1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 /* Free the request command so it is not used as response */ 35 kfree_skb(hdev->req_skb); 36 hdev->req_skb = NULL; 37 38 if (skb) { 39 struct sock *sk = hci_skb_sk(skb); 40 41 /* Drop sk reference if set */ 42 if (sk) 43 sock_put(sk); 44 45 hdev->req_rsp = skb_get(skb); 46 } 47 48 wake_up_interruptible(&hdev->req_wait_q); 49 } 50 51 struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen, 52 const void *param, struct sock *sk) 53 { 54 int len = HCI_COMMAND_HDR_SIZE + plen; 55 struct hci_command_hdr *hdr; 56 struct sk_buff *skb; 57 58 skb = bt_skb_alloc(len, GFP_ATOMIC); 59 if (!skb) 60 return NULL; 61 62 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 63 hdr->opcode = cpu_to_le16(opcode); 64 hdr->plen = plen; 65 66 if (plen) 67 skb_put_data(skb, param, plen); 68 69 bt_dev_dbg(hdev, "skb len %d", skb->len); 70 71 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 72 hci_skb_opcode(skb) = opcode; 73 74 /* Grab a reference if command needs to be associated with a sock (e.g. 75 * likely mgmt socket that initiated the command). 76 */ 77 if (sk) { 78 hci_skb_sk(skb) = sk; 79 sock_hold(sk); 80 } 81 82 return skb; 83 } 84 85 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 86 const void *param, u8 event, struct sock *sk) 87 { 88 struct hci_dev *hdev = req->hdev; 89 struct sk_buff *skb; 90 91 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 92 93 /* If an error occurred during request building, there is no point in 94 * queueing the HCI command. We can simply return. 95 */ 96 if (req->err) 97 return; 98 99 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 100 if (!skb) { 101 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 102 opcode); 103 req->err = -ENOMEM; 104 return; 105 } 106 107 if (skb_queue_empty(&req->cmd_q)) 108 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 109 110 hci_skb_event(skb) = event; 111 112 skb_queue_tail(&req->cmd_q, skb); 113 } 114 115 static int hci_req_sync_run(struct hci_request *req) 116 { 117 struct hci_dev *hdev = req->hdev; 118 struct sk_buff *skb; 119 unsigned long flags; 120 121 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 122 123 /* If an error occurred during request building, remove all HCI 124 * commands queued on the HCI request queue. 125 */ 126 if (req->err) { 127 skb_queue_purge(&req->cmd_q); 128 return req->err; 129 } 130 131 /* Do not allow empty requests */ 132 if (skb_queue_empty(&req->cmd_q)) 133 return -ENODATA; 134 135 skb = skb_peek_tail(&req->cmd_q); 136 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 137 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 138 139 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 140 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 141 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 142 143 queue_work(hdev->workqueue, &hdev->cmd_work); 144 145 return 0; 146 } 147 148 static void hci_request_init(struct hci_request *req, struct hci_dev *hdev) 149 { 150 skb_queue_head_init(&req->cmd_q); 151 req->hdev = hdev; 152 req->err = 0; 153 } 154 155 /* This function requires the caller holds hdev->req_lock. */ 156 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 157 const void *param, u8 event, u32 timeout, 158 struct sock *sk) 159 { 160 struct hci_request req; 161 struct sk_buff *skb; 162 int err = 0; 163 164 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 165 166 hci_request_init(&req, hdev); 167 168 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 169 170 hdev->req_status = HCI_REQ_PEND; 171 172 err = hci_req_sync_run(&req); 173 if (err < 0) 174 return ERR_PTR(err); 175 176 err = wait_event_interruptible_timeout(hdev->req_wait_q, 177 hdev->req_status != HCI_REQ_PEND, 178 timeout); 179 180 if (err == -ERESTARTSYS) 181 return ERR_PTR(-EINTR); 182 183 switch (hdev->req_status) { 184 case HCI_REQ_DONE: 185 err = -bt_to_errno(hdev->req_result); 186 break; 187 188 case HCI_REQ_CANCELED: 189 err = -hdev->req_result; 190 break; 191 192 default: 193 err = -ETIMEDOUT; 194 break; 195 } 196 197 hdev->req_status = 0; 198 hdev->req_result = 0; 199 skb = hdev->req_rsp; 200 hdev->req_rsp = NULL; 201 202 bt_dev_dbg(hdev, "end: err %d", err); 203 204 if (err < 0) { 205 kfree_skb(skb); 206 return ERR_PTR(err); 207 } 208 209 /* If command return a status event skb will be set to NULL as there are 210 * no parameters. 211 */ 212 if (!skb) 213 return ERR_PTR(-ENODATA); 214 215 return skb; 216 } 217 EXPORT_SYMBOL(__hci_cmd_sync_sk); 218 219 /* This function requires the caller holds hdev->req_lock. */ 220 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 221 const void *param, u32 timeout) 222 { 223 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 224 } 225 EXPORT_SYMBOL(__hci_cmd_sync); 226 227 /* Send HCI command and wait for command complete event */ 228 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 229 const void *param, u32 timeout) 230 { 231 struct sk_buff *skb; 232 233 if (!test_bit(HCI_UP, &hdev->flags)) 234 return ERR_PTR(-ENETDOWN); 235 236 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 237 238 hci_req_sync_lock(hdev); 239 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 240 hci_req_sync_unlock(hdev); 241 242 return skb; 243 } 244 EXPORT_SYMBOL(hci_cmd_sync); 245 246 /* This function requires the caller holds hdev->req_lock. */ 247 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 248 const void *param, u8 event, u32 timeout) 249 { 250 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 251 NULL); 252 } 253 EXPORT_SYMBOL(__hci_cmd_sync_ev); 254 255 /* This function requires the caller holds hdev->req_lock. */ 256 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 257 const void *param, u8 event, u32 timeout, 258 struct sock *sk) 259 { 260 struct sk_buff *skb; 261 u8 status; 262 263 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 264 265 /* If command return a status event, skb will be set to -ENODATA */ 266 if (skb == ERR_PTR(-ENODATA)) 267 return 0; 268 269 if (IS_ERR(skb)) { 270 if (!event) 271 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 272 PTR_ERR(skb)); 273 return PTR_ERR(skb); 274 } 275 276 status = skb->data[0]; 277 278 kfree_skb(skb); 279 280 return status; 281 } 282 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 283 284 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 285 const void *param, u32 timeout) 286 { 287 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 288 NULL); 289 } 290 EXPORT_SYMBOL(__hci_cmd_sync_status); 291 292 int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 293 const void *param, u32 timeout) 294 { 295 int err; 296 297 hci_req_sync_lock(hdev); 298 err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout); 299 hci_req_sync_unlock(hdev); 300 301 return err; 302 } 303 EXPORT_SYMBOL(hci_cmd_sync_status); 304 305 static void hci_cmd_sync_work(struct work_struct *work) 306 { 307 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 308 309 bt_dev_dbg(hdev, ""); 310 311 /* Dequeue all entries and run them */ 312 while (1) { 313 struct hci_cmd_sync_work_entry *entry; 314 315 mutex_lock(&hdev->cmd_sync_work_lock); 316 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 317 struct hci_cmd_sync_work_entry, 318 list); 319 if (entry) 320 list_del(&entry->list); 321 mutex_unlock(&hdev->cmd_sync_work_lock); 322 323 if (!entry) 324 break; 325 326 bt_dev_dbg(hdev, "entry %p", entry); 327 328 if (entry->func) { 329 int err; 330 331 hci_req_sync_lock(hdev); 332 err = entry->func(hdev, entry->data); 333 if (entry->destroy) 334 entry->destroy(hdev, entry->data, err); 335 hci_req_sync_unlock(hdev); 336 } 337 338 kfree(entry); 339 } 340 } 341 342 static void hci_cmd_sync_cancel_work(struct work_struct *work) 343 { 344 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 345 346 cancel_delayed_work_sync(&hdev->cmd_timer); 347 cancel_delayed_work_sync(&hdev->ncmd_timer); 348 atomic_set(&hdev->cmd_cnt, 1); 349 350 wake_up_interruptible(&hdev->req_wait_q); 351 } 352 353 static int hci_scan_disable_sync(struct hci_dev *hdev); 354 static int scan_disable_sync(struct hci_dev *hdev, void *data) 355 { 356 return hci_scan_disable_sync(hdev); 357 } 358 359 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 360 { 361 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0); 362 } 363 364 static void le_scan_disable(struct work_struct *work) 365 { 366 struct hci_dev *hdev = container_of(work, struct hci_dev, 367 le_scan_disable.work); 368 int status; 369 370 bt_dev_dbg(hdev, ""); 371 hci_dev_lock(hdev); 372 373 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 374 goto _return; 375 376 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 377 if (status) { 378 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 379 goto _return; 380 } 381 382 /* If we were running LE only scan, change discovery state. If 383 * we were running both LE and BR/EDR inquiry simultaneously, 384 * and BR/EDR inquiry is already finished, stop discovery, 385 * otherwise BR/EDR inquiry will stop discovery when finished. 386 * If we will resolve remote device name, do not change 387 * discovery state. 388 */ 389 390 if (hdev->discovery.type == DISCOV_TYPE_LE) 391 goto discov_stopped; 392 393 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 394 goto _return; 395 396 if (hci_test_quirk(hdev, HCI_QUIRK_SIMULTANEOUS_DISCOVERY)) { 397 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 398 hdev->discovery.state != DISCOVERY_RESOLVING) 399 goto discov_stopped; 400 401 goto _return; 402 } 403 404 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 405 if (status) { 406 bt_dev_err(hdev, "inquiry failed: status %d", status); 407 goto discov_stopped; 408 } 409 410 goto _return; 411 412 discov_stopped: 413 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 414 415 _return: 416 hci_dev_unlock(hdev); 417 } 418 419 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 420 u8 filter_dup); 421 422 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 423 { 424 bt_dev_dbg(hdev, ""); 425 426 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 427 list_empty(&hdev->adv_instances)) 428 return 0; 429 430 if (hdev->cur_adv_instance) { 431 return hci_schedule_adv_instance_sync(hdev, 432 hdev->cur_adv_instance, 433 true); 434 } else { 435 if (ext_adv_capable(hdev)) { 436 hci_start_ext_adv_sync(hdev, 0x00); 437 } else { 438 hci_update_adv_data_sync(hdev, 0x00); 439 hci_update_scan_rsp_data_sync(hdev, 0x00); 440 hci_enable_advertising_sync(hdev); 441 } 442 } 443 444 return 0; 445 } 446 447 static void reenable_adv(struct work_struct *work) 448 { 449 struct hci_dev *hdev = container_of(work, struct hci_dev, 450 reenable_adv_work); 451 int status; 452 453 bt_dev_dbg(hdev, ""); 454 455 hci_dev_lock(hdev); 456 457 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 458 if (status) 459 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 460 461 hci_dev_unlock(hdev); 462 } 463 464 static void cancel_adv_timeout(struct hci_dev *hdev) 465 { 466 if (hdev->adv_instance_timeout) { 467 hdev->adv_instance_timeout = 0; 468 cancel_delayed_work(&hdev->adv_instance_expire); 469 } 470 } 471 472 /* For a single instance: 473 * - force == true: The instance will be removed even when its remaining 474 * lifetime is not zero. 475 * - force == false: the instance will be deactivated but kept stored unless 476 * the remaining lifetime is zero. 477 * 478 * For instance == 0x00: 479 * - force == true: All instances will be removed regardless of their timeout 480 * setting. 481 * - force == false: Only instances that have a timeout will be removed. 482 */ 483 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 484 u8 instance, bool force) 485 { 486 struct adv_info *adv_instance, *n, *next_instance = NULL; 487 int err; 488 u8 rem_inst; 489 490 /* Cancel any timeout concerning the removed instance(s). */ 491 if (!instance || hdev->cur_adv_instance == instance) 492 cancel_adv_timeout(hdev); 493 494 /* Get the next instance to advertise BEFORE we remove 495 * the current one. This can be the same instance again 496 * if there is only one instance. 497 */ 498 if (instance && hdev->cur_adv_instance == instance) 499 next_instance = hci_get_next_instance(hdev, instance); 500 501 if (instance == 0x00) { 502 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 503 list) { 504 if (!(force || adv_instance->timeout)) 505 continue; 506 507 rem_inst = adv_instance->instance; 508 err = hci_remove_adv_instance(hdev, rem_inst); 509 if (!err) 510 mgmt_advertising_removed(sk, hdev, rem_inst); 511 } 512 } else { 513 adv_instance = hci_find_adv_instance(hdev, instance); 514 515 if (force || (adv_instance && adv_instance->timeout && 516 !adv_instance->remaining_time)) { 517 /* Don't advertise a removed instance. */ 518 if (next_instance && 519 next_instance->instance == instance) 520 next_instance = NULL; 521 522 err = hci_remove_adv_instance(hdev, instance); 523 if (!err) 524 mgmt_advertising_removed(sk, hdev, instance); 525 } 526 } 527 528 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 529 return 0; 530 531 if (next_instance && !ext_adv_capable(hdev)) 532 return hci_schedule_adv_instance_sync(hdev, 533 next_instance->instance, 534 false); 535 536 return 0; 537 } 538 539 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 540 { 541 u8 instance = *(u8 *)data; 542 543 kfree(data); 544 545 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 546 547 if (list_empty(&hdev->adv_instances)) 548 return hci_disable_advertising_sync(hdev); 549 550 return 0; 551 } 552 553 static void adv_timeout_expire(struct work_struct *work) 554 { 555 u8 *inst_ptr; 556 struct hci_dev *hdev = container_of(work, struct hci_dev, 557 adv_instance_expire.work); 558 559 bt_dev_dbg(hdev, ""); 560 561 hci_dev_lock(hdev); 562 563 hdev->adv_instance_timeout = 0; 564 565 if (hdev->cur_adv_instance == 0x00) 566 goto unlock; 567 568 inst_ptr = kmalloc(1, GFP_KERNEL); 569 if (!inst_ptr) 570 goto unlock; 571 572 *inst_ptr = hdev->cur_adv_instance; 573 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 574 575 unlock: 576 hci_dev_unlock(hdev); 577 } 578 579 static bool is_interleave_scanning(struct hci_dev *hdev) 580 { 581 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 582 } 583 584 static int hci_passive_scan_sync(struct hci_dev *hdev); 585 586 static void interleave_scan_work(struct work_struct *work) 587 { 588 struct hci_dev *hdev = container_of(work, struct hci_dev, 589 interleave_scan.work); 590 unsigned long timeout; 591 592 if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) { 593 timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration); 594 } else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) { 595 timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration); 596 } else { 597 bt_dev_err(hdev, "unexpected error"); 598 return; 599 } 600 601 hci_passive_scan_sync(hdev); 602 603 hci_dev_lock(hdev); 604 605 switch (hdev->interleave_scan_state) { 606 case INTERLEAVE_SCAN_ALLOWLIST: 607 bt_dev_dbg(hdev, "next state: allowlist"); 608 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 609 break; 610 case INTERLEAVE_SCAN_NO_FILTER: 611 bt_dev_dbg(hdev, "next state: no filter"); 612 hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST; 613 break; 614 case INTERLEAVE_SCAN_NONE: 615 bt_dev_err(hdev, "unexpected error"); 616 } 617 618 hci_dev_unlock(hdev); 619 620 /* Don't continue interleaving if it was canceled */ 621 if (is_interleave_scanning(hdev)) 622 queue_delayed_work(hdev->req_workqueue, 623 &hdev->interleave_scan, timeout); 624 } 625 626 void hci_cmd_sync_init(struct hci_dev *hdev) 627 { 628 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 629 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 630 mutex_init(&hdev->cmd_sync_work_lock); 631 mutex_init(&hdev->unregister_lock); 632 633 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 634 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 635 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 636 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 637 INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work); 638 } 639 640 static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 641 struct hci_cmd_sync_work_entry *entry, 642 int err) 643 { 644 if (entry->destroy) 645 entry->destroy(hdev, entry->data, err); 646 647 list_del(&entry->list); 648 kfree(entry); 649 } 650 651 void hci_cmd_sync_clear(struct hci_dev *hdev) 652 { 653 struct hci_cmd_sync_work_entry *entry, *tmp; 654 655 cancel_work_sync(&hdev->cmd_sync_work); 656 cancel_work_sync(&hdev->reenable_adv_work); 657 658 mutex_lock(&hdev->cmd_sync_work_lock); 659 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) 660 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 661 mutex_unlock(&hdev->cmd_sync_work_lock); 662 } 663 664 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 665 { 666 bt_dev_dbg(hdev, "err 0x%2.2x", err); 667 668 if (hdev->req_status == HCI_REQ_PEND) { 669 hdev->req_result = err; 670 hdev->req_status = HCI_REQ_CANCELED; 671 672 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 673 } 674 } 675 EXPORT_SYMBOL(hci_cmd_sync_cancel); 676 677 /* Cancel ongoing command request synchronously: 678 * 679 * - Set result and mark status to HCI_REQ_CANCELED 680 * - Wakeup command sync thread 681 */ 682 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 683 { 684 bt_dev_dbg(hdev, "err 0x%2.2x", err); 685 686 if (hdev->req_status == HCI_REQ_PEND) { 687 /* req_result is __u32 so error must be positive to be properly 688 * propagated. 689 */ 690 hdev->req_result = err < 0 ? -err : err; 691 hdev->req_status = HCI_REQ_CANCELED; 692 693 wake_up_interruptible(&hdev->req_wait_q); 694 } 695 } 696 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 697 698 /* Submit HCI command to be run in as cmd_sync_work: 699 * 700 * - hdev must _not_ be unregistered 701 */ 702 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 703 void *data, hci_cmd_sync_work_destroy_t destroy) 704 { 705 struct hci_cmd_sync_work_entry *entry; 706 int err = 0; 707 708 mutex_lock(&hdev->unregister_lock); 709 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 710 err = -ENODEV; 711 goto unlock; 712 } 713 714 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 715 if (!entry) { 716 err = -ENOMEM; 717 goto unlock; 718 } 719 entry->func = func; 720 entry->data = data; 721 entry->destroy = destroy; 722 723 mutex_lock(&hdev->cmd_sync_work_lock); 724 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 725 mutex_unlock(&hdev->cmd_sync_work_lock); 726 727 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 728 729 unlock: 730 mutex_unlock(&hdev->unregister_lock); 731 return err; 732 } 733 EXPORT_SYMBOL(hci_cmd_sync_submit); 734 735 /* Queue HCI command: 736 * 737 * - hdev must be running 738 */ 739 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 740 void *data, hci_cmd_sync_work_destroy_t destroy) 741 { 742 /* Only queue command if hdev is running which means it had been opened 743 * and is either on init phase or is already up. 744 */ 745 if (!test_bit(HCI_RUNNING, &hdev->flags)) 746 return -ENETDOWN; 747 748 return hci_cmd_sync_submit(hdev, func, data, destroy); 749 } 750 EXPORT_SYMBOL(hci_cmd_sync_queue); 751 752 static struct hci_cmd_sync_work_entry * 753 _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 754 void *data, hci_cmd_sync_work_destroy_t destroy) 755 { 756 struct hci_cmd_sync_work_entry *entry, *tmp; 757 758 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 759 if (func && entry->func != func) 760 continue; 761 762 if (data && entry->data != data) 763 continue; 764 765 if (destroy && entry->destroy != destroy) 766 continue; 767 768 return entry; 769 } 770 771 return NULL; 772 } 773 774 /* Queue HCI command entry once: 775 * 776 * - Lookup if an entry already exist and only if it doesn't creates a new entry 777 * and queue it. 778 */ 779 int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 780 void *data, hci_cmd_sync_work_destroy_t destroy) 781 { 782 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 783 return 0; 784 785 return hci_cmd_sync_queue(hdev, func, data, destroy); 786 } 787 EXPORT_SYMBOL(hci_cmd_sync_queue_once); 788 789 /* Run HCI command: 790 * 791 * - hdev must be running 792 * - if on cmd_sync_work then run immediately otherwise queue 793 */ 794 int hci_cmd_sync_run(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 795 void *data, hci_cmd_sync_work_destroy_t destroy) 796 { 797 /* Only queue command if hdev is running which means it had been opened 798 * and is either on init phase or is already up. 799 */ 800 if (!test_bit(HCI_RUNNING, &hdev->flags)) 801 return -ENETDOWN; 802 803 /* If on cmd_sync_work then run immediately otherwise queue */ 804 if (current_work() == &hdev->cmd_sync_work) 805 return func(hdev, data); 806 807 return hci_cmd_sync_submit(hdev, func, data, destroy); 808 } 809 EXPORT_SYMBOL(hci_cmd_sync_run); 810 811 /* Run HCI command entry once: 812 * 813 * - Lookup if an entry already exist and only if it doesn't creates a new entry 814 * and run it. 815 * - if on cmd_sync_work then run immediately otherwise queue 816 */ 817 int hci_cmd_sync_run_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 818 void *data, hci_cmd_sync_work_destroy_t destroy) 819 { 820 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 821 return 0; 822 823 return hci_cmd_sync_run(hdev, func, data, destroy); 824 } 825 EXPORT_SYMBOL(hci_cmd_sync_run_once); 826 827 /* Lookup HCI command entry: 828 * 829 * - Return first entry that matches by function callback or data or 830 * destroy callback. 831 */ 832 struct hci_cmd_sync_work_entry * 833 hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 834 void *data, hci_cmd_sync_work_destroy_t destroy) 835 { 836 struct hci_cmd_sync_work_entry *entry; 837 838 mutex_lock(&hdev->cmd_sync_work_lock); 839 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 840 mutex_unlock(&hdev->cmd_sync_work_lock); 841 842 return entry; 843 } 844 EXPORT_SYMBOL(hci_cmd_sync_lookup_entry); 845 846 /* Cancel HCI command entry */ 847 void hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 848 struct hci_cmd_sync_work_entry *entry) 849 { 850 mutex_lock(&hdev->cmd_sync_work_lock); 851 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 852 mutex_unlock(&hdev->cmd_sync_work_lock); 853 } 854 EXPORT_SYMBOL(hci_cmd_sync_cancel_entry); 855 856 /* Dequeue one HCI command entry: 857 * 858 * - Lookup and cancel first entry that matches. 859 */ 860 bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev, 861 hci_cmd_sync_work_func_t func, 862 void *data, hci_cmd_sync_work_destroy_t destroy) 863 { 864 struct hci_cmd_sync_work_entry *entry; 865 866 mutex_lock(&hdev->cmd_sync_work_lock); 867 868 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 869 if (!entry) { 870 mutex_unlock(&hdev->cmd_sync_work_lock); 871 return false; 872 } 873 874 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 875 876 mutex_unlock(&hdev->cmd_sync_work_lock); 877 878 return true; 879 } 880 EXPORT_SYMBOL(hci_cmd_sync_dequeue_once); 881 882 /* Dequeue HCI command entry: 883 * 884 * - Lookup and cancel any entry that matches by function callback or data or 885 * destroy callback. 886 */ 887 bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 888 void *data, hci_cmd_sync_work_destroy_t destroy) 889 { 890 struct hci_cmd_sync_work_entry *entry; 891 bool ret = false; 892 893 mutex_lock(&hdev->cmd_sync_work_lock); 894 while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data, 895 destroy))) { 896 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 897 ret = true; 898 } 899 mutex_unlock(&hdev->cmd_sync_work_lock); 900 901 return ret; 902 } 903 EXPORT_SYMBOL(hci_cmd_sync_dequeue); 904 905 int hci_update_eir_sync(struct hci_dev *hdev) 906 { 907 struct hci_cp_write_eir cp; 908 909 bt_dev_dbg(hdev, ""); 910 911 if (!hdev_is_powered(hdev)) 912 return 0; 913 914 if (!lmp_ext_inq_capable(hdev)) 915 return 0; 916 917 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 918 return 0; 919 920 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 921 return 0; 922 923 memset(&cp, 0, sizeof(cp)); 924 925 eir_create(hdev, cp.data); 926 927 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 928 return 0; 929 930 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 931 932 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 933 HCI_CMD_TIMEOUT); 934 } 935 936 static u8 get_service_classes(struct hci_dev *hdev) 937 { 938 struct bt_uuid *uuid; 939 u8 val = 0; 940 941 list_for_each_entry(uuid, &hdev->uuids, list) 942 val |= uuid->svc_hint; 943 944 return val; 945 } 946 947 int hci_update_class_sync(struct hci_dev *hdev) 948 { 949 u8 cod[3]; 950 951 bt_dev_dbg(hdev, ""); 952 953 if (!hdev_is_powered(hdev)) 954 return 0; 955 956 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 957 return 0; 958 959 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 960 return 0; 961 962 cod[0] = hdev->minor_class; 963 cod[1] = hdev->major_class; 964 cod[2] = get_service_classes(hdev); 965 966 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 967 cod[1] |= 0x20; 968 969 if (memcmp(cod, hdev->dev_class, 3) == 0) 970 return 0; 971 972 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 973 sizeof(cod), cod, HCI_CMD_TIMEOUT); 974 } 975 976 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 977 { 978 /* If there is no connection we are OK to advertise. */ 979 if (hci_conn_num(hdev, LE_LINK) == 0) 980 return true; 981 982 /* Check le_states if there is any connection in peripheral role. */ 983 if (hdev->conn_hash.le_num_peripheral > 0) { 984 /* Peripheral connection state and non connectable mode 985 * bit 20. 986 */ 987 if (!connectable && !(hdev->le_states[2] & 0x10)) 988 return false; 989 990 /* Peripheral connection state and connectable mode bit 38 991 * and scannable bit 21. 992 */ 993 if (connectable && (!(hdev->le_states[4] & 0x40) || 994 !(hdev->le_states[2] & 0x20))) 995 return false; 996 } 997 998 /* Check le_states if there is any connection in central role. */ 999 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 1000 /* Central connection state and non connectable mode bit 18. */ 1001 if (!connectable && !(hdev->le_states[2] & 0x02)) 1002 return false; 1003 1004 /* Central connection state and connectable mode bit 35 and 1005 * scannable 19. 1006 */ 1007 if (connectable && (!(hdev->le_states[4] & 0x08) || 1008 !(hdev->le_states[2] & 0x08))) 1009 return false; 1010 } 1011 1012 return true; 1013 } 1014 1015 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 1016 { 1017 /* If privacy is not enabled don't use RPA */ 1018 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1019 return false; 1020 1021 /* If basic privacy mode is enabled use RPA */ 1022 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 1023 return true; 1024 1025 /* If limited privacy mode is enabled don't use RPA if we're 1026 * both discoverable and bondable. 1027 */ 1028 if ((flags & MGMT_ADV_FLAG_DISCOV) && 1029 hci_dev_test_flag(hdev, HCI_BONDABLE)) 1030 return false; 1031 1032 /* We're neither bondable nor discoverable in the limited 1033 * privacy mode, therefore use RPA. 1034 */ 1035 return true; 1036 } 1037 1038 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 1039 { 1040 /* If a random_addr has been set we're advertising or initiating an LE 1041 * connection we can't go ahead and change the random address at this 1042 * time. This is because the eventual initiator address used for the 1043 * subsequently created connection will be undefined (some 1044 * controllers use the new address and others the one we had 1045 * when the operation started). 1046 * 1047 * In this kind of scenario skip the update and let the random 1048 * address be updated at the next cycle. 1049 */ 1050 if (bacmp(&hdev->random_addr, BDADDR_ANY) && 1051 (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1052 hci_lookup_le_connect(hdev))) { 1053 bt_dev_dbg(hdev, "Deferring random address update"); 1054 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1055 return 0; 1056 } 1057 1058 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 1059 6, rpa, HCI_CMD_TIMEOUT); 1060 } 1061 1062 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 1063 bool rpa, u8 *own_addr_type) 1064 { 1065 int err; 1066 1067 /* If privacy is enabled use a resolvable private address. If 1068 * current RPA has expired or there is something else than 1069 * the current RPA in use, then generate a new one. 1070 */ 1071 if (rpa) { 1072 /* If Controller supports LL Privacy use own address type is 1073 * 0x03 1074 */ 1075 if (ll_privacy_capable(hdev)) 1076 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 1077 else 1078 *own_addr_type = ADDR_LE_DEV_RANDOM; 1079 1080 /* Check if RPA is valid */ 1081 if (rpa_valid(hdev)) 1082 return 0; 1083 1084 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1085 if (err < 0) { 1086 bt_dev_err(hdev, "failed to generate new RPA"); 1087 return err; 1088 } 1089 1090 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 1091 if (err) 1092 return err; 1093 1094 return 0; 1095 } 1096 1097 /* In case of required privacy without resolvable private address, 1098 * use an non-resolvable private address. This is useful for active 1099 * scanning and non-connectable advertising. 1100 */ 1101 if (require_privacy) { 1102 bdaddr_t nrpa; 1103 1104 while (true) { 1105 /* The non-resolvable private address is generated 1106 * from random six bytes with the two most significant 1107 * bits cleared. 1108 */ 1109 get_random_bytes(&nrpa, 6); 1110 nrpa.b[5] &= 0x3f; 1111 1112 /* The non-resolvable private address shall not be 1113 * equal to the public address. 1114 */ 1115 if (bacmp(&hdev->bdaddr, &nrpa)) 1116 break; 1117 } 1118 1119 *own_addr_type = ADDR_LE_DEV_RANDOM; 1120 1121 return hci_set_random_addr_sync(hdev, &nrpa); 1122 } 1123 1124 /* If forcing static address is in use or there is no public 1125 * address use the static address as random address (but skip 1126 * the HCI command if the current random address is already the 1127 * static one. 1128 * 1129 * In case BR/EDR has been disabled on a dual-mode controller 1130 * and a static address has been configured, then use that 1131 * address instead of the public BR/EDR address. 1132 */ 1133 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1134 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1135 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1136 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1137 *own_addr_type = ADDR_LE_DEV_RANDOM; 1138 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1139 return hci_set_random_addr_sync(hdev, 1140 &hdev->static_addr); 1141 return 0; 1142 } 1143 1144 /* Neither privacy nor static address is being used so use a 1145 * public address. 1146 */ 1147 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1148 1149 return 0; 1150 } 1151 1152 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1153 { 1154 struct hci_cp_le_set_ext_adv_enable *cp; 1155 struct hci_cp_ext_adv_set *set; 1156 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1157 u8 size; 1158 struct adv_info *adv = NULL; 1159 1160 /* If request specifies an instance that doesn't exist, fail */ 1161 if (instance > 0) { 1162 adv = hci_find_adv_instance(hdev, instance); 1163 if (!adv) 1164 return -EINVAL; 1165 1166 /* If not enabled there is nothing to do */ 1167 if (!adv->enabled) 1168 return 0; 1169 } 1170 1171 memset(data, 0, sizeof(data)); 1172 1173 cp = (void *)data; 1174 set = (void *)cp->data; 1175 1176 /* Instance 0x00 indicates all advertising instances will be disabled */ 1177 cp->num_of_sets = !!instance; 1178 cp->enable = 0x00; 1179 1180 set->handle = adv ? adv->handle : instance; 1181 1182 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1183 1184 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1185 size, data, HCI_CMD_TIMEOUT); 1186 } 1187 1188 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1189 bdaddr_t *random_addr) 1190 { 1191 struct hci_cp_le_set_adv_set_rand_addr cp; 1192 int err; 1193 1194 if (!instance) { 1195 /* Instance 0x00 doesn't have an adv_info, instead it uses 1196 * hdev->random_addr to track its address so whenever it needs 1197 * to be updated this also set the random address since 1198 * hdev->random_addr is shared with scan state machine. 1199 */ 1200 err = hci_set_random_addr_sync(hdev, random_addr); 1201 if (err) 1202 return err; 1203 } 1204 1205 memset(&cp, 0, sizeof(cp)); 1206 1207 cp.handle = instance; 1208 bacpy(&cp.bdaddr, random_addr); 1209 1210 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1211 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1212 } 1213 1214 static int 1215 hci_set_ext_adv_params_sync(struct hci_dev *hdev, struct adv_info *adv, 1216 const struct hci_cp_le_set_ext_adv_params *cp, 1217 struct hci_rp_le_set_ext_adv_params *rp) 1218 { 1219 struct sk_buff *skb; 1220 1221 skb = __hci_cmd_sync(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(*cp), 1222 cp, HCI_CMD_TIMEOUT); 1223 1224 /* If command return a status event, skb will be set to -ENODATA */ 1225 if (skb == ERR_PTR(-ENODATA)) 1226 return 0; 1227 1228 if (IS_ERR(skb)) { 1229 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", 1230 HCI_OP_LE_SET_EXT_ADV_PARAMS, PTR_ERR(skb)); 1231 return PTR_ERR(skb); 1232 } 1233 1234 if (skb->len != sizeof(*rp)) { 1235 bt_dev_err(hdev, "Invalid response length for 0x%4.4x: %u", 1236 HCI_OP_LE_SET_EXT_ADV_PARAMS, skb->len); 1237 kfree_skb(skb); 1238 return -EIO; 1239 } 1240 1241 memcpy(rp, skb->data, sizeof(*rp)); 1242 kfree_skb(skb); 1243 1244 if (!rp->status) { 1245 hdev->adv_addr_type = cp->own_addr_type; 1246 if (!cp->handle) { 1247 /* Store in hdev for instance 0 */ 1248 hdev->adv_tx_power = rp->tx_power; 1249 } else if (adv) { 1250 adv->tx_power = rp->tx_power; 1251 } 1252 } 1253 1254 return rp->status; 1255 } 1256 1257 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1258 { 1259 DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length, 1260 HCI_MAX_EXT_AD_LENGTH); 1261 u8 len; 1262 struct adv_info *adv = NULL; 1263 int err; 1264 1265 if (instance) { 1266 adv = hci_find_adv_instance(hdev, instance); 1267 if (!adv || !adv->adv_data_changed) 1268 return 0; 1269 } 1270 1271 len = eir_create_adv_data(hdev, instance, pdu->data, 1272 HCI_MAX_EXT_AD_LENGTH); 1273 1274 pdu->length = len; 1275 pdu->handle = adv ? adv->handle : instance; 1276 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1277 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1278 1279 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1280 struct_size(pdu, data, len), pdu, 1281 HCI_CMD_TIMEOUT); 1282 if (err) 1283 return err; 1284 1285 /* Update data if the command succeed */ 1286 if (adv) { 1287 adv->adv_data_changed = false; 1288 } else { 1289 memcpy(hdev->adv_data, pdu->data, len); 1290 hdev->adv_data_len = len; 1291 } 1292 1293 return 0; 1294 } 1295 1296 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1297 { 1298 struct hci_cp_le_set_adv_data cp; 1299 u8 len; 1300 1301 memset(&cp, 0, sizeof(cp)); 1302 1303 len = eir_create_adv_data(hdev, instance, cp.data, sizeof(cp.data)); 1304 1305 /* There's nothing to do if the data hasn't changed */ 1306 if (hdev->adv_data_len == len && 1307 memcmp(cp.data, hdev->adv_data, len) == 0) 1308 return 0; 1309 1310 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1311 hdev->adv_data_len = len; 1312 1313 cp.length = len; 1314 1315 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1316 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1317 } 1318 1319 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1320 { 1321 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1322 return 0; 1323 1324 if (ext_adv_capable(hdev)) 1325 return hci_set_ext_adv_data_sync(hdev, instance); 1326 1327 return hci_set_adv_data_sync(hdev, instance); 1328 } 1329 1330 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1331 { 1332 struct hci_cp_le_set_ext_adv_params cp; 1333 struct hci_rp_le_set_ext_adv_params rp; 1334 bool connectable, require_privacy; 1335 u32 flags; 1336 bdaddr_t random_addr; 1337 u8 own_addr_type; 1338 int err; 1339 struct adv_info *adv; 1340 bool secondary_adv; 1341 1342 if (instance > 0) { 1343 adv = hci_find_adv_instance(hdev, instance); 1344 if (!adv) 1345 return -EINVAL; 1346 } else { 1347 adv = NULL; 1348 } 1349 1350 /* Updating parameters of an active instance will return a 1351 * Command Disallowed error, so we must first disable the 1352 * instance if it is active. 1353 */ 1354 if (adv) { 1355 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1356 if (err) 1357 return err; 1358 } 1359 1360 flags = hci_adv_instance_flags(hdev, instance); 1361 1362 /* If the "connectable" instance flag was not set, then choose between 1363 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1364 */ 1365 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1366 mgmt_get_connectable(hdev); 1367 1368 if (!is_advertising_allowed(hdev, connectable)) 1369 return -EPERM; 1370 1371 /* Set require_privacy to true only when non-connectable 1372 * advertising is used and it is not periodic. 1373 * In that case it is fine to use a non-resolvable private address. 1374 */ 1375 require_privacy = !connectable && !(adv && adv->periodic); 1376 1377 err = hci_get_random_address(hdev, require_privacy, 1378 adv_use_rpa(hdev, flags), adv, 1379 &own_addr_type, &random_addr); 1380 if (err < 0) 1381 return err; 1382 1383 memset(&cp, 0, sizeof(cp)); 1384 1385 if (adv) { 1386 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1387 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1388 cp.tx_power = adv->tx_power; 1389 cp.sid = adv->sid; 1390 } else { 1391 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1392 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1393 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1394 cp.sid = 0x00; 1395 } 1396 1397 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1398 1399 if (connectable) { 1400 if (secondary_adv) 1401 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1402 else 1403 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1404 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1405 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1406 if (secondary_adv) 1407 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1408 else 1409 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1410 } else { 1411 if (secondary_adv) 1412 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1413 else 1414 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1415 } 1416 1417 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1418 * contains the peer’s Identity Address and the Peer_Address_Type 1419 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1420 * These parameters are used to locate the corresponding local IRK in 1421 * the resolving list; this IRK is used to generate their own address 1422 * used in the advertisement. 1423 */ 1424 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1425 hci_copy_identity_address(hdev, &cp.peer_addr, 1426 &cp.peer_addr_type); 1427 1428 cp.own_addr_type = own_addr_type; 1429 cp.channel_map = hdev->le_adv_channel_map; 1430 cp.handle = adv ? adv->handle : instance; 1431 1432 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1433 cp.primary_phy = HCI_ADV_PHY_1M; 1434 cp.secondary_phy = HCI_ADV_PHY_2M; 1435 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1436 cp.primary_phy = HCI_ADV_PHY_CODED; 1437 cp.secondary_phy = HCI_ADV_PHY_CODED; 1438 } else { 1439 /* In all other cases use 1M */ 1440 cp.primary_phy = HCI_ADV_PHY_1M; 1441 cp.secondary_phy = HCI_ADV_PHY_1M; 1442 } 1443 1444 err = hci_set_ext_adv_params_sync(hdev, adv, &cp, &rp); 1445 if (err) 1446 return err; 1447 1448 /* Update adv data as tx power is known now */ 1449 err = hci_set_ext_adv_data_sync(hdev, cp.handle); 1450 if (err) 1451 return err; 1452 1453 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1454 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1455 bacmp(&random_addr, BDADDR_ANY)) { 1456 /* Check if random address need to be updated */ 1457 if (adv) { 1458 if (!bacmp(&random_addr, &adv->random_addr)) 1459 return 0; 1460 } else { 1461 if (!bacmp(&random_addr, &hdev->random_addr)) 1462 return 0; 1463 } 1464 1465 return hci_set_adv_set_random_addr_sync(hdev, instance, 1466 &random_addr); 1467 } 1468 1469 return 0; 1470 } 1471 1472 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1473 { 1474 DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length, 1475 HCI_MAX_EXT_AD_LENGTH); 1476 u8 len; 1477 struct adv_info *adv = NULL; 1478 int err; 1479 1480 if (instance) { 1481 adv = hci_find_adv_instance(hdev, instance); 1482 if (!adv || !adv->scan_rsp_changed) 1483 return 0; 1484 } 1485 1486 len = eir_create_scan_rsp(hdev, instance, pdu->data); 1487 1488 pdu->handle = adv ? adv->handle : instance; 1489 pdu->length = len; 1490 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1491 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1492 1493 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1494 struct_size(pdu, data, len), pdu, 1495 HCI_CMD_TIMEOUT); 1496 if (err) 1497 return err; 1498 1499 if (adv) { 1500 adv->scan_rsp_changed = false; 1501 } else { 1502 memcpy(hdev->scan_rsp_data, pdu->data, len); 1503 hdev->scan_rsp_data_len = len; 1504 } 1505 1506 return 0; 1507 } 1508 1509 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1510 { 1511 struct hci_cp_le_set_scan_rsp_data cp; 1512 u8 len; 1513 1514 memset(&cp, 0, sizeof(cp)); 1515 1516 len = eir_create_scan_rsp(hdev, instance, cp.data); 1517 1518 if (hdev->scan_rsp_data_len == len && 1519 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1520 return 0; 1521 1522 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1523 hdev->scan_rsp_data_len = len; 1524 1525 cp.length = len; 1526 1527 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1528 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1529 } 1530 1531 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1532 { 1533 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1534 return 0; 1535 1536 if (ext_adv_capable(hdev)) 1537 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1538 1539 return __hci_set_scan_rsp_data_sync(hdev, instance); 1540 } 1541 1542 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1543 { 1544 struct hci_cp_le_set_ext_adv_enable *cp; 1545 struct hci_cp_ext_adv_set *set; 1546 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1547 struct adv_info *adv; 1548 1549 if (instance > 0) { 1550 adv = hci_find_adv_instance(hdev, instance); 1551 if (!adv) 1552 return -EINVAL; 1553 /* If already enabled there is nothing to do */ 1554 if (adv->enabled) 1555 return 0; 1556 } else { 1557 adv = NULL; 1558 } 1559 1560 cp = (void *)data; 1561 set = (void *)cp->data; 1562 1563 memset(cp, 0, sizeof(*cp)); 1564 1565 cp->enable = 0x01; 1566 cp->num_of_sets = 0x01; 1567 1568 memset(set, 0, sizeof(*set)); 1569 1570 set->handle = adv ? adv->handle : instance; 1571 1572 /* Set duration per instance since controller is responsible for 1573 * scheduling it. 1574 */ 1575 if (adv && adv->timeout) { 1576 u16 duration = adv->timeout * MSEC_PER_SEC; 1577 1578 /* Time = N * 10 ms */ 1579 set->duration = cpu_to_le16(duration / 10); 1580 } 1581 1582 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1583 sizeof(*cp) + 1584 sizeof(*set) * cp->num_of_sets, 1585 data, HCI_CMD_TIMEOUT); 1586 } 1587 1588 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1589 { 1590 int err; 1591 1592 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1593 if (err) 1594 return err; 1595 1596 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1597 if (err) 1598 return err; 1599 1600 return hci_enable_ext_advertising_sync(hdev, instance); 1601 } 1602 1603 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1604 { 1605 struct hci_cp_le_set_per_adv_enable cp; 1606 struct adv_info *adv = NULL; 1607 1608 /* If periodic advertising already disabled there is nothing to do. */ 1609 adv = hci_find_adv_instance(hdev, instance); 1610 if (!adv || !adv->periodic_enabled) 1611 return 0; 1612 1613 memset(&cp, 0, sizeof(cp)); 1614 1615 cp.enable = 0x00; 1616 cp.handle = instance; 1617 1618 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1619 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1620 } 1621 1622 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1623 u16 min_interval, u16 max_interval) 1624 { 1625 struct hci_cp_le_set_per_adv_params cp; 1626 1627 memset(&cp, 0, sizeof(cp)); 1628 1629 if (!min_interval) 1630 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1631 1632 if (!max_interval) 1633 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1634 1635 cp.handle = instance; 1636 cp.min_interval = cpu_to_le16(min_interval); 1637 cp.max_interval = cpu_to_le16(max_interval); 1638 cp.periodic_properties = 0x0000; 1639 1640 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1641 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1642 } 1643 1644 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1645 { 1646 DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length, 1647 HCI_MAX_PER_AD_LENGTH); 1648 u8 len; 1649 struct adv_info *adv = NULL; 1650 1651 if (instance) { 1652 adv = hci_find_adv_instance(hdev, instance); 1653 if (!adv || !adv->periodic) 1654 return 0; 1655 } 1656 1657 len = eir_create_per_adv_data(hdev, instance, pdu->data); 1658 1659 pdu->length = len; 1660 pdu->handle = adv ? adv->handle : instance; 1661 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1662 1663 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1664 struct_size(pdu, data, len), pdu, 1665 HCI_CMD_TIMEOUT); 1666 } 1667 1668 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1669 { 1670 struct hci_cp_le_set_per_adv_enable cp; 1671 struct adv_info *adv = NULL; 1672 1673 /* If periodic advertising already enabled there is nothing to do. */ 1674 adv = hci_find_adv_instance(hdev, instance); 1675 if (adv && adv->periodic_enabled) 1676 return 0; 1677 1678 memset(&cp, 0, sizeof(cp)); 1679 1680 cp.enable = 0x01; 1681 cp.handle = instance; 1682 1683 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1684 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1685 } 1686 1687 /* Checks if periodic advertising data contains a Basic Announcement and if it 1688 * does generates a Broadcast ID and add Broadcast Announcement. 1689 */ 1690 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1691 { 1692 u8 bid[3]; 1693 u8 ad[HCI_MAX_EXT_AD_LENGTH]; 1694 u8 len; 1695 1696 /* Skip if NULL adv as instance 0x00 is used for general purpose 1697 * advertising so it cannot used for the likes of Broadcast Announcement 1698 * as it can be overwritten at any point. 1699 */ 1700 if (!adv) 1701 return 0; 1702 1703 /* Check if PA data doesn't contains a Basic Audio Announcement then 1704 * there is nothing to do. 1705 */ 1706 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1707 0x1851, NULL)) 1708 return 0; 1709 1710 /* Check if advertising data already has a Broadcast Announcement since 1711 * the process may want to control the Broadcast ID directly and in that 1712 * case the kernel shall no interfere. 1713 */ 1714 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1715 NULL)) 1716 return 0; 1717 1718 /* Generate Broadcast ID */ 1719 get_random_bytes(bid, sizeof(bid)); 1720 len = eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1721 memcpy(ad + len, adv->adv_data, adv->adv_data_len); 1722 hci_set_adv_instance_data(hdev, adv->instance, len + adv->adv_data_len, 1723 ad, 0, NULL); 1724 1725 return hci_update_adv_data_sync(hdev, adv->instance); 1726 } 1727 1728 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 sid, 1729 u8 data_len, u8 *data, u32 flags, u16 min_interval, 1730 u16 max_interval, u16 sync_interval) 1731 { 1732 struct adv_info *adv = NULL; 1733 int err; 1734 bool added = false; 1735 1736 hci_disable_per_advertising_sync(hdev, instance); 1737 1738 if (instance) { 1739 adv = hci_find_adv_instance(hdev, instance); 1740 if (adv) { 1741 if (sid != HCI_SID_INVALID && adv->sid != sid) { 1742 /* If the SID don't match attempt to find by 1743 * SID. 1744 */ 1745 adv = hci_find_adv_sid(hdev, sid); 1746 if (!adv) { 1747 bt_dev_err(hdev, 1748 "Unable to find adv_info"); 1749 return -EINVAL; 1750 } 1751 } 1752 1753 /* Turn it into periodic advertising */ 1754 adv->periodic = true; 1755 adv->per_adv_data_len = data_len; 1756 if (data) 1757 memcpy(adv->per_adv_data, data, data_len); 1758 adv->flags = flags; 1759 } else if (!adv) { 1760 /* Create an instance if that could not be found */ 1761 adv = hci_add_per_instance(hdev, instance, sid, flags, 1762 data_len, data, 1763 sync_interval, 1764 sync_interval); 1765 if (IS_ERR(adv)) 1766 return PTR_ERR(adv); 1767 adv->pending = false; 1768 added = true; 1769 } 1770 } 1771 1772 /* Start advertising */ 1773 err = hci_start_ext_adv_sync(hdev, instance); 1774 if (err < 0) 1775 goto fail; 1776 1777 err = hci_adv_bcast_annoucement(hdev, adv); 1778 if (err < 0) 1779 goto fail; 1780 1781 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1782 max_interval); 1783 if (err < 0) 1784 goto fail; 1785 1786 err = hci_set_per_adv_data_sync(hdev, instance); 1787 if (err < 0) 1788 goto fail; 1789 1790 err = hci_enable_per_advertising_sync(hdev, instance); 1791 if (err < 0) 1792 goto fail; 1793 1794 return 0; 1795 1796 fail: 1797 if (added) 1798 hci_remove_adv_instance(hdev, instance); 1799 1800 return err; 1801 } 1802 1803 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1804 { 1805 int err; 1806 1807 if (ext_adv_capable(hdev)) 1808 return hci_start_ext_adv_sync(hdev, instance); 1809 1810 err = hci_update_adv_data_sync(hdev, instance); 1811 if (err) 1812 return err; 1813 1814 err = hci_update_scan_rsp_data_sync(hdev, instance); 1815 if (err) 1816 return err; 1817 1818 return hci_enable_advertising_sync(hdev); 1819 } 1820 1821 int hci_enable_advertising_sync(struct hci_dev *hdev) 1822 { 1823 struct adv_info *adv_instance; 1824 struct hci_cp_le_set_adv_param cp; 1825 u8 own_addr_type, enable = 0x01; 1826 bool connectable; 1827 u16 adv_min_interval, adv_max_interval; 1828 u32 flags; 1829 u8 status; 1830 1831 if (ext_adv_capable(hdev)) 1832 return hci_enable_ext_advertising_sync(hdev, 1833 hdev->cur_adv_instance); 1834 1835 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1836 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1837 1838 /* If the "connectable" instance flag was not set, then choose between 1839 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1840 */ 1841 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1842 mgmt_get_connectable(hdev); 1843 1844 if (!is_advertising_allowed(hdev, connectable)) 1845 return -EINVAL; 1846 1847 status = hci_disable_advertising_sync(hdev); 1848 if (status) 1849 return status; 1850 1851 /* Clear the HCI_LE_ADV bit temporarily so that the 1852 * hci_update_random_address knows that it's safe to go ahead 1853 * and write a new random address. The flag will be set back on 1854 * as soon as the SET_ADV_ENABLE HCI command completes. 1855 */ 1856 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1857 1858 /* Set require_privacy to true only when non-connectable 1859 * advertising is used. In that case it is fine to use a 1860 * non-resolvable private address. 1861 */ 1862 status = hci_update_random_address_sync(hdev, !connectable, 1863 adv_use_rpa(hdev, flags), 1864 &own_addr_type); 1865 if (status) 1866 return status; 1867 1868 memset(&cp, 0, sizeof(cp)); 1869 1870 if (adv_instance) { 1871 adv_min_interval = adv_instance->min_interval; 1872 adv_max_interval = adv_instance->max_interval; 1873 } else { 1874 adv_min_interval = hdev->le_adv_min_interval; 1875 adv_max_interval = hdev->le_adv_max_interval; 1876 } 1877 1878 if (connectable) { 1879 cp.type = LE_ADV_IND; 1880 } else { 1881 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1882 cp.type = LE_ADV_SCAN_IND; 1883 else 1884 cp.type = LE_ADV_NONCONN_IND; 1885 1886 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1887 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1888 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1889 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1890 } 1891 } 1892 1893 cp.min_interval = cpu_to_le16(adv_min_interval); 1894 cp.max_interval = cpu_to_le16(adv_max_interval); 1895 cp.own_address_type = own_addr_type; 1896 cp.channel_map = hdev->le_adv_channel_map; 1897 1898 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1899 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1900 if (status) 1901 return status; 1902 1903 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1904 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1905 } 1906 1907 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1908 { 1909 return hci_enable_advertising_sync(hdev); 1910 } 1911 1912 int hci_enable_advertising(struct hci_dev *hdev) 1913 { 1914 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1915 list_empty(&hdev->adv_instances)) 1916 return 0; 1917 1918 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1919 } 1920 1921 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1922 struct sock *sk) 1923 { 1924 int err; 1925 1926 if (!ext_adv_capable(hdev)) 1927 return 0; 1928 1929 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1930 if (err) 1931 return err; 1932 1933 /* If request specifies an instance that doesn't exist, fail */ 1934 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1935 return -EINVAL; 1936 1937 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1938 sizeof(instance), &instance, 0, 1939 HCI_CMD_TIMEOUT, sk); 1940 } 1941 1942 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1943 { 1944 struct hci_cp_le_term_big cp; 1945 1946 memset(&cp, 0, sizeof(cp)); 1947 cp.handle = handle; 1948 cp.reason = reason; 1949 1950 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1951 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1952 } 1953 1954 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1955 bool force) 1956 { 1957 struct adv_info *adv = NULL; 1958 u16 timeout; 1959 1960 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1961 return -EPERM; 1962 1963 if (hdev->adv_instance_timeout) 1964 return -EBUSY; 1965 1966 adv = hci_find_adv_instance(hdev, instance); 1967 if (!adv) 1968 return -ENOENT; 1969 1970 /* A zero timeout means unlimited advertising. As long as there is 1971 * only one instance, duration should be ignored. We still set a timeout 1972 * in case further instances are being added later on. 1973 * 1974 * If the remaining lifetime of the instance is more than the duration 1975 * then the timeout corresponds to the duration, otherwise it will be 1976 * reduced to the remaining instance lifetime. 1977 */ 1978 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1979 timeout = adv->duration; 1980 else 1981 timeout = adv->remaining_time; 1982 1983 /* The remaining time is being reduced unless the instance is being 1984 * advertised without time limit. 1985 */ 1986 if (adv->timeout) 1987 adv->remaining_time = adv->remaining_time - timeout; 1988 1989 /* Only use work for scheduling instances with legacy advertising */ 1990 if (!ext_adv_capable(hdev)) { 1991 hdev->adv_instance_timeout = timeout; 1992 queue_delayed_work(hdev->req_workqueue, 1993 &hdev->adv_instance_expire, 1994 secs_to_jiffies(timeout)); 1995 } 1996 1997 /* If we're just re-scheduling the same instance again then do not 1998 * execute any HCI commands. This happens when a single instance is 1999 * being advertised. 2000 */ 2001 if (!force && hdev->cur_adv_instance == instance && 2002 hci_dev_test_flag(hdev, HCI_LE_ADV)) 2003 return 0; 2004 2005 hdev->cur_adv_instance = instance; 2006 2007 return hci_start_adv_sync(hdev, instance); 2008 } 2009 2010 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 2011 { 2012 int err; 2013 2014 if (!ext_adv_capable(hdev)) 2015 return 0; 2016 2017 /* Disable instance 0x00 to disable all instances */ 2018 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 2019 if (err) 2020 return err; 2021 2022 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 2023 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2024 } 2025 2026 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 2027 { 2028 struct adv_info *adv, *n; 2029 2030 if (ext_adv_capable(hdev)) 2031 /* Remove all existing sets */ 2032 return hci_clear_adv_sets_sync(hdev, sk); 2033 2034 /* This is safe as long as there is no command send while the lock is 2035 * held. 2036 */ 2037 hci_dev_lock(hdev); 2038 2039 /* Cleanup non-ext instances */ 2040 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 2041 u8 instance = adv->instance; 2042 int err; 2043 2044 if (!(force || adv->timeout)) 2045 continue; 2046 2047 err = hci_remove_adv_instance(hdev, instance); 2048 if (!err) 2049 mgmt_advertising_removed(sk, hdev, instance); 2050 } 2051 2052 hci_dev_unlock(hdev); 2053 2054 return 0; 2055 } 2056 2057 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 2058 struct sock *sk) 2059 { 2060 int err; 2061 2062 /* If we use extended advertising, instance has to be removed first. */ 2063 if (ext_adv_capable(hdev)) 2064 return hci_remove_ext_adv_instance_sync(hdev, instance, sk); 2065 2066 /* This is safe as long as there is no command send while the lock is 2067 * held. 2068 */ 2069 hci_dev_lock(hdev); 2070 2071 err = hci_remove_adv_instance(hdev, instance); 2072 if (!err) 2073 mgmt_advertising_removed(sk, hdev, instance); 2074 2075 hci_dev_unlock(hdev); 2076 2077 return err; 2078 } 2079 2080 /* For a single instance: 2081 * - force == true: The instance will be removed even when its remaining 2082 * lifetime is not zero. 2083 * - force == false: the instance will be deactivated but kept stored unless 2084 * the remaining lifetime is zero. 2085 * 2086 * For instance == 0x00: 2087 * - force == true: All instances will be removed regardless of their timeout 2088 * setting. 2089 * - force == false: Only instances that have a timeout will be removed. 2090 */ 2091 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 2092 u8 instance, bool force) 2093 { 2094 struct adv_info *next = NULL; 2095 int err; 2096 2097 /* Cancel any timeout concerning the removed instance(s). */ 2098 if (!instance || hdev->cur_adv_instance == instance) 2099 cancel_adv_timeout(hdev); 2100 2101 /* Get the next instance to advertise BEFORE we remove 2102 * the current one. This can be the same instance again 2103 * if there is only one instance. 2104 */ 2105 if (hdev->cur_adv_instance == instance) 2106 next = hci_get_next_instance(hdev, instance); 2107 2108 if (!instance) { 2109 err = hci_clear_adv_sync(hdev, sk, force); 2110 if (err) 2111 return err; 2112 } else { 2113 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 2114 2115 if (force || (adv && adv->timeout && !adv->remaining_time)) { 2116 /* Don't advertise a removed instance. */ 2117 if (next && next->instance == instance) 2118 next = NULL; 2119 2120 err = hci_remove_adv_sync(hdev, instance, sk); 2121 if (err) 2122 return err; 2123 } 2124 } 2125 2126 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2127 return 0; 2128 2129 if (next && !ext_adv_capable(hdev)) 2130 hci_schedule_adv_instance_sync(hdev, next->instance, false); 2131 2132 return 0; 2133 } 2134 2135 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 2136 { 2137 struct hci_cp_read_rssi cp; 2138 2139 cp.handle = handle; 2140 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 2141 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2142 } 2143 2144 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 2145 { 2146 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 2147 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2148 } 2149 2150 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 2151 { 2152 struct hci_cp_read_tx_power cp; 2153 2154 cp.handle = handle; 2155 cp.type = type; 2156 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 2157 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2158 } 2159 2160 int hci_disable_advertising_sync(struct hci_dev *hdev) 2161 { 2162 u8 enable = 0x00; 2163 2164 /* If controller is not advertising we are done. */ 2165 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 2166 return 0; 2167 2168 if (ext_adv_capable(hdev)) 2169 return hci_disable_ext_adv_instance_sync(hdev, 0x00); 2170 2171 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 2172 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 2173 } 2174 2175 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 2176 u8 filter_dup) 2177 { 2178 struct hci_cp_le_set_ext_scan_enable cp; 2179 2180 memset(&cp, 0, sizeof(cp)); 2181 cp.enable = val; 2182 2183 if (hci_dev_test_flag(hdev, HCI_MESH)) 2184 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2185 else 2186 cp.filter_dup = filter_dup; 2187 2188 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2189 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2190 } 2191 2192 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2193 u8 filter_dup) 2194 { 2195 struct hci_cp_le_set_scan_enable cp; 2196 2197 if (use_ext_scan(hdev)) 2198 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2199 2200 memset(&cp, 0, sizeof(cp)); 2201 cp.enable = val; 2202 2203 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2204 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2205 else 2206 cp.filter_dup = filter_dup; 2207 2208 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2209 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2210 } 2211 2212 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2213 { 2214 if (!ll_privacy_capable(hdev)) 2215 return 0; 2216 2217 /* If controller is not/already resolving we are done. */ 2218 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2219 return 0; 2220 2221 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2222 sizeof(val), &val, HCI_CMD_TIMEOUT); 2223 } 2224 2225 static int hci_scan_disable_sync(struct hci_dev *hdev) 2226 { 2227 int err; 2228 2229 /* If controller is not scanning we are done. */ 2230 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2231 return 0; 2232 2233 if (hdev->scanning_paused) { 2234 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2235 return 0; 2236 } 2237 2238 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2239 if (err) { 2240 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2241 return err; 2242 } 2243 2244 return err; 2245 } 2246 2247 static bool scan_use_rpa(struct hci_dev *hdev) 2248 { 2249 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2250 } 2251 2252 static void hci_start_interleave_scan(struct hci_dev *hdev) 2253 { 2254 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2255 queue_delayed_work(hdev->req_workqueue, 2256 &hdev->interleave_scan, 0); 2257 } 2258 2259 static void cancel_interleave_scan(struct hci_dev *hdev) 2260 { 2261 bt_dev_dbg(hdev, "cancelling interleave scan"); 2262 2263 cancel_delayed_work_sync(&hdev->interleave_scan); 2264 2265 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2266 } 2267 2268 /* Return true if interleave_scan wasn't started until exiting this function, 2269 * otherwise, return false 2270 */ 2271 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2272 { 2273 /* Do interleaved scan only if all of the following are true: 2274 * - There is at least one ADV monitor 2275 * - At least one pending LE connection or one device to be scanned for 2276 * - Monitor offloading is not supported 2277 * If so, we should alternate between allowlist scan and one without 2278 * any filters to save power. 2279 */ 2280 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2281 !(list_empty(&hdev->pend_le_conns) && 2282 list_empty(&hdev->pend_le_reports)) && 2283 hci_get_adv_monitor_offload_ext(hdev) == 2284 HCI_ADV_MONITOR_EXT_NONE; 2285 bool is_interleaving = is_interleave_scanning(hdev); 2286 2287 if (use_interleaving && !is_interleaving) { 2288 hci_start_interleave_scan(hdev); 2289 bt_dev_dbg(hdev, "starting interleave scan"); 2290 return true; 2291 } 2292 2293 if (!use_interleaving && is_interleaving) 2294 cancel_interleave_scan(hdev); 2295 2296 return false; 2297 } 2298 2299 /* Removes connection to resolve list if needed.*/ 2300 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2301 bdaddr_t *bdaddr, u8 bdaddr_type) 2302 { 2303 struct hci_cp_le_del_from_resolv_list cp; 2304 struct bdaddr_list_with_irk *entry; 2305 2306 if (!ll_privacy_capable(hdev)) 2307 return 0; 2308 2309 /* Check if the IRK has been programmed */ 2310 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2311 bdaddr_type); 2312 if (!entry) 2313 return 0; 2314 2315 cp.bdaddr_type = bdaddr_type; 2316 bacpy(&cp.bdaddr, bdaddr); 2317 2318 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2319 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2320 } 2321 2322 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2323 bdaddr_t *bdaddr, u8 bdaddr_type) 2324 { 2325 struct hci_cp_le_del_from_accept_list cp; 2326 int err; 2327 2328 /* Check if device is on accept list before removing it */ 2329 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2330 return 0; 2331 2332 cp.bdaddr_type = bdaddr_type; 2333 bacpy(&cp.bdaddr, bdaddr); 2334 2335 /* Ignore errors when removing from resolving list as that is likely 2336 * that the device was never added. 2337 */ 2338 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2339 2340 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2341 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2342 if (err) { 2343 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2344 return err; 2345 } 2346 2347 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2348 cp.bdaddr_type); 2349 2350 return 0; 2351 } 2352 2353 struct conn_params { 2354 bdaddr_t addr; 2355 u8 addr_type; 2356 hci_conn_flags_t flags; 2357 u8 privacy_mode; 2358 }; 2359 2360 /* Adds connection to resolve list if needed. 2361 * Setting params to NULL programs local hdev->irk 2362 */ 2363 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2364 struct conn_params *params) 2365 { 2366 struct hci_cp_le_add_to_resolv_list cp; 2367 struct smp_irk *irk; 2368 struct bdaddr_list_with_irk *entry; 2369 struct hci_conn_params *p; 2370 2371 if (!ll_privacy_capable(hdev)) 2372 return 0; 2373 2374 /* Attempt to program local identity address, type and irk if params is 2375 * NULL. 2376 */ 2377 if (!params) { 2378 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2379 return 0; 2380 2381 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2382 memcpy(cp.peer_irk, hdev->irk, 16); 2383 goto done; 2384 } else if (!(params->flags & HCI_CONN_FLAG_ADDRESS_RESOLUTION)) 2385 return 0; 2386 2387 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2388 if (!irk) 2389 return 0; 2390 2391 /* Check if the IK has _not_ been programmed yet. */ 2392 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2393 ¶ms->addr, 2394 params->addr_type); 2395 if (entry) 2396 return 0; 2397 2398 cp.bdaddr_type = params->addr_type; 2399 bacpy(&cp.bdaddr, ¶ms->addr); 2400 memcpy(cp.peer_irk, irk->val, 16); 2401 2402 /* Default privacy mode is always Network */ 2403 params->privacy_mode = HCI_NETWORK_PRIVACY; 2404 2405 rcu_read_lock(); 2406 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2407 ¶ms->addr, params->addr_type); 2408 if (!p) 2409 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2410 ¶ms->addr, params->addr_type); 2411 if (p) 2412 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2413 rcu_read_unlock(); 2414 2415 done: 2416 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2417 memcpy(cp.local_irk, hdev->irk, 16); 2418 else 2419 memset(cp.local_irk, 0, 16); 2420 2421 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2422 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2423 } 2424 2425 /* Set Device Privacy Mode. */ 2426 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2427 struct conn_params *params) 2428 { 2429 struct hci_cp_le_set_privacy_mode cp; 2430 struct smp_irk *irk; 2431 2432 if (!ll_privacy_capable(hdev) || 2433 !(params->flags & HCI_CONN_FLAG_ADDRESS_RESOLUTION)) 2434 return 0; 2435 2436 /* If device privacy mode has already been set there is nothing to do */ 2437 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2438 return 0; 2439 2440 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2441 * indicates that LL Privacy has been enabled and 2442 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2443 */ 2444 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2445 return 0; 2446 2447 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2448 if (!irk) 2449 return 0; 2450 2451 memset(&cp, 0, sizeof(cp)); 2452 cp.bdaddr_type = irk->addr_type; 2453 bacpy(&cp.bdaddr, &irk->bdaddr); 2454 cp.mode = HCI_DEVICE_PRIVACY; 2455 2456 /* Note: params->privacy_mode is not updated since it is a copy */ 2457 2458 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2459 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2460 } 2461 2462 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2463 * this attempts to program the device in the resolving list as well and 2464 * properly set the privacy mode. 2465 */ 2466 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2467 struct conn_params *params, 2468 u8 *num_entries) 2469 { 2470 struct hci_cp_le_add_to_accept_list cp; 2471 int err; 2472 2473 /* During suspend, only wakeable devices can be in acceptlist */ 2474 if (hdev->suspended && 2475 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2476 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2477 params->addr_type); 2478 return 0; 2479 } 2480 2481 /* Select filter policy to accept all advertising */ 2482 if (*num_entries >= hdev->le_accept_list_size) 2483 return -ENOSPC; 2484 2485 /* Attempt to program the device in the resolving list first to avoid 2486 * having to rollback in case it fails since the resolving list is 2487 * dynamic it can probably be smaller than the accept list. 2488 */ 2489 err = hci_le_add_resolve_list_sync(hdev, params); 2490 if (err) { 2491 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2492 return err; 2493 } 2494 2495 /* Set Privacy Mode */ 2496 err = hci_le_set_privacy_mode_sync(hdev, params); 2497 if (err) { 2498 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2499 return err; 2500 } 2501 2502 /* Check if already in accept list */ 2503 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2504 params->addr_type)) 2505 return 0; 2506 2507 *num_entries += 1; 2508 cp.bdaddr_type = params->addr_type; 2509 bacpy(&cp.bdaddr, ¶ms->addr); 2510 2511 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2512 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2513 if (err) { 2514 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2515 /* Rollback the device from the resolving list */ 2516 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2517 return err; 2518 } 2519 2520 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2521 cp.bdaddr_type); 2522 2523 return 0; 2524 } 2525 2526 /* This function disables/pause all advertising instances */ 2527 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2528 { 2529 int err; 2530 int old_state; 2531 2532 /* If controller is not advertising we are done. */ 2533 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 2534 return 0; 2535 2536 /* If already been paused there is nothing to do. */ 2537 if (hdev->advertising_paused) 2538 return 0; 2539 2540 bt_dev_dbg(hdev, "Pausing directed advertising"); 2541 2542 /* Stop directed advertising */ 2543 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2544 if (old_state) { 2545 /* When discoverable timeout triggers, then just make sure 2546 * the limited discoverable flag is cleared. Even in the case 2547 * of a timeout triggered from general discoverable, it is 2548 * safe to unconditionally clear the flag. 2549 */ 2550 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2551 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2552 hdev->discov_timeout = 0; 2553 } 2554 2555 bt_dev_dbg(hdev, "Pausing advertising instances"); 2556 2557 /* Call to disable any advertisements active on the controller. 2558 * This will succeed even if no advertisements are configured. 2559 */ 2560 err = hci_disable_advertising_sync(hdev); 2561 if (err) 2562 return err; 2563 2564 /* If we are using software rotation, pause the loop */ 2565 if (!ext_adv_capable(hdev)) 2566 cancel_adv_timeout(hdev); 2567 2568 hdev->advertising_paused = true; 2569 hdev->advertising_old_state = old_state; 2570 2571 return 0; 2572 } 2573 2574 /* This function enables all user advertising instances */ 2575 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2576 { 2577 struct adv_info *adv, *tmp; 2578 int err; 2579 2580 /* If advertising has not been paused there is nothing to do. */ 2581 if (!hdev->advertising_paused) 2582 return 0; 2583 2584 /* Resume directed advertising */ 2585 hdev->advertising_paused = false; 2586 if (hdev->advertising_old_state) { 2587 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2588 hdev->advertising_old_state = 0; 2589 } 2590 2591 bt_dev_dbg(hdev, "Resuming advertising instances"); 2592 2593 if (ext_adv_capable(hdev)) { 2594 /* Call for each tracked instance to be re-enabled */ 2595 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2596 err = hci_enable_ext_advertising_sync(hdev, 2597 adv->instance); 2598 if (!err) 2599 continue; 2600 2601 /* If the instance cannot be resumed remove it */ 2602 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2603 NULL); 2604 } 2605 2606 /* If current advertising instance is set to instance 0x00 2607 * then we need to re-enable it. 2608 */ 2609 if (hci_dev_test_and_clear_flag(hdev, HCI_LE_ADV_0)) 2610 err = hci_enable_ext_advertising_sync(hdev, 0x00); 2611 } else { 2612 /* Schedule for most recent instance to be restarted and begin 2613 * the software rotation loop 2614 */ 2615 err = hci_schedule_adv_instance_sync(hdev, 2616 hdev->cur_adv_instance, 2617 true); 2618 } 2619 2620 hdev->advertising_paused = false; 2621 2622 return err; 2623 } 2624 2625 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2626 { 2627 int err; 2628 2629 if (!ll_privacy_capable(hdev)) 2630 return 0; 2631 2632 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2633 return 0; 2634 2635 /* Cannot disable addr resolution if scanning is enabled or 2636 * when initiating an LE connection. 2637 */ 2638 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2639 hci_lookup_le_connect(hdev)) { 2640 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2641 return -EPERM; 2642 } 2643 2644 /* Cannot disable addr resolution if advertising is enabled. */ 2645 err = hci_pause_advertising_sync(hdev); 2646 if (err) { 2647 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2648 return err; 2649 } 2650 2651 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2652 if (err) 2653 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2654 err); 2655 2656 /* Return if address resolution is disabled and RPA is not used. */ 2657 if (!err && scan_use_rpa(hdev)) 2658 return 0; 2659 2660 hci_resume_advertising_sync(hdev); 2661 return err; 2662 } 2663 2664 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2665 bool extended, struct sock *sk) 2666 { 2667 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2668 HCI_OP_READ_LOCAL_OOB_DATA; 2669 2670 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2671 } 2672 2673 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2674 { 2675 struct hci_conn_params *params; 2676 struct conn_params *p; 2677 size_t i; 2678 2679 rcu_read_lock(); 2680 2681 i = 0; 2682 list_for_each_entry_rcu(params, list, action) 2683 ++i; 2684 *n = i; 2685 2686 rcu_read_unlock(); 2687 2688 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2689 if (!p) 2690 return NULL; 2691 2692 rcu_read_lock(); 2693 2694 i = 0; 2695 list_for_each_entry_rcu(params, list, action) { 2696 /* Racing adds are handled in next scan update */ 2697 if (i >= *n) 2698 break; 2699 2700 /* No hdev->lock, but: addr, addr_type are immutable. 2701 * privacy_mode is only written by us or in 2702 * hci_cc_le_set_privacy_mode that we wait for. 2703 * We should be idempotent so MGMT updating flags 2704 * while we are processing is OK. 2705 */ 2706 bacpy(&p[i].addr, ¶ms->addr); 2707 p[i].addr_type = params->addr_type; 2708 p[i].flags = READ_ONCE(params->flags); 2709 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2710 ++i; 2711 } 2712 2713 rcu_read_unlock(); 2714 2715 *n = i; 2716 return p; 2717 } 2718 2719 /* Clear LE Accept List */ 2720 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 2721 { 2722 if (!(hdev->commands[26] & 0x80)) 2723 return 0; 2724 2725 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 2726 HCI_CMD_TIMEOUT); 2727 } 2728 2729 /* Device must not be scanning when updating the accept list. 2730 * 2731 * Update is done using the following sequence: 2732 * 2733 * ll_privacy_capable((Disable Advertising) -> Disable Resolving List) -> 2734 * Remove Devices From Accept List -> 2735 * (has IRK && ll_privacy_capable(Remove Devices From Resolving List))-> 2736 * Add Devices to Accept List -> 2737 * (has IRK && ll_privacy_capable(Remove Devices From Resolving List)) -> 2738 * ll_privacy_capable(Enable Resolving List -> (Enable Advertising)) -> 2739 * Enable Scanning 2740 * 2741 * In case of failure advertising shall be restored to its original state and 2742 * return would disable accept list since either accept or resolving list could 2743 * not be programmed. 2744 * 2745 */ 2746 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2747 { 2748 struct conn_params *params; 2749 struct bdaddr_list *b, *t; 2750 u8 num_entries = 0; 2751 bool pend_conn, pend_report; 2752 u8 filter_policy; 2753 size_t i, n; 2754 int err; 2755 2756 /* Pause advertising if resolving list can be used as controllers 2757 * cannot accept resolving list modifications while advertising. 2758 */ 2759 if (ll_privacy_capable(hdev)) { 2760 err = hci_pause_advertising_sync(hdev); 2761 if (err) { 2762 bt_dev_err(hdev, "pause advertising failed: %d", err); 2763 return 0x00; 2764 } 2765 } 2766 2767 /* Disable address resolution while reprogramming accept list since 2768 * devices that do have an IRK will be programmed in the resolving list 2769 * when LL Privacy is enabled. 2770 */ 2771 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2772 if (err) { 2773 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2774 goto done; 2775 } 2776 2777 /* Force address filtering if PA Sync is in progress */ 2778 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2779 struct hci_conn *conn; 2780 2781 conn = hci_conn_hash_lookup_create_pa_sync(hdev); 2782 if (conn) { 2783 struct conn_params pa; 2784 2785 memset(&pa, 0, sizeof(pa)); 2786 2787 bacpy(&pa.addr, &conn->dst); 2788 pa.addr_type = conn->dst_type; 2789 2790 /* Clear first since there could be addresses left 2791 * behind. 2792 */ 2793 hci_le_clear_accept_list_sync(hdev); 2794 2795 num_entries = 1; 2796 err = hci_le_add_accept_list_sync(hdev, &pa, 2797 &num_entries); 2798 goto done; 2799 } 2800 } 2801 2802 /* Go through the current accept list programmed into the 2803 * controller one by one and check if that address is connected or is 2804 * still in the list of pending connections or list of devices to 2805 * report. If not present in either list, then remove it from 2806 * the controller. 2807 */ 2808 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2809 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2810 continue; 2811 2812 /* Pointers not dereferenced, no locks needed */ 2813 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2814 &b->bdaddr, 2815 b->bdaddr_type); 2816 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2817 &b->bdaddr, 2818 b->bdaddr_type); 2819 2820 /* If the device is not likely to connect or report, 2821 * remove it from the acceptlist. 2822 */ 2823 if (!pend_conn && !pend_report) { 2824 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2825 b->bdaddr_type); 2826 continue; 2827 } 2828 2829 num_entries++; 2830 } 2831 2832 /* Since all no longer valid accept list entries have been 2833 * removed, walk through the list of pending connections 2834 * and ensure that any new device gets programmed into 2835 * the controller. 2836 * 2837 * If the list of the devices is larger than the list of 2838 * available accept list entries in the controller, then 2839 * just abort and return filer policy value to not use the 2840 * accept list. 2841 * 2842 * The list and params may be mutated while we wait for events, 2843 * so make a copy and iterate it. 2844 */ 2845 2846 params = conn_params_copy(&hdev->pend_le_conns, &n); 2847 if (!params) { 2848 err = -ENOMEM; 2849 goto done; 2850 } 2851 2852 for (i = 0; i < n; ++i) { 2853 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2854 &num_entries); 2855 if (err) { 2856 kvfree(params); 2857 goto done; 2858 } 2859 } 2860 2861 kvfree(params); 2862 2863 /* After adding all new pending connections, walk through 2864 * the list of pending reports and also add these to the 2865 * accept list if there is still space. Abort if space runs out. 2866 */ 2867 2868 params = conn_params_copy(&hdev->pend_le_reports, &n); 2869 if (!params) { 2870 err = -ENOMEM; 2871 goto done; 2872 } 2873 2874 for (i = 0; i < n; ++i) { 2875 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2876 &num_entries); 2877 if (err) { 2878 kvfree(params); 2879 goto done; 2880 } 2881 } 2882 2883 kvfree(params); 2884 2885 /* Use the allowlist unless the following conditions are all true: 2886 * - We are not currently suspending 2887 * - There are 1 or more ADV monitors registered and it's not offloaded 2888 * - Interleaved scanning is not currently using the allowlist 2889 */ 2890 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2891 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2892 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2893 err = -EINVAL; 2894 2895 done: 2896 filter_policy = err ? 0x00 : 0x01; 2897 2898 /* Enable address resolution when LL Privacy is enabled. */ 2899 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2900 if (err) 2901 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2902 2903 /* Resume advertising if it was paused */ 2904 if (ll_privacy_capable(hdev)) 2905 hci_resume_advertising_sync(hdev); 2906 2907 /* Select filter policy to use accept list */ 2908 return filter_policy; 2909 } 2910 2911 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2912 u8 type, u16 interval, u16 window) 2913 { 2914 cp->type = type; 2915 cp->interval = cpu_to_le16(interval); 2916 cp->window = cpu_to_le16(window); 2917 } 2918 2919 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2920 u16 interval, u16 window, 2921 u8 own_addr_type, u8 filter_policy) 2922 { 2923 struct hci_cp_le_set_ext_scan_params *cp; 2924 struct hci_cp_le_scan_phy_params *phy; 2925 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2926 u8 num_phy = 0x00; 2927 2928 cp = (void *)data; 2929 phy = (void *)cp->data; 2930 2931 memset(data, 0, sizeof(data)); 2932 2933 cp->own_addr_type = own_addr_type; 2934 cp->filter_policy = filter_policy; 2935 2936 /* Check if PA Sync is in progress then select the PHY based on the 2937 * hci_conn.iso_qos. 2938 */ 2939 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2940 struct hci_cp_le_add_to_accept_list *sent; 2941 2942 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2943 if (sent) { 2944 struct hci_conn *conn; 2945 2946 conn = hci_conn_hash_lookup_ba(hdev, PA_LINK, 2947 &sent->bdaddr); 2948 if (conn) { 2949 struct bt_iso_qos *qos = &conn->iso_qos; 2950 2951 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2952 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2953 cp->scanning_phys |= LE_SCAN_PHY_1M; 2954 hci_le_scan_phy_params(phy, type, 2955 interval, 2956 window); 2957 num_phy++; 2958 phy++; 2959 } 2960 2961 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2962 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2963 hci_le_scan_phy_params(phy, type, 2964 interval * 3, 2965 window * 3); 2966 num_phy++; 2967 phy++; 2968 } 2969 2970 if (num_phy) 2971 goto done; 2972 } 2973 } 2974 } 2975 2976 if (scan_1m(hdev) || scan_2m(hdev)) { 2977 cp->scanning_phys |= LE_SCAN_PHY_1M; 2978 hci_le_scan_phy_params(phy, type, interval, window); 2979 num_phy++; 2980 phy++; 2981 } 2982 2983 if (scan_coded(hdev)) { 2984 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2985 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2986 num_phy++; 2987 phy++; 2988 } 2989 2990 done: 2991 if (!num_phy) 2992 return -EINVAL; 2993 2994 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2995 sizeof(*cp) + sizeof(*phy) * num_phy, 2996 data, HCI_CMD_TIMEOUT); 2997 } 2998 2999 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 3000 u16 interval, u16 window, 3001 u8 own_addr_type, u8 filter_policy) 3002 { 3003 struct hci_cp_le_set_scan_param cp; 3004 3005 if (use_ext_scan(hdev)) 3006 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 3007 window, own_addr_type, 3008 filter_policy); 3009 3010 memset(&cp, 0, sizeof(cp)); 3011 cp.type = type; 3012 cp.interval = cpu_to_le16(interval); 3013 cp.window = cpu_to_le16(window); 3014 cp.own_address_type = own_addr_type; 3015 cp.filter_policy = filter_policy; 3016 3017 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 3018 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3019 } 3020 3021 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 3022 u16 window, u8 own_addr_type, u8 filter_policy, 3023 u8 filter_dup) 3024 { 3025 int err; 3026 3027 if (hdev->scanning_paused) { 3028 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 3029 return 0; 3030 } 3031 3032 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 3033 own_addr_type, filter_policy); 3034 if (err) 3035 return err; 3036 3037 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 3038 } 3039 3040 static int hci_passive_scan_sync(struct hci_dev *hdev) 3041 { 3042 u8 own_addr_type; 3043 u8 filter_policy; 3044 u16 window, interval; 3045 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 3046 int err; 3047 3048 if (hdev->scanning_paused) { 3049 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 3050 return 0; 3051 } 3052 3053 err = hci_scan_disable_sync(hdev); 3054 if (err) { 3055 bt_dev_err(hdev, "disable scanning failed: %d", err); 3056 return err; 3057 } 3058 3059 /* Set require_privacy to false since no SCAN_REQ are send 3060 * during passive scanning. Not using an non-resolvable address 3061 * here is important so that peer devices using direct 3062 * advertising with our address will be correctly reported 3063 * by the controller. 3064 */ 3065 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 3066 &own_addr_type)) 3067 return 0; 3068 3069 if (hdev->enable_advmon_interleave_scan && 3070 hci_update_interleaved_scan_sync(hdev)) 3071 return 0; 3072 3073 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 3074 3075 /* Adding or removing entries from the accept list must 3076 * happen before enabling scanning. The controller does 3077 * not allow accept list modification while scanning. 3078 */ 3079 filter_policy = hci_update_accept_list_sync(hdev); 3080 3081 /* If suspended and filter_policy set to 0x00 (no acceptlist) then 3082 * passive scanning cannot be started since that would require the host 3083 * to be woken up to process the reports. 3084 */ 3085 if (hdev->suspended && !filter_policy) { 3086 /* Check if accept list is empty then there is no need to scan 3087 * while suspended. 3088 */ 3089 if (list_empty(&hdev->le_accept_list)) 3090 return 0; 3091 3092 /* If there are devices is the accept_list that means some 3093 * devices could not be programmed which in non-suspended case 3094 * means filter_policy needs to be set to 0x00 so the host needs 3095 * to filter, but since this is treating suspended case we 3096 * can ignore device needing host to filter to allow devices in 3097 * the acceptlist to be able to wakeup the system. 3098 */ 3099 filter_policy = 0x01; 3100 } 3101 3102 /* When the controller is using random resolvable addresses and 3103 * with that having LE privacy enabled, then controllers with 3104 * Extended Scanner Filter Policies support can now enable support 3105 * for handling directed advertising. 3106 * 3107 * So instead of using filter polices 0x00 (no acceptlist) 3108 * and 0x01 (acceptlist enabled) use the new filter policies 3109 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 3110 */ 3111 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 3112 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 3113 filter_policy |= 0x02; 3114 3115 if (hdev->suspended) { 3116 window = hdev->le_scan_window_suspend; 3117 interval = hdev->le_scan_int_suspend; 3118 } else if (hci_is_le_conn_scanning(hdev)) { 3119 window = hdev->le_scan_window_connect; 3120 interval = hdev->le_scan_int_connect; 3121 } else if (hci_is_adv_monitoring(hdev)) { 3122 window = hdev->le_scan_window_adv_monitor; 3123 interval = hdev->le_scan_int_adv_monitor; 3124 3125 /* Disable duplicates filter when scanning for advertisement 3126 * monitor for the following reasons. 3127 * 3128 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm 3129 * controllers ignore RSSI_Sampling_Period when the duplicates 3130 * filter is enabled. 3131 * 3132 * For SW pattern filtering, when we're not doing interleaved 3133 * scanning, it is necessary to disable duplicates filter, 3134 * otherwise hosts can only receive one advertisement and it's 3135 * impossible to know if a peer is still in range. 3136 */ 3137 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3138 } else { 3139 window = hdev->le_scan_window; 3140 interval = hdev->le_scan_interval; 3141 } 3142 3143 /* Disable all filtering for Mesh */ 3144 if (hci_dev_test_flag(hdev, HCI_MESH)) { 3145 filter_policy = 0; 3146 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3147 } 3148 3149 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 3150 3151 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 3152 own_addr_type, filter_policy, filter_dups); 3153 } 3154 3155 /* This function controls the passive scanning based on hdev->pend_le_conns 3156 * list. If there are pending LE connection we start the background scanning, 3157 * otherwise we stop it in the following sequence: 3158 * 3159 * If there are devices to scan: 3160 * 3161 * Disable Scanning -> Update Accept List -> 3162 * ll_privacy_capable((Disable Advertising) -> Disable Resolving List -> 3163 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 3164 * Enable Scanning 3165 * 3166 * Otherwise: 3167 * 3168 * Disable Scanning 3169 */ 3170 int hci_update_passive_scan_sync(struct hci_dev *hdev) 3171 { 3172 int err; 3173 3174 if (!test_bit(HCI_UP, &hdev->flags) || 3175 test_bit(HCI_INIT, &hdev->flags) || 3176 hci_dev_test_flag(hdev, HCI_SETUP) || 3177 hci_dev_test_flag(hdev, HCI_CONFIG) || 3178 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3179 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3180 return 0; 3181 3182 /* No point in doing scanning if LE support hasn't been enabled */ 3183 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3184 return 0; 3185 3186 /* If discovery is active don't interfere with it */ 3187 if (hdev->discovery.state != DISCOVERY_STOPPED) 3188 return 0; 3189 3190 /* Reset RSSI and UUID filters when starting background scanning 3191 * since these filters are meant for service discovery only. 3192 * 3193 * The Start Discovery and Start Service Discovery operations 3194 * ensure to set proper values for RSSI threshold and UUID 3195 * filter list. So it is safe to just reset them here. 3196 */ 3197 hci_discovery_filter_clear(hdev); 3198 3199 bt_dev_dbg(hdev, "ADV monitoring is %s", 3200 hci_is_adv_monitoring(hdev) ? "on" : "off"); 3201 3202 if (!hci_dev_test_flag(hdev, HCI_MESH) && 3203 list_empty(&hdev->pend_le_conns) && 3204 list_empty(&hdev->pend_le_reports) && 3205 !hci_is_adv_monitoring(hdev) && 3206 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 3207 /* If there is no pending LE connections or devices 3208 * to be scanned for or no ADV monitors, we should stop the 3209 * background scanning. 3210 */ 3211 3212 bt_dev_dbg(hdev, "stopping background scanning"); 3213 3214 err = hci_scan_disable_sync(hdev); 3215 if (err) 3216 bt_dev_err(hdev, "stop background scanning failed: %d", 3217 err); 3218 } else { 3219 /* If there is at least one pending LE connection, we should 3220 * keep the background scan running. 3221 */ 3222 3223 /* If controller is connecting, we should not start scanning 3224 * since some controllers are not able to scan and connect at 3225 * the same time. 3226 */ 3227 if (hci_lookup_le_connect(hdev)) 3228 return 0; 3229 3230 bt_dev_dbg(hdev, "start background scanning"); 3231 3232 err = hci_passive_scan_sync(hdev); 3233 if (err) 3234 bt_dev_err(hdev, "start background scanning failed: %d", 3235 err); 3236 } 3237 3238 return err; 3239 } 3240 3241 static int update_scan_sync(struct hci_dev *hdev, void *data) 3242 { 3243 return hci_update_scan_sync(hdev); 3244 } 3245 3246 int hci_update_scan(struct hci_dev *hdev) 3247 { 3248 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 3249 } 3250 3251 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 3252 { 3253 return hci_update_passive_scan_sync(hdev); 3254 } 3255 3256 int hci_update_passive_scan(struct hci_dev *hdev) 3257 { 3258 /* Only queue if it would have any effect */ 3259 if (!test_bit(HCI_UP, &hdev->flags) || 3260 test_bit(HCI_INIT, &hdev->flags) || 3261 hci_dev_test_flag(hdev, HCI_SETUP) || 3262 hci_dev_test_flag(hdev, HCI_CONFIG) || 3263 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3264 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3265 return 0; 3266 3267 return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL, 3268 NULL); 3269 } 3270 3271 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3272 { 3273 int err; 3274 3275 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3276 return 0; 3277 3278 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3279 sizeof(val), &val, HCI_CMD_TIMEOUT); 3280 3281 if (!err) { 3282 if (val) { 3283 hdev->features[1][0] |= LMP_HOST_SC; 3284 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3285 } else { 3286 hdev->features[1][0] &= ~LMP_HOST_SC; 3287 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3288 } 3289 } 3290 3291 return err; 3292 } 3293 3294 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3295 { 3296 int err; 3297 3298 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3299 lmp_host_ssp_capable(hdev)) 3300 return 0; 3301 3302 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3303 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3304 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3305 } 3306 3307 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3308 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3309 if (err) 3310 return err; 3311 3312 return hci_write_sc_support_sync(hdev, 0x01); 3313 } 3314 3315 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3316 { 3317 struct hci_cp_write_le_host_supported cp; 3318 3319 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3320 !lmp_bredr_capable(hdev)) 3321 return 0; 3322 3323 /* Check first if we already have the right host state 3324 * (host features set) 3325 */ 3326 if (le == lmp_host_le_capable(hdev) && 3327 simul == lmp_host_le_br_capable(hdev)) 3328 return 0; 3329 3330 memset(&cp, 0, sizeof(cp)); 3331 3332 cp.le = le; 3333 cp.simul = simul; 3334 3335 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3336 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3337 } 3338 3339 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3340 { 3341 struct adv_info *adv, *tmp; 3342 int err; 3343 3344 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3345 return 0; 3346 3347 /* If RPA Resolution has not been enable yet it means the 3348 * resolving list is empty and we should attempt to program the 3349 * local IRK in order to support using own_addr_type 3350 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3351 */ 3352 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3353 hci_le_add_resolve_list_sync(hdev, NULL); 3354 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3355 } 3356 3357 /* Make sure the controller has a good default for 3358 * advertising data. This also applies to the case 3359 * where BR/EDR was toggled during the AUTO_OFF phase. 3360 */ 3361 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && 3362 list_empty(&hdev->adv_instances)) { 3363 if (ext_adv_capable(hdev)) { 3364 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3365 if (!err) 3366 hci_update_scan_rsp_data_sync(hdev, 0x00); 3367 } else { 3368 err = hci_update_adv_data_sync(hdev, 0x00); 3369 if (!err) 3370 hci_update_scan_rsp_data_sync(hdev, 0x00); 3371 } 3372 3373 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3374 hci_enable_advertising_sync(hdev); 3375 } 3376 3377 /* Call for each tracked instance to be scheduled */ 3378 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3379 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3380 3381 return 0; 3382 } 3383 3384 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3385 { 3386 u8 link_sec; 3387 3388 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3389 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3390 return 0; 3391 3392 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3393 sizeof(link_sec), &link_sec, 3394 HCI_CMD_TIMEOUT); 3395 } 3396 3397 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3398 { 3399 struct hci_cp_write_page_scan_activity cp; 3400 u8 type; 3401 int err = 0; 3402 3403 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3404 return 0; 3405 3406 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3407 return 0; 3408 3409 memset(&cp, 0, sizeof(cp)); 3410 3411 if (enable) { 3412 type = PAGE_SCAN_TYPE_INTERLACED; 3413 3414 /* 160 msec page scan interval */ 3415 cp.interval = cpu_to_le16(0x0100); 3416 } else { 3417 type = hdev->def_page_scan_type; 3418 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3419 } 3420 3421 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3422 3423 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3424 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3425 err = __hci_cmd_sync_status(hdev, 3426 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3427 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3428 if (err) 3429 return err; 3430 } 3431 3432 if (hdev->page_scan_type != type) 3433 err = __hci_cmd_sync_status(hdev, 3434 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3435 sizeof(type), &type, 3436 HCI_CMD_TIMEOUT); 3437 3438 return err; 3439 } 3440 3441 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3442 { 3443 struct bdaddr_list *b; 3444 3445 list_for_each_entry(b, &hdev->accept_list, list) { 3446 struct hci_conn *conn; 3447 3448 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3449 if (!conn) 3450 return true; 3451 3452 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3453 return true; 3454 } 3455 3456 return false; 3457 } 3458 3459 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3460 { 3461 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3462 sizeof(val), &val, 3463 HCI_CMD_TIMEOUT); 3464 } 3465 3466 int hci_update_scan_sync(struct hci_dev *hdev) 3467 { 3468 u8 scan; 3469 3470 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3471 return 0; 3472 3473 if (!hdev_is_powered(hdev)) 3474 return 0; 3475 3476 if (mgmt_powering_down(hdev)) 3477 return 0; 3478 3479 if (hdev->scanning_paused) 3480 return 0; 3481 3482 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3483 disconnected_accept_list_entries(hdev)) 3484 scan = SCAN_PAGE; 3485 else 3486 scan = SCAN_DISABLED; 3487 3488 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3489 scan |= SCAN_INQUIRY; 3490 3491 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3492 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3493 return 0; 3494 3495 return hci_write_scan_enable_sync(hdev, scan); 3496 } 3497 3498 int hci_update_name_sync(struct hci_dev *hdev, const u8 *name) 3499 { 3500 struct hci_cp_write_local_name cp; 3501 3502 memset(&cp, 0, sizeof(cp)); 3503 3504 memcpy(cp.name, name, sizeof(cp.name)); 3505 3506 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3507 sizeof(cp), &cp, 3508 HCI_CMD_TIMEOUT); 3509 } 3510 3511 /* This function perform powered update HCI command sequence after the HCI init 3512 * sequence which end up resetting all states, the sequence is as follows: 3513 * 3514 * HCI_SSP_ENABLED(Enable SSP) 3515 * HCI_LE_ENABLED(Enable LE) 3516 * HCI_LE_ENABLED(ll_privacy_capable(Add local IRK to Resolving List) -> 3517 * Update adv data) 3518 * Enable Authentication 3519 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3520 * Set Name -> Set EIR) 3521 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3522 */ 3523 int hci_powered_update_sync(struct hci_dev *hdev) 3524 { 3525 int err; 3526 3527 /* Register the available SMP channels (BR/EDR and LE) only when 3528 * successfully powering on the controller. This late 3529 * registration is required so that LE SMP can clearly decide if 3530 * the public address or static address is used. 3531 */ 3532 smp_register(hdev); 3533 3534 err = hci_write_ssp_mode_sync(hdev, 0x01); 3535 if (err) 3536 return err; 3537 3538 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3539 if (err) 3540 return err; 3541 3542 err = hci_powered_update_adv_sync(hdev); 3543 if (err) 3544 return err; 3545 3546 err = hci_write_auth_enable_sync(hdev); 3547 if (err) 3548 return err; 3549 3550 if (lmp_bredr_capable(hdev)) { 3551 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3552 hci_write_fast_connectable_sync(hdev, true); 3553 else 3554 hci_write_fast_connectable_sync(hdev, false); 3555 hci_update_scan_sync(hdev); 3556 hci_update_class_sync(hdev); 3557 hci_update_name_sync(hdev, hdev->dev_name); 3558 hci_update_eir_sync(hdev); 3559 } 3560 3561 /* If forcing static address is in use or there is no public 3562 * address use the static address as random address (but skip 3563 * the HCI command if the current random address is already the 3564 * static one. 3565 * 3566 * In case BR/EDR has been disabled on a dual-mode controller 3567 * and a static address has been configured, then use that 3568 * address instead of the public BR/EDR address. 3569 */ 3570 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3571 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3572 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3573 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3574 return hci_set_random_addr_sync(hdev, 3575 &hdev->static_addr); 3576 } 3577 3578 return 0; 3579 } 3580 3581 /** 3582 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3583 * (BD_ADDR) for a HCI device from 3584 * a firmware node property. 3585 * @hdev: The HCI device 3586 * 3587 * Search the firmware node for 'local-bd-address'. 3588 * 3589 * All-zero BD addresses are rejected, because those could be properties 3590 * that exist in the firmware tables, but were not updated by the firmware. For 3591 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3592 */ 3593 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3594 { 3595 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3596 bdaddr_t ba; 3597 int ret; 3598 3599 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3600 (u8 *)&ba, sizeof(ba)); 3601 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3602 return; 3603 3604 if (hci_test_quirk(hdev, HCI_QUIRK_BDADDR_PROPERTY_BROKEN)) 3605 baswap(&hdev->public_addr, &ba); 3606 else 3607 bacpy(&hdev->public_addr, &ba); 3608 } 3609 3610 struct hci_init_stage { 3611 int (*func)(struct hci_dev *hdev); 3612 }; 3613 3614 /* Run init stage NULL terminated function table */ 3615 static int hci_init_stage_sync(struct hci_dev *hdev, 3616 const struct hci_init_stage *stage) 3617 { 3618 size_t i; 3619 3620 for (i = 0; stage[i].func; i++) { 3621 int err; 3622 3623 err = stage[i].func(hdev); 3624 if (err) 3625 return err; 3626 } 3627 3628 return 0; 3629 } 3630 3631 /* Read Local Version */ 3632 static int hci_read_local_version_sync(struct hci_dev *hdev) 3633 { 3634 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3635 0, NULL, HCI_CMD_TIMEOUT); 3636 } 3637 3638 /* Read BD Address */ 3639 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3640 { 3641 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3642 0, NULL, HCI_CMD_TIMEOUT); 3643 } 3644 3645 #define HCI_INIT(_func) \ 3646 { \ 3647 .func = _func, \ 3648 } 3649 3650 static const struct hci_init_stage hci_init0[] = { 3651 /* HCI_OP_READ_LOCAL_VERSION */ 3652 HCI_INIT(hci_read_local_version_sync), 3653 /* HCI_OP_READ_BD_ADDR */ 3654 HCI_INIT(hci_read_bd_addr_sync), 3655 {} 3656 }; 3657 3658 int hci_reset_sync(struct hci_dev *hdev) 3659 { 3660 int err; 3661 3662 set_bit(HCI_RESET, &hdev->flags); 3663 3664 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3665 HCI_CMD_TIMEOUT); 3666 if (err) 3667 return err; 3668 3669 return 0; 3670 } 3671 3672 static int hci_init0_sync(struct hci_dev *hdev) 3673 { 3674 int err; 3675 3676 bt_dev_dbg(hdev, ""); 3677 3678 /* Reset */ 3679 if (!hci_test_quirk(hdev, HCI_QUIRK_RESET_ON_CLOSE)) { 3680 err = hci_reset_sync(hdev); 3681 if (err) 3682 return err; 3683 } 3684 3685 return hci_init_stage_sync(hdev, hci_init0); 3686 } 3687 3688 static int hci_unconf_init_sync(struct hci_dev *hdev) 3689 { 3690 int err; 3691 3692 if (hci_test_quirk(hdev, HCI_QUIRK_RAW_DEVICE)) 3693 return 0; 3694 3695 err = hci_init0_sync(hdev); 3696 if (err < 0) 3697 return err; 3698 3699 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3700 hci_debugfs_create_basic(hdev); 3701 3702 return 0; 3703 } 3704 3705 /* Read Local Supported Features. */ 3706 static int hci_read_local_features_sync(struct hci_dev *hdev) 3707 { 3708 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3709 0, NULL, HCI_CMD_TIMEOUT); 3710 } 3711 3712 /* BR Controller init stage 1 command sequence */ 3713 static const struct hci_init_stage br_init1[] = { 3714 /* HCI_OP_READ_LOCAL_FEATURES */ 3715 HCI_INIT(hci_read_local_features_sync), 3716 /* HCI_OP_READ_LOCAL_VERSION */ 3717 HCI_INIT(hci_read_local_version_sync), 3718 /* HCI_OP_READ_BD_ADDR */ 3719 HCI_INIT(hci_read_bd_addr_sync), 3720 {} 3721 }; 3722 3723 /* Read Local Commands */ 3724 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3725 { 3726 /* All Bluetooth 1.2 and later controllers should support the 3727 * HCI command for reading the local supported commands. 3728 * 3729 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3730 * but do not have support for this command. If that is the case, 3731 * the driver can quirk the behavior and skip reading the local 3732 * supported commands. 3733 */ 3734 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3735 !hci_test_quirk(hdev, HCI_QUIRK_BROKEN_LOCAL_COMMANDS)) 3736 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3737 0, NULL, HCI_CMD_TIMEOUT); 3738 3739 return 0; 3740 } 3741 3742 static int hci_init1_sync(struct hci_dev *hdev) 3743 { 3744 int err; 3745 3746 bt_dev_dbg(hdev, ""); 3747 3748 /* Reset */ 3749 if (!hci_test_quirk(hdev, HCI_QUIRK_RESET_ON_CLOSE)) { 3750 err = hci_reset_sync(hdev); 3751 if (err) 3752 return err; 3753 } 3754 3755 return hci_init_stage_sync(hdev, br_init1); 3756 } 3757 3758 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3759 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3760 { 3761 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3762 0, NULL, HCI_CMD_TIMEOUT); 3763 } 3764 3765 /* Read Class of Device */ 3766 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3767 { 3768 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3769 0, NULL, HCI_CMD_TIMEOUT); 3770 } 3771 3772 /* Read Local Name */ 3773 static int hci_read_local_name_sync(struct hci_dev *hdev) 3774 { 3775 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3776 0, NULL, HCI_CMD_TIMEOUT); 3777 } 3778 3779 /* Read Voice Setting */ 3780 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3781 { 3782 if (!read_voice_setting_capable(hdev)) 3783 return 0; 3784 3785 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3786 0, NULL, HCI_CMD_TIMEOUT); 3787 } 3788 3789 /* Read Number of Supported IAC */ 3790 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3791 { 3792 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3793 0, NULL, HCI_CMD_TIMEOUT); 3794 } 3795 3796 /* Read Current IAC LAP */ 3797 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3798 { 3799 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3800 0, NULL, HCI_CMD_TIMEOUT); 3801 } 3802 3803 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3804 u8 cond_type, bdaddr_t *bdaddr, 3805 u8 auto_accept) 3806 { 3807 struct hci_cp_set_event_filter cp; 3808 3809 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3810 return 0; 3811 3812 if (hci_test_quirk(hdev, HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL)) 3813 return 0; 3814 3815 memset(&cp, 0, sizeof(cp)); 3816 cp.flt_type = flt_type; 3817 3818 if (flt_type != HCI_FLT_CLEAR_ALL) { 3819 cp.cond_type = cond_type; 3820 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3821 cp.addr_conn_flt.auto_accept = auto_accept; 3822 } 3823 3824 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3825 flt_type == HCI_FLT_CLEAR_ALL ? 3826 sizeof(cp.flt_type) : sizeof(cp), &cp, 3827 HCI_CMD_TIMEOUT); 3828 } 3829 3830 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3831 { 3832 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3833 return 0; 3834 3835 /* In theory the state machine should not reach here unless 3836 * a hci_set_event_filter_sync() call succeeds, but we do 3837 * the check both for parity and as a future reminder. 3838 */ 3839 if (hci_test_quirk(hdev, HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL)) 3840 return 0; 3841 3842 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3843 BDADDR_ANY, 0x00); 3844 } 3845 3846 /* Connection accept timeout ~20 secs */ 3847 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3848 { 3849 __le16 param = cpu_to_le16(0x7d00); 3850 3851 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3852 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3853 } 3854 3855 /* Enable SCO flow control if supported */ 3856 static int hci_write_sync_flowctl_sync(struct hci_dev *hdev) 3857 { 3858 struct hci_cp_write_sync_flowctl cp; 3859 int err; 3860 3861 /* Check if the controller supports SCO and HCI_OP_WRITE_SYNC_FLOWCTL */ 3862 if (!lmp_sco_capable(hdev) || !(hdev->commands[10] & BIT(4)) || 3863 !hci_test_quirk(hdev, HCI_QUIRK_SYNC_FLOWCTL_SUPPORTED)) 3864 return 0; 3865 3866 memset(&cp, 0, sizeof(cp)); 3867 cp.enable = 0x01; 3868 3869 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SYNC_FLOWCTL, 3870 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3871 if (!err) 3872 hci_dev_set_flag(hdev, HCI_SCO_FLOWCTL); 3873 3874 return err; 3875 } 3876 3877 /* BR Controller init stage 2 command sequence */ 3878 static const struct hci_init_stage br_init2[] = { 3879 /* HCI_OP_READ_BUFFER_SIZE */ 3880 HCI_INIT(hci_read_buffer_size_sync), 3881 /* HCI_OP_READ_CLASS_OF_DEV */ 3882 HCI_INIT(hci_read_dev_class_sync), 3883 /* HCI_OP_READ_LOCAL_NAME */ 3884 HCI_INIT(hci_read_local_name_sync), 3885 /* HCI_OP_READ_VOICE_SETTING */ 3886 HCI_INIT(hci_read_voice_setting_sync), 3887 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3888 HCI_INIT(hci_read_num_supported_iac_sync), 3889 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3890 HCI_INIT(hci_read_current_iac_lap_sync), 3891 /* HCI_OP_SET_EVENT_FLT */ 3892 HCI_INIT(hci_clear_event_filter_sync), 3893 /* HCI_OP_WRITE_CA_TIMEOUT */ 3894 HCI_INIT(hci_write_ca_timeout_sync), 3895 /* HCI_OP_WRITE_SYNC_FLOWCTL */ 3896 HCI_INIT(hci_write_sync_flowctl_sync), 3897 {} 3898 }; 3899 3900 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3901 { 3902 u8 mode = 0x01; 3903 3904 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3905 return 0; 3906 3907 /* When SSP is available, then the host features page 3908 * should also be available as well. However some 3909 * controllers list the max_page as 0 as long as SSP 3910 * has not been enabled. To achieve proper debugging 3911 * output, force the minimum max_page to 1 at least. 3912 */ 3913 hdev->max_page = 0x01; 3914 3915 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3916 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3917 } 3918 3919 static int hci_write_eir_sync(struct hci_dev *hdev) 3920 { 3921 struct hci_cp_write_eir cp; 3922 3923 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3924 return 0; 3925 3926 memset(hdev->eir, 0, sizeof(hdev->eir)); 3927 memset(&cp, 0, sizeof(cp)); 3928 3929 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3930 HCI_CMD_TIMEOUT); 3931 } 3932 3933 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3934 { 3935 u8 mode; 3936 3937 if (!lmp_inq_rssi_capable(hdev) && 3938 !hci_test_quirk(hdev, HCI_QUIRK_FIXUP_INQUIRY_MODE)) 3939 return 0; 3940 3941 /* If Extended Inquiry Result events are supported, then 3942 * they are clearly preferred over Inquiry Result with RSSI 3943 * events. 3944 */ 3945 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3946 3947 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3948 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3949 } 3950 3951 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3952 { 3953 if (!lmp_inq_tx_pwr_capable(hdev)) 3954 return 0; 3955 3956 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3957 0, NULL, HCI_CMD_TIMEOUT); 3958 } 3959 3960 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3961 { 3962 struct hci_cp_read_local_ext_features cp; 3963 3964 if (!lmp_ext_feat_capable(hdev)) 3965 return 0; 3966 3967 memset(&cp, 0, sizeof(cp)); 3968 cp.page = page; 3969 3970 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3971 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3972 } 3973 3974 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3975 { 3976 return hci_read_local_ext_features_sync(hdev, 0x01); 3977 } 3978 3979 /* HCI Controller init stage 2 command sequence */ 3980 static const struct hci_init_stage hci_init2[] = { 3981 /* HCI_OP_READ_LOCAL_COMMANDS */ 3982 HCI_INIT(hci_read_local_cmds_sync), 3983 /* HCI_OP_WRITE_SSP_MODE */ 3984 HCI_INIT(hci_write_ssp_mode_1_sync), 3985 /* HCI_OP_WRITE_EIR */ 3986 HCI_INIT(hci_write_eir_sync), 3987 /* HCI_OP_WRITE_INQUIRY_MODE */ 3988 HCI_INIT(hci_write_inquiry_mode_sync), 3989 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3990 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3991 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3992 HCI_INIT(hci_read_local_ext_features_1_sync), 3993 /* HCI_OP_WRITE_AUTH_ENABLE */ 3994 HCI_INIT(hci_write_auth_enable_sync), 3995 {} 3996 }; 3997 3998 /* Read LE Buffer Size */ 3999 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 4000 { 4001 /* Use Read LE Buffer Size V2 if supported */ 4002 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 4003 return __hci_cmd_sync_status(hdev, 4004 HCI_OP_LE_READ_BUFFER_SIZE_V2, 4005 0, NULL, HCI_CMD_TIMEOUT); 4006 4007 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 4008 0, NULL, HCI_CMD_TIMEOUT); 4009 } 4010 4011 /* Read LE Local Supported Features */ 4012 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 4013 { 4014 int err; 4015 4016 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 4017 0, NULL, HCI_CMD_TIMEOUT); 4018 if (err) 4019 return err; 4020 4021 if (ll_ext_feature_capable(hdev) && hdev->commands[47] & BIT(2)) 4022 return __hci_cmd_sync_status(hdev, 4023 HCI_OP_LE_READ_ALL_LOCAL_FEATURES, 4024 0, NULL, HCI_CMD_TIMEOUT); 4025 4026 return err; 4027 } 4028 4029 /* Read LE Supported States */ 4030 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 4031 { 4032 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 4033 0, NULL, HCI_CMD_TIMEOUT); 4034 } 4035 4036 /* LE Controller init stage 2 command sequence */ 4037 static const struct hci_init_stage le_init2[] = { 4038 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 4039 HCI_INIT(hci_le_read_local_features_sync), 4040 /* HCI_OP_LE_READ_BUFFER_SIZE */ 4041 HCI_INIT(hci_le_read_buffer_size_sync), 4042 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 4043 HCI_INIT(hci_le_read_supported_states_sync), 4044 {} 4045 }; 4046 4047 static int hci_init2_sync(struct hci_dev *hdev) 4048 { 4049 int err; 4050 4051 bt_dev_dbg(hdev, ""); 4052 4053 err = hci_init_stage_sync(hdev, hci_init2); 4054 if (err) 4055 return err; 4056 4057 if (lmp_bredr_capable(hdev)) { 4058 err = hci_init_stage_sync(hdev, br_init2); 4059 if (err) 4060 return err; 4061 } else { 4062 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 4063 } 4064 4065 if (lmp_le_capable(hdev)) { 4066 err = hci_init_stage_sync(hdev, le_init2); 4067 if (err) 4068 return err; 4069 /* LE-only controllers have LE implicitly enabled */ 4070 if (!lmp_bredr_capable(hdev)) 4071 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 4072 } 4073 4074 return 0; 4075 } 4076 4077 static int hci_set_event_mask_sync(struct hci_dev *hdev) 4078 { 4079 /* The second byte is 0xff instead of 0x9f (two reserved bits 4080 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 4081 * command otherwise. 4082 */ 4083 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 4084 4085 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 4086 * any event mask for pre 1.2 devices. 4087 */ 4088 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 4089 return 0; 4090 4091 if (lmp_bredr_capable(hdev)) { 4092 events[4] |= 0x01; /* Flow Specification Complete */ 4093 4094 /* Don't set Disconnect Complete and mode change when 4095 * suspended as that would wakeup the host when disconnecting 4096 * due to suspend. 4097 */ 4098 if (hdev->suspended) { 4099 events[0] &= 0xef; 4100 events[2] &= 0xf7; 4101 } 4102 } else { 4103 /* Use a different default for LE-only devices */ 4104 memset(events, 0, sizeof(events)); 4105 events[1] |= 0x20; /* Command Complete */ 4106 events[1] |= 0x40; /* Command Status */ 4107 events[1] |= 0x80; /* Hardware Error */ 4108 4109 /* If the controller supports the Disconnect command, enable 4110 * the corresponding event. In addition enable packet flow 4111 * control related events. 4112 */ 4113 if (hdev->commands[0] & 0x20) { 4114 /* Don't set Disconnect Complete when suspended as that 4115 * would wakeup the host when disconnecting due to 4116 * suspend. 4117 */ 4118 if (!hdev->suspended) 4119 events[0] |= 0x10; /* Disconnection Complete */ 4120 events[2] |= 0x04; /* Number of Completed Packets */ 4121 events[3] |= 0x02; /* Data Buffer Overflow */ 4122 } 4123 4124 /* If the controller supports the Read Remote Version 4125 * Information command, enable the corresponding event. 4126 */ 4127 if (hdev->commands[2] & 0x80) 4128 events[1] |= 0x08; /* Read Remote Version Information 4129 * Complete 4130 */ 4131 4132 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 4133 events[0] |= 0x80; /* Encryption Change */ 4134 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4135 } 4136 } 4137 4138 if (lmp_inq_rssi_capable(hdev) || 4139 hci_test_quirk(hdev, HCI_QUIRK_FIXUP_INQUIRY_MODE)) 4140 events[4] |= 0x02; /* Inquiry Result with RSSI */ 4141 4142 if (lmp_ext_feat_capable(hdev)) 4143 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 4144 4145 if (lmp_esco_capable(hdev)) { 4146 events[5] |= 0x08; /* Synchronous Connection Complete */ 4147 events[5] |= 0x10; /* Synchronous Connection Changed */ 4148 } 4149 4150 if (lmp_sniffsubr_capable(hdev)) 4151 events[5] |= 0x20; /* Sniff Subrating */ 4152 4153 if (lmp_pause_enc_capable(hdev)) 4154 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4155 4156 if (lmp_ext_inq_capable(hdev)) 4157 events[5] |= 0x40; /* Extended Inquiry Result */ 4158 4159 if (lmp_no_flush_capable(hdev)) 4160 events[7] |= 0x01; /* Enhanced Flush Complete */ 4161 4162 if (lmp_lsto_capable(hdev)) 4163 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 4164 4165 if (lmp_ssp_capable(hdev)) { 4166 events[6] |= 0x01; /* IO Capability Request */ 4167 events[6] |= 0x02; /* IO Capability Response */ 4168 events[6] |= 0x04; /* User Confirmation Request */ 4169 events[6] |= 0x08; /* User Passkey Request */ 4170 events[6] |= 0x10; /* Remote OOB Data Request */ 4171 events[6] |= 0x20; /* Simple Pairing Complete */ 4172 events[7] |= 0x04; /* User Passkey Notification */ 4173 events[7] |= 0x08; /* Keypress Notification */ 4174 events[7] |= 0x10; /* Remote Host Supported 4175 * Features Notification 4176 */ 4177 } 4178 4179 if (lmp_le_capable(hdev)) 4180 events[7] |= 0x20; /* LE Meta-Event */ 4181 4182 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 4183 sizeof(events), events, HCI_CMD_TIMEOUT); 4184 } 4185 4186 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 4187 { 4188 struct hci_cp_read_stored_link_key cp; 4189 4190 if (!(hdev->commands[6] & 0x20) || 4191 hci_test_quirk(hdev, HCI_QUIRK_BROKEN_STORED_LINK_KEY)) 4192 return 0; 4193 4194 memset(&cp, 0, sizeof(cp)); 4195 bacpy(&cp.bdaddr, BDADDR_ANY); 4196 cp.read_all = 0x01; 4197 4198 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 4199 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4200 } 4201 4202 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 4203 { 4204 struct hci_cp_write_def_link_policy cp; 4205 u16 link_policy = 0; 4206 4207 if (!(hdev->commands[5] & 0x10)) 4208 return 0; 4209 4210 memset(&cp, 0, sizeof(cp)); 4211 4212 if (lmp_rswitch_capable(hdev)) 4213 link_policy |= HCI_LP_RSWITCH; 4214 if (lmp_hold_capable(hdev)) 4215 link_policy |= HCI_LP_HOLD; 4216 if (lmp_sniff_capable(hdev)) 4217 link_policy |= HCI_LP_SNIFF; 4218 if (lmp_park_capable(hdev)) 4219 link_policy |= HCI_LP_PARK; 4220 4221 cp.policy = cpu_to_le16(link_policy); 4222 4223 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 4224 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4225 } 4226 4227 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 4228 { 4229 if (!(hdev->commands[8] & 0x01)) 4230 return 0; 4231 4232 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 4233 0, NULL, HCI_CMD_TIMEOUT); 4234 } 4235 4236 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 4237 { 4238 if (!(hdev->commands[18] & 0x04) || 4239 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4240 hci_test_quirk(hdev, HCI_QUIRK_BROKEN_ERR_DATA_REPORTING)) 4241 return 0; 4242 4243 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4244 0, NULL, HCI_CMD_TIMEOUT); 4245 } 4246 4247 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 4248 { 4249 /* Some older Broadcom based Bluetooth 1.2 controllers do not 4250 * support the Read Page Scan Type command. Check support for 4251 * this command in the bit mask of supported commands. 4252 */ 4253 if (!(hdev->commands[13] & 0x01) || 4254 hci_test_quirk(hdev, HCI_QUIRK_BROKEN_READ_PAGE_SCAN_TYPE)) 4255 return 0; 4256 4257 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 4258 0, NULL, HCI_CMD_TIMEOUT); 4259 } 4260 4261 /* Read features beyond page 1 if available */ 4262 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 4263 { 4264 u8 page; 4265 int err; 4266 4267 if (!lmp_ext_feat_capable(hdev)) 4268 return 0; 4269 4270 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4271 page++) { 4272 err = hci_read_local_ext_features_sync(hdev, page); 4273 if (err) 4274 return err; 4275 } 4276 4277 return 0; 4278 } 4279 4280 /* HCI Controller init stage 3 command sequence */ 4281 static const struct hci_init_stage hci_init3[] = { 4282 /* HCI_OP_SET_EVENT_MASK */ 4283 HCI_INIT(hci_set_event_mask_sync), 4284 /* HCI_OP_READ_STORED_LINK_KEY */ 4285 HCI_INIT(hci_read_stored_link_key_sync), 4286 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4287 HCI_INIT(hci_setup_link_policy_sync), 4288 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4289 HCI_INIT(hci_read_page_scan_activity_sync), 4290 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4291 HCI_INIT(hci_read_def_err_data_reporting_sync), 4292 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4293 HCI_INIT(hci_read_page_scan_type_sync), 4294 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4295 HCI_INIT(hci_read_local_ext_features_all_sync), 4296 {} 4297 }; 4298 4299 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4300 { 4301 u8 events[8]; 4302 4303 if (!lmp_le_capable(hdev)) 4304 return 0; 4305 4306 memset(events, 0, sizeof(events)); 4307 4308 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4309 events[0] |= 0x10; /* LE Long Term Key Request */ 4310 4311 /* If controller supports the Connection Parameters Request 4312 * Link Layer Procedure, enable the corresponding event. 4313 */ 4314 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4315 /* LE Remote Connection Parameter Request */ 4316 events[0] |= 0x20; 4317 4318 /* If the controller supports the Data Length Extension 4319 * feature, enable the corresponding event. 4320 */ 4321 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4322 events[0] |= 0x40; /* LE Data Length Change */ 4323 4324 /* If the controller supports LL Privacy feature or LE Extended Adv, 4325 * enable the corresponding event. 4326 */ 4327 if (use_enhanced_conn_complete(hdev)) 4328 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4329 4330 /* Mark Device Privacy if Privacy Mode is supported */ 4331 if (privacy_mode_capable(hdev)) 4332 hdev->conn_flags |= HCI_CONN_FLAG_DEVICE_PRIVACY; 4333 4334 /* Mark Address Resolution if LL Privacy is supported */ 4335 if (ll_privacy_capable(hdev)) 4336 hdev->conn_flags |= HCI_CONN_FLAG_ADDRESS_RESOLUTION; 4337 4338 /* Mark PAST if supported */ 4339 if (past_capable(hdev)) 4340 hdev->conn_flags |= HCI_CONN_FLAG_PAST; 4341 4342 /* If the controller supports Extended Scanner Filter 4343 * Policies, enable the corresponding event. 4344 */ 4345 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4346 events[1] |= 0x04; /* LE Direct Advertising Report */ 4347 4348 /* If the controller supports Channel Selection Algorithm #2 4349 * feature, enable the corresponding event. 4350 */ 4351 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4352 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4353 4354 /* If the controller supports the LE Set Scan Enable command, 4355 * enable the corresponding advertising report event. 4356 */ 4357 if (hdev->commands[26] & 0x08) 4358 events[0] |= 0x02; /* LE Advertising Report */ 4359 4360 /* If the controller supports the LE Create Connection 4361 * command, enable the corresponding event. 4362 */ 4363 if (hdev->commands[26] & 0x10) 4364 events[0] |= 0x01; /* LE Connection Complete */ 4365 4366 /* If the controller supports the LE Connection Update 4367 * command, enable the corresponding event. 4368 */ 4369 if (hdev->commands[27] & 0x04) 4370 events[0] |= 0x04; /* LE Connection Update Complete */ 4371 4372 /* If the controller supports the LE Read Remote Used Features 4373 * command, enable the corresponding event. 4374 */ 4375 if (hdev->commands[27] & 0x20) 4376 /* LE Read Remote Used Features Complete */ 4377 events[0] |= 0x08; 4378 4379 /* If the controller supports the LE Read Local P-256 4380 * Public Key command, enable the corresponding event. 4381 */ 4382 if (hdev->commands[34] & 0x02) 4383 /* LE Read Local P-256 Public Key Complete */ 4384 events[0] |= 0x80; 4385 4386 /* If the controller supports the LE Generate DHKey 4387 * command, enable the corresponding event. 4388 */ 4389 if (hdev->commands[34] & 0x04) 4390 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4391 4392 /* If the controller supports the LE Set Default PHY or 4393 * LE Set PHY commands, enable the corresponding event. 4394 */ 4395 if (hdev->commands[35] & (0x20 | 0x40)) 4396 events[1] |= 0x08; /* LE PHY Update Complete */ 4397 4398 /* If the controller supports LE Set Extended Scan Parameters 4399 * and LE Set Extended Scan Enable commands, enable the 4400 * corresponding event. 4401 */ 4402 if (use_ext_scan(hdev)) 4403 events[1] |= 0x10; /* LE Extended Advertising Report */ 4404 4405 /* If the controller supports the LE Extended Advertising 4406 * command, enable the corresponding event. 4407 */ 4408 if (ext_adv_capable(hdev)) 4409 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4410 4411 if (past_receiver_capable(hdev)) 4412 events[2] |= 0x80; /* LE PAST Received */ 4413 4414 if (cis_capable(hdev)) { 4415 events[3] |= 0x01; /* LE CIS Established */ 4416 if (cis_peripheral_capable(hdev)) 4417 events[3] |= 0x02; /* LE CIS Request */ 4418 } 4419 4420 if (bis_capable(hdev)) { 4421 events[1] |= 0x20; /* LE PA Report */ 4422 events[1] |= 0x40; /* LE PA Sync Established */ 4423 events[3] |= 0x04; /* LE Create BIG Complete */ 4424 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4425 events[3] |= 0x10; /* LE BIG Sync Established */ 4426 events[3] |= 0x20; /* LE BIG Sync Loss */ 4427 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4428 } 4429 4430 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4431 sizeof(events), events, HCI_CMD_TIMEOUT); 4432 } 4433 4434 /* Read LE Advertising Channel TX Power */ 4435 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4436 { 4437 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4438 /* HCI TS spec forbids mixing of legacy and extended 4439 * advertising commands wherein READ_ADV_TX_POWER is 4440 * also included. So do not call it if extended adv 4441 * is supported otherwise controller will return 4442 * COMMAND_DISALLOWED for extended commands. 4443 */ 4444 return __hci_cmd_sync_status(hdev, 4445 HCI_OP_LE_READ_ADV_TX_POWER, 4446 0, NULL, HCI_CMD_TIMEOUT); 4447 } 4448 4449 return 0; 4450 } 4451 4452 /* Read LE Min/Max Tx Power*/ 4453 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4454 { 4455 if (!(hdev->commands[38] & 0x80) || 4456 hci_test_quirk(hdev, HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER)) 4457 return 0; 4458 4459 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4460 0, NULL, HCI_CMD_TIMEOUT); 4461 } 4462 4463 /* Read LE Accept List Size */ 4464 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4465 { 4466 if (!(hdev->commands[26] & 0x40)) 4467 return 0; 4468 4469 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4470 0, NULL, HCI_CMD_TIMEOUT); 4471 } 4472 4473 /* Read LE Resolving List Size */ 4474 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4475 { 4476 if (!(hdev->commands[34] & 0x40)) 4477 return 0; 4478 4479 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4480 0, NULL, HCI_CMD_TIMEOUT); 4481 } 4482 4483 /* Clear LE Resolving List */ 4484 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4485 { 4486 if (!(hdev->commands[34] & 0x20)) 4487 return 0; 4488 4489 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4490 HCI_CMD_TIMEOUT); 4491 } 4492 4493 /* Set RPA timeout */ 4494 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4495 { 4496 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4497 4498 if (!(hdev->commands[35] & 0x04) || 4499 hci_test_quirk(hdev, HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT)) 4500 return 0; 4501 4502 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4503 sizeof(timeout), &timeout, 4504 HCI_CMD_TIMEOUT); 4505 } 4506 4507 /* Read LE Maximum Data Length */ 4508 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4509 { 4510 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4511 return 0; 4512 4513 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4514 HCI_CMD_TIMEOUT); 4515 } 4516 4517 /* Read LE Suggested Default Data Length */ 4518 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4519 { 4520 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4521 return 0; 4522 4523 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4524 HCI_CMD_TIMEOUT); 4525 } 4526 4527 /* Read LE Number of Supported Advertising Sets */ 4528 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4529 { 4530 if (!ext_adv_capable(hdev)) 4531 return 0; 4532 4533 return __hci_cmd_sync_status(hdev, 4534 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4535 0, NULL, HCI_CMD_TIMEOUT); 4536 } 4537 4538 /* Write LE Host Supported */ 4539 static int hci_set_le_support_sync(struct hci_dev *hdev) 4540 { 4541 struct hci_cp_write_le_host_supported cp; 4542 4543 /* LE-only devices do not support explicit enablement */ 4544 if (!lmp_bredr_capable(hdev)) 4545 return 0; 4546 4547 memset(&cp, 0, sizeof(cp)); 4548 4549 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4550 cp.le = 0x01; 4551 cp.simul = 0x00; 4552 } 4553 4554 if (cp.le == lmp_host_le_capable(hdev)) 4555 return 0; 4556 4557 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4558 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4559 } 4560 4561 /* LE Set Host Feature */ 4562 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4563 { 4564 struct hci_cp_le_set_host_feature cp; 4565 4566 if (!iso_capable(hdev)) 4567 return 0; 4568 4569 memset(&cp, 0, sizeof(cp)); 4570 4571 /* Connected Isochronous Channels (Host Support) */ 4572 cp.bit_number = 32; 4573 cp.bit_value = iso_enabled(hdev) ? 0x01 : 0x00; 4574 4575 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4576 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4577 } 4578 4579 /* LE Controller init stage 3 command sequence */ 4580 static const struct hci_init_stage le_init3[] = { 4581 /* HCI_OP_LE_SET_EVENT_MASK */ 4582 HCI_INIT(hci_le_set_event_mask_sync), 4583 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4584 HCI_INIT(hci_le_read_adv_tx_power_sync), 4585 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4586 HCI_INIT(hci_le_read_tx_power_sync), 4587 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4588 HCI_INIT(hci_le_read_accept_list_size_sync), 4589 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4590 HCI_INIT(hci_le_clear_accept_list_sync), 4591 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4592 HCI_INIT(hci_le_read_resolv_list_size_sync), 4593 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4594 HCI_INIT(hci_le_clear_resolv_list_sync), 4595 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4596 HCI_INIT(hci_le_set_rpa_timeout_sync), 4597 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4598 HCI_INIT(hci_le_read_max_data_len_sync), 4599 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4600 HCI_INIT(hci_le_read_def_data_len_sync), 4601 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4602 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4603 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4604 HCI_INIT(hci_set_le_support_sync), 4605 /* HCI_OP_LE_SET_HOST_FEATURE */ 4606 HCI_INIT(hci_le_set_host_feature_sync), 4607 {} 4608 }; 4609 4610 static int hci_init3_sync(struct hci_dev *hdev) 4611 { 4612 int err; 4613 4614 bt_dev_dbg(hdev, ""); 4615 4616 err = hci_init_stage_sync(hdev, hci_init3); 4617 if (err) 4618 return err; 4619 4620 if (lmp_le_capable(hdev)) 4621 return hci_init_stage_sync(hdev, le_init3); 4622 4623 return 0; 4624 } 4625 4626 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4627 { 4628 struct hci_cp_delete_stored_link_key cp; 4629 4630 /* Some Broadcom based Bluetooth controllers do not support the 4631 * Delete Stored Link Key command. They are clearly indicating its 4632 * absence in the bit mask of supported commands. 4633 * 4634 * Check the supported commands and only if the command is marked 4635 * as supported send it. If not supported assume that the controller 4636 * does not have actual support for stored link keys which makes this 4637 * command redundant anyway. 4638 * 4639 * Some controllers indicate that they support handling deleting 4640 * stored link keys, but they don't. The quirk lets a driver 4641 * just disable this command. 4642 */ 4643 if (!(hdev->commands[6] & 0x80) || 4644 hci_test_quirk(hdev, HCI_QUIRK_BROKEN_STORED_LINK_KEY)) 4645 return 0; 4646 4647 memset(&cp, 0, sizeof(cp)); 4648 bacpy(&cp.bdaddr, BDADDR_ANY); 4649 cp.delete_all = 0x01; 4650 4651 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4652 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4653 } 4654 4655 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4656 { 4657 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4658 bool changed = false; 4659 4660 /* Set event mask page 2 if the HCI command for it is supported */ 4661 if (!(hdev->commands[22] & 0x04)) 4662 return 0; 4663 4664 /* If Connectionless Peripheral Broadcast central role is supported 4665 * enable all necessary events for it. 4666 */ 4667 if (lmp_cpb_central_capable(hdev)) { 4668 events[1] |= 0x40; /* Triggered Clock Capture */ 4669 events[1] |= 0x80; /* Synchronization Train Complete */ 4670 events[2] |= 0x08; /* Truncated Page Complete */ 4671 events[2] |= 0x20; /* CPB Channel Map Change */ 4672 changed = true; 4673 } 4674 4675 /* If Connectionless Peripheral Broadcast peripheral role is supported 4676 * enable all necessary events for it. 4677 */ 4678 if (lmp_cpb_peripheral_capable(hdev)) { 4679 events[2] |= 0x01; /* Synchronization Train Received */ 4680 events[2] |= 0x02; /* CPB Receive */ 4681 events[2] |= 0x04; /* CPB Timeout */ 4682 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4683 changed = true; 4684 } 4685 4686 /* Enable Authenticated Payload Timeout Expired event if supported */ 4687 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4688 events[2] |= 0x80; 4689 changed = true; 4690 } 4691 4692 /* Some Broadcom based controllers indicate support for Set Event 4693 * Mask Page 2 command, but then actually do not support it. Since 4694 * the default value is all bits set to zero, the command is only 4695 * required if the event mask has to be changed. In case no change 4696 * to the event mask is needed, skip this command. 4697 */ 4698 if (!changed) 4699 return 0; 4700 4701 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4702 sizeof(events), events, HCI_CMD_TIMEOUT); 4703 } 4704 4705 /* Read local codec list if the HCI command is supported */ 4706 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4707 { 4708 if (hdev->commands[45] & 0x04) 4709 hci_read_supported_codecs_v2(hdev); 4710 else if (hdev->commands[29] & 0x20) 4711 hci_read_supported_codecs(hdev); 4712 4713 return 0; 4714 } 4715 4716 /* Read local pairing options if the HCI command is supported */ 4717 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4718 { 4719 if (!(hdev->commands[41] & 0x08)) 4720 return 0; 4721 4722 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4723 0, NULL, HCI_CMD_TIMEOUT); 4724 } 4725 4726 /* Get MWS transport configuration if the HCI command is supported */ 4727 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4728 { 4729 if (!mws_transport_config_capable(hdev)) 4730 return 0; 4731 4732 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4733 0, NULL, HCI_CMD_TIMEOUT); 4734 } 4735 4736 /* Check for Synchronization Train support */ 4737 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4738 { 4739 if (!lmp_sync_train_capable(hdev)) 4740 return 0; 4741 4742 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4743 0, NULL, HCI_CMD_TIMEOUT); 4744 } 4745 4746 /* Enable Secure Connections if supported and configured */ 4747 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4748 { 4749 u8 support = 0x01; 4750 4751 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4752 !bredr_sc_enabled(hdev)) 4753 return 0; 4754 4755 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4756 sizeof(support), &support, 4757 HCI_CMD_TIMEOUT); 4758 } 4759 4760 /* Set erroneous data reporting if supported to the wideband speech 4761 * setting value 4762 */ 4763 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4764 { 4765 struct hci_cp_write_def_err_data_reporting cp; 4766 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4767 4768 if (!(hdev->commands[18] & 0x08) || 4769 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4770 hci_test_quirk(hdev, HCI_QUIRK_BROKEN_ERR_DATA_REPORTING)) 4771 return 0; 4772 4773 if (enabled == hdev->err_data_reporting) 4774 return 0; 4775 4776 memset(&cp, 0, sizeof(cp)); 4777 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4778 ERR_DATA_REPORTING_DISABLED; 4779 4780 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4781 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4782 } 4783 4784 static const struct hci_init_stage hci_init4[] = { 4785 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4786 HCI_INIT(hci_delete_stored_link_key_sync), 4787 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4788 HCI_INIT(hci_set_event_mask_page_2_sync), 4789 /* HCI_OP_READ_LOCAL_CODECS */ 4790 HCI_INIT(hci_read_local_codecs_sync), 4791 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4792 HCI_INIT(hci_read_local_pairing_opts_sync), 4793 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4794 HCI_INIT(hci_get_mws_transport_config_sync), 4795 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4796 HCI_INIT(hci_read_sync_train_params_sync), 4797 /* HCI_OP_WRITE_SC_SUPPORT */ 4798 HCI_INIT(hci_write_sc_support_1_sync), 4799 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4800 HCI_INIT(hci_set_err_data_report_sync), 4801 {} 4802 }; 4803 4804 /* Set Suggested Default Data Length to maximum if supported */ 4805 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4806 { 4807 struct hci_cp_le_write_def_data_len cp; 4808 4809 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4810 return 0; 4811 4812 memset(&cp, 0, sizeof(cp)); 4813 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4814 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4815 4816 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4817 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4818 } 4819 4820 /* Set Default PHY parameters if command is supported, enables all supported 4821 * PHYs according to the LE Features bits. 4822 */ 4823 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4824 { 4825 struct hci_cp_le_set_default_phy cp; 4826 4827 if (!(hdev->commands[35] & 0x20)) { 4828 /* If the command is not supported it means only 1M PHY is 4829 * supported. 4830 */ 4831 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4832 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4833 return 0; 4834 } 4835 4836 memset(&cp, 0, sizeof(cp)); 4837 cp.all_phys = 0x00; 4838 cp.tx_phys = HCI_LE_SET_PHY_1M; 4839 cp.rx_phys = HCI_LE_SET_PHY_1M; 4840 4841 /* Enables 2M PHY if supported */ 4842 if (le_2m_capable(hdev)) { 4843 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4844 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4845 } 4846 4847 /* Enables Coded PHY if supported */ 4848 if (le_coded_capable(hdev)) { 4849 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4850 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4851 } 4852 4853 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4854 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4855 } 4856 4857 static const struct hci_init_stage le_init4[] = { 4858 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4859 HCI_INIT(hci_le_set_write_def_data_len_sync), 4860 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4861 HCI_INIT(hci_le_set_default_phy_sync), 4862 {} 4863 }; 4864 4865 static int hci_init4_sync(struct hci_dev *hdev) 4866 { 4867 int err; 4868 4869 bt_dev_dbg(hdev, ""); 4870 4871 err = hci_init_stage_sync(hdev, hci_init4); 4872 if (err) 4873 return err; 4874 4875 if (lmp_le_capable(hdev)) 4876 return hci_init_stage_sync(hdev, le_init4); 4877 4878 return 0; 4879 } 4880 4881 static int hci_init_sync(struct hci_dev *hdev) 4882 { 4883 int err; 4884 4885 err = hci_init1_sync(hdev); 4886 if (err < 0) 4887 return err; 4888 4889 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4890 hci_debugfs_create_basic(hdev); 4891 4892 err = hci_init2_sync(hdev); 4893 if (err < 0) 4894 return err; 4895 4896 err = hci_init3_sync(hdev); 4897 if (err < 0) 4898 return err; 4899 4900 err = hci_init4_sync(hdev); 4901 if (err < 0) 4902 return err; 4903 4904 /* This function is only called when the controller is actually in 4905 * configured state. When the controller is marked as unconfigured, 4906 * this initialization procedure is not run. 4907 * 4908 * It means that it is possible that a controller runs through its 4909 * setup phase and then discovers missing settings. If that is the 4910 * case, then this function will not be called. It then will only 4911 * be called during the config phase. 4912 * 4913 * So only when in setup phase or config phase, create the debugfs 4914 * entries and register the SMP channels. 4915 */ 4916 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4917 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4918 return 0; 4919 4920 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4921 return 0; 4922 4923 hci_debugfs_create_common(hdev); 4924 4925 if (lmp_bredr_capable(hdev)) 4926 hci_debugfs_create_bredr(hdev); 4927 4928 if (lmp_le_capable(hdev)) 4929 hci_debugfs_create_le(hdev); 4930 4931 return 0; 4932 } 4933 4934 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4935 4936 static const struct { 4937 unsigned long quirk; 4938 const char *desc; 4939 } hci_broken_table[] = { 4940 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4941 "HCI Read Local Supported Commands not supported"), 4942 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4943 "HCI Delete Stored Link Key command is advertised, " 4944 "but not supported."), 4945 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4946 "HCI Read Default Erroneous Data Reporting command is " 4947 "advertised, but not supported."), 4948 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4949 "HCI Read Transmit Power Level command is advertised, " 4950 "but not supported."), 4951 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4952 "HCI Set Event Filter command not supported."), 4953 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4954 "HCI Enhanced Setup Synchronous Connection command is " 4955 "advertised, but not supported."), 4956 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4957 "HCI LE Set Random Private Address Timeout command is " 4958 "advertised, but not supported."), 4959 HCI_QUIRK_BROKEN(EXT_CREATE_CONN, 4960 "HCI LE Extended Create Connection command is " 4961 "advertised, but not supported."), 4962 HCI_QUIRK_BROKEN(WRITE_AUTH_PAYLOAD_TIMEOUT, 4963 "HCI WRITE AUTH PAYLOAD TIMEOUT command leads " 4964 "to unexpected SMP errors when pairing " 4965 "and will not be used."), 4966 HCI_QUIRK_BROKEN(LE_CODED, 4967 "HCI LE Coded PHY feature bit is set, " 4968 "but its usage is not supported.") 4969 }; 4970 4971 /* This function handles hdev setup stage: 4972 * 4973 * Calls hdev->setup 4974 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4975 */ 4976 static int hci_dev_setup_sync(struct hci_dev *hdev) 4977 { 4978 int ret = 0; 4979 bool invalid_bdaddr; 4980 size_t i; 4981 4982 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4983 !hci_test_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_SETUP)) 4984 return 0; 4985 4986 bt_dev_dbg(hdev, ""); 4987 4988 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4989 4990 if (hdev->setup) 4991 ret = hdev->setup(hdev); 4992 4993 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4994 if (hci_test_quirk(hdev, hci_broken_table[i].quirk)) 4995 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4996 } 4997 4998 /* The transport driver can set the quirk to mark the 4999 * BD_ADDR invalid before creating the HCI device or in 5000 * its setup callback. 5001 */ 5002 invalid_bdaddr = hci_test_quirk(hdev, HCI_QUIRK_INVALID_BDADDR) || 5003 hci_test_quirk(hdev, HCI_QUIRK_USE_BDADDR_PROPERTY); 5004 if (!ret) { 5005 if (hci_test_quirk(hdev, HCI_QUIRK_USE_BDADDR_PROPERTY) && 5006 !bacmp(&hdev->public_addr, BDADDR_ANY)) 5007 hci_dev_get_bd_addr_from_property(hdev); 5008 5009 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 5010 hdev->set_bdaddr) { 5011 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 5012 if (!ret) 5013 invalid_bdaddr = false; 5014 } 5015 } 5016 5017 /* The transport driver can set these quirks before 5018 * creating the HCI device or in its setup callback. 5019 * 5020 * For the invalid BD_ADDR quirk it is possible that 5021 * it becomes a valid address if the bootloader does 5022 * provide it (see above). 5023 * 5024 * In case any of them is set, the controller has to 5025 * start up as unconfigured. 5026 */ 5027 if (hci_test_quirk(hdev, HCI_QUIRK_EXTERNAL_CONFIG) || 5028 invalid_bdaddr) 5029 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 5030 5031 /* For an unconfigured controller it is required to 5032 * read at least the version information provided by 5033 * the Read Local Version Information command. 5034 * 5035 * If the set_bdaddr driver callback is provided, then 5036 * also the original Bluetooth public device address 5037 * will be read using the Read BD Address command. 5038 */ 5039 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5040 return hci_unconf_init_sync(hdev); 5041 5042 return ret; 5043 } 5044 5045 /* This function handles hdev init stage: 5046 * 5047 * Calls hci_dev_setup_sync to perform setup stage 5048 * Calls hci_init_sync to perform HCI command init sequence 5049 */ 5050 static int hci_dev_init_sync(struct hci_dev *hdev) 5051 { 5052 int ret; 5053 5054 bt_dev_dbg(hdev, ""); 5055 5056 atomic_set(&hdev->cmd_cnt, 1); 5057 set_bit(HCI_INIT, &hdev->flags); 5058 5059 ret = hci_dev_setup_sync(hdev); 5060 5061 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 5062 /* If public address change is configured, ensure that 5063 * the address gets programmed. If the driver does not 5064 * support changing the public address, fail the power 5065 * on procedure. 5066 */ 5067 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 5068 hdev->set_bdaddr) 5069 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 5070 else 5071 ret = -EADDRNOTAVAIL; 5072 } 5073 5074 if (!ret) { 5075 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 5076 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5077 ret = hci_init_sync(hdev); 5078 if (!ret && hdev->post_init) 5079 ret = hdev->post_init(hdev); 5080 } 5081 } 5082 5083 /* If the HCI Reset command is clearing all diagnostic settings, 5084 * then they need to be reprogrammed after the init procedure 5085 * completed. 5086 */ 5087 if (hci_test_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_DIAG) && 5088 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5089 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 5090 ret = hdev->set_diag(hdev, true); 5091 5092 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5093 msft_do_open(hdev); 5094 aosp_do_open(hdev); 5095 } 5096 5097 clear_bit(HCI_INIT, &hdev->flags); 5098 5099 return ret; 5100 } 5101 5102 int hci_dev_open_sync(struct hci_dev *hdev) 5103 { 5104 int ret; 5105 5106 bt_dev_dbg(hdev, ""); 5107 5108 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 5109 ret = -ENODEV; 5110 goto done; 5111 } 5112 5113 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5114 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 5115 /* Check for rfkill but allow the HCI setup stage to 5116 * proceed (which in itself doesn't cause any RF activity). 5117 */ 5118 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 5119 ret = -ERFKILL; 5120 goto done; 5121 } 5122 5123 /* Check for valid public address or a configured static 5124 * random address, but let the HCI setup proceed to 5125 * be able to determine if there is a public address 5126 * or not. 5127 * 5128 * In case of user channel usage, it is not important 5129 * if a public address or static random address is 5130 * available. 5131 */ 5132 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5133 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5134 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 5135 ret = -EADDRNOTAVAIL; 5136 goto done; 5137 } 5138 } 5139 5140 if (test_bit(HCI_UP, &hdev->flags)) { 5141 ret = -EALREADY; 5142 goto done; 5143 } 5144 5145 if (hdev->open(hdev)) { 5146 ret = -EIO; 5147 goto done; 5148 } 5149 5150 hci_devcd_reset(hdev); 5151 5152 set_bit(HCI_RUNNING, &hdev->flags); 5153 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 5154 5155 ret = hci_dev_init_sync(hdev); 5156 if (!ret) { 5157 hci_dev_hold(hdev); 5158 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 5159 hci_adv_instances_set_rpa_expired(hdev, true); 5160 set_bit(HCI_UP, &hdev->flags); 5161 hci_sock_dev_event(hdev, HCI_DEV_UP); 5162 hci_leds_update_powered(hdev, true); 5163 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5164 !hci_dev_test_flag(hdev, HCI_CONFIG) && 5165 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 5166 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5167 hci_dev_test_flag(hdev, HCI_MGMT)) { 5168 ret = hci_powered_update_sync(hdev); 5169 mgmt_power_on(hdev, ret); 5170 } 5171 } else { 5172 /* Init failed, cleanup */ 5173 flush_work(&hdev->tx_work); 5174 5175 /* Since hci_rx_work() is possible to awake new cmd_work 5176 * it should be flushed first to avoid unexpected call of 5177 * hci_cmd_work() 5178 */ 5179 flush_work(&hdev->rx_work); 5180 flush_work(&hdev->cmd_work); 5181 5182 skb_queue_purge(&hdev->cmd_q); 5183 skb_queue_purge(&hdev->rx_q); 5184 5185 if (hdev->flush) 5186 hdev->flush(hdev); 5187 5188 if (hdev->sent_cmd) { 5189 cancel_delayed_work_sync(&hdev->cmd_timer); 5190 kfree_skb(hdev->sent_cmd); 5191 hdev->sent_cmd = NULL; 5192 } 5193 5194 if (hdev->req_skb) { 5195 kfree_skb(hdev->req_skb); 5196 hdev->req_skb = NULL; 5197 } 5198 5199 clear_bit(HCI_RUNNING, &hdev->flags); 5200 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5201 5202 hdev->close(hdev); 5203 hdev->flags &= BIT(HCI_RAW); 5204 } 5205 5206 done: 5207 return ret; 5208 } 5209 5210 /* This function requires the caller holds hdev->lock */ 5211 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 5212 { 5213 struct hci_conn_params *p; 5214 5215 list_for_each_entry(p, &hdev->le_conn_params, list) { 5216 hci_pend_le_list_del_init(p); 5217 if (p->conn) { 5218 hci_conn_drop(p->conn); 5219 hci_conn_put(p->conn); 5220 p->conn = NULL; 5221 } 5222 } 5223 5224 BT_DBG("All LE pending actions cleared"); 5225 } 5226 5227 static int hci_dev_shutdown(struct hci_dev *hdev) 5228 { 5229 int err = 0; 5230 /* Similar to how we first do setup and then set the exclusive access 5231 * bit for userspace, we must first unset userchannel and then clean up. 5232 * Otherwise, the kernel can't properly use the hci channel to clean up 5233 * the controller (some shutdown routines require sending additional 5234 * commands to the controller for example). 5235 */ 5236 bool was_userchannel = 5237 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 5238 5239 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 5240 test_bit(HCI_UP, &hdev->flags)) { 5241 /* Execute vendor specific shutdown routine */ 5242 if (hdev->shutdown) 5243 err = hdev->shutdown(hdev); 5244 } 5245 5246 if (was_userchannel) 5247 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 5248 5249 return err; 5250 } 5251 5252 int hci_dev_close_sync(struct hci_dev *hdev) 5253 { 5254 bool auto_off; 5255 int err = 0; 5256 5257 bt_dev_dbg(hdev, ""); 5258 5259 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 5260 disable_delayed_work(&hdev->power_off); 5261 disable_delayed_work(&hdev->ncmd_timer); 5262 disable_delayed_work(&hdev->le_scan_disable); 5263 } else { 5264 cancel_delayed_work(&hdev->power_off); 5265 cancel_delayed_work(&hdev->ncmd_timer); 5266 cancel_delayed_work(&hdev->le_scan_disable); 5267 } 5268 5269 hci_cmd_sync_cancel_sync(hdev, ENODEV); 5270 5271 cancel_interleave_scan(hdev); 5272 5273 if (hdev->adv_instance_timeout) { 5274 cancel_delayed_work_sync(&hdev->adv_instance_expire); 5275 hdev->adv_instance_timeout = 0; 5276 } 5277 5278 err = hci_dev_shutdown(hdev); 5279 5280 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 5281 cancel_delayed_work_sync(&hdev->cmd_timer); 5282 return err; 5283 } 5284 5285 hci_leds_update_powered(hdev, false); 5286 5287 /* Flush RX and TX works */ 5288 flush_work(&hdev->tx_work); 5289 flush_work(&hdev->rx_work); 5290 5291 if (hdev->discov_timeout > 0) { 5292 hdev->discov_timeout = 0; 5293 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5294 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5295 } 5296 5297 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5298 cancel_delayed_work(&hdev->service_cache); 5299 5300 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5301 struct adv_info *adv_instance; 5302 5303 cancel_delayed_work_sync(&hdev->rpa_expired); 5304 5305 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5306 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5307 } 5308 5309 /* Avoid potential lockdep warnings from the *_flush() calls by 5310 * ensuring the workqueue is empty up front. 5311 */ 5312 drain_workqueue(hdev->workqueue); 5313 5314 hci_dev_lock(hdev); 5315 5316 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5317 5318 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5319 5320 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5321 hci_dev_test_flag(hdev, HCI_MGMT)) 5322 __mgmt_power_off(hdev); 5323 5324 hci_inquiry_cache_flush(hdev); 5325 hci_pend_le_actions_clear(hdev); 5326 hci_conn_hash_flush(hdev); 5327 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5328 smp_unregister(hdev); 5329 hci_dev_unlock(hdev); 5330 5331 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5332 5333 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5334 aosp_do_close(hdev); 5335 msft_do_close(hdev); 5336 } 5337 5338 if (hdev->flush) 5339 hdev->flush(hdev); 5340 5341 /* Reset device */ 5342 skb_queue_purge(&hdev->cmd_q); 5343 atomic_set(&hdev->cmd_cnt, 1); 5344 if (hci_test_quirk(hdev, HCI_QUIRK_RESET_ON_CLOSE) && 5345 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5346 set_bit(HCI_INIT, &hdev->flags); 5347 hci_reset_sync(hdev); 5348 clear_bit(HCI_INIT, &hdev->flags); 5349 } 5350 5351 /* flush cmd work */ 5352 flush_work(&hdev->cmd_work); 5353 5354 /* Drop queues */ 5355 skb_queue_purge(&hdev->rx_q); 5356 skb_queue_purge(&hdev->cmd_q); 5357 skb_queue_purge(&hdev->raw_q); 5358 5359 /* Drop last sent command */ 5360 if (hdev->sent_cmd) { 5361 cancel_delayed_work_sync(&hdev->cmd_timer); 5362 kfree_skb(hdev->sent_cmd); 5363 hdev->sent_cmd = NULL; 5364 } 5365 5366 /* Drop last request */ 5367 if (hdev->req_skb) { 5368 kfree_skb(hdev->req_skb); 5369 hdev->req_skb = NULL; 5370 } 5371 5372 clear_bit(HCI_RUNNING, &hdev->flags); 5373 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5374 5375 /* After this point our queues are empty and no tasks are scheduled. */ 5376 hdev->close(hdev); 5377 5378 /* Clear flags */ 5379 hdev->flags &= BIT(HCI_RAW); 5380 hci_dev_clear_volatile_flags(hdev); 5381 5382 memset(hdev->eir, 0, sizeof(hdev->eir)); 5383 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5384 bacpy(&hdev->random_addr, BDADDR_ANY); 5385 hci_codec_list_clear(&hdev->local_codecs); 5386 5387 hci_dev_put(hdev); 5388 return err; 5389 } 5390 5391 /* This function perform power on HCI command sequence as follows: 5392 * 5393 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5394 * sequence otherwise run hci_dev_open_sync which will follow with 5395 * hci_powered_update_sync after the init sequence is completed. 5396 */ 5397 static int hci_power_on_sync(struct hci_dev *hdev) 5398 { 5399 int err; 5400 5401 if (test_bit(HCI_UP, &hdev->flags) && 5402 hci_dev_test_flag(hdev, HCI_MGMT) && 5403 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5404 cancel_delayed_work(&hdev->power_off); 5405 return hci_powered_update_sync(hdev); 5406 } 5407 5408 err = hci_dev_open_sync(hdev); 5409 if (err < 0) 5410 return err; 5411 5412 /* During the HCI setup phase, a few error conditions are 5413 * ignored and they need to be checked now. If they are still 5414 * valid, it is important to return the device back off. 5415 */ 5416 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5417 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5418 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 5419 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5420 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5421 hci_dev_close_sync(hdev); 5422 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5423 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5424 HCI_AUTO_OFF_TIMEOUT); 5425 } 5426 5427 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5428 /* For unconfigured devices, set the HCI_RAW flag 5429 * so that userspace can easily identify them. 5430 */ 5431 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5432 set_bit(HCI_RAW, &hdev->flags); 5433 5434 /* For fully configured devices, this will send 5435 * the Index Added event. For unconfigured devices, 5436 * it will send Unconfigued Index Added event. 5437 * 5438 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5439 * and no event will be send. 5440 */ 5441 mgmt_index_added(hdev); 5442 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5443 /* When the controller is now configured, then it 5444 * is important to clear the HCI_RAW flag. 5445 */ 5446 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5447 clear_bit(HCI_RAW, &hdev->flags); 5448 5449 /* Powering on the controller with HCI_CONFIG set only 5450 * happens with the transition from unconfigured to 5451 * configured. This will send the Index Added event. 5452 */ 5453 mgmt_index_added(hdev); 5454 } 5455 5456 return 0; 5457 } 5458 5459 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5460 { 5461 struct hci_cp_remote_name_req_cancel cp; 5462 5463 memset(&cp, 0, sizeof(cp)); 5464 bacpy(&cp.bdaddr, addr); 5465 5466 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5467 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5468 } 5469 5470 int hci_stop_discovery_sync(struct hci_dev *hdev) 5471 { 5472 struct discovery_state *d = &hdev->discovery; 5473 struct inquiry_entry *e; 5474 int err; 5475 5476 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5477 5478 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5479 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5480 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5481 0, NULL, HCI_CMD_TIMEOUT); 5482 if (err) 5483 return err; 5484 } 5485 5486 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5487 cancel_delayed_work(&hdev->le_scan_disable); 5488 5489 err = hci_scan_disable_sync(hdev); 5490 if (err) 5491 return err; 5492 } 5493 5494 } else { 5495 err = hci_scan_disable_sync(hdev); 5496 if (err) 5497 return err; 5498 } 5499 5500 /* Resume advertising if it was paused */ 5501 if (ll_privacy_capable(hdev)) 5502 hci_resume_advertising_sync(hdev); 5503 5504 /* No further actions needed for LE-only discovery */ 5505 if (d->type == DISCOV_TYPE_LE) 5506 return 0; 5507 5508 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5509 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5510 NAME_PENDING); 5511 if (!e) 5512 return 0; 5513 5514 /* Ignore cancel errors since it should interfere with stopping 5515 * of the discovery. 5516 */ 5517 hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5518 } 5519 5520 return 0; 5521 } 5522 5523 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5524 u8 reason) 5525 { 5526 struct hci_cp_disconnect cp; 5527 5528 if (conn->type == BIS_LINK || conn->type == PA_LINK) { 5529 /* This is a BIS connection, hci_conn_del will 5530 * do the necessary cleanup. 5531 */ 5532 hci_dev_lock(hdev); 5533 hci_conn_failed(conn, reason); 5534 hci_dev_unlock(hdev); 5535 5536 return 0; 5537 } 5538 5539 memset(&cp, 0, sizeof(cp)); 5540 cp.handle = cpu_to_le16(conn->handle); 5541 cp.reason = reason; 5542 5543 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5544 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5545 * used when suspending or powering off, where we don't want to wait 5546 * for the peer's response. 5547 */ 5548 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5549 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5550 sizeof(cp), &cp, 5551 HCI_EV_DISCONN_COMPLETE, 5552 HCI_CMD_TIMEOUT, NULL); 5553 5554 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5555 HCI_CMD_TIMEOUT); 5556 } 5557 5558 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5559 struct hci_conn *conn, u8 reason) 5560 { 5561 /* Return reason if scanning since the connection shall probably be 5562 * cleanup directly. 5563 */ 5564 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5565 return reason; 5566 5567 if (conn->role == HCI_ROLE_SLAVE || 5568 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5569 return 0; 5570 5571 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5572 0, NULL, HCI_CMD_TIMEOUT); 5573 } 5574 5575 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5576 u8 reason) 5577 { 5578 if (conn->type == LE_LINK) 5579 return hci_le_connect_cancel_sync(hdev, conn, reason); 5580 5581 if (conn->type == CIS_LINK) { 5582 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5583 * page 1857: 5584 * 5585 * If this command is issued for a CIS on the Central and the 5586 * CIS is successfully terminated before being established, 5587 * then an HCI_LE_CIS_Established event shall also be sent for 5588 * this CIS with the Status Operation Cancelled by Host (0x44). 5589 */ 5590 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5591 return hci_disconnect_sync(hdev, conn, reason); 5592 5593 /* CIS with no Create CIS sent have nothing to cancel */ 5594 return HCI_ERROR_LOCAL_HOST_TERM; 5595 } 5596 5597 if (conn->type == BIS_LINK || conn->type == PA_LINK) { 5598 /* There is no way to cancel a BIS without terminating the BIG 5599 * which is done later on connection cleanup. 5600 */ 5601 return 0; 5602 } 5603 5604 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5605 return 0; 5606 5607 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5608 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5609 * used when suspending or powering off, where we don't want to wait 5610 * for the peer's response. 5611 */ 5612 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5613 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5614 6, &conn->dst, 5615 HCI_EV_CONN_COMPLETE, 5616 HCI_CMD_TIMEOUT, NULL); 5617 5618 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5619 6, &conn->dst, HCI_CMD_TIMEOUT); 5620 } 5621 5622 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5623 u8 reason) 5624 { 5625 struct hci_cp_reject_sync_conn_req cp; 5626 5627 memset(&cp, 0, sizeof(cp)); 5628 bacpy(&cp.bdaddr, &conn->dst); 5629 cp.reason = reason; 5630 5631 /* SCO rejection has its own limited set of 5632 * allowed error values (0x0D-0x0F). 5633 */ 5634 if (reason < 0x0d || reason > 0x0f) 5635 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5636 5637 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5638 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5639 } 5640 5641 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5642 u8 reason) 5643 { 5644 struct hci_cp_le_reject_cis cp; 5645 5646 memset(&cp, 0, sizeof(cp)); 5647 cp.handle = cpu_to_le16(conn->handle); 5648 cp.reason = reason; 5649 5650 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5651 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5652 } 5653 5654 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5655 u8 reason) 5656 { 5657 struct hci_cp_reject_conn_req cp; 5658 5659 if (conn->type == CIS_LINK) 5660 return hci_le_reject_cis_sync(hdev, conn, reason); 5661 5662 if (conn->type == BIS_LINK || conn->type == PA_LINK) 5663 return -EINVAL; 5664 5665 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5666 return hci_reject_sco_sync(hdev, conn, reason); 5667 5668 memset(&cp, 0, sizeof(cp)); 5669 bacpy(&cp.bdaddr, &conn->dst); 5670 cp.reason = reason; 5671 5672 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5673 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5674 } 5675 5676 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5677 { 5678 int err = 0; 5679 u16 handle = conn->handle; 5680 bool disconnect = false; 5681 struct hci_conn *c; 5682 5683 switch (conn->state) { 5684 case BT_CONNECTED: 5685 case BT_CONFIG: 5686 err = hci_disconnect_sync(hdev, conn, reason); 5687 break; 5688 case BT_CONNECT: 5689 err = hci_connect_cancel_sync(hdev, conn, reason); 5690 break; 5691 case BT_CONNECT2: 5692 err = hci_reject_conn_sync(hdev, conn, reason); 5693 break; 5694 case BT_OPEN: 5695 case BT_BOUND: 5696 break; 5697 default: 5698 disconnect = true; 5699 break; 5700 } 5701 5702 hci_dev_lock(hdev); 5703 5704 /* Check if the connection has been cleaned up concurrently */ 5705 c = hci_conn_hash_lookup_handle(hdev, handle); 5706 if (!c || c != conn) { 5707 err = 0; 5708 goto unlock; 5709 } 5710 5711 /* Cleanup hci_conn object if it cannot be cancelled as it 5712 * likely means the controller and host stack are out of sync 5713 * or in case of LE it was still scanning so it can be cleanup 5714 * safely. 5715 */ 5716 if (disconnect) { 5717 conn->state = BT_CLOSED; 5718 hci_disconn_cfm(conn, reason); 5719 hci_conn_del(conn); 5720 } else { 5721 hci_conn_failed(conn, reason); 5722 } 5723 5724 unlock: 5725 hci_dev_unlock(hdev); 5726 return err; 5727 } 5728 5729 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5730 { 5731 struct list_head *head = &hdev->conn_hash.list; 5732 struct hci_conn *conn; 5733 5734 rcu_read_lock(); 5735 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5736 /* Make sure the connection is not freed while unlocking */ 5737 conn = hci_conn_get(conn); 5738 rcu_read_unlock(); 5739 /* Disregard possible errors since hci_conn_del shall have been 5740 * called even in case of errors had occurred since it would 5741 * then cause hci_conn_failed to be called which calls 5742 * hci_conn_del internally. 5743 */ 5744 hci_abort_conn_sync(hdev, conn, reason); 5745 hci_conn_put(conn); 5746 rcu_read_lock(); 5747 } 5748 rcu_read_unlock(); 5749 5750 return 0; 5751 } 5752 5753 /* This function perform power off HCI command sequence as follows: 5754 * 5755 * Clear Advertising 5756 * Stop Discovery 5757 * Disconnect all connections 5758 * hci_dev_close_sync 5759 */ 5760 static int hci_power_off_sync(struct hci_dev *hdev) 5761 { 5762 int err; 5763 5764 /* If controller is already down there is nothing to do */ 5765 if (!test_bit(HCI_UP, &hdev->flags)) 5766 return 0; 5767 5768 hci_dev_set_flag(hdev, HCI_POWERING_DOWN); 5769 5770 if (test_bit(HCI_ISCAN, &hdev->flags) || 5771 test_bit(HCI_PSCAN, &hdev->flags)) { 5772 err = hci_write_scan_enable_sync(hdev, 0x00); 5773 if (err) 5774 goto out; 5775 } 5776 5777 err = hci_clear_adv_sync(hdev, NULL, false); 5778 if (err) 5779 goto out; 5780 5781 err = hci_stop_discovery_sync(hdev); 5782 if (err) 5783 goto out; 5784 5785 /* Terminated due to Power Off */ 5786 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5787 if (err) 5788 goto out; 5789 5790 err = hci_dev_close_sync(hdev); 5791 5792 out: 5793 hci_dev_clear_flag(hdev, HCI_POWERING_DOWN); 5794 return err; 5795 } 5796 5797 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5798 { 5799 if (val) 5800 return hci_power_on_sync(hdev); 5801 5802 return hci_power_off_sync(hdev); 5803 } 5804 5805 static int hci_write_iac_sync(struct hci_dev *hdev) 5806 { 5807 struct hci_cp_write_current_iac_lap cp; 5808 5809 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5810 return 0; 5811 5812 memset(&cp, 0, sizeof(cp)); 5813 5814 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5815 /* Limited discoverable mode */ 5816 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5817 cp.iac_lap[0] = 0x00; /* LIAC */ 5818 cp.iac_lap[1] = 0x8b; 5819 cp.iac_lap[2] = 0x9e; 5820 cp.iac_lap[3] = 0x33; /* GIAC */ 5821 cp.iac_lap[4] = 0x8b; 5822 cp.iac_lap[5] = 0x9e; 5823 } else { 5824 /* General discoverable mode */ 5825 cp.num_iac = 1; 5826 cp.iac_lap[0] = 0x33; /* GIAC */ 5827 cp.iac_lap[1] = 0x8b; 5828 cp.iac_lap[2] = 0x9e; 5829 } 5830 5831 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5832 (cp.num_iac * 3) + 1, &cp, 5833 HCI_CMD_TIMEOUT); 5834 } 5835 5836 int hci_update_discoverable_sync(struct hci_dev *hdev) 5837 { 5838 int err = 0; 5839 5840 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5841 err = hci_write_iac_sync(hdev); 5842 if (err) 5843 return err; 5844 5845 err = hci_update_scan_sync(hdev); 5846 if (err) 5847 return err; 5848 5849 err = hci_update_class_sync(hdev); 5850 if (err) 5851 return err; 5852 } 5853 5854 /* Advertising instances don't use the global discoverable setting, so 5855 * only update AD if advertising was enabled using Set Advertising. 5856 */ 5857 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5858 err = hci_update_adv_data_sync(hdev, 0x00); 5859 if (err) 5860 return err; 5861 5862 /* Discoverable mode affects the local advertising 5863 * address in limited privacy mode. 5864 */ 5865 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5866 if (ext_adv_capable(hdev)) 5867 err = hci_start_ext_adv_sync(hdev, 0x00); 5868 else 5869 err = hci_enable_advertising_sync(hdev); 5870 } 5871 } 5872 5873 return err; 5874 } 5875 5876 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5877 { 5878 return hci_update_discoverable_sync(hdev); 5879 } 5880 5881 int hci_update_discoverable(struct hci_dev *hdev) 5882 { 5883 /* Only queue if it would have any effect */ 5884 if (hdev_is_powered(hdev) && 5885 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5886 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5887 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5888 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5889 NULL); 5890 5891 return 0; 5892 } 5893 5894 int hci_update_connectable_sync(struct hci_dev *hdev) 5895 { 5896 int err; 5897 5898 err = hci_update_scan_sync(hdev); 5899 if (err) 5900 return err; 5901 5902 /* If BR/EDR is not enabled and we disable advertising as a 5903 * by-product of disabling connectable, we need to update the 5904 * advertising flags. 5905 */ 5906 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5907 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5908 5909 /* Update the advertising parameters if necessary */ 5910 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5911 !list_empty(&hdev->adv_instances)) { 5912 if (ext_adv_capable(hdev)) 5913 err = hci_start_ext_adv_sync(hdev, 5914 hdev->cur_adv_instance); 5915 else 5916 err = hci_enable_advertising_sync(hdev); 5917 5918 if (err) 5919 return err; 5920 } 5921 5922 return hci_update_passive_scan_sync(hdev); 5923 } 5924 5925 int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp) 5926 { 5927 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5928 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5929 struct hci_cp_inquiry cp; 5930 5931 bt_dev_dbg(hdev, ""); 5932 5933 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5934 return 0; 5935 5936 hci_dev_lock(hdev); 5937 hci_inquiry_cache_flush(hdev); 5938 hci_dev_unlock(hdev); 5939 5940 memset(&cp, 0, sizeof(cp)); 5941 5942 if (hdev->discovery.limited) 5943 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5944 else 5945 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5946 5947 cp.length = length; 5948 cp.num_rsp = num_rsp; 5949 5950 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5951 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5952 } 5953 5954 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5955 { 5956 u8 own_addr_type; 5957 /* Accept list is not used for discovery */ 5958 u8 filter_policy = 0x00; 5959 /* Default is to enable duplicates filter */ 5960 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5961 int err; 5962 5963 bt_dev_dbg(hdev, ""); 5964 5965 /* If controller is scanning, it means the passive scanning is 5966 * running. Thus, we should temporarily stop it in order to set the 5967 * discovery scanning parameters. 5968 */ 5969 err = hci_scan_disable_sync(hdev); 5970 if (err) { 5971 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5972 return err; 5973 } 5974 5975 cancel_interleave_scan(hdev); 5976 5977 /* Pause address resolution for active scan and stop advertising if 5978 * privacy is enabled. 5979 */ 5980 err = hci_pause_addr_resolution(hdev); 5981 if (err) 5982 goto failed; 5983 5984 /* All active scans will be done with either a resolvable private 5985 * address (when privacy feature has been enabled) or non-resolvable 5986 * private address. 5987 */ 5988 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5989 &own_addr_type); 5990 if (err < 0) 5991 own_addr_type = ADDR_LE_DEV_PUBLIC; 5992 5993 if (hci_is_adv_monitoring(hdev) || 5994 (hci_test_quirk(hdev, HCI_QUIRK_STRICT_DUPLICATE_FILTER) && 5995 hdev->discovery.result_filtering)) { 5996 /* Duplicate filter should be disabled when some advertisement 5997 * monitor is activated, otherwise AdvMon can only receive one 5998 * advertisement for one peer(*) during active scanning, and 5999 * might report loss to these peers. 6000 * 6001 * If controller does strict duplicate filtering and the 6002 * discovery requires result filtering disables controller based 6003 * filtering since that can cause reports that would match the 6004 * host filter to not be reported. 6005 */ 6006 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 6007 } 6008 6009 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 6010 hdev->le_scan_window_discovery, 6011 own_addr_type, filter_policy, filter_dup); 6012 if (!err) 6013 return err; 6014 6015 failed: 6016 /* Resume advertising if it was paused */ 6017 if (ll_privacy_capable(hdev)) 6018 hci_resume_advertising_sync(hdev); 6019 6020 /* Resume passive scanning */ 6021 hci_update_passive_scan_sync(hdev); 6022 return err; 6023 } 6024 6025 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 6026 { 6027 int err; 6028 6029 bt_dev_dbg(hdev, ""); 6030 6031 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 6032 if (err) 6033 return err; 6034 6035 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 6036 } 6037 6038 int hci_start_discovery_sync(struct hci_dev *hdev) 6039 { 6040 unsigned long timeout; 6041 int err; 6042 6043 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 6044 6045 switch (hdev->discovery.type) { 6046 case DISCOV_TYPE_BREDR: 6047 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 6048 case DISCOV_TYPE_INTERLEAVED: 6049 /* When running simultaneous discovery, the LE scanning time 6050 * should occupy the whole discovery time sine BR/EDR inquiry 6051 * and LE scanning are scheduled by the controller. 6052 * 6053 * For interleaving discovery in comparison, BR/EDR inquiry 6054 * and LE scanning are done sequentially with separate 6055 * timeouts. 6056 */ 6057 if (hci_test_quirk(hdev, HCI_QUIRK_SIMULTANEOUS_DISCOVERY)) { 6058 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 6059 /* During simultaneous discovery, we double LE scan 6060 * interval. We must leave some time for the controller 6061 * to do BR/EDR inquiry. 6062 */ 6063 err = hci_start_interleaved_discovery_sync(hdev); 6064 break; 6065 } 6066 6067 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 6068 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 6069 break; 6070 case DISCOV_TYPE_LE: 6071 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 6072 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 6073 break; 6074 default: 6075 return -EINVAL; 6076 } 6077 6078 if (err) 6079 return err; 6080 6081 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 6082 6083 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 6084 timeout); 6085 return 0; 6086 } 6087 6088 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 6089 { 6090 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6091 case HCI_ADV_MONITOR_EXT_MSFT: 6092 msft_suspend_sync(hdev); 6093 break; 6094 default: 6095 return; 6096 } 6097 } 6098 6099 /* This function disables discovery and mark it as paused */ 6100 static int hci_pause_discovery_sync(struct hci_dev *hdev) 6101 { 6102 int old_state = hdev->discovery.state; 6103 int err; 6104 6105 /* If discovery already stopped/stopping/paused there nothing to do */ 6106 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 6107 hdev->discovery_paused) 6108 return 0; 6109 6110 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 6111 err = hci_stop_discovery_sync(hdev); 6112 if (err) 6113 return err; 6114 6115 hdev->discovery_paused = true; 6116 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 6117 6118 return 0; 6119 } 6120 6121 static int hci_update_event_filter_sync(struct hci_dev *hdev) 6122 { 6123 struct bdaddr_list_with_flags *b; 6124 u8 scan = SCAN_DISABLED; 6125 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 6126 int err; 6127 6128 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 6129 return 0; 6130 6131 /* Some fake CSR controllers lock up after setting this type of 6132 * filter, so avoid sending the request altogether. 6133 */ 6134 if (hci_test_quirk(hdev, HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL)) 6135 return 0; 6136 6137 /* Always clear event filter when starting */ 6138 hci_clear_event_filter_sync(hdev); 6139 6140 list_for_each_entry(b, &hdev->accept_list, list) { 6141 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 6142 continue; 6143 6144 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 6145 6146 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 6147 HCI_CONN_SETUP_ALLOW_BDADDR, 6148 &b->bdaddr, 6149 HCI_CONN_SETUP_AUTO_ON); 6150 if (err) 6151 bt_dev_err(hdev, "Failed to set event filter for %pMR", 6152 &b->bdaddr); 6153 else 6154 scan = SCAN_PAGE; 6155 } 6156 6157 if (scan && !scanning) 6158 hci_write_scan_enable_sync(hdev, scan); 6159 else if (!scan && scanning) 6160 hci_write_scan_enable_sync(hdev, scan); 6161 6162 return 0; 6163 } 6164 6165 /* This function disables scan (BR and LE) and mark it as paused */ 6166 static int hci_pause_scan_sync(struct hci_dev *hdev) 6167 { 6168 if (hdev->scanning_paused) 6169 return 0; 6170 6171 /* Disable page scan if enabled */ 6172 if (test_bit(HCI_PSCAN, &hdev->flags)) 6173 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 6174 6175 hci_scan_disable_sync(hdev); 6176 6177 hdev->scanning_paused = true; 6178 6179 return 0; 6180 } 6181 6182 /* This function performs the HCI suspend procedures in the follow order: 6183 * 6184 * Pause discovery (active scanning/inquiry) 6185 * Pause Directed Advertising/Advertising 6186 * Pause Scanning (passive scanning in case discovery was not active) 6187 * Disconnect all connections 6188 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 6189 * otherwise: 6190 * Update event mask (only set events that are allowed to wake up the host) 6191 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 6192 * Update passive scanning (lower duty cycle) 6193 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 6194 */ 6195 int hci_suspend_sync(struct hci_dev *hdev) 6196 { 6197 int err; 6198 6199 /* If marked as suspended there nothing to do */ 6200 if (hdev->suspended) 6201 return 0; 6202 6203 /* Mark device as suspended */ 6204 hdev->suspended = true; 6205 6206 /* Pause discovery if not already stopped */ 6207 hci_pause_discovery_sync(hdev); 6208 6209 /* Pause other advertisements */ 6210 hci_pause_advertising_sync(hdev); 6211 6212 /* Suspend monitor filters */ 6213 hci_suspend_monitor_sync(hdev); 6214 6215 /* Prevent disconnects from causing scanning to be re-enabled */ 6216 hci_pause_scan_sync(hdev); 6217 6218 if (hci_conn_count(hdev)) { 6219 /* Soft disconnect everything (power off) */ 6220 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 6221 if (err) { 6222 /* Set state to BT_RUNNING so resume doesn't notify */ 6223 hdev->suspend_state = BT_RUNNING; 6224 hci_resume_sync(hdev); 6225 return err; 6226 } 6227 6228 /* Update event mask so only the allowed event can wakeup the 6229 * host. 6230 */ 6231 hci_set_event_mask_sync(hdev); 6232 } 6233 6234 /* Only configure accept list if disconnect succeeded and wake 6235 * isn't being prevented. 6236 */ 6237 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 6238 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 6239 return 0; 6240 } 6241 6242 /* Unpause to take care of updating scanning params */ 6243 hdev->scanning_paused = false; 6244 6245 /* Enable event filter for paired devices */ 6246 hci_update_event_filter_sync(hdev); 6247 6248 /* Update LE passive scan if enabled */ 6249 hci_update_passive_scan_sync(hdev); 6250 6251 /* Pause scan changes again. */ 6252 hdev->scanning_paused = true; 6253 6254 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 6255 6256 return 0; 6257 } 6258 6259 /* This function resumes discovery */ 6260 static int hci_resume_discovery_sync(struct hci_dev *hdev) 6261 { 6262 int err; 6263 6264 /* If discovery not paused there nothing to do */ 6265 if (!hdev->discovery_paused) 6266 return 0; 6267 6268 hdev->discovery_paused = false; 6269 6270 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 6271 6272 err = hci_start_discovery_sync(hdev); 6273 6274 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 6275 DISCOVERY_FINDING); 6276 6277 return err; 6278 } 6279 6280 static void hci_resume_monitor_sync(struct hci_dev *hdev) 6281 { 6282 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6283 case HCI_ADV_MONITOR_EXT_MSFT: 6284 msft_resume_sync(hdev); 6285 break; 6286 default: 6287 return; 6288 } 6289 } 6290 6291 /* This function resume scan and reset paused flag */ 6292 static int hci_resume_scan_sync(struct hci_dev *hdev) 6293 { 6294 if (!hdev->scanning_paused) 6295 return 0; 6296 6297 hdev->scanning_paused = false; 6298 6299 hci_update_scan_sync(hdev); 6300 6301 /* Reset passive scanning to normal */ 6302 hci_update_passive_scan_sync(hdev); 6303 6304 return 0; 6305 } 6306 6307 /* This function performs the HCI suspend procedures in the follow order: 6308 * 6309 * Restore event mask 6310 * Clear event filter 6311 * Update passive scanning (normal duty cycle) 6312 * Resume Directed Advertising/Advertising 6313 * Resume discovery (active scanning/inquiry) 6314 */ 6315 int hci_resume_sync(struct hci_dev *hdev) 6316 { 6317 /* If not marked as suspended there nothing to do */ 6318 if (!hdev->suspended) 6319 return 0; 6320 6321 hdev->suspended = false; 6322 6323 /* Restore event mask */ 6324 hci_set_event_mask_sync(hdev); 6325 6326 /* Clear any event filters and restore scan state */ 6327 hci_clear_event_filter_sync(hdev); 6328 6329 /* Resume scanning */ 6330 hci_resume_scan_sync(hdev); 6331 6332 /* Resume monitor filters */ 6333 hci_resume_monitor_sync(hdev); 6334 6335 /* Resume other advertisements */ 6336 hci_resume_advertising_sync(hdev); 6337 6338 /* Resume discovery */ 6339 hci_resume_discovery_sync(hdev); 6340 6341 return 0; 6342 } 6343 6344 static bool conn_use_rpa(struct hci_conn *conn) 6345 { 6346 struct hci_dev *hdev = conn->hdev; 6347 6348 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6349 } 6350 6351 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6352 struct hci_conn *conn) 6353 { 6354 struct hci_cp_le_set_ext_adv_params cp; 6355 struct hci_rp_le_set_ext_adv_params rp; 6356 int err; 6357 bdaddr_t random_addr; 6358 u8 own_addr_type; 6359 6360 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6361 &own_addr_type); 6362 if (err) 6363 return err; 6364 6365 /* Set require_privacy to false so that the remote device has a 6366 * chance of identifying us. 6367 */ 6368 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6369 &own_addr_type, &random_addr); 6370 if (err) 6371 return err; 6372 6373 memset(&cp, 0, sizeof(cp)); 6374 6375 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6376 cp.channel_map = hdev->le_adv_channel_map; 6377 cp.tx_power = HCI_TX_POWER_INVALID; 6378 cp.primary_phy = HCI_ADV_PHY_1M; 6379 cp.secondary_phy = HCI_ADV_PHY_1M; 6380 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6381 cp.own_addr_type = own_addr_type; 6382 cp.peer_addr_type = conn->dst_type; 6383 bacpy(&cp.peer_addr, &conn->dst); 6384 6385 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6386 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6387 * does not supports advertising data when the advertising set already 6388 * contains some, the controller shall return erroc code 'Invalid 6389 * HCI Command Parameters(0x12). 6390 * So it is required to remove adv set for handle 0x00. since we use 6391 * instance 0 for directed adv. 6392 */ 6393 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6394 if (err) 6395 return err; 6396 6397 err = hci_set_ext_adv_params_sync(hdev, NULL, &cp, &rp); 6398 if (err) 6399 return err; 6400 6401 /* Update adv data as tx power is known now */ 6402 err = hci_set_ext_adv_data_sync(hdev, cp.handle); 6403 if (err) 6404 return err; 6405 6406 /* Check if random address need to be updated */ 6407 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6408 bacmp(&random_addr, BDADDR_ANY) && 6409 bacmp(&random_addr, &hdev->random_addr)) { 6410 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6411 &random_addr); 6412 if (err) 6413 return err; 6414 } 6415 6416 return hci_enable_ext_advertising_sync(hdev, 0x00); 6417 } 6418 6419 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6420 struct hci_conn *conn) 6421 { 6422 struct hci_cp_le_set_adv_param cp; 6423 u8 status; 6424 u8 own_addr_type; 6425 u8 enable; 6426 6427 if (ext_adv_capable(hdev)) 6428 return hci_le_ext_directed_advertising_sync(hdev, conn); 6429 6430 /* Clear the HCI_LE_ADV bit temporarily so that the 6431 * hci_update_random_address knows that it's safe to go ahead 6432 * and write a new random address. The flag will be set back on 6433 * as soon as the SET_ADV_ENABLE HCI command completes. 6434 */ 6435 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6436 6437 /* Set require_privacy to false so that the remote device has a 6438 * chance of identifying us. 6439 */ 6440 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6441 &own_addr_type); 6442 if (status) 6443 return status; 6444 6445 memset(&cp, 0, sizeof(cp)); 6446 6447 /* Some controllers might reject command if intervals are not 6448 * within range for undirected advertising. 6449 * BCM20702A0 is known to be affected by this. 6450 */ 6451 cp.min_interval = cpu_to_le16(0x0020); 6452 cp.max_interval = cpu_to_le16(0x0020); 6453 6454 cp.type = LE_ADV_DIRECT_IND; 6455 cp.own_address_type = own_addr_type; 6456 cp.direct_addr_type = conn->dst_type; 6457 bacpy(&cp.direct_addr, &conn->dst); 6458 cp.channel_map = hdev->le_adv_channel_map; 6459 6460 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6461 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6462 if (status) 6463 return status; 6464 6465 enable = 0x01; 6466 6467 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6468 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6469 } 6470 6471 static void set_ext_conn_params(struct hci_conn *conn, 6472 struct hci_cp_le_ext_conn_param *p) 6473 { 6474 struct hci_dev *hdev = conn->hdev; 6475 6476 memset(p, 0, sizeof(*p)); 6477 6478 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6479 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6480 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6481 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6482 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6483 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6484 p->min_ce_len = cpu_to_le16(0x0000); 6485 p->max_ce_len = cpu_to_le16(0x0000); 6486 } 6487 6488 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6489 struct hci_conn *conn, u8 own_addr_type) 6490 { 6491 struct hci_cp_le_ext_create_conn *cp; 6492 struct hci_cp_le_ext_conn_param *p; 6493 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6494 u32 plen; 6495 6496 cp = (void *)data; 6497 p = (void *)cp->data; 6498 6499 memset(cp, 0, sizeof(*cp)); 6500 6501 bacpy(&cp->peer_addr, &conn->dst); 6502 cp->peer_addr_type = conn->dst_type; 6503 cp->own_addr_type = own_addr_type; 6504 6505 plen = sizeof(*cp); 6506 6507 if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M || 6508 conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) { 6509 cp->phys |= LE_SCAN_PHY_1M; 6510 set_ext_conn_params(conn, p); 6511 6512 p++; 6513 plen += sizeof(*p); 6514 } 6515 6516 if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M || 6517 conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) { 6518 cp->phys |= LE_SCAN_PHY_2M; 6519 set_ext_conn_params(conn, p); 6520 6521 p++; 6522 plen += sizeof(*p); 6523 } 6524 6525 if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED || 6526 conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) { 6527 cp->phys |= LE_SCAN_PHY_CODED; 6528 set_ext_conn_params(conn, p); 6529 6530 plen += sizeof(*p); 6531 } 6532 6533 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6534 plen, data, 6535 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6536 conn->conn_timeout, NULL); 6537 } 6538 6539 static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data) 6540 { 6541 struct hci_cp_le_create_conn cp; 6542 struct hci_conn_params *params; 6543 u8 own_addr_type; 6544 int err; 6545 struct hci_conn *conn = data; 6546 6547 if (!hci_conn_valid(hdev, conn)) 6548 return -ECANCELED; 6549 6550 bt_dev_dbg(hdev, "conn %p", conn); 6551 6552 clear_bit(HCI_CONN_SCANNING, &conn->flags); 6553 conn->state = BT_CONNECT; 6554 6555 /* If requested to connect as peripheral use directed advertising */ 6556 if (conn->role == HCI_ROLE_SLAVE) { 6557 /* If we're active scanning and simultaneous roles is not 6558 * enabled simply reject the attempt. 6559 */ 6560 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6561 hdev->le_scan_type == LE_SCAN_ACTIVE && 6562 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6563 hci_conn_del(conn); 6564 return -EBUSY; 6565 } 6566 6567 /* Pause advertising while doing directed advertising. */ 6568 hci_pause_advertising_sync(hdev); 6569 6570 err = hci_le_directed_advertising_sync(hdev, conn); 6571 goto done; 6572 } 6573 6574 /* Disable advertising if simultaneous roles is not in use. */ 6575 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6576 hci_pause_advertising_sync(hdev); 6577 6578 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6579 if (params) { 6580 conn->le_conn_min_interval = params->conn_min_interval; 6581 conn->le_conn_max_interval = params->conn_max_interval; 6582 conn->le_conn_latency = params->conn_latency; 6583 conn->le_supv_timeout = params->supervision_timeout; 6584 } else { 6585 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6586 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6587 conn->le_conn_latency = hdev->le_conn_latency; 6588 conn->le_supv_timeout = hdev->le_supv_timeout; 6589 } 6590 6591 /* If controller is scanning, we stop it since some controllers are 6592 * not able to scan and connect at the same time. Also set the 6593 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6594 * handler for scan disabling knows to set the correct discovery 6595 * state. 6596 */ 6597 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6598 hci_scan_disable_sync(hdev); 6599 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6600 } 6601 6602 /* Update random address, but set require_privacy to false so 6603 * that we never connect with an non-resolvable address. 6604 */ 6605 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6606 &own_addr_type); 6607 if (err) 6608 goto done; 6609 /* Send command LE Extended Create Connection if supported */ 6610 if (use_ext_conn(hdev)) { 6611 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6612 goto done; 6613 } 6614 6615 memset(&cp, 0, sizeof(cp)); 6616 6617 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6618 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6619 6620 bacpy(&cp.peer_addr, &conn->dst); 6621 cp.peer_addr_type = conn->dst_type; 6622 cp.own_address_type = own_addr_type; 6623 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6624 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6625 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6626 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6627 cp.min_ce_len = cpu_to_le16(0x0000); 6628 cp.max_ce_len = cpu_to_le16(0x0000); 6629 6630 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6631 * 6632 * If this event is unmasked and the HCI_LE_Connection_Complete event 6633 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6634 * sent when a new connection has been created. 6635 */ 6636 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6637 sizeof(cp), &cp, 6638 use_enhanced_conn_complete(hdev) ? 6639 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6640 HCI_EV_LE_CONN_COMPLETE, 6641 conn->conn_timeout, NULL); 6642 6643 done: 6644 if (err == -ETIMEDOUT) 6645 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6646 6647 /* Re-enable advertising after the connection attempt is finished. */ 6648 hci_resume_advertising_sync(hdev); 6649 return err; 6650 } 6651 6652 int hci_le_create_cis_sync(struct hci_dev *hdev) 6653 { 6654 DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f); 6655 size_t aux_num_cis = 0; 6656 struct hci_conn *conn; 6657 u8 cig = BT_ISO_QOS_CIG_UNSET; 6658 6659 /* The spec allows only one pending LE Create CIS command at a time. If 6660 * the command is pending now, don't do anything. We check for pending 6661 * connections after each CIS Established event. 6662 * 6663 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6664 * page 2566: 6665 * 6666 * If the Host issues this command before all the 6667 * HCI_LE_CIS_Established events from the previous use of the 6668 * command have been generated, the Controller shall return the 6669 * error code Command Disallowed (0x0C). 6670 * 6671 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6672 * page 2567: 6673 * 6674 * When the Controller receives the HCI_LE_Create_CIS command, the 6675 * Controller sends the HCI_Command_Status event to the Host. An 6676 * HCI_LE_CIS_Established event will be generated for each CIS when it 6677 * is established or if it is disconnected or considered lost before 6678 * being established; until all the events are generated, the command 6679 * remains pending. 6680 */ 6681 6682 hci_dev_lock(hdev); 6683 6684 rcu_read_lock(); 6685 6686 /* Wait until previous Create CIS has completed */ 6687 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6688 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6689 goto done; 6690 } 6691 6692 /* Find CIG with all CIS ready */ 6693 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6694 struct hci_conn *link; 6695 6696 if (hci_conn_check_create_cis(conn)) 6697 continue; 6698 6699 cig = conn->iso_qos.ucast.cig; 6700 6701 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6702 if (hci_conn_check_create_cis(link) > 0 && 6703 link->iso_qos.ucast.cig == cig && 6704 link->state != BT_CONNECTED) { 6705 cig = BT_ISO_QOS_CIG_UNSET; 6706 break; 6707 } 6708 } 6709 6710 if (cig != BT_ISO_QOS_CIG_UNSET) 6711 break; 6712 } 6713 6714 if (cig == BT_ISO_QOS_CIG_UNSET) 6715 goto done; 6716 6717 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6718 struct hci_cis *cis = &cmd->cis[aux_num_cis]; 6719 6720 if (hci_conn_check_create_cis(conn) || 6721 conn->iso_qos.ucast.cig != cig) 6722 continue; 6723 6724 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6725 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6726 cis->cis_handle = cpu_to_le16(conn->handle); 6727 aux_num_cis++; 6728 6729 if (aux_num_cis >= cmd->num_cis) 6730 break; 6731 } 6732 cmd->num_cis = aux_num_cis; 6733 6734 done: 6735 rcu_read_unlock(); 6736 6737 hci_dev_unlock(hdev); 6738 6739 if (!aux_num_cis) 6740 return 0; 6741 6742 /* Wait for HCI_LE_CIS_Established */ 6743 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6744 struct_size(cmd, cis, cmd->num_cis), 6745 cmd, HCI_EVT_LE_CIS_ESTABLISHED, 6746 conn->conn_timeout, NULL); 6747 } 6748 6749 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6750 { 6751 struct hci_cp_le_remove_cig cp; 6752 6753 memset(&cp, 0, sizeof(cp)); 6754 cp.cig_id = handle; 6755 6756 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6757 &cp, HCI_CMD_TIMEOUT); 6758 } 6759 6760 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6761 { 6762 struct hci_cp_le_big_term_sync cp; 6763 6764 memset(&cp, 0, sizeof(cp)); 6765 cp.handle = handle; 6766 6767 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6768 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6769 } 6770 6771 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6772 { 6773 struct hci_cp_le_pa_term_sync cp; 6774 6775 memset(&cp, 0, sizeof(cp)); 6776 cp.handle = cpu_to_le16(handle); 6777 6778 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6779 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6780 } 6781 6782 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6783 bool use_rpa, struct adv_info *adv_instance, 6784 u8 *own_addr_type, bdaddr_t *rand_addr) 6785 { 6786 int err; 6787 6788 bacpy(rand_addr, BDADDR_ANY); 6789 6790 /* If privacy is enabled use a resolvable private address. If 6791 * current RPA has expired then generate a new one. 6792 */ 6793 if (use_rpa) { 6794 /* If Controller supports LL Privacy use own address type is 6795 * 0x03 6796 */ 6797 if (ll_privacy_capable(hdev)) 6798 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6799 else 6800 *own_addr_type = ADDR_LE_DEV_RANDOM; 6801 6802 if (adv_instance) { 6803 if (adv_rpa_valid(adv_instance)) 6804 return 0; 6805 } else { 6806 if (rpa_valid(hdev)) 6807 return 0; 6808 } 6809 6810 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6811 if (err < 0) { 6812 bt_dev_err(hdev, "failed to generate new RPA"); 6813 return err; 6814 } 6815 6816 bacpy(rand_addr, &hdev->rpa); 6817 6818 return 0; 6819 } 6820 6821 /* In case of required privacy without resolvable private address, 6822 * use an non-resolvable private address. This is useful for 6823 * non-connectable advertising. 6824 */ 6825 if (require_privacy) { 6826 bdaddr_t nrpa; 6827 6828 while (true) { 6829 /* The non-resolvable private address is generated 6830 * from random six bytes with the two most significant 6831 * bits cleared. 6832 */ 6833 get_random_bytes(&nrpa, 6); 6834 nrpa.b[5] &= 0x3f; 6835 6836 /* The non-resolvable private address shall not be 6837 * equal to the public address. 6838 */ 6839 if (bacmp(&hdev->bdaddr, &nrpa)) 6840 break; 6841 } 6842 6843 *own_addr_type = ADDR_LE_DEV_RANDOM; 6844 bacpy(rand_addr, &nrpa); 6845 6846 return 0; 6847 } 6848 6849 /* No privacy, use the current address */ 6850 hci_copy_identity_address(hdev, rand_addr, own_addr_type); 6851 6852 return 0; 6853 } 6854 6855 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6856 { 6857 u8 instance = PTR_UINT(data); 6858 6859 return hci_update_adv_data_sync(hdev, instance); 6860 } 6861 6862 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6863 { 6864 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6865 UINT_PTR(instance), NULL); 6866 } 6867 6868 static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data) 6869 { 6870 struct hci_conn *conn = data; 6871 struct inquiry_entry *ie; 6872 struct hci_cp_create_conn cp; 6873 int err; 6874 6875 if (!hci_conn_valid(hdev, conn)) 6876 return -ECANCELED; 6877 6878 /* Many controllers disallow HCI Create Connection while it is doing 6879 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 6880 * Connection. This may cause the MGMT discovering state to become false 6881 * without user space's request but it is okay since the MGMT Discovery 6882 * APIs do not promise that discovery should be done forever. Instead, 6883 * the user space monitors the status of MGMT discovering and it may 6884 * request for discovery again when this flag becomes false. 6885 */ 6886 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 6887 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0, 6888 NULL, HCI_CMD_TIMEOUT); 6889 if (err) 6890 bt_dev_warn(hdev, "Failed to cancel inquiry %d", err); 6891 } 6892 6893 conn->state = BT_CONNECT; 6894 conn->out = true; 6895 conn->role = HCI_ROLE_MASTER; 6896 6897 conn->attempt++; 6898 6899 conn->link_policy = hdev->link_policy; 6900 6901 memset(&cp, 0, sizeof(cp)); 6902 bacpy(&cp.bdaddr, &conn->dst); 6903 cp.pscan_rep_mode = 0x02; 6904 6905 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 6906 if (ie) { 6907 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 6908 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 6909 cp.pscan_mode = ie->data.pscan_mode; 6910 cp.clock_offset = ie->data.clock_offset | 6911 cpu_to_le16(0x8000); 6912 } 6913 6914 memcpy(conn->dev_class, ie->data.dev_class, 3); 6915 } 6916 6917 cp.pkt_type = cpu_to_le16(conn->pkt_type); 6918 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 6919 cp.role_switch = 0x01; 6920 else 6921 cp.role_switch = 0x00; 6922 6923 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN, 6924 sizeof(cp), &cp, 6925 HCI_EV_CONN_COMPLETE, 6926 conn->conn_timeout, NULL); 6927 } 6928 6929 int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn) 6930 { 6931 return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn, 6932 NULL); 6933 } 6934 6935 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 6936 { 6937 struct hci_conn *conn = data; 6938 6939 bt_dev_dbg(hdev, "err %d", err); 6940 6941 if (err == -ECANCELED) 6942 return; 6943 6944 hci_dev_lock(hdev); 6945 6946 if (!hci_conn_valid(hdev, conn)) 6947 goto done; 6948 6949 if (!err) { 6950 hci_connect_le_scan_cleanup(conn, 0x00); 6951 goto done; 6952 } 6953 6954 /* Check if connection is still pending */ 6955 if (conn != hci_lookup_le_connect(hdev)) 6956 goto done; 6957 6958 /* Flush to make sure we send create conn cancel command if needed */ 6959 flush_delayed_work(&conn->le_conn_timeout); 6960 hci_conn_failed(conn, bt_status(err)); 6961 6962 done: 6963 hci_dev_unlock(hdev); 6964 } 6965 6966 int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn) 6967 { 6968 return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn, 6969 create_le_conn_complete); 6970 } 6971 6972 int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn) 6973 { 6974 if (conn->state != BT_OPEN) 6975 return -EINVAL; 6976 6977 switch (conn->type) { 6978 case ACL_LINK: 6979 return !hci_cmd_sync_dequeue_once(hdev, 6980 hci_acl_create_conn_sync, 6981 conn, NULL); 6982 case LE_LINK: 6983 return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync, 6984 conn, create_le_conn_complete); 6985 } 6986 6987 return -ENOENT; 6988 } 6989 6990 int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn, 6991 struct hci_conn_params *params) 6992 { 6993 struct hci_cp_le_conn_update cp; 6994 6995 memset(&cp, 0, sizeof(cp)); 6996 cp.handle = cpu_to_le16(conn->handle); 6997 cp.conn_interval_min = cpu_to_le16(params->conn_min_interval); 6998 cp.conn_interval_max = cpu_to_le16(params->conn_max_interval); 6999 cp.conn_latency = cpu_to_le16(params->conn_latency); 7000 cp.supervision_timeout = cpu_to_le16(params->supervision_timeout); 7001 cp.min_ce_len = cpu_to_le16(0x0000); 7002 cp.max_ce_len = cpu_to_le16(0x0000); 7003 7004 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE, 7005 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 7006 } 7007 7008 static void create_pa_complete(struct hci_dev *hdev, void *data, int err) 7009 { 7010 struct hci_conn *conn = data; 7011 struct hci_conn *pa_sync; 7012 7013 bt_dev_dbg(hdev, "err %d", err); 7014 7015 if (err == -ECANCELED) 7016 return; 7017 7018 hci_dev_lock(hdev); 7019 7020 if (hci_conn_valid(hdev, conn)) 7021 clear_bit(HCI_CONN_CREATE_PA_SYNC, &conn->flags); 7022 7023 if (!err) 7024 goto unlock; 7025 7026 /* Add connection to indicate PA sync error */ 7027 pa_sync = hci_conn_add_unset(hdev, PA_LINK, BDADDR_ANY, 0, 7028 HCI_ROLE_SLAVE); 7029 7030 if (IS_ERR(pa_sync)) 7031 goto unlock; 7032 7033 set_bit(HCI_CONN_PA_SYNC_FAILED, &pa_sync->flags); 7034 7035 /* Notify iso layer */ 7036 hci_connect_cfm(pa_sync, bt_status(err)); 7037 7038 unlock: 7039 hci_dev_unlock(hdev); 7040 } 7041 7042 static int hci_le_past_params_sync(struct hci_dev *hdev, struct hci_conn *conn, 7043 struct hci_conn *acl, struct bt_iso_qos *qos) 7044 { 7045 struct hci_cp_le_past_params cp; 7046 int err; 7047 7048 memset(&cp, 0, sizeof(cp)); 7049 cp.handle = cpu_to_le16(acl->handle); 7050 /* An HCI_LE_Periodic_Advertising_Sync_Transfer_Received event is sent 7051 * to the Host. HCI_LE_Periodic_Advertising_Report events will be 7052 * enabled with duplicate filtering enabled. 7053 */ 7054 cp.mode = 0x03; 7055 cp.skip = cpu_to_le16(qos->bcast.skip); 7056 cp.sync_timeout = cpu_to_le16(qos->bcast.sync_timeout); 7057 cp.cte_type = qos->bcast.sync_cte_type; 7058 7059 /* HCI_LE_PAST_PARAMS command returns a command complete event so it 7060 * cannot wait for HCI_EV_LE_PAST_RECEIVED. 7061 */ 7062 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_PAST_PARAMS, 7063 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 7064 if (err) 7065 return err; 7066 7067 /* Wait for HCI_EV_LE_PAST_RECEIVED event */ 7068 return __hci_cmd_sync_status_sk(hdev, HCI_OP_NOP, 0, NULL, 7069 HCI_EV_LE_PAST_RECEIVED, 7070 conn->conn_timeout, NULL); 7071 } 7072 7073 static int hci_le_pa_create_sync(struct hci_dev *hdev, void *data) 7074 { 7075 struct hci_cp_le_pa_create_sync cp; 7076 struct hci_conn *conn = data, *le; 7077 struct bt_iso_qos *qos = &conn->iso_qos; 7078 int err; 7079 7080 if (!hci_conn_valid(hdev, conn)) 7081 return -ECANCELED; 7082 7083 if (conn->sync_handle != HCI_SYNC_HANDLE_INVALID) 7084 return -EINVAL; 7085 7086 if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC)) 7087 return -EBUSY; 7088 7089 /* Stop scanning if SID has not been set and active scanning is enabled 7090 * so we use passive scanning which will be scanning using the allow 7091 * list programmed to contain only the connection address. 7092 */ 7093 if (conn->sid == HCI_SID_INVALID && 7094 hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 7095 hci_scan_disable_sync(hdev); 7096 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 7097 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 7098 } 7099 7100 /* Mark HCI_CONN_CREATE_PA_SYNC so hci_update_passive_scan_sync can 7101 * program the address in the allow list so PA advertisements can be 7102 * received. 7103 */ 7104 set_bit(HCI_CONN_CREATE_PA_SYNC, &conn->flags); 7105 7106 hci_update_passive_scan_sync(hdev); 7107 7108 /* Check if PAST is possible: 7109 * 7110 * 1. Check if an ACL connection with the destination address exists 7111 * 2. Check if that HCI_CONN_FLAG_PAST has been set which indicates that 7112 * user really intended to use PAST. 7113 */ 7114 le = hci_conn_hash_lookup_le(hdev, &conn->dst, conn->dst_type); 7115 if (le) { 7116 struct hci_conn_params *params; 7117 7118 params = hci_conn_params_lookup(hdev, &le->dst, le->dst_type); 7119 if (params && params->flags & HCI_CONN_FLAG_PAST) { 7120 err = hci_le_past_params_sync(hdev, conn, le, qos); 7121 if (!err) 7122 goto done; 7123 } 7124 } 7125 7126 /* SID has not been set listen for HCI_EV_LE_EXT_ADV_REPORT to update 7127 * it. 7128 */ 7129 if (conn->sid == HCI_SID_INVALID) { 7130 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_NOP, 0, NULL, 7131 HCI_EV_LE_EXT_ADV_REPORT, 7132 conn->conn_timeout, NULL); 7133 if (err == -ETIMEDOUT) 7134 goto done; 7135 } 7136 7137 memset(&cp, 0, sizeof(cp)); 7138 cp.options = qos->bcast.options; 7139 cp.sid = conn->sid; 7140 cp.addr_type = conn->dst_type; 7141 bacpy(&cp.addr, &conn->dst); 7142 cp.skip = cpu_to_le16(qos->bcast.skip); 7143 cp.sync_timeout = cpu_to_le16(qos->bcast.sync_timeout); 7144 cp.sync_cte_type = qos->bcast.sync_cte_type; 7145 7146 /* The spec allows only one pending LE Periodic Advertising Create 7147 * Sync command at a time so we forcefully wait for PA Sync Established 7148 * event since cmd_work can only schedule one command at a time. 7149 * 7150 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 7151 * page 2493: 7152 * 7153 * If the Host issues this command when another HCI_LE_Periodic_ 7154 * Advertising_Create_Sync command is pending, the Controller shall 7155 * return the error code Command Disallowed (0x0C). 7156 */ 7157 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_PA_CREATE_SYNC, 7158 sizeof(cp), &cp, 7159 HCI_EV_LE_PA_SYNC_ESTABLISHED, 7160 conn->conn_timeout, NULL); 7161 if (err == -ETIMEDOUT) 7162 __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_CREATE_SYNC_CANCEL, 7163 0, NULL, HCI_CMD_TIMEOUT); 7164 7165 done: 7166 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 7167 7168 /* Update passive scan since HCI_PA_SYNC flag has been cleared */ 7169 hci_update_passive_scan_sync(hdev); 7170 7171 return err; 7172 } 7173 7174 int hci_connect_pa_sync(struct hci_dev *hdev, struct hci_conn *conn) 7175 { 7176 return hci_cmd_sync_queue_once(hdev, hci_le_pa_create_sync, conn, 7177 create_pa_complete); 7178 } 7179 7180 static void create_big_complete(struct hci_dev *hdev, void *data, int err) 7181 { 7182 struct hci_conn *conn = data; 7183 7184 bt_dev_dbg(hdev, "err %d", err); 7185 7186 if (err == -ECANCELED) 7187 return; 7188 7189 if (hci_conn_valid(hdev, conn)) 7190 clear_bit(HCI_CONN_CREATE_BIG_SYNC, &conn->flags); 7191 } 7192 7193 static int hci_le_big_create_sync(struct hci_dev *hdev, void *data) 7194 { 7195 DEFINE_FLEX(struct hci_cp_le_big_create_sync, cp, bis, num_bis, 0x11); 7196 struct hci_conn *conn = data; 7197 struct bt_iso_qos *qos = &conn->iso_qos; 7198 int err; 7199 7200 if (!hci_conn_valid(hdev, conn)) 7201 return -ECANCELED; 7202 7203 set_bit(HCI_CONN_CREATE_BIG_SYNC, &conn->flags); 7204 7205 memset(cp, 0, sizeof(*cp)); 7206 cp->handle = qos->bcast.big; 7207 cp->sync_handle = cpu_to_le16(conn->sync_handle); 7208 cp->encryption = qos->bcast.encryption; 7209 memcpy(cp->bcode, qos->bcast.bcode, sizeof(cp->bcode)); 7210 cp->mse = qos->bcast.mse; 7211 cp->timeout = cpu_to_le16(qos->bcast.timeout); 7212 cp->num_bis = conn->num_bis; 7213 memcpy(cp->bis, conn->bis, conn->num_bis); 7214 7215 /* The spec allows only one pending LE BIG Create Sync command at 7216 * a time, so we forcefully wait for BIG Sync Established event since 7217 * cmd_work can only schedule one command at a time. 7218 * 7219 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 7220 * page 2586: 7221 * 7222 * If the Host sends this command when the Controller is in the 7223 * process of synchronizing to any BIG, i.e. the HCI_LE_BIG_Sync_ 7224 * Established event has not been generated, the Controller shall 7225 * return the error code Command Disallowed (0x0C). 7226 */ 7227 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_BIG_CREATE_SYNC, 7228 struct_size(cp, bis, cp->num_bis), cp, 7229 HCI_EVT_LE_BIG_SYNC_ESTABLISHED, 7230 conn->conn_timeout, NULL); 7231 if (err == -ETIMEDOUT) 7232 hci_le_big_terminate_sync(hdev, cp->handle); 7233 7234 return err; 7235 } 7236 7237 int hci_connect_big_sync(struct hci_dev *hdev, struct hci_conn *conn) 7238 { 7239 return hci_cmd_sync_queue_once(hdev, hci_le_big_create_sync, conn, 7240 create_big_complete); 7241 } 7242 7243 struct past_data { 7244 struct hci_conn *conn; 7245 struct hci_conn *le; 7246 }; 7247 7248 static void past_complete(struct hci_dev *hdev, void *data, int err) 7249 { 7250 struct past_data *past = data; 7251 7252 bt_dev_dbg(hdev, "err %d", err); 7253 7254 kfree(past); 7255 } 7256 7257 static int hci_le_past_set_info_sync(struct hci_dev *hdev, void *data) 7258 { 7259 struct past_data *past = data; 7260 struct hci_cp_le_past_set_info cp; 7261 7262 hci_dev_lock(hdev); 7263 7264 if (!hci_conn_valid(hdev, past->conn) || 7265 !hci_conn_valid(hdev, past->le)) { 7266 hci_dev_unlock(hdev); 7267 return -ECANCELED; 7268 } 7269 7270 memset(&cp, 0, sizeof(cp)); 7271 cp.handle = cpu_to_le16(past->le->handle); 7272 cp.adv_handle = past->conn->iso_qos.bcast.bis; 7273 7274 hci_dev_unlock(hdev); 7275 7276 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PAST_SET_INFO, 7277 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 7278 } 7279 7280 static int hci_le_past_sync(struct hci_dev *hdev, void *data) 7281 { 7282 struct past_data *past = data; 7283 struct hci_cp_le_past cp; 7284 7285 hci_dev_lock(hdev); 7286 7287 if (!hci_conn_valid(hdev, past->conn) || 7288 !hci_conn_valid(hdev, past->le)) { 7289 hci_dev_unlock(hdev); 7290 return -ECANCELED; 7291 } 7292 7293 memset(&cp, 0, sizeof(cp)); 7294 cp.handle = cpu_to_le16(past->le->handle); 7295 cp.sync_handle = cpu_to_le16(past->conn->sync_handle); 7296 7297 hci_dev_unlock(hdev); 7298 7299 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PAST, 7300 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 7301 } 7302 7303 int hci_past_sync(struct hci_conn *conn, struct hci_conn *le) 7304 { 7305 struct past_data *data; 7306 int err; 7307 7308 if (conn->type != BIS_LINK && conn->type != PA_LINK) 7309 return -EINVAL; 7310 7311 if (!past_sender_capable(conn->hdev)) 7312 return -EOPNOTSUPP; 7313 7314 data = kmalloc(sizeof(*data), GFP_KERNEL); 7315 if (!data) 7316 return -ENOMEM; 7317 7318 data->conn = conn; 7319 data->le = le; 7320 7321 if (conn->role == HCI_ROLE_MASTER) 7322 err = hci_cmd_sync_queue_once(conn->hdev, 7323 hci_le_past_set_info_sync, data, 7324 past_complete); 7325 else 7326 err = hci_cmd_sync_queue_once(conn->hdev, hci_le_past_sync, 7327 data, past_complete); 7328 7329 if (err) 7330 kfree(data); 7331 7332 return err; 7333 } 7334 7335 static void le_read_features_complete(struct hci_dev *hdev, void *data, int err) 7336 { 7337 struct hci_conn *conn = data; 7338 7339 bt_dev_dbg(hdev, "err %d", err); 7340 7341 if (err == -ECANCELED) 7342 return; 7343 7344 hci_conn_drop(conn); 7345 } 7346 7347 static int hci_le_read_all_remote_features_sync(struct hci_dev *hdev, 7348 void *data) 7349 { 7350 struct hci_conn *conn = data; 7351 struct hci_cp_le_read_all_remote_features cp; 7352 7353 memset(&cp, 0, sizeof(cp)); 7354 cp.handle = cpu_to_le16(conn->handle); 7355 cp.pages = 10; /* Attempt to read all pages */ 7356 7357 /* Wait for HCI_EVT_LE_ALL_REMOTE_FEATURES_COMPLETE event otherwise 7358 * hci_conn_drop may run prematurely causing a disconnection. 7359 */ 7360 return __hci_cmd_sync_status_sk(hdev, 7361 HCI_OP_LE_READ_ALL_REMOTE_FEATURES, 7362 sizeof(cp), &cp, 7363 HCI_EVT_LE_ALL_REMOTE_FEATURES_COMPLETE, 7364 HCI_CMD_TIMEOUT, NULL); 7365 7366 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ALL_REMOTE_FEATURES, 7367 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 7368 } 7369 7370 static int hci_le_read_remote_features_sync(struct hci_dev *hdev, void *data) 7371 { 7372 struct hci_conn *conn = data; 7373 struct hci_cp_le_read_remote_features cp; 7374 7375 if (!hci_conn_valid(hdev, conn)) 7376 return -ECANCELED; 7377 7378 /* Check if LL Extended Feature Set is supported and 7379 * HCI_OP_LE_READ_ALL_REMOTE_FEATURES is supported then use that to read 7380 * all features. 7381 */ 7382 if (ll_ext_feature_capable(hdev) && hdev->commands[47] & BIT(3)) 7383 return hci_le_read_all_remote_features_sync(hdev, data); 7384 7385 memset(&cp, 0, sizeof(cp)); 7386 cp.handle = cpu_to_le16(conn->handle); 7387 7388 /* Wait for HCI_EV_LE_REMOTE_FEAT_COMPLETE event otherwise 7389 * hci_conn_drop may run prematurely causing a disconnection. 7390 */ 7391 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_READ_REMOTE_FEATURES, 7392 sizeof(cp), &cp, 7393 HCI_EV_LE_REMOTE_FEAT_COMPLETE, 7394 HCI_CMD_TIMEOUT, NULL); 7395 } 7396 7397 int hci_le_read_remote_features(struct hci_conn *conn) 7398 { 7399 struct hci_dev *hdev = conn->hdev; 7400 int err; 7401 7402 /* The remote features procedure is defined for central 7403 * role only. So only in case of an initiated connection 7404 * request the remote features. 7405 * 7406 * If the local controller supports peripheral-initiated features 7407 * exchange, then requesting the remote features in peripheral 7408 * role is possible. Otherwise just transition into the 7409 * connected state without requesting the remote features. 7410 */ 7411 if (conn->out || (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES)) 7412 err = hci_cmd_sync_queue_once(hdev, 7413 hci_le_read_remote_features_sync, 7414 hci_conn_hold(conn), 7415 le_read_features_complete); 7416 else 7417 err = -EOPNOTSUPP; 7418 7419 return err; 7420 } 7421