLGE_COMM_SEND_SYNC(le16_to_cpu(desc->flag)))
71 return;
72
73 trace_hclge_vf_cmd_get(hw, desc, 0, num);
74
75 if (is_special)
76 return;
77
78 for (i = 1; i < num; i++)
79 trace_hclge_vf_cmd_get(hw, &desc[i], i, num);
80 }
81
82 static const struct hclge_comm_cmq_ops hclgevf_cmq_ops = {
83 .trace_cmd_send = hclgevf_trace_cmd_send,
84 .trace_cmd_get = hclgevf_trace_cmd_get,
85 };
86
hclgevf_arq_init(struct hclgevf_dev * hdev)87 void hclgevf_arq_init(struct hclgevf_dev *hdev)
88 {
89 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
90
91 spin_lock(&cmdq->crq.lock);
92 /* initialize the pointers of async rx queue of mailbox */
93 hdev->arq.hdev = hdev;
94 hdev->arq.head = 0;
95 hdev->arq.tail = 0;
96 atomic_set(&hdev->arq.count, 0);
97 spin_unlock(&cmdq->crq.lock);
98 }
99
hclgevf_ae_get_hdev(struct hnae3_handle * handle)100 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
101 {
102 if (!handle->client)
103 return container_of(handle, struct hclgevf_dev, nic);
104 else if (handle->client->type == HNAE3_CLIENT_ROCE)
105 return container_of(handle, struct hclgevf_dev, roce);
106 else
107 return container_of(handle, struct hclgevf_dev, nic);
108 }
109
hclgevf_update_stats(struct hnae3_handle * handle)110 static void hclgevf_update_stats(struct hnae3_handle *handle)
111 {
112 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
113 int status;
114
115 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
116 if (status)
117 dev_err(&hdev->pdev->dev,
118 "VF update of TQPS stats fail, status = %d.\n",
119 status);
120 }
121
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)122 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
123 {
124 if (strset == ETH_SS_TEST)
125 return -EOPNOTSUPP;
126 else if (strset == ETH_SS_STATS)
127 return hclge_comm_tqps_get_sset_count(handle);
128
129 return 0;
130 }
131
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 ** data)132 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
133 u8 **data)
134 {
135 if (strset == ETH_SS_STATS)
136 hclge_comm_tqps_get_strings(handle, data);
137 }
138
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)139 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
140 {
141 hclge_comm_tqps_get_stats(handle, data);
142 }
143
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)144 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
145 u8 subcode)
146 {
147 if (msg) {
148 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
149 msg->code = code;
150 msg->subcode = subcode;
151 }
152 }
153
hclgevf_get_basic_info(struct hclgevf_dev * hdev)154 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
155 {
156 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
157 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
158 struct hclge_basic_info *basic_info;
159 struct hclge_vf_to_pf_msg send_msg;
160 unsigned long caps;
161 int status;
162
163 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
164 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
165 sizeof(resp_msg));
166 if (status) {
167 dev_err(&hdev->pdev->dev,
168 "failed to get basic info from pf, ret = %d", status);
169 return status;
170 }
171
172 basic_info = (struct hclge_basic_info *)resp_msg;
173
174 hdev->hw_tc_map = basic_info->hw_tc_map;
175 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
176 caps = le32_to_cpu(basic_info->pf_caps);
177 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
178 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
179
180 return 0;
181 }
182
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)183 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
184 {
185 struct hnae3_handle *nic = &hdev->nic;
186 struct hclge_vf_to_pf_msg send_msg;
187 u8 resp_msg;
188 int ret;
189
190 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
191 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
192 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
193 sizeof(u8));
194 if (ret) {
195 dev_err(&hdev->pdev->dev,
196 "VF request to get port based vlan state failed %d",
197 ret);
198 return ret;
199 }
200
201 nic->port_base_vlan_state = resp_msg;
202
203 return 0;
204 }
205
hclgevf_get_queue_info(struct hclgevf_dev * hdev)206 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
207 {
208 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
209
210 struct hclge_mbx_vf_queue_info *queue_info;
211 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
212 struct hclge_vf_to_pf_msg send_msg;
213 int status;
214
215 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
216 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
217 HCLGEVF_TQPS_RSS_INFO_LEN);
218 if (status) {
219 dev_err(&hdev->pdev->dev,
220 "VF request to get tqp info from PF failed %d",
221 status);
222 return status;
223 }
224
225 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
226 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
227 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
228 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
229
230 return 0;
231 }
232
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)233 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
234 {
235 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
236
237 struct hclge_mbx_vf_queue_depth *queue_depth;
238 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
239 struct hclge_vf_to_pf_msg send_msg;
240 int ret;
241
242 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
243 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
244 HCLGEVF_TQPS_DEPTH_INFO_LEN);
245 if (ret) {
246 dev_err(&hdev->pdev->dev,
247 "VF request to get tqp depth info from PF failed %d",
248 ret);
249 return ret;
250 }
251
252 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
253 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
254 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
255
256 return 0;
257 }
258
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)259 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
260 {
261 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
262 struct hclge_vf_to_pf_msg send_msg;
263 u16 qid_in_pf = 0;
264 u8 resp_data[2];
265 int ret;
266
267 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
268 *(__le16 *)send_msg.data = cpu_to_le16(queue_id);
269 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
270 sizeof(resp_data));
271 if (!ret)
272 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
273
274 return qid_in_pf;
275 }
276
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)277 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
278 {
279 struct hclge_vf_to_pf_msg send_msg;
280 u8 resp_msg[2];
281 int ret;
282
283 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
284 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
285 sizeof(resp_msg));
286 if (ret) {
287 dev_err(&hdev->pdev->dev,
288 "VF request to get the pf port media type failed %d",
289 ret);
290 return ret;
291 }
292
293 hdev->hw.mac.media_type = resp_msg[0];
294 hdev->hw.mac.module_type = resp_msg[1];
295
296 return 0;
297 }
298
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)299 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
300 {
301 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
302 struct hclge_comm_tqp *tqp;
303 int i;
304
305 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
306 sizeof(struct hclge_comm_tqp), GFP_KERNEL);
307 if (!hdev->htqp)
308 return -ENOMEM;
309
310 tqp = hdev->htqp;
311
312 for (i = 0; i < hdev->num_tqps; i++) {
313 tqp->dev = &hdev->pdev->dev;
314 tqp->index = i;
315
316 tqp->q.ae_algo = &ae_algovf;
317 tqp->q.buf_size = hdev->rx_buf_len;
318 tqp->q.tx_desc_num = hdev->num_tx_desc;
319 tqp->q.rx_desc_num = hdev->num_rx_desc;
320
321 /* need an extended offset to configure queues >=
322 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
323 */
324 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
325 tqp->q.io_base = hdev->hw.hw.io_base +
326 HCLGEVF_TQP_REG_OFFSET +
327 i * HCLGEVF_TQP_REG_SIZE;
328 else
329 tqp->q.io_base = hdev->hw.hw.io_base +
330 HCLGEVF_TQP_REG_OFFSET +
331 HCLGEVF_TQP_EXT_REG_OFFSET +
332 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
333 HCLGEVF_TQP_REG_SIZE;
334
335 /* when device supports tx push and has device memory,
336 * the queue can execute push mode or doorbell mode on
337 * device memory.
338 */
339 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
340 tqp->q.mem_base = hdev->hw.hw.mem_base +
341 HCLGEVF_TQP_MEM_OFFSET(hdev, i);
342
343 tqp++;
344 }
345
346 return 0;
347 }
348
hclgevf_knic_setup(struct hclgevf_dev * hdev)349 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
350 {
351 struct hnae3_handle *nic = &hdev->nic;
352 struct hnae3_knic_private_info *kinfo;
353 u16 new_tqps = hdev->num_tqps;
354 unsigned int i;
355 u8 num_tc = 0;
356
357 kinfo = &nic->kinfo;
358 kinfo->num_tx_desc = hdev->num_tx_desc;
359 kinfo->num_rx_desc = hdev->num_rx_desc;
360 kinfo->rx_buf_len = hdev->rx_buf_len;
361 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
362 if (hdev->hw_tc_map & BIT(i))
363 num_tc++;
364
365 num_tc = num_tc ? num_tc : 1;
366 kinfo->tc_info.num_tc = num_tc;
367 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
368 new_tqps = kinfo->rss_size * num_tc;
369 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
370
371 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
372 sizeof(struct hnae3_queue *), GFP_KERNEL);
373 if (!kinfo->tqp)
374 return -ENOMEM;
375
376 for (i = 0; i < kinfo->num_tqps; i++) {
377 hdev->htqp[i].q.handle = &hdev->nic;
378 hdev->htqp[i].q.tqp_index = i;
379 kinfo->tqp[i] = &hdev->htqp[i].q;
380 }
381
382 /* after init the max rss_size and tqps, adjust the default tqp numbers
383 * and rss size with the actual vector numbers
384 */
385 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
386 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
387 kinfo->rss_size);
388
389 return 0;
390 }
391
hclgevf_request_link_info(struct hclgevf_dev * hdev)392 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
393 {
394 struct hclge_vf_to_pf_msg send_msg;
395 int status;
396
397 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
398 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
399 if (status)
400 dev_err(&hdev->pdev->dev,
401 "VF failed to fetch link status(%d) from PF", status);
402 }
403
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)404 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
405 {
406 struct hnae3_handle *rhandle = &hdev->roce;
407 struct hnae3_handle *handle = &hdev->nic;
408 struct hnae3_client *rclient;
409 struct hnae3_client *client;
410
411 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
412 return;
413
414 client = handle->client;
415 rclient = hdev->roce_client;
416
417 link_state =
418 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
419 if (link_state != hdev->hw.mac.link) {
420 hdev->hw.mac.link = link_state;
421 client->ops->link_status_change(handle, !!link_state);
422 if (rclient && rclient->ops->link_status_change)
423 rclient->ops->link_status_change(rhandle, !!link_state);
424 }
425
426 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
427 }
428
hclgevf_update_link_mode(struct hclgevf_dev * hdev)429 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
430 {
431 #define HCLGEVF_ADVERTISING 0
432 #define HCLGEVF_SUPPORTED 1
433
434 struct hclge_vf_to_pf_msg send_msg;
435
436 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
437 send_msg.data[0] = HCLGEVF_ADVERTISING;
438 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
439 send_msg.data[0] = HCLGEVF_SUPPORTED;
440 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
441 }
442
hclgevf_set_handle_info(struct hclgevf_dev * hdev)443 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
444 {
445 struct hnae3_handle *nic = &hdev->nic;
446 int ret;
447
448 nic->ae_algo = &ae_algovf;
449 nic->pdev = hdev->pdev;
450 bitmap_copy(nic->numa_node_mask.bits, hdev->numa_node_mask.bits,
451 MAX_NUMNODES);
452 nic->flags |= HNAE3_SUPPORT_VF;
453 nic->kinfo.io_base = hdev->hw.hw.io_base;
454
455 ret = hclgevf_knic_setup(hdev);
456 if (ret)
457 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
458 ret);
459 return ret;
460 }
461
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)462 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
463 {
464 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
465 dev_warn(&hdev->pdev->dev,
466 "vector(vector_id %d) has been freed.\n", vector_id);
467 return;
468 }
469
470 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
471 hdev->num_msi_left += 1;
472 hdev->num_msi_used -= 1;
473 }
474
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)475 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
476 struct hnae3_vector_info *vector_info)
477 {
478 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
479 struct hnae3_vector_info *vector = vector_info;
480 int alloc = 0;
481 int i, j;
482
483 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
484 vector_num = min(hdev->num_msi_left, vector_num);
485
486 for (j = 0; j < vector_num; j++) {
487 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
488 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
489 vector->vector = pci_irq_vector(hdev->pdev, i);
490 vector->io_addr = hdev->hw.hw.io_base +
491 HCLGEVF_VECTOR_REG_BASE +
492 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
493 hdev->vector_status[i] = 0;
494 hdev->vector_irq[i] = vector->vector;
495
496 vector++;
497 alloc++;
498
499 break;
500 }
501 }
502 }
503 hdev->num_msi_left -= alloc;
504 hdev->num_msi_used += alloc;
505
506 return alloc;
507 }
508
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)509 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
510 {
511 int i;
512
513 for (i = 0; i < hdev->num_msi; i++)
514 if (vector == hdev->vector_irq[i])
515 return i;
516
517 return -EINVAL;
518 }
519
520 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)521 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
522 {
523 #define HCLGEVF_RSS_MBX_RESP_LEN 8
524 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
525 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
526 struct hclge_vf_to_pf_msg send_msg;
527 u16 msg_num, hash_key_index;
528 u8 index;
529 int ret;
530
531 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
532 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
533 HCLGEVF_RSS_MBX_RESP_LEN;
534 for (index = 0; index < msg_num; index++) {
535 send_msg.data[0] = index;
536 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
537 HCLGEVF_RSS_MBX_RESP_LEN);
538 if (ret) {
539 dev_err(&hdev->pdev->dev,
540 "VF get rss hash key from PF failed, ret=%d",
541 ret);
542 return ret;
543 }
544
545 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
546 if (index == msg_num - 1)
547 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
548 &resp_msg[0],
549 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
550 else
551 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
552 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
553 }
554
555 return 0;
556 }
557
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)558 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
559 u8 *hfunc)
560 {
561 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
562 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
563 int ret;
564
565 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
566 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
567 } else {
568 if (hfunc)
569 *hfunc = ETH_RSS_HASH_TOP;
570 if (key) {
571 ret = hclgevf_get_rss_hash_key(hdev);
572 if (ret)
573 return ret;
574 memcpy(key, rss_cfg->rss_hash_key,
575 HCLGE_COMM_RSS_KEY_SIZE);
576 }
577 }
578
579 hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
580 hdev->ae_dev->dev_specs.rss_ind_tbl_size);
581
582 return 0;
583 }
584
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)585 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
586 const u8 *key, const u8 hfunc)
587 {
588 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
589 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
590 int ret, i;
591
592 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
593 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
594 hfunc);
595 if (ret)
596 return ret;
597 }
598
599 /* update the shadow RSS table with user specified qids */
600 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
601 rss_cfg->rss_indirection_tbl[i] = indir[i];
602
603 /* update the hardware */
604 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
605 rss_cfg->rss_indirection_tbl);
606 }
607
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)608 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
609 struct ethtool_rxnfc *nfc)
610 {
611 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
612 int ret;
613
614 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
615 return -EOPNOTSUPP;
616
617 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
618 &hdev->rss_cfg, nfc);
619 if (ret)
620 dev_err(&hdev->pdev->dev,
621 "failed to set rss tuple, ret = %d.\n", ret);
622
623 return ret;
624 }
625
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)626 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
627 struct ethtool_rxnfc *nfc)
628 {
629 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
630 u8 tuple_sets;
631 int ret;
632
633 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
634 return -EOPNOTSUPP;
635
636 nfc->data = 0;
637
638 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
639 &tuple_sets);
640 if (ret || !tuple_sets)
641 return ret;
642
643 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
644
645 return 0;
646 }
647
hclgevf_get_tc_size(struct hnae3_handle * handle)648 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
649 {
650 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
651 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
652
653 return rss_cfg->rss_size;
654 }
655
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)656 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
657 int vector_id,
658 struct hnae3_ring_chain_node *ring_chain)
659 {
660 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
661 struct hclge_vf_to_pf_msg send_msg;
662 struct hnae3_ring_chain_node *node;
663 int status;
664 int i = 0;
665
666 memset(&send_msg, 0, sizeof(send_msg));
667 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
668 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
669 send_msg.vector_id = vector_id;
670
671 for (node = ring_chain; node; node = node->next) {
672 send_msg.param[i].ring_type =
673 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
674
675 send_msg.param[i].tqp_index = node->tqp_index;
676 send_msg.param[i].int_gl_index =
677 hnae3_get_field(node->int_gl_idx,
678 HNAE3_RING_GL_IDX_M,
679 HNAE3_RING_GL_IDX_S);
680
681 i++;
682 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
683 send_msg.ring_num = i;
684
685 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
686 NULL, 0);
687 if (status) {
688 dev_err(&hdev->pdev->dev,
689 "Map TQP fail, status is %d.\n",
690 status);
691 return status;
692 }
693 i = 0;
694 }
695 }
696
697 return 0;
698 }
699
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)700 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
701 struct hnae3_ring_chain_node *ring_chain)
702 {
703 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
704 int vector_id;
705
706 vector_id = hclgevf_get_vector_index(hdev, vector);
707 if (vector_id < 0) {
708 dev_err(&handle->pdev->dev,
709 "Get vector index fail. ret =%d\n", vector_id);
710 return vector_id;
711 }
712
713 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
714 }
715
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)716 static int hclgevf_unmap_ring_from_vector(
717 struct hnae3_handle *handle,
718 int vector,
719 struct hnae3_ring_chain_node *ring_chain)
720 {
721 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
722 int ret, vector_id;
723
724 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
725 return 0;
726
727 vector_id = hclgevf_get_vector_index(hdev, vector);
728 if (vector_id < 0) {
729 dev_err(&handle->pdev->dev,
730 "Get vector index fail. ret =%d\n", vector_id);
731 return vector_id;
732 }
733
734 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
735 if (ret)
736 dev_err(&handle->pdev->dev,
737 "Unmap ring from vector fail. vector=%d, ret =%d\n",
738 vector_id,
739 ret);
740
741 return ret;
742 }
743
hclgevf_put_vector(struct hnae3_handle * handle,int vector)744 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
745 {
746 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
747 int vector_id;
748
749 vector_id = hclgevf_get_vector_index(hdev, vector);
750 if (vector_id < 0) {
751 dev_err(&handle->pdev->dev,
752 "hclgevf_put_vector get vector index fail. ret =%d\n",
753 vector_id);
754 return vector_id;
755 }
756
757 hclgevf_free_vector(hdev, vector_id);
758
759 return 0;
760 }
761
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)762 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
763 bool en_uc_pmc, bool en_mc_pmc,
764 bool en_bc_pmc)
765 {
766 struct hnae3_handle *handle = &hdev->nic;
767 struct hclge_vf_to_pf_msg send_msg;
768 int ret;
769
770 memset(&send_msg, 0, sizeof(send_msg));
771 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
772 send_msg.en_bc = en_bc_pmc ? 1 : 0;
773 send_msg.en_uc = en_uc_pmc ? 1 : 0;
774 send_msg.en_mc = en_mc_pmc ? 1 : 0;
775 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
776 &handle->priv_flags) ? 1 : 0;
777
778 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
779 if (ret)
780 dev_err(&hdev->pdev->dev,
781 "Set promisc mode fail, status is %d.\n", ret);
782
783 return ret;
784 }
785
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)786 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
787 bool en_mc_pmc)
788 {
789 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
790 bool en_bc_pmc;
791
792 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
793
794 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
795 en_bc_pmc);
796 }
797
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)798 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
799 {
800 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
801
802 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
803 hclgevf_task_schedule(hdev, 0);
804 }
805
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)806 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
807 {
808 struct hnae3_handle *handle = &hdev->nic;
809 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
810 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
811 int ret;
812
813 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
814 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
815 if (!ret)
816 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
817 }
818 }
819
hclgevf_tqp_enable_cmd_send(struct hclgevf_dev * hdev,u16 tqp_id,u16 stream_id,bool enable)820 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
821 u16 stream_id, bool enable)
822 {
823 struct hclgevf_cfg_com_tqp_queue_cmd *req;
824 struct hclge_desc desc;
825
826 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
827
828 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
829 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
830 req->stream_id = cpu_to_le16(stream_id);
831 if (enable)
832 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
833
834 return hclgevf_cmd_send(&hdev->hw, &desc, 1);
835 }
836
hclgevf_tqp_enable(struct hnae3_handle * handle,bool enable)837 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
838 {
839 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
840 int ret;
841 u16 i;
842
843 for (i = 0; i < handle->kinfo.num_tqps; i++) {
844 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
845 if (ret)
846 return ret;
847 }
848
849 return 0;
850 }
851
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)852 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
853 {
854 struct hclge_vf_to_pf_msg send_msg;
855 u8 host_mac[ETH_ALEN];
856 int status;
857
858 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
859 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
860 ETH_ALEN);
861 if (status) {
862 dev_err(&hdev->pdev->dev,
863 "fail to get VF MAC from host %d", status);
864 return status;
865 }
866
867 ether_addr_copy(p, host_mac);
868
869 return 0;
870 }
871
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)872 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
873 {
874 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
875 u8 host_mac_addr[ETH_ALEN];
876
877 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
878 return;
879
880 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
881 if (hdev->has_pf_mac)
882 ether_addr_copy(p, host_mac_addr);
883 else
884 ether_addr_copy(p, hdev->hw.mac.mac_addr);
885 }
886
hclgevf_set_mac_addr(struct hnae3_handle * handle,const void * p,bool is_first)887 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
888 bool is_first)
889 {
890 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
892 struct hclge_vf_to_pf_msg send_msg;
893 u8 *new_mac_addr = (u8 *)p;
894 int status;
895
896 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
897 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
898 ether_addr_copy(send_msg.data, new_mac_addr);
899 if (is_first && !hdev->has_pf_mac)
900 eth_zero_addr(&send_msg.data[ETH_ALEN]);
901 else
902 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
903 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
904 if (!status)
905 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
906
907 return status;
908 }
909
910 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)911 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
912 {
913 struct hclgevf_mac_addr_node *mac_node, *tmp;
914
915 list_for_each_entry_safe(mac_node, tmp, list, node)
916 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
917 return mac_node;
918
919 return NULL;
920 }
921
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)922 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
923 enum HCLGEVF_MAC_NODE_STATE state)
924 {
925 switch (state) {
926 /* from set_rx_mode or tmp_add_list */
927 case HCLGEVF_MAC_TO_ADD:
928 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
929 mac_node->state = HCLGEVF_MAC_ACTIVE;
930 break;
931 /* only from set_rx_mode */
932 case HCLGEVF_MAC_TO_DEL:
933 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
934 list_del(&mac_node->node);
935 kfree(mac_node);
936 } else {
937 mac_node->state = HCLGEVF_MAC_TO_DEL;
938 }
939 break;
940 /* only from tmp_add_list, the mac_node->state won't be
941 * HCLGEVF_MAC_ACTIVE
942 */
943 case HCLGEVF_MAC_ACTIVE:
944 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
945 mac_node->state = HCLGEVF_MAC_ACTIVE;
946 break;
947 }
948 }
949
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)950 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
951 enum HCLGEVF_MAC_NODE_STATE state,
952 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
953 const unsigned char *addr)
954 {
955 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
956 struct hclgevf_mac_addr_node *mac_node;
957 struct list_head *list;
958
959 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
960 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
961
962 spin_lock_bh(&hdev->mac_table.mac_list_lock);
963
964 /* if the mac addr is already in the mac list, no need to add a new
965 * one into it, just check the mac addr state, convert it to a new
966 * state, or just remove it, or do nothing.
967 */
968 mac_node = hclgevf_find_mac_node(list, addr);
969 if (mac_node) {
970 hclgevf_update_mac_node(mac_node, state);
971 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
972 return 0;
973 }
974 /* if this address is never added, unnecessary to delete */
975 if (state == HCLGEVF_MAC_TO_DEL) {
976 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
977 return -ENOENT;
978 }
979
980 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
981 if (!mac_node) {
982 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
983 return -ENOMEM;
984 }
985
986 mac_node->state = state;
987 ether_addr_copy(mac_node->mac_addr, addr);
988 list_add_tail(&mac_node->node, list);
989
990 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
991 return 0;
992 }
993
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)994 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
995 const unsigned char *addr)
996 {
997 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
998 HCLGEVF_MAC_ADDR_UC, addr);
999 }
1000
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1001 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1002 const unsigned char *addr)
1003 {
1004 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1005 HCLGEVF_MAC_ADDR_UC, addr);
1006 }
1007
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1008 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1009 const unsigned char *addr)
1010 {
1011 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1012 HCLGEVF_MAC_ADDR_MC, addr);
1013 }
1014
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1015 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1016 const unsigned char *addr)
1017 {
1018 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1019 HCLGEVF_MAC_ADDR_MC, addr);
1020 }
1021
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1022 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1023 struct hclgevf_mac_addr_node *mac_node,
1024 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1025 {
1026 struct hclge_vf_to_pf_msg send_msg;
1027 u8 code, subcode;
1028
1029 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1030 code = HCLGE_MBX_SET_UNICAST;
1031 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1032 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1033 else
1034 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1035 } else {
1036 code = HCLGE_MBX_SET_MULTICAST;
1037 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1038 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1039 else
1040 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1041 }
1042
1043 hclgevf_build_send_msg(&send_msg, code, subcode);
1044 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1045 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1046 }
1047
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1048 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1049 struct list_head *list,
1050 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1051 {
1052 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1053 struct hclgevf_mac_addr_node *mac_node, *tmp;
1054 int ret;
1055
1056 list_for_each_entry_safe(mac_node, tmp, list, node) {
1057 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1058 if (ret) {
1059 hnae3_format_mac_addr(format_mac_addr,
1060 mac_node->mac_addr);
1061 dev_err(&hdev->pdev->dev,
1062 "failed to configure mac %s, state = %d, ret = %d\n",
1063 format_mac_addr, mac_node->state, ret);
1064 return;
1065 }
1066 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1067 mac_node->state = HCLGEVF_MAC_ACTIVE;
1068 } else {
1069 list_del(&mac_node->node);
1070 kfree(mac_node);
1071 }
1072 }
1073 }
1074
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1075 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1076 struct list_head *mac_list)
1077 {
1078 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1079
1080 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1081 /* if the mac address from tmp_add_list is not in the
1082 * uc/mc_mac_list, it means have received a TO_DEL request
1083 * during the time window of sending mac config request to PF
1084 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1085 * then it will be removed at next time. If is TO_ADD, it means
1086 * send TO_ADD request failed, so just remove the mac node.
1087 */
1088 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1089 if (new_node) {
1090 hclgevf_update_mac_node(new_node, mac_node->state);
1091 list_del(&mac_node->node);
1092 kfree(mac_node);
1093 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1094 mac_node->state = HCLGEVF_MAC_TO_DEL;
1095 list_move_tail(&mac_node->node, mac_list);
1096 } else {
1097 list_del(&mac_node->node);
1098 kfree(mac_node);
1099 }
1100 }
1101 }
1102
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1103 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1104 struct list_head *mac_list)
1105 {
1106 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1107
1108 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1109 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1110 if (new_node) {
1111 /* If the mac addr is exist in the mac list, it means
1112 * received a new request TO_ADD during the time window
1113 * of sending mac addr configurrequest to PF, so just
1114 * change the mac state to ACTIVE.
1115 */
1116 new_node->state = HCLGEVF_MAC_ACTIVE;
1117 list_del(&mac_node->node);
1118 kfree(mac_node);
1119 } else {
1120 list_move_tail(&mac_node->node, mac_list);
1121 }
1122 }
1123 }
1124
hclgevf_clear_list(struct list_head * list)1125 static void hclgevf_clear_list(struct list_head *list)
1126 {
1127 struct hclgevf_mac_addr_node *mac_node, *tmp;
1128
1129 list_for_each_entry_safe(mac_node, tmp, list, node) {
1130 list_del(&mac_node->node);
1131 kfree(mac_node);
1132 }
1133 }
1134
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1135 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1136 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1137 {
1138 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1139 struct list_head tmp_add_list, tmp_del_list;
1140 struct list_head *list;
1141
1142 INIT_LIST_HEAD(&tmp_add_list);
1143 INIT_LIST_HEAD(&tmp_del_list);
1144
1145 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1146 * we can add/delete these mac addr outside the spin lock
1147 */
1148 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1149 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1150
1151 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1152
1153 list_for_each_entry_safe(mac_node, tmp, list, node) {
1154 switch (mac_node->state) {
1155 case HCLGEVF_MAC_TO_DEL:
1156 list_move_tail(&mac_node->node, &tmp_del_list);
1157 break;
1158 case HCLGEVF_MAC_TO_ADD:
1159 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1160 if (!new_node)
1161 goto stop_traverse;
1162
1163 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1164 new_node->state = mac_node->state;
1165 list_add_tail(&new_node->node, &tmp_add_list);
1166 break;
1167 default:
1168 break;
1169 }
1170 }
1171
1172 stop_traverse:
1173 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1174
1175 /* delete first, in order to get max mac table space for adding */
1176 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1177 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1178
1179 /* if some mac addresses were added/deleted fail, move back to the
1180 * mac_list, and retry at next time.
1181 */
1182 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1183
1184 hclgevf_sync_from_del_list(&tmp_del_list, list);
1185 hclgevf_sync_from_add_list(&tmp_add_list, list);
1186
1187 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1188 }
1189
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1190 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1191 {
1192 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1193 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1194 }
1195
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1196 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1197 {
1198 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1199
1200 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1201 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1202
1203 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1204 }
1205
hclgevf_enable_vlan_filter(struct hnae3_handle * handle,bool enable)1206 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1207 {
1208 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1209 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1210 struct hclge_vf_to_pf_msg send_msg;
1211
1212 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1213 return -EOPNOTSUPP;
1214
1215 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1216 HCLGE_MBX_ENABLE_VLAN_FILTER);
1217 send_msg.data[0] = enable ? 1 : 0;
1218
1219 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1220 }
1221
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1222 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1223 __be16 proto, u16 vlan_id,
1224 bool is_kill)
1225 {
1226 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1227 struct hclge_mbx_vlan_filter *vlan_filter;
1228 struct hclge_vf_to_pf_msg send_msg;
1229 int ret;
1230
1231 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1232 return -EINVAL;
1233
1234 if (proto != htons(ETH_P_8021Q))
1235 return -EPROTONOSUPPORT;
1236
1237 /* When device is resetting or reset failed, firmware is unable to
1238 * handle mailbox. Just record the vlan id, and remove it after
1239 * reset finished.
1240 */
1241 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1242 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1243 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1244 return -EBUSY;
1245 } else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) {
1246 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1247 }
1248
1249 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1250 HCLGE_MBX_VLAN_FILTER);
1251 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1252 vlan_filter->is_kill = is_kill;
1253 vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1254 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1255
1256 /* when remove hw vlan filter failed, record the vlan id,
1257 * and try to remove it from hw later, to be consistence
1258 * with stack.
1259 */
1260 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1261 if (is_kill && ret)
1262 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1263
1264 return ret;
1265 }
1266
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1267 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1268 {
1269 #define HCLGEVF_MAX_SYNC_COUNT 60
1270 struct hnae3_handle *handle = &hdev->nic;
1271 int ret, sync_cnt = 0;
1272 u16 vlan_id;
1273
1274 if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID))
1275 return;
1276
1277 rtnl_lock();
1278 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1279 while (vlan_id != VLAN_N_VID) {
1280 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1281 vlan_id, true);
1282 if (ret)
1283 break;
1284
1285 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1286 sync_cnt++;
1287 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1288 break;
1289
1290 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1291 }
1292 rtnl_unlock();
1293 }
1294
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1295 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1296 {
1297 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1298 struct hclge_vf_to_pf_msg send_msg;
1299
1300 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1301 HCLGE_MBX_VLAN_RX_OFF_CFG);
1302 send_msg.data[0] = enable ? 1 : 0;
1303 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1304 }
1305
hclgevf_reset_tqp(struct hnae3_handle * handle)1306 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1307 {
1308 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U
1309 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1310 struct hclge_vf_to_pf_msg send_msg;
1311 u8 return_status = 0;
1312 int ret;
1313 u16 i;
1314
1315 /* disable vf queue before send queue reset msg to PF */
1316 ret = hclgevf_tqp_enable(handle, false);
1317 if (ret) {
1318 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1319 ret);
1320 return ret;
1321 }
1322
1323 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1324
1325 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1326 sizeof(return_status));
1327 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1328 return ret;
1329
1330 for (i = 1; i < handle->kinfo.num_tqps; i++) {
1331 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1332 *(__le16 *)send_msg.data = cpu_to_le16(i);
1333 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1334 if (ret)
1335 return ret;
1336 }
1337
1338 return 0;
1339 }
1340
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1341 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1342 {
1343 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1344 struct hclge_mbx_mtu_info *mtu_info;
1345 struct hclge_vf_to_pf_msg send_msg;
1346
1347 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1348 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1349 mtu_info->mtu = cpu_to_le32(new_mtu);
1350
1351 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1352 }
1353
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1354 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1355 enum hnae3_reset_notify_type type)
1356 {
1357 struct hnae3_client *client = hdev->nic_client;
1358 struct hnae3_handle *handle = &hdev->nic;
1359 int ret;
1360
1361 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1362 !client)
1363 return 0;
1364
1365 if (!client->ops->reset_notify)
1366 return -EOPNOTSUPP;
1367
1368 ret = client->ops->reset_notify(handle, type);
1369 if (ret)
1370 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1371 type, ret);
1372
1373 return ret;
1374 }
1375
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1376 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1377 enum hnae3_reset_notify_type type)
1378 {
1379 struct hnae3_client *client = hdev->roce_client;
1380 struct hnae3_handle *handle = &hdev->roce;
1381 int ret;
1382
1383 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1384 return 0;
1385
1386 if (!client->ops->reset_notify)
1387 return -EOPNOTSUPP;
1388
1389 ret = client->ops->reset_notify(handle, type);
1390 if (ret)
1391 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1392 type, ret);
1393 return ret;
1394 }
1395
hclgevf_reset_wait(struct hclgevf_dev * hdev)1396 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1397 {
1398 #define HCLGEVF_RESET_WAIT_US 20000
1399 #define HCLGEVF_RESET_WAIT_CNT 2000
1400 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1401 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1402
1403 u32 val;
1404 int ret;
1405
1406 if (hdev->reset_type == HNAE3_VF_RESET)
1407 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1408 HCLGEVF_VF_RST_ING, val,
1409 !(val & HCLGEVF_VF_RST_ING_BIT),
1410 HCLGEVF_RESET_WAIT_US,
1411 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1412 else
1413 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1414 HCLGEVF_RST_ING, val,
1415 !(val & HCLGEVF_RST_ING_BITS),
1416 HCLGEVF_RESET_WAIT_US,
1417 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1418
1419 /* hardware completion status should be available by this time */
1420 if (ret) {
1421 dev_err(&hdev->pdev->dev,
1422 "couldn't get reset done status from h/w, timeout!\n");
1423 return ret;
1424 }
1425
1426 /* we will wait a bit more to let reset of the stack to complete. This
1427 * might happen in case reset assertion was made by PF. Yes, this also
1428 * means we might end up waiting bit more even for VF reset.
1429 */
1430 if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1431 msleep(5000);
1432 else
1433 msleep(500);
1434
1435 return 0;
1436 }
1437
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1438 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1439 {
1440 u32 reg_val;
1441
1442 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1443 if (enable)
1444 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1445 else
1446 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1447
1448 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1449 reg_val);
1450 }
1451
hclgevf_reset_stack(struct hclgevf_dev * hdev)1452 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1453 {
1454 int ret;
1455
1456 /* uninitialize the nic client */
1457 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1458 if (ret)
1459 return ret;
1460
1461 /* re-initialize the hclge device */
1462 ret = hclgevf_reset_hdev(hdev);
1463 if (ret) {
1464 dev_err(&hdev->pdev->dev,
1465 "hclge device re-init failed, VF is disabled!\n");
1466 return ret;
1467 }
1468
1469 /* bring up the nic client again */
1470 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1471 if (ret)
1472 return ret;
1473
1474 /* clear handshake status with IMP */
1475 hclgevf_reset_handshake(hdev, false);
1476
1477 /* bring up the nic to enable TX/RX again */
1478 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1479 }
1480
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1481 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1482 {
1483 #define HCLGEVF_RESET_SYNC_TIME 100
1484
1485 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1486 struct hclge_vf_to_pf_msg send_msg;
1487 int ret;
1488
1489 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1490 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1491 if (ret) {
1492 dev_err(&hdev->pdev->dev,
1493 "failed to assert VF reset, ret = %d\n", ret);
1494 return ret;
1495 }
1496 hdev->rst_stats.vf_func_rst_cnt++;
1497 }
1498
1499 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1500 /* inform hardware that preparatory work is done */
1501 msleep(HCLGEVF_RESET_SYNC_TIME);
1502 hclgevf_reset_handshake(hdev, true);
1503 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1504 hdev->reset_type);
1505
1506 return 0;
1507 }
1508
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1509 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1510 {
1511 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1512 hdev->rst_stats.vf_func_rst_cnt);
1513 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1514 hdev->rst_stats.flr_rst_cnt);
1515 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1516 hdev->rst_stats.vf_rst_cnt);
1517 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1518 hdev->rst_stats.rst_done_cnt);
1519 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1520 hdev->rst_stats.hw_rst_done_cnt);
1521 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1522 hdev->rst_stats.rst_cnt);
1523 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1524 hdev->rst_stats.rst_fail_cnt);
1525 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1526 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1527 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1528 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1529 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1530 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1531 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1532 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1533 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1534 }
1535
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1536 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1537 {
1538 /* recover handshake status with IMP when reset fail */
1539 hclgevf_reset_handshake(hdev, true);
1540 hdev->rst_stats.rst_fail_cnt++;
1541 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1542 hdev->rst_stats.rst_fail_cnt);
1543
1544 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1545 set_bit(hdev->reset_type, &hdev->reset_pending);
1546
1547 if (hclgevf_is_reset_pending(hdev)) {
1548 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1549 hclgevf_reset_task_schedule(hdev);
1550 } else {
1551 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1552 hclgevf_dump_rst_info(hdev);
1553 }
1554 }
1555
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1556 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1557 {
1558 int ret;
1559
1560 hdev->rst_stats.rst_cnt++;
1561
1562 /* perform reset of the stack & ae device for a client */
1563 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1564 if (ret)
1565 return ret;
1566
1567 rtnl_lock();
1568 /* bring down the nic to stop any ongoing TX/RX */
1569 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1570 rtnl_unlock();
1571 if (ret)
1572 return ret;
1573
1574 return hclgevf_reset_prepare_wait(hdev);
1575 }
1576
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1577 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1578 {
1579 int ret;
1580
1581 hdev->rst_stats.hw_rst_done_cnt++;
1582 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1583 if (ret)
1584 return ret;
1585
1586 rtnl_lock();
1587 /* now, re-initialize the nic client and ae device */
1588 ret = hclgevf_reset_stack(hdev);
1589 rtnl_unlock();
1590 if (ret) {
1591 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1592 return ret;
1593 }
1594
1595 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1596 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1597 * times
1598 */
1599 if (ret &&
1600 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1601 return ret;
1602
1603 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1604 if (ret)
1605 return ret;
1606
1607 hdev->last_reset_time = jiffies;
1608 hdev->rst_stats.rst_done_cnt++;
1609 hdev->rst_stats.rst_fail_cnt = 0;
1610 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1611
1612 return 0;
1613 }
1614
hclgevf_reset(struct hclgevf_dev * hdev)1615 static void hclgevf_reset(struct hclgevf_dev *hdev)
1616 {
1617 if (hclgevf_reset_prepare(hdev))
1618 goto err_reset;
1619
1620 /* check if VF could successfully fetch the hardware reset completion
1621 * status from the hardware
1622 */
1623 if (hclgevf_reset_wait(hdev)) {
1624 /* can't do much in this situation, will disable VF */
1625 dev_err(&hdev->pdev->dev,
1626 "failed to fetch H/W reset completion status\n");
1627 goto err_reset;
1628 }
1629
1630 if (hclgevf_reset_rebuild(hdev))
1631 goto err_reset;
1632
1633 return;
1634
1635 err_reset:
1636 hclgevf_reset_err_handle(hdev);
1637 }
1638
hclgevf_get_reset_level(unsigned long * addr)1639 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
1640 {
1641 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1642
1643 /* return the highest priority reset level amongst all */
1644 if (test_bit(HNAE3_VF_RESET, addr)) {
1645 rst_level = HNAE3_VF_RESET;
1646 clear_bit(HNAE3_VF_RESET, addr);
1647 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1648 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1649 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1650 rst_level = HNAE3_VF_FULL_RESET;
1651 clear_bit(HNAE3_VF_FULL_RESET, addr);
1652 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1653 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1654 rst_level = HNAE3_VF_PF_FUNC_RESET;
1655 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1656 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1657 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1658 rst_level = HNAE3_VF_FUNC_RESET;
1659 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1660 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1661 rst_level = HNAE3_FLR_RESET;
1662 clear_bit(HNAE3_FLR_RESET, addr);
1663 }
1664
1665 return rst_level;
1666 }
1667
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)1668 static void hclgevf_reset_event(struct pci_dev *pdev,
1669 struct hnae3_handle *handle)
1670 {
1671 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1672 struct hclgevf_dev *hdev = ae_dev->priv;
1673
1674 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1675
1676 if (hdev->default_reset_request)
1677 hdev->reset_level =
1678 hclgevf_get_reset_level(&hdev->default_reset_request);
1679 else
1680 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1681
1682 /* reset of this VF requested */
1683 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1684 hclgevf_reset_task_schedule(hdev);
1685
1686 hdev->last_reset_time = jiffies;
1687 }
1688
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1689 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1690 enum hnae3_reset_type rst_type)
1691 {
1692 struct hclgevf_dev *hdev = ae_dev->priv;
1693
1694 set_bit(rst_type, &hdev->default_reset_request);
1695 }
1696
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)1697 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1698 {
1699 writel(en ? 1 : 0, vector->addr);
1700 }
1701
hclgevf_reset_prepare_general(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1702 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1703 enum hnae3_reset_type rst_type)
1704 {
1705 #define HCLGEVF_RESET_RETRY_WAIT_MS 500
1706 #define HCLGEVF_RESET_RETRY_CNT 5
1707
1708 struct hclgevf_dev *hdev = ae_dev->priv;
1709 int retry_cnt = 0;
1710 int ret;
1711
1712 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1713 down(&hdev->reset_sem);
1714 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1715 hdev->reset_type = rst_type;
1716 ret = hclgevf_reset_prepare(hdev);
1717 if (!ret && !hdev->reset_pending)
1718 break;
1719
1720 dev_err(&hdev->pdev->dev,
1721 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1722 ret, hdev->reset_pending, retry_cnt);
1723 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1724 up(&hdev->reset_sem);
1725 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1726 }
1727
1728 /* disable misc vector before reset done */
1729 hclgevf_enable_vector(&hdev->misc_vector, false);
1730
1731 if (hdev->reset_type == HNAE3_FLR_RESET)
1732 hdev->rst_stats.flr_rst_cnt++;
1733 }
1734
hclgevf_reset_done(struct hnae3_ae_dev * ae_dev)1735 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1736 {
1737 struct hclgevf_dev *hdev = ae_dev->priv;
1738 int ret;
1739
1740 hclgevf_enable_vector(&hdev->misc_vector, true);
1741
1742 ret = hclgevf_reset_rebuild(hdev);
1743 if (ret)
1744 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1745 ret);
1746
1747 hdev->reset_type = HNAE3_NONE_RESET;
1748 if (test_and_clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1749 up(&hdev->reset_sem);
1750 }
1751
hclgevf_get_fw_version(struct hnae3_handle * handle)1752 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1753 {
1754 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1755
1756 return hdev->fw_version;
1757 }
1758
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)1759 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1760 {
1761 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1762
1763 vector->vector_irq = pci_irq_vector(hdev->pdev,
1764 HCLGEVF_MISC_VECTOR_NUM);
1765 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1766 /* vector status always valid for Vector 0 */
1767 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1768 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1769
1770 hdev->num_msi_left -= 1;
1771 hdev->num_msi_used += 1;
1772 }
1773
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)1774 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1775 {
1776 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1777 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1778 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1779 &hdev->state))
1780 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1781 }
1782
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)1783 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1784 {
1785 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1786 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1787 &hdev->state))
1788 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1789 }
1790
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)1791 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1792 unsigned long delay)
1793 {
1794 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1795 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1796 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1797 }
1798
hclgevf_reset_service_task(struct hclgevf_dev * hdev)1799 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1800 {
1801 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
1802
1803 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1804 return;
1805
1806 down(&hdev->reset_sem);
1807 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1808
1809 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1810 &hdev->reset_state)) {
1811 /* PF has intimated that it is about to reset the hardware.
1812 * We now have to poll & check if hardware has actually
1813 * completed the reset sequence. On hardware reset completion,
1814 * VF needs to reset the client and ae device.
1815 */
1816 hdev->reset_attempts = 0;
1817
1818 hdev->last_reset_time = jiffies;
1819 hdev->reset_type =
1820 hclgevf_get_reset_level(&hdev->reset_pending);
1821 if (hdev->reset_type != HNAE3_NONE_RESET)
1822 hclgevf_reset(hdev);
1823 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1824 &hdev->reset_state)) {
1825 /* we could be here when either of below happens:
1826 * 1. reset was initiated due to watchdog timeout caused by
1827 * a. IMP was earlier reset and our TX got choked down and
1828 * which resulted in watchdog reacting and inducing VF
1829 * reset. This also means our cmdq would be unreliable.
1830 * b. problem in TX due to other lower layer(example link
1831 * layer not functioning properly etc.)
1832 * 2. VF reset might have been initiated due to some config
1833 * change.
1834 *
1835 * NOTE: Theres no clear way to detect above cases than to react
1836 * to the response of PF for this reset request. PF will ack the
1837 * 1b and 2. cases but we will not get any intimation about 1a
1838 * from PF as cmdq would be in unreliable state i.e. mailbox
1839 * communication between PF and VF would be broken.
1840 *
1841 * if we are never geting into pending state it means either:
1842 * 1. PF is not receiving our request which could be due to IMP
1843 * reset
1844 * 2. PF is screwed
1845 * We cannot do much for 2. but to check first we can try reset
1846 * our PCIe + stack and see if it alleviates the problem.
1847 */
1848 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1849 /* prepare for full reset of stack + pcie interface */
1850 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1851
1852 /* "defer" schedule the reset task again */
1853 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1854 } else {
1855 hdev->reset_attempts++;
1856
1857 set_bit(hdev->reset_level, &hdev->reset_pending);
1858 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1859 }
1860 hclgevf_reset_task_schedule(hdev);
1861 }
1862
1863 hdev->reset_type = HNAE3_NONE_RESET;
1864 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1865 up(&hdev->reset_sem);
1866 }
1867
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)1868 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1869 {
1870 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1871 return;
1872
1873 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1874 return;
1875
1876 hclgevf_mbx_async_handler(hdev);
1877
1878 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1879 }
1880
hclgevf_keep_alive(struct hclgevf_dev * hdev)1881 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1882 {
1883 struct hclge_vf_to_pf_msg send_msg;
1884 int ret;
1885
1886 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1887 return;
1888
1889 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1890 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1891 if (ret)
1892 dev_err(&hdev->pdev->dev,
1893 "VF sends keep alive cmd failed(=%d)\n", ret);
1894 }
1895
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)1896 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1897 {
1898 unsigned long delta = round_jiffies_relative(HZ);
1899 struct hnae3_handle *handle = &hdev->nic;
1900
1901 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1902 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1903 return;
1904
1905 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1906 delta = jiffies - hdev->last_serv_processed;
1907
1908 if (delta < round_jiffies_relative(HZ)) {
1909 delta = round_jiffies_relative(HZ) - delta;
1910 goto out;
1911 }
1912 }
1913
1914 hdev->serv_processed_cnt++;
1915 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1916 hclgevf_keep_alive(hdev);
1917
1918 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1919 hdev->last_serv_processed = jiffies;
1920 goto out;
1921 }
1922
1923 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1924 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1925
1926 /* VF does not need to request link status when this bit is set, because
1927 * PF will push its link status to VFs when link status changed.
1928 */
1929 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1930 hclgevf_request_link_info(hdev);
1931
1932 hclgevf_update_link_mode(hdev);
1933
1934 hclgevf_sync_vlan_filter(hdev);
1935
1936 hclgevf_sync_mac_table(hdev);
1937
1938 hclgevf_sync_promisc_mode(hdev);
1939
1940 hdev->last_serv_processed = jiffies;
1941
1942 out:
1943 hclgevf_task_schedule(hdev, delta);
1944 }
1945
hclgevf_service_task(struct work_struct * work)1946 static void hclgevf_service_task(struct work_struct *work)
1947 {
1948 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1949 service_task.work);
1950
1951 hclgevf_reset_service_task(hdev);
1952 hclgevf_mailbox_service_task(hdev);
1953 hclgevf_periodic_service_task(hdev);
1954
1955 /* Handle reset and mbx again in case periodical task delays the
1956 * handling by calling hclgevf_task_schedule() in
1957 * hclgevf_periodic_service_task()
1958 */
1959 hclgevf_reset_service_task(hdev);
1960 hclgevf_mailbox_service_task(hdev);
1961 }
1962
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)1963 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1964 {
1965 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1966 }
1967
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)1968 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1969 u32 *clearval)
1970 {
1971 u32 val, cmdq_stat_reg, rst_ing_reg;
1972
1973 /* fetch the events from their corresponding regs */
1974 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1975 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1976 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1977 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1978 dev_info(&hdev->pdev->dev,
1979 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1980 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1981 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1982 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1983 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1984 hdev->rst_stats.vf_rst_cnt++;
1985 /* set up VF hardware reset status, its PF will clear
1986 * this status when PF has initialized done.
1987 */
1988 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1989 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1990 val | HCLGEVF_VF_RST_ING_BIT);
1991 return HCLGEVF_VECTOR0_EVENT_RST;
1992 }
1993
1994 /* check for vector0 mailbox(=CMDQ RX) event source */
1995 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1996 /* for revision 0x21, clearing interrupt is writing bit 0
1997 * to the clear register, writing bit 1 means to keep the
1998 * old value.
1999 * for revision 0x20, the clear register is a read & write
2000 * register, so we should just write 0 to the bit we are
2001 * handling, and keep other bits as cmdq_stat_reg.
2002 */
2003 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2004 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2005 else
2006 *clearval = cmdq_stat_reg &
2007 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2008
2009 return HCLGEVF_VECTOR0_EVENT_MBX;
2010 }
2011
2012 /* print other vector0 event source */
2013 dev_info(&hdev->pdev->dev,
2014 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2015 cmdq_stat_reg);
2016
2017 return HCLGEVF_VECTOR0_EVENT_OTHER;
2018 }
2019
hclgevf_reset_timer(struct timer_list * t)2020 static void hclgevf_reset_timer(struct timer_list *t)
2021 {
2022 struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer);
2023
2024 hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST);
2025 hclgevf_reset_task_schedule(hdev);
2026 }
2027
hclgevf_misc_irq_handle(int irq,void * data)2028 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2029 {
2030 #define HCLGEVF_RESET_DELAY 5
2031
2032 enum hclgevf_evt_cause event_cause;
2033 struct hclgevf_dev *hdev = data;
2034 u32 clearval;
2035
2036 hclgevf_enable_vector(&hdev->misc_vector, false);
2037 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2038 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2039 hclgevf_clear_event_cause(hdev, clearval);
2040
2041 switch (event_cause) {
2042 case HCLGEVF_VECTOR0_EVENT_RST:
2043 mod_timer(&hdev->reset_timer,
2044 jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY));
2045 break;
2046 case HCLGEVF_VECTOR0_EVENT_MBX:
2047 hclgevf_mbx_handler(hdev);
2048 break;
2049 default:
2050 break;
2051 }
2052
2053 hclgevf_enable_vector(&hdev->misc_vector, true);
2054
2055 return IRQ_HANDLED;
2056 }
2057
hclgevf_configure(struct hclgevf_dev * hdev)2058 static int hclgevf_configure(struct hclgevf_dev *hdev)
2059 {
2060 int ret;
2061
2062 hdev->gro_en = true;
2063
2064 ret = hclgevf_get_basic_info(hdev);
2065 if (ret)
2066 return ret;
2067
2068 /* get current port based vlan state from PF */
2069 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2070 if (ret)
2071 return ret;
2072
2073 /* get queue configuration from PF */
2074 ret = hclgevf_get_queue_info(hdev);
2075 if (ret)
2076 return ret;
2077
2078 /* get queue depth info from PF */
2079 ret = hclgevf_get_queue_depth(hdev);
2080 if (ret)
2081 return ret;
2082
2083 return hclgevf_get_pf_media_type(hdev);
2084 }
2085
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2086 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2087 {
2088 struct pci_dev *pdev = ae_dev->pdev;
2089 struct hclgevf_dev *hdev;
2090
2091 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2092 if (!hdev)
2093 return -ENOMEM;
2094
2095 hdev->pdev = pdev;
2096 hdev->ae_dev = ae_dev;
2097 ae_dev->priv = hdev;
2098
2099 return 0;
2100 }
2101
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2102 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2103 {
2104 struct hnae3_handle *roce = &hdev->roce;
2105 struct hnae3_handle *nic = &hdev->nic;
2106
2107 roce->rinfo.num_vectors = hdev->num_roce_msix;
2108
2109 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2110 hdev->num_msi_left == 0)
2111 return -EINVAL;
2112
2113 roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2114
2115 roce->rinfo.netdev = nic->kinfo.netdev;
2116 roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2117 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2118
2119 roce->pdev = nic->pdev;
2120 roce->ae_algo = nic->ae_algo;
2121 bitmap_copy(roce->numa_node_mask.bits, nic->numa_node_mask.bits,
2122 MAX_NUMNODES);
2123 return 0;
2124 }
2125
hclgevf_config_gro(struct hclgevf_dev * hdev)2126 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2127 {
2128 struct hclgevf_cfg_gro_status_cmd *req;
2129 struct hclge_desc desc;
2130 int ret;
2131
2132 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2133 return 0;
2134
2135 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2136 false);
2137 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2138
2139 req->gro_en = hdev->gro_en ? 1 : 0;
2140
2141 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2142 if (ret)
2143 dev_err(&hdev->pdev->dev,
2144 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2145
2146 return ret;
2147 }
2148
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2149 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2150 {
2151 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2152 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2153 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2154 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2155 int ret;
2156
2157 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2158 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2159 rss_cfg->rss_algo,
2160 rss_cfg->rss_hash_key);
2161 if (ret)
2162 return ret;
2163
2164 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg);
2165 if (ret)
2166 return ret;
2167 }
2168
2169 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2170 rss_cfg->rss_indirection_tbl);
2171 if (ret)
2172 return ret;
2173
2174 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2175 tc_offset, tc_valid, tc_size);
2176
2177 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2178 tc_valid, tc_size);
2179 }
2180
hclgevf_init_vlan_config(struct hclgevf_dev * hdev)2181 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2182 {
2183 struct hnae3_handle *nic = &hdev->nic;
2184 int ret;
2185
2186 ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2187 if (ret) {
2188 dev_err(&hdev->pdev->dev,
2189 "failed to enable rx vlan offload, ret = %d\n", ret);
2190 return ret;
2191 }
2192
2193 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2194 false);
2195 }
2196
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2197 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2198 {
2199 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2200
2201 unsigned long last = hdev->serv_processed_cnt;
2202 int i = 0;
2203
2204 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2205 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2206 last == hdev->serv_processed_cnt)
2207 usleep_range(1, 1);
2208 }
2209
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2210 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2211 {
2212 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2213
2214 if (enable) {
2215 hclgevf_task_schedule(hdev, 0);
2216 } else {
2217 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2218
2219 smp_mb__after_atomic(); /* flush memory to make sure DOWN is seen by service task */
2220 hclgevf_flush_link_update(hdev);
2221 }
2222 }
2223
hclgevf_ae_start(struct hnae3_handle * handle)2224 static int hclgevf_ae_start(struct hnae3_handle *handle)
2225 {
2226 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2227
2228 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2229 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2230
2231 hclge_comm_reset_tqp_stats(handle);
2232
2233 hclgevf_request_link_info(hdev);
2234
2235 hclgevf_update_link_mode(hdev);
2236
2237 return 0;
2238 }
2239
hclgevf_ae_stop(struct hnae3_handle * handle)2240 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2241 {
2242 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2243
2244 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2245
2246 if (hdev->reset_type != HNAE3_VF_RESET)
2247 hclgevf_reset_tqp(handle);
2248
2249 hclge_comm_reset_tqp_stats(handle);
2250 hclgevf_update_link_status(hdev, 0);
2251 }
2252
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2253 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2254 {
2255 #define HCLGEVF_STATE_ALIVE 1
2256 #define HCLGEVF_STATE_NOT_ALIVE 0
2257
2258 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2259 struct hclge_vf_to_pf_msg send_msg;
2260
2261 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2262 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2263 HCLGEVF_STATE_NOT_ALIVE;
2264 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2265 }
2266
hclgevf_client_start(struct hnae3_handle * handle)2267 static int hclgevf_client_start(struct hnae3_handle *handle)
2268 {
2269 return hclgevf_set_alive(handle, true);
2270 }
2271
hclgevf_client_stop(struct hnae3_handle * handle)2272 static void hclgevf_client_stop(struct hnae3_handle *handle)
2273 {
2274 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2275 int ret;
2276
2277 ret = hclgevf_set_alive(handle, false);
2278 if (ret)
2279 dev_warn(&hdev->pdev->dev,
2280 "%s failed %d\n", __func__, ret);
2281 }
2282
hclgevf_state_init(struct hclgevf_dev * hdev)2283 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2284 {
2285 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2286 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2287 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2288
2289 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2290
2291 mutex_init(&hdev->mbx_resp.mbx_mutex);
2292 sema_init(&hdev->reset_sem, 1);
2293
2294 spin_lock_init(&hdev->mac_table.mac_list_lock);
2295 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2296 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2297
2298 /* bring the device down */
2299 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2300 }
2301
hclgevf_state_uninit(struct hclgevf_dev * hdev)2302 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2303 {
2304 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2305 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2306
2307 if (hdev->service_task.work.func)
2308 cancel_delayed_work_sync(&hdev->service_task);
2309
2310 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2311 }
2312
hclgevf_init_msi(struct hclgevf_dev * hdev)2313 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2314 {
2315 struct pci_dev *pdev = hdev->pdev;
2316 int vectors;
2317 int i;
2318
2319 if (hnae3_dev_roce_supported(hdev))
2320 vectors = pci_alloc_irq_vectors(pdev,
2321 hdev->roce_base_msix_offset + 1,
2322 hdev->num_msi,
2323 PCI_IRQ_MSIX);
2324 else
2325 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2326 hdev->num_msi,
2327 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2328
2329 if (vectors < 0) {
2330 dev_err(&pdev->dev,
2331 "failed(%d) to allocate MSI/MSI-X vectors\n",
2332 vectors);
2333 return vectors;
2334 }
2335 if (vectors < hdev->num_msi)
2336 dev_warn(&hdev->pdev->dev,
2337 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2338 hdev->num_msi, vectors);
2339
2340 hdev->num_msi = vectors;
2341 hdev->num_msi_left = vectors;
2342
2343 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2344 sizeof(u16), GFP_KERNEL);
2345 if (!hdev->vector_status) {
2346 pci_free_irq_vectors(pdev);
2347 return -ENOMEM;
2348 }
2349
2350 for (i = 0; i < hdev->num_msi; i++)
2351 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2352
2353 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2354 sizeof(int), GFP_KERNEL);
2355 if (!hdev->vector_irq) {
2356 devm_kfree(&pdev->dev, hdev->vector_status);
2357 pci_free_irq_vectors(pdev);
2358 return -ENOMEM;
2359 }
2360
2361 return 0;
2362 }
2363
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2364 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2365 {
2366 struct pci_dev *pdev = hdev->pdev;
2367
2368 devm_kfree(&pdev->dev, hdev->vector_status);
2369 devm_kfree(&pdev->dev, hdev->vector_irq);
2370 pci_free_irq_vectors(pdev);
2371 }
2372
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2373 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2374 {
2375 int ret;
2376
2377 hclgevf_get_misc_vector(hdev);
2378
2379 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2380 HCLGEVF_NAME, pci_name(hdev->pdev));
2381 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2382 0, hdev->misc_vector.name, hdev);
2383 if (ret) {
2384 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2385 hdev->misc_vector.vector_irq);
2386 return ret;
2387 }
2388
2389 hclgevf_clear_event_cause(hdev, 0);
2390
2391 /* enable misc. vector(vector 0) */
2392 hclgevf_enable_vector(&hdev->misc_vector, true);
2393
2394 return ret;
2395 }
2396
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2397 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2398 {
2399 /* disable misc vector(vector 0) */
2400 hclgevf_enable_vector(&hdev->misc_vector, false);
2401 synchronize_irq(hdev->misc_vector.vector_irq);
2402 free_irq(hdev->misc_vector.vector_irq, hdev);
2403 hclgevf_free_vector(hdev, 0);
2404 }
2405
hclgevf_info_show(struct hclgevf_dev * hdev)2406 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2407 {
2408 struct device *dev = &hdev->pdev->dev;
2409
2410 dev_info(dev, "VF info begin:\n");
2411
2412 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2413 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2414 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2415 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2416 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2417 dev_info(dev, "PF media type of this VF: %u\n",
2418 hdev->hw.mac.media_type);
2419
2420 dev_info(dev, "VF info end.\n");
2421 }
2422
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2423 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2424 struct hnae3_client *client)
2425 {
2426 struct hclgevf_dev *hdev = ae_dev->priv;
2427 int rst_cnt = hdev->rst_stats.rst_cnt;
2428 int ret;
2429
2430 ret = client->ops->init_instance(&hdev->nic);
2431 if (ret)
2432 return ret;
2433
2434 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2435 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2436 rst_cnt != hdev->rst_stats.rst_cnt) {
2437 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2438
2439 client->ops->uninit_instance(&hdev->nic, 0);
2440 return -EBUSY;
2441 }
2442
2443 hnae3_set_client_init_flag(client, ae_dev, 1);
2444
2445 if (netif_msg_drv(&hdev->nic))
2446 hclgevf_info_show(hdev);
2447
2448 return 0;
2449 }
2450
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2451 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2452 struct hnae3_client *client)
2453 {
2454 struct hclgevf_dev *hdev = ae_dev->priv;
2455 int ret;
2456
2457 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2458 !hdev->nic_client)
2459 return 0;
2460
2461 ret = hclgevf_init_roce_base_info(hdev);
2462 if (ret)
2463 return ret;
2464
2465 ret = client->ops->init_instance(&hdev->roce);
2466 if (ret)
2467 return ret;
2468
2469 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2470 hnae3_set_client_init_flag(client, ae_dev, 1);
2471
2472 return 0;
2473 }
2474
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2475 static int hclgevf_init_client_instance(struct hnae3_client *client,
2476 struct hnae3_ae_dev *ae_dev)
2477 {
2478 struct hclgevf_dev *hdev = ae_dev->priv;
2479 int ret;
2480
2481 switch (client->type) {
2482 case HNAE3_CLIENT_KNIC:
2483 hdev->nic_client = client;
2484 hdev->nic.client = client;
2485
2486 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2487 if (ret)
2488 goto clear_nic;
2489
2490 ret = hclgevf_init_roce_client_instance(ae_dev,
2491 hdev->roce_client);
2492 if (ret)
2493 goto clear_roce;
2494
2495 break;
2496 case HNAE3_CLIENT_ROCE:
2497 if (hnae3_dev_roce_supported(hdev)) {
2498 hdev->roce_client = client;
2499 hdev->roce.client = client;
2500 }
2501
2502 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2503 if (ret)
2504 goto clear_roce;
2505
2506 break;
2507 default:
2508 return -EINVAL;
2509 }
2510
2511 return 0;
2512
2513 clear_nic:
2514 hdev->nic_client = NULL;
2515 hdev->nic.client = NULL;
2516 return ret;
2517 clear_roce:
2518 hdev->roce_client = NULL;
2519 hdev->roce.client = NULL;
2520 return ret;
2521 }
2522
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2523 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2524 struct hnae3_ae_dev *ae_dev)
2525 {
2526 struct hclgevf_dev *hdev = ae_dev->priv;
2527
2528 /* un-init roce, if it exists */
2529 if (hdev->roce_client) {
2530 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2531 msleep(HCLGEVF_WAIT_RESET_DONE);
2532 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2533
2534 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2535 hdev->roce_client = NULL;
2536 hdev->roce.client = NULL;
2537 }
2538
2539 /* un-init nic/unic, if this was not called by roce client */
2540 if (client->ops->uninit_instance && hdev->nic_client &&
2541 client->type != HNAE3_CLIENT_ROCE) {
2542 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2543 msleep(HCLGEVF_WAIT_RESET_DONE);
2544 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2545
2546 client->ops->uninit_instance(&hdev->nic, 0);
2547 hdev->nic_client = NULL;
2548 hdev->nic.client = NULL;
2549 }
2550 }
2551
hclgevf_dev_mem_map(struct hclgevf_dev * hdev)2552 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2553 {
2554 struct pci_dev *pdev = hdev->pdev;
2555 struct hclgevf_hw *hw = &hdev->hw;
2556
2557 /* for device does not have device memory, return directly */
2558 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2559 return 0;
2560
2561 hw->hw.mem_base =
2562 devm_ioremap_wc(&pdev->dev,
2563 pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2564 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2565 if (!hw->hw.mem_base) {
2566 dev_err(&pdev->dev, "failed to map device memory\n");
2567 return -EFAULT;
2568 }
2569
2570 return 0;
2571 }
2572
hclgevf_pci_init(struct hclgevf_dev * hdev)2573 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2574 {
2575 struct pci_dev *pdev = hdev->pdev;
2576 struct hclgevf_hw *hw;
2577 int ret;
2578
2579 ret = pci_enable_device(pdev);
2580 if (ret) {
2581 dev_err(&pdev->dev, "failed to enable PCI device\n");
2582 return ret;
2583 }
2584
2585 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2586 if (ret) {
2587 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2588 goto err_disable_device;
2589 }
2590
2591 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2592 if (ret) {
2593 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2594 goto err_disable_device;
2595 }
2596
2597 pci_set_master(pdev);
2598 hw = &hdev->hw;
2599 hw->hw.io_base = pci_iomap(pdev, 2, 0);
2600 if (!hw->hw.io_base) {
2601 dev_err(&pdev->dev, "can't map configuration register space\n");
2602 ret = -ENOMEM;
2603 goto err_release_regions;
2604 }
2605
2606 ret = hclgevf_dev_mem_map(hdev);
2607 if (ret)
2608 goto err_unmap_io_base;
2609
2610 return 0;
2611
2612 err_unmap_io_base:
2613 pci_iounmap(pdev, hdev->hw.hw.io_base);
2614 err_release_regions:
2615 pci_release_regions(pdev);
2616 err_disable_device:
2617 pci_disable_device(pdev);
2618
2619 return ret;
2620 }
2621
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2622 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2623 {
2624 struct pci_dev *pdev = hdev->pdev;
2625
2626 if (hdev->hw.hw.mem_base)
2627 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2628
2629 pci_iounmap(pdev, hdev->hw.hw.io_base);
2630 pci_release_regions(pdev);
2631 pci_disable_device(pdev);
2632 }
2633
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2634 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2635 {
2636 struct hclgevf_query_res_cmd *req;
2637 struct hclge_desc desc;
2638 int ret;
2639
2640 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2641 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2642 if (ret) {
2643 dev_err(&hdev->pdev->dev,
2644 "query vf resource failed, ret = %d.\n", ret);
2645 return ret;
2646 }
2647
2648 req = (struct hclgevf_query_res_cmd *)desc.data;
2649
2650 if (hnae3_dev_roce_supported(hdev)) {
2651 hdev->roce_base_msix_offset =
2652 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2653 HCLGEVF_MSIX_OFT_ROCEE_M,
2654 HCLGEVF_MSIX_OFT_ROCEE_S);
2655 hdev->num_roce_msix =
2656 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2657 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2658
2659 /* nic's msix numbers is always equals to the roce's. */
2660 hdev->num_nic_msix = hdev->num_roce_msix;
2661
2662 /* VF should have NIC vectors and Roce vectors, NIC vectors
2663 * are queued before Roce vectors. The offset is fixed to 64.
2664 */
2665 hdev->num_msi = hdev->num_roce_msix +
2666 hdev->roce_base_msix_offset;
2667 } else {
2668 hdev->num_msi =
2669 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2670 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2671
2672 hdev->num_nic_msix = hdev->num_msi;
2673 }
2674
2675 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2676 dev_err(&hdev->pdev->dev,
2677 "Just %u msi resources, not enough for vf(min:2).\n",
2678 hdev->num_nic_msix);
2679 return -EINVAL;
2680 }
2681
2682 return 0;
2683 }
2684
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)2685 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2686 {
2687 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
2688
2689 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2690
2691 ae_dev->dev_specs.max_non_tso_bd_num =
2692 HCLGEVF_MAX_NON_TSO_BD_NUM;
2693 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2694 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2695 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2696 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2697 }
2698
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclge_desc * desc)2699 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2700 struct hclge_desc *desc)
2701 {
2702 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2703 struct hclgevf_dev_specs_0_cmd *req0;
2704 struct hclgevf_dev_specs_1_cmd *req1;
2705
2706 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2707 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2708
2709 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2710 ae_dev->dev_specs.rss_ind_tbl_size =
2711 le16_to_cpu(req0->rss_ind_tbl_size);
2712 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2713 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2714 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2715 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2716 }
2717
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)2718 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2719 {
2720 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2721
2722 if (!dev_specs->max_non_tso_bd_num)
2723 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2724 if (!dev_specs->rss_ind_tbl_size)
2725 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2726 if (!dev_specs->rss_key_size)
2727 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2728 if (!dev_specs->max_int_gl)
2729 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2730 if (!dev_specs->max_frm_size)
2731 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2732 }
2733
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)2734 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2735 {
2736 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2737 int ret;
2738 int i;
2739
2740 /* set default specifications as devices lower than version V3 do not
2741 * support querying specifications from firmware.
2742 */
2743 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2744 hclgevf_set_default_dev_specs(hdev);
2745 return 0;
2746 }
2747
2748 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2749 hclgevf_cmd_setup_basic_desc(&desc[i],
2750 HCLGE_OPC_QUERY_DEV_SPECS, true);
2751 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2752 }
2753 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2754
2755 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2756 if (ret)
2757 return ret;
2758
2759 hclgevf_parse_dev_specs(hdev, desc);
2760 hclgevf_check_dev_specs(hdev);
2761
2762 return 0;
2763 }
2764
hclgevf_pci_reset(struct hclgevf_dev * hdev)2765 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2766 {
2767 struct pci_dev *pdev = hdev->pdev;
2768 int ret = 0;
2769
2770 if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2771 hdev->reset_type == HNAE3_FLR_RESET) &&
2772 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2773 hclgevf_misc_irq_uninit(hdev);
2774 hclgevf_uninit_msi(hdev);
2775 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2776 }
2777
2778 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2779 pci_set_master(pdev);
2780 ret = hclgevf_init_msi(hdev);
2781 if (ret) {
2782 dev_err(&pdev->dev,
2783 "failed(%d) to init MSI/MSI-X\n", ret);
2784 return ret;
2785 }
2786
2787 ret = hclgevf_misc_irq_init(hdev);
2788 if (ret) {
2789 hclgevf_uninit_msi(hdev);
2790 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2791 ret);
2792 return ret;
2793 }
2794
2795 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2796 }
2797
2798 return ret;
2799 }
2800
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)2801 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2802 {
2803 struct hclge_vf_to_pf_msg send_msg;
2804
2805 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2806 HCLGE_MBX_VPORT_LIST_CLEAR);
2807 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2808 }
2809
hclgevf_init_rxd_adv_layout(struct hclgevf_dev * hdev)2810 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2811 {
2812 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2813 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2814 }
2815
hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev * hdev)2816 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2817 {
2818 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2819 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2820 }
2821
hclgevf_reset_hdev(struct hclgevf_dev * hdev)2822 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2823 {
2824 struct pci_dev *pdev = hdev->pdev;
2825 int ret;
2826
2827 ret = hclgevf_pci_reset(hdev);
2828 if (ret) {
2829 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2830 return ret;
2831 }
2832
2833 hclgevf_arq_init(hdev);
2834
2835 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2836 &hdev->fw_version, false,
2837 hdev->reset_pending);
2838 if (ret) {
2839 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2840 return ret;
2841 }
2842
2843 ret = hclgevf_rss_init_hw(hdev);
2844 if (ret) {
2845 dev_err(&hdev->pdev->dev,
2846 "failed(%d) to initialize RSS\n", ret);
2847 return ret;
2848 }
2849
2850 ret = hclgevf_config_gro(hdev);
2851 if (ret)
2852 return ret;
2853
2854 ret = hclgevf_init_vlan_config(hdev);
2855 if (ret) {
2856 dev_err(&hdev->pdev->dev,
2857 "failed(%d) to initialize VLAN config\n", ret);
2858 return ret;
2859 }
2860
2861 /* get current port based vlan state from PF */
2862 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2863 if (ret)
2864 return ret;
2865
2866 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2867
2868 hclgevf_init_rxd_adv_layout(hdev);
2869
2870 dev_info(&hdev->pdev->dev, "Reset done\n");
2871
2872 return 0;
2873 }
2874
hclgevf_init_hdev(struct hclgevf_dev * hdev)2875 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2876 {
2877 struct pci_dev *pdev = hdev->pdev;
2878 int ret;
2879
2880 ret = hclgevf_pci_init(hdev);
2881 if (ret)
2882 return ret;
2883
2884 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2885 if (ret)
2886 goto err_cmd_queue_init;
2887
2888 hclgevf_arq_init(hdev);
2889
2890 hclge_comm_cmd_init_ops(&hdev->hw.hw, &hclgevf_cmq_ops);
2891 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2892 &hdev->fw_version, false,
2893 hdev->reset_pending);
2894 if (ret)
2895 goto err_cmd_init;
2896
2897 /* Get vf resource */
2898 ret = hclgevf_query_vf_resource(hdev);
2899 if (ret)
2900 goto err_cmd_init;
2901
2902 ret = hclgevf_query_dev_specs(hdev);
2903 if (ret) {
2904 dev_err(&pdev->dev,
2905 "failed to query dev specifications, ret = %d\n", ret);
2906 goto err_cmd_init;
2907 }
2908
2909 ret = hclgevf_init_msi(hdev);
2910 if (ret) {
2911 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2912 goto err_cmd_init;
2913 }
2914
2915 hclgevf_state_init(hdev);
2916 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2917 hdev->reset_type = HNAE3_NONE_RESET;
2918
2919 ret = hclgevf_misc_irq_init(hdev);
2920 if (ret)
2921 goto err_misc_irq_init;
2922
2923 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2924
2925 ret = hclgevf_configure(hdev);
2926 if (ret) {
2927 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2928 goto err_config;
2929 }
2930
2931 ret = hclgevf_alloc_tqps(hdev);
2932 if (ret) {
2933 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2934 goto err_config;
2935 }
2936
2937 ret = hclgevf_set_handle_info(hdev);
2938 if (ret)
2939 goto err_config;
2940
2941 ret = hclgevf_config_gro(hdev);
2942 if (ret)
2943 goto err_config;
2944
2945 /* Initialize RSS for this VF */
2946 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2947 &hdev->rss_cfg);
2948 if (ret) {
2949 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2950 goto err_config;
2951 }
2952
2953 ret = hclgevf_rss_init_hw(hdev);
2954 if (ret) {
2955 dev_err(&hdev->pdev->dev,
2956 "failed(%d) to initialize RSS\n", ret);
2957 goto err_config;
2958 }
2959
2960 /* ensure vf tbl list as empty before init */
2961 ret = hclgevf_clear_vport_list(hdev);
2962 if (ret) {
2963 dev_err(&pdev->dev,
2964 "failed to clear tbl list configuration, ret = %d.\n",
2965 ret);
2966 goto err_config;
2967 }
2968
2969 ret = hclgevf_init_vlan_config(hdev);
2970 if (ret) {
2971 dev_err(&hdev->pdev->dev,
2972 "failed(%d) to initialize VLAN config\n", ret);
2973 goto err_config;
2974 }
2975
2976 hclgevf_init_rxd_adv_layout(hdev);
2977
2978 ret = hclgevf_devlink_init(hdev);
2979 if (ret)
2980 goto err_config;
2981
2982 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2983
2984 hdev->last_reset_time = jiffies;
2985 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2986 HCLGEVF_DRIVER_NAME);
2987
2988 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2989 timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
2990
2991 return 0;
2992
2993 err_config:
2994 hclgevf_misc_irq_uninit(hdev);
2995 err_misc_irq_init:
2996 hclgevf_state_uninit(hdev);
2997 hclgevf_uninit_msi(hdev);
2998 err_cmd_init:
2999 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3000 err_cmd_queue_init:
3001 hclgevf_pci_uninit(hdev);
3002 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3003 return ret;
3004 }
3005
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3006 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3007 {
3008 struct hclge_vf_to_pf_msg send_msg;
3009
3010 hclgevf_state_uninit(hdev);
3011 hclgevf_uninit_rxd_adv_layout(hdev);
3012
3013 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3014 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3015
3016 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3017 hclgevf_misc_irq_uninit(hdev);
3018 hclgevf_uninit_msi(hdev);
3019 }
3020
3021 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3022 hclgevf_devlink_uninit(hdev);
3023 hclgevf_pci_uninit(hdev);
3024 hclgevf_uninit_mac_list(hdev);
3025 }
3026
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3027 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3028 {
3029 struct pci_dev *pdev = ae_dev->pdev;
3030 int ret;
3031
3032 ret = hclgevf_alloc_hdev(ae_dev);
3033 if (ret) {
3034 dev_err(&pdev->dev, "hclge device allocation failed\n");
3035 return ret;
3036 }
3037
3038 ret = hclgevf_init_hdev(ae_dev->priv);
3039 if (ret) {
3040 dev_err(&pdev->dev, "hclge device initialization failed\n");
3041 return ret;
3042 }
3043
3044 return 0;
3045 }
3046
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3047 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3048 {
3049 struct hclgevf_dev *hdev = ae_dev->priv;
3050
3051 hclgevf_uninit_hdev(hdev);
3052 ae_dev->priv = NULL;
3053 }
3054
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3055 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3056 {
3057 struct hnae3_handle *nic = &hdev->nic;
3058 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3059
3060 return min_t(u32, hdev->rss_size_max,
3061 hdev->num_tqps / kinfo->tc_info.num_tc);
3062 }
3063
3064 /**
3065 * hclgevf_get_channels - Get the current channels enabled and max supported.
3066 * @handle: hardware information for network interface
3067 * @ch: ethtool channels structure
3068 *
3069 * We don't support separate tx and rx queues as channels. The other count
3070 * represents how many queues are being used for control. max_combined counts
3071 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3072 * q_vectors since we support a lot more queue pairs than q_vectors.
3073 **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3074 static void hclgevf_get_channels(struct hnae3_handle *handle,
3075 struct ethtool_channels *ch)
3076 {
3077 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3078
3079 ch->max_combined = hclgevf_get_max_channels(hdev);
3080 ch->other_count = 0;
3081 ch->max_other = 0;
3082 ch->combined_count = handle->kinfo.rss_size;
3083 }
3084
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3085 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3086 u16 *alloc_tqps, u16 *max_rss_size)
3087 {
3088 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3089
3090 *alloc_tqps = hdev->num_tqps;
3091 *max_rss_size = hdev->rss_size_max;
3092 }
3093
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3094 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3095 u32 new_tqps_num)
3096 {
3097 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3098 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3099 u16 max_rss_size;
3100
3101 kinfo->req_rss_size = new_tqps_num;
3102
3103 max_rss_size = min_t(u16, hdev->rss_size_max,
3104 hdev->num_tqps / kinfo->tc_info.num_tc);
3105
3106 /* Use the user's configuration when it is not larger than
3107 * max_rss_size, otherwise, use the maximum specification value.
3108 */
3109 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3110 kinfo->req_rss_size <= max_rss_size)
3111 kinfo->rss_size = kinfo->req_rss_size;
3112 else if (kinfo->rss_size > max_rss_size ||
3113 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3114 kinfo->rss_size = max_rss_size;
3115
3116 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3117 }
3118
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3119 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3120 bool rxfh_configured)
3121 {
3122 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3123 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3124 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3125 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3126 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3127 u16 cur_rss_size = kinfo->rss_size;
3128 u16 cur_tqps = kinfo->num_tqps;
3129 u32 *rss_indir;
3130 unsigned int i;
3131 int ret;
3132
3133 hclgevf_update_rss_size(handle, new_tqps_num);
3134
3135 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3136 tc_offset, tc_valid, tc_size);
3137 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3138 tc_valid, tc_size);
3139 if (ret)
3140 return ret;
3141
3142 /* RSS indirection table has been configured by user */
3143 if (rxfh_configured)
3144 goto out;
3145
3146 /* Reinitializes the rss indirect table according to the new RSS size */
3147 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3148 sizeof(u32), GFP_KERNEL);
3149 if (!rss_indir)
3150 return -ENOMEM;
3151
3152 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3153 rss_indir[i] = i % kinfo->rss_size;
3154
3155 hdev->rss_cfg.rss_size = kinfo->rss_size;
3156
3157 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3158 if (ret)
3159 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3160 ret);
3161
3162 kfree(rss_indir);
3163
3164 out:
3165 if (!ret)
3166 dev_info(&hdev->pdev->dev,
3167 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3168 cur_rss_size, kinfo->rss_size,
3169 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3170
3171 return ret;
3172 }
3173
hclgevf_get_status(struct hnae3_handle * handle)3174 static int hclgevf_get_status(struct hnae3_handle *handle)
3175 {
3176 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3177
3178 return hdev->hw.mac.link;
3179 }
3180
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex,u32 * lane_num)3181 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3182 u8 *auto_neg, u32 *speed,
3183 u8 *duplex, u32 *lane_num)
3184 {
3185 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3186
3187 if (speed)
3188 *speed = hdev->hw.mac.speed;
3189 if (duplex)
3190 *duplex = hdev->hw.mac.duplex;
3191 if (auto_neg)
3192 *auto_neg = AUTONEG_DISABLE;
3193 }
3194
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3195 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3196 u8 duplex)
3197 {
3198 hdev->hw.mac.speed = speed;
3199 hdev->hw.mac.duplex = duplex;
3200 }
3201
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3202 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3203 {
3204 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3205 bool gro_en_old = hdev->gro_en;
3206 int ret;
3207
3208 hdev->gro_en = enable;
3209 ret = hclgevf_config_gro(hdev);
3210 if (ret)
3211 hdev->gro_en = gro_en_old;
3212
3213 return ret;
3214 }
3215
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3216 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3217 u8 *module_type)
3218 {
3219 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3220
3221 if (media_type)
3222 *media_type = hdev->hw.mac.media_type;
3223
3224 if (module_type)
3225 *module_type = hdev->hw.mac.module_type;
3226 }
3227
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3228 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3229 {
3230 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3231
3232 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3233 }
3234
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3235 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3236 {
3237 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3238
3239 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3240 }
3241
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3242 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3243 {
3244 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3245
3246 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3247 }
3248
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3249 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3250 {
3251 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3252
3253 return hdev->rst_stats.hw_rst_done_cnt;
3254 }
3255
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3256 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3257 unsigned long *supported,
3258 unsigned long *advertising)
3259 {
3260 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3261
3262 *supported = hdev->hw.mac.supported;
3263 *advertising = hdev->hw.mac.advertising;
3264 }
3265
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,struct hclge_mbx_port_base_vlan * port_base_vlan)3266 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3267 struct hclge_mbx_port_base_vlan *port_base_vlan)
3268 {
3269 struct hnae3_handle *nic = &hdev->nic;
3270 struct hclge_vf_to_pf_msg send_msg;
3271 int ret;
3272
3273 rtnl_lock();
3274
3275 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3276 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3277 dev_warn(&hdev->pdev->dev,
3278 "is resetting when updating port based vlan info\n");
3279 rtnl_unlock();
3280 return;
3281 }
3282
3283 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3284 if (ret) {
3285 rtnl_unlock();
3286 return;
3287 }
3288
3289 /* send msg to PF and wait update port based vlan info */
3290 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3291 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3292 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3293 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3294 if (!ret) {
3295 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3296 nic->port_base_vlan_state = state;
3297 else
3298 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3299 }
3300
3301 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3302 rtnl_unlock();
3303 }
3304
3305 static const struct hnae3_ae_ops hclgevf_ops = {
3306 .init_ae_dev = hclgevf_init_ae_dev,
3307 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3308 .reset_prepare = hclgevf_reset_prepare_general,
3309 .reset_done = hclgevf_reset_done,
3310 .init_client_instance = hclgevf_init_client_instance,
3311 .uninit_client_instance = hclgevf_uninit_client_instance,
3312 .start = hclgevf_ae_start,
3313 .stop = hclgevf_ae_stop,
3314 .client_start = hclgevf_client_start,
3315 .client_stop = hclgevf_client_stop,
3316 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3317 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3318 .get_vector = hclgevf_get_vector,
3319 .put_vector = hclgevf_put_vector,
3320 .reset_queue = hclgevf_reset_tqp,
3321 .get_mac_addr = hclgevf_get_mac_addr,
3322 .set_mac_addr = hclgevf_set_mac_addr,
3323 .add_uc_addr = hclgevf_add_uc_addr,
3324 .rm_uc_addr = hclgevf_rm_uc_addr,
3325 .add_mc_addr = hclgevf_add_mc_addr,
3326 .rm_mc_addr = hclgevf_rm_mc_addr,
3327 .get_stats = hclgevf_get_stats,
3328 .update_stats = hclgevf_update_stats,
3329 .get_strings = hclgevf_get_strings,
3330 .get_sset_count = hclgevf_get_sset_count,
3331 .get_rss_key_size = hclge_comm_get_rss_key_size,
3332 .get_rss = hclgevf_get_rss,
3333 .set_rss = hclgevf_set_rss,
3334 .get_rss_tuple = hclgevf_get_rss_tuple,
3335 .set_rss_tuple = hclgevf_set_rss_tuple,
3336 .get_tc_size = hclgevf_get_tc_size,
3337 .get_fw_version = hclgevf_get_fw_version,
3338 .set_vlan_filter = hclgevf_set_vlan_filter,
3339 .enable_vlan_filter = hclgevf_enable_vlan_filter,
3340 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3341 .reset_event = hclgevf_reset_event,
3342 .set_default_reset_request = hclgevf_set_def_reset_request,
3343 .set_channels = hclgevf_set_channels,
3344 .get_channels = hclgevf_get_channels,
3345 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3346 .get_regs_len = hclgevf_get_regs_len,
3347 .get_regs = hclgevf_get_regs,
3348 .get_status = hclgevf_get_status,
3349 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3350 .get_media_type = hclgevf_get_media_type,
3351 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3352 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3353 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3354 .set_gro_en = hclgevf_gro_en,
3355 .set_mtu = hclgevf_set_mtu,
3356 .get_global_queue_id = hclgevf_get_qid_global,
3357 .set_timer_task = hclgevf_set_timer_task,
3358 .get_link_mode = hclgevf_get_link_mode,
3359 .set_promisc_mode = hclgevf_set_promisc_mode,
3360 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3361 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3362 };
3363
3364 static struct hnae3_ae_algo ae_algovf = {
3365 .ops = &hclgevf_ops,
3366 .pdev_id_table = ae_algovf_pci_tbl,
3367 };
3368
hclgevf_init(void)3369 static int __init hclgevf_init(void)
3370 {
3371 pr_info("%s is initializing\n", HCLGEVF_NAME);
3372
3373 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3374 if (!hclgevf_wq) {
3375 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3376 return -ENOMEM;
3377 }
3378
3379 hnae3_register_ae_algo(&ae_algovf);
3380
3381 return 0;
3382 }
3383
hclgevf_exit(void)3384 static void __exit hclgevf_exit(void)
3385 {
3386 hnae3_unregister_ae_algo(&ae_algovf);
3387 destroy_workqueue(hclgevf_wq);
3388 }
3389 module_init(hclgevf_init);
3390 module_exit(hclgevf_exit);
3391
3392 MODULE_LICENSE("GPL");
3393 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3394 MODULE_DESCRIPTION("HCLGEVF Driver");
3395 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3396