1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
8 *
9 * Copyright (C) 2019, Microsoft, Inc.
10 *
11 * Author: Michael Kelley <mikelley@microsoft.com>
12 */
13
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <clocksource/hyperv_timer.h>
26 #include <asm/hyperv-tlfs.h>
27 #include <asm/mshyperv.h>
28
29 static struct clock_event_device __percpu *hv_clock_event;
30 static u64 hv_sched_clock_offset __ro_after_init;
31
32 /*
33 * If false, we're using the old mechanism for stimer0 interrupts
34 * where it sends a VMbus message when it expires. The old
35 * mechanism is used when running on older versions of Hyper-V
36 * that don't support Direct Mode. While Hyper-V provides
37 * four stimer's per CPU, Linux uses only stimer0.
38 *
39 * Because Direct Mode does not require processing a VMbus
40 * message, stimer interrupts can be enabled earlier in the
41 * process of booting a CPU, and consistent with when timer
42 * interrupts are enabled for other clocksource drivers.
43 * However, for legacy versions of Hyper-V when Direct Mode
44 * is not enabled, setting up stimer interrupts must be
45 * delayed until VMbus is initialized and can process the
46 * interrupt message.
47 */
48 static bool direct_mode_enabled;
49
50 static int stimer0_irq = -1;
51 static int stimer0_message_sint;
52 static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
53
54 /*
55 * Common code for stimer0 interrupts coming via Direct Mode or
56 * as a VMbus message.
57 */
hv_stimer0_isr(void)58 void hv_stimer0_isr(void)
59 {
60 struct clock_event_device *ce;
61
62 ce = this_cpu_ptr(hv_clock_event);
63 ce->event_handler(ce);
64 }
65 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
66
67 /*
68 * stimer0 interrupt handler for architectures that support
69 * per-cpu interrupts, which also implies Direct Mode.
70 */
hv_stimer0_percpu_isr(int irq,void * dev_id)71 static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
72 {
73 hv_stimer0_isr();
74 return IRQ_HANDLED;
75 }
76
hv_ce_set_next_event(unsigned long delta,struct clock_event_device * evt)77 static int hv_ce_set_next_event(unsigned long delta,
78 struct clock_event_device *evt)
79 {
80 u64 current_tick;
81
82 current_tick = hv_read_reference_counter();
83 current_tick += delta;
84 hv_set_msr(HV_MSR_STIMER0_COUNT, current_tick);
85 return 0;
86 }
87
hv_ce_shutdown(struct clock_event_device * evt)88 static int hv_ce_shutdown(struct clock_event_device *evt)
89 {
90 hv_set_msr(HV_MSR_STIMER0_COUNT, 0);
91 hv_set_msr(HV_MSR_STIMER0_CONFIG, 0);
92 if (direct_mode_enabled && stimer0_irq >= 0)
93 disable_percpu_irq(stimer0_irq);
94
95 return 0;
96 }
97
hv_ce_set_oneshot(struct clock_event_device * evt)98 static int hv_ce_set_oneshot(struct clock_event_device *evt)
99 {
100 union hv_stimer_config timer_cfg;
101
102 timer_cfg.as_uint64 = 0;
103 timer_cfg.enable = 1;
104 timer_cfg.auto_enable = 1;
105 if (direct_mode_enabled) {
106 /*
107 * When it expires, the timer will directly interrupt
108 * on the specified hardware vector/IRQ.
109 */
110 timer_cfg.direct_mode = 1;
111 timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
112 if (stimer0_irq >= 0)
113 enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
114 } else {
115 /*
116 * When it expires, the timer will generate a VMbus message,
117 * to be handled by the normal VMbus interrupt handler.
118 */
119 timer_cfg.direct_mode = 0;
120 timer_cfg.sintx = stimer0_message_sint;
121 }
122 hv_set_msr(HV_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
123 return 0;
124 }
125
126 /*
127 * hv_stimer_init - Per-cpu initialization of the clockevent
128 */
hv_stimer_init(unsigned int cpu)129 static int hv_stimer_init(unsigned int cpu)
130 {
131 struct clock_event_device *ce;
132
133 if (!hv_clock_event)
134 return 0;
135
136 ce = per_cpu_ptr(hv_clock_event, cpu);
137 ce->name = "Hyper-V clockevent";
138 ce->features = CLOCK_EVT_FEAT_ONESHOT;
139 ce->cpumask = cpumask_of(cpu);
140
141 /*
142 * Lower the rating of the Hyper-V timer in a TDX VM without paravisor,
143 * so the local APIC timer (lapic_clockevent) is the default timer in
144 * such a VM. The Hyper-V timer is not preferred in such a VM because
145 * it depends on the slow VM Reference Counter MSR (the Hyper-V TSC
146 * page is not enbled in such a VM because the VM uses Invariant TSC
147 * as a better clocksource and it's challenging to mark the Hyper-V
148 * TSC page shared in very early boot).
149 */
150 if (!ms_hyperv.paravisor_present && hv_isolation_type_tdx())
151 ce->rating = 90;
152 else
153 ce->rating = 1000;
154
155 ce->set_state_shutdown = hv_ce_shutdown;
156 ce->set_state_oneshot = hv_ce_set_oneshot;
157 ce->set_next_event = hv_ce_set_next_event;
158
159 clockevents_config_and_register(ce,
160 HV_CLOCK_HZ,
161 HV_MIN_DELTA_TICKS,
162 HV_MAX_MAX_DELTA_TICKS);
163 return 0;
164 }
165
166 /*
167 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
168 */
hv_stimer_cleanup(unsigned int cpu)169 int hv_stimer_cleanup(unsigned int cpu)
170 {
171 struct clock_event_device *ce;
172
173 if (!hv_clock_event)
174 return 0;
175
176 /*
177 * In the legacy case where Direct Mode is not enabled
178 * (which can only be on x86/64), stimer cleanup happens
179 * relatively early in the CPU offlining process. We
180 * must unbind the stimer-based clockevent device so
181 * that the LAPIC timer can take over until clockevents
182 * are no longer needed in the offlining process. Note
183 * that clockevents_unbind_device() eventually calls
184 * hv_ce_shutdown().
185 *
186 * The unbind should not be done when Direct Mode is
187 * enabled because we may be on an architecture where
188 * there are no other clockevent devices to fallback to.
189 */
190 ce = per_cpu_ptr(hv_clock_event, cpu);
191 if (direct_mode_enabled)
192 hv_ce_shutdown(ce);
193 else
194 clockevents_unbind_device(ce, cpu);
195
196 return 0;
197 }
198 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
199
200 /*
201 * These placeholders are overridden by arch specific code on
202 * architectures that need special setup of the stimer0 IRQ because
203 * they don't support per-cpu IRQs (such as x86/x64).
204 */
hv_setup_stimer0_handler(void (* handler)(void))205 void __weak hv_setup_stimer0_handler(void (*handler)(void))
206 {
207 };
208
hv_remove_stimer0_handler(void)209 void __weak hv_remove_stimer0_handler(void)
210 {
211 };
212
213 #ifdef CONFIG_ACPI
214 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
hv_setup_stimer0_irq(void)215 static int hv_setup_stimer0_irq(void)
216 {
217 int ret;
218
219 ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
220 ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
221 if (ret < 0) {
222 pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
223 return ret;
224 }
225 stimer0_irq = ret;
226
227 ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
228 "Hyper-V stimer0", &stimer0_evt);
229 if (ret) {
230 pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
231 stimer0_irq, ret);
232 acpi_unregister_gsi(stimer0_irq);
233 stimer0_irq = -1;
234 }
235 return ret;
236 }
237
hv_remove_stimer0_irq(void)238 static void hv_remove_stimer0_irq(void)
239 {
240 if (stimer0_irq == -1) {
241 hv_remove_stimer0_handler();
242 } else {
243 free_percpu_irq(stimer0_irq, &stimer0_evt);
244 acpi_unregister_gsi(stimer0_irq);
245 stimer0_irq = -1;
246 }
247 }
248 #else
hv_setup_stimer0_irq(void)249 static int hv_setup_stimer0_irq(void)
250 {
251 return 0;
252 }
253
hv_remove_stimer0_irq(void)254 static void hv_remove_stimer0_irq(void)
255 {
256 }
257 #endif
258
259 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
hv_stimer_alloc(bool have_percpu_irqs)260 int hv_stimer_alloc(bool have_percpu_irqs)
261 {
262 int ret;
263
264 /*
265 * Synthetic timers are always available except on old versions of
266 * Hyper-V on x86. In that case, return as error as Linux will use a
267 * clockevent based on emulated LAPIC timer hardware.
268 */
269 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
270 return -EINVAL;
271
272 hv_clock_event = alloc_percpu(struct clock_event_device);
273 if (!hv_clock_event)
274 return -ENOMEM;
275
276 direct_mode_enabled = ms_hyperv.misc_features &
277 HV_STIMER_DIRECT_MODE_AVAILABLE;
278
279 /*
280 * If Direct Mode isn't enabled, the remainder of the initialization
281 * is done later by hv_stimer_legacy_init()
282 */
283 if (!direct_mode_enabled)
284 return 0;
285
286 if (have_percpu_irqs) {
287 ret = hv_setup_stimer0_irq();
288 if (ret)
289 goto free_clock_event;
290 } else {
291 hv_setup_stimer0_handler(hv_stimer0_isr);
292 }
293
294 /*
295 * Since we are in Direct Mode, stimer initialization
296 * can be done now with a CPUHP value in the same range
297 * as other clockevent devices.
298 */
299 ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
300 "clockevents/hyperv/stimer:starting",
301 hv_stimer_init, hv_stimer_cleanup);
302 if (ret < 0) {
303 hv_remove_stimer0_irq();
304 goto free_clock_event;
305 }
306 return ret;
307
308 free_clock_event:
309 free_percpu(hv_clock_event);
310 hv_clock_event = NULL;
311 return ret;
312 }
313 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
314
315 /*
316 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
317 * the case when Direct Mode is not enabled, and the stimer
318 * must be initialized late in the CPU onlining process.
319 *
320 */
hv_stimer_legacy_init(unsigned int cpu,int sint)321 void hv_stimer_legacy_init(unsigned int cpu, int sint)
322 {
323 if (direct_mode_enabled)
324 return;
325
326 /*
327 * This function gets called by each vCPU, so setting the
328 * global stimer_message_sint value each time is conceptually
329 * not ideal, but the value passed in is always the same and
330 * it avoids introducing yet another interface into this
331 * clocksource driver just to set the sint in the legacy case.
332 */
333 stimer0_message_sint = sint;
334 (void)hv_stimer_init(cpu);
335 }
336 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
337
338 /*
339 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
340 * handle the case when Direct Mode is not enabled, and the
341 * stimer must be cleaned up early in the CPU offlining
342 * process.
343 */
hv_stimer_legacy_cleanup(unsigned int cpu)344 void hv_stimer_legacy_cleanup(unsigned int cpu)
345 {
346 if (direct_mode_enabled)
347 return;
348 (void)hv_stimer_cleanup(cpu);
349 }
350 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
351
352 /*
353 * Do a global cleanup of clockevents for the cases of kexec and
354 * vmbus exit
355 */
hv_stimer_global_cleanup(void)356 void hv_stimer_global_cleanup(void)
357 {
358 int cpu;
359
360 /*
361 * hv_stime_legacy_cleanup() will stop the stimer if Direct
362 * Mode is not enabled, and fallback to the LAPIC timer.
363 */
364 for_each_present_cpu(cpu) {
365 hv_stimer_legacy_cleanup(cpu);
366 }
367
368 if (!hv_clock_event)
369 return;
370
371 if (direct_mode_enabled) {
372 cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
373 hv_remove_stimer0_irq();
374 stimer0_irq = -1;
375 }
376 free_percpu(hv_clock_event);
377 hv_clock_event = NULL;
378
379 }
380 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
381
read_hv_clock_msr(void)382 static __always_inline u64 read_hv_clock_msr(void)
383 {
384 /*
385 * Read the partition counter to get the current tick count. This count
386 * is set to 0 when the partition is created and is incremented in 100
387 * nanosecond units.
388 *
389 * Use hv_raw_get_msr() because this function is used from
390 * noinstr. Notable; while HV_MSR_TIME_REF_COUNT is a synthetic
391 * register it doesn't need the GHCB path.
392 */
393 return hv_raw_get_msr(HV_MSR_TIME_REF_COUNT);
394 }
395
396 /*
397 * Code and definitions for the Hyper-V clocksources. Two
398 * clocksources are defined: one that reads the Hyper-V defined MSR, and
399 * the other that uses the TSC reference page feature as defined in the
400 * TLFS. The MSR version is for compatibility with old versions of
401 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
402 */
403
404 static union {
405 struct ms_hyperv_tsc_page page;
406 u8 reserved[PAGE_SIZE];
407 } tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
408
409 static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
410 static unsigned long tsc_pfn;
411
hv_get_tsc_pfn(void)412 unsigned long hv_get_tsc_pfn(void)
413 {
414 return tsc_pfn;
415 }
416 EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
417
hv_get_tsc_page(void)418 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
419 {
420 return tsc_page;
421 }
422 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
423
read_hv_clock_tsc(void)424 static __always_inline u64 read_hv_clock_tsc(void)
425 {
426 u64 cur_tsc, time;
427
428 /*
429 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
430 * subsection Refererence Counter, guarantees that the TSC and MSR
431 * times are in sync and monotonic. Therefore we can fall back
432 * to the MSR in case the TSC page indicates unavailability.
433 */
434 if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
435 time = read_hv_clock_msr();
436
437 return time;
438 }
439
read_hv_clock_tsc_cs(struct clocksource * arg)440 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
441 {
442 return read_hv_clock_tsc();
443 }
444
read_hv_sched_clock_tsc(void)445 static u64 noinstr read_hv_sched_clock_tsc(void)
446 {
447 return (read_hv_clock_tsc() - hv_sched_clock_offset) *
448 (NSEC_PER_SEC / HV_CLOCK_HZ);
449 }
450
suspend_hv_clock_tsc(struct clocksource * arg)451 static void suspend_hv_clock_tsc(struct clocksource *arg)
452 {
453 union hv_reference_tsc_msr tsc_msr;
454
455 /* Disable the TSC page */
456 tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
457 tsc_msr.enable = 0;
458 hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
459 }
460
461
resume_hv_clock_tsc(struct clocksource * arg)462 static void resume_hv_clock_tsc(struct clocksource *arg)
463 {
464 union hv_reference_tsc_msr tsc_msr;
465
466 /* Re-enable the TSC page */
467 tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
468 tsc_msr.enable = 1;
469 tsc_msr.pfn = tsc_pfn;
470 hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
471 }
472
473 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
hv_cs_enable(struct clocksource * cs)474 static int hv_cs_enable(struct clocksource *cs)
475 {
476 vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
477 return 0;
478 }
479 #endif
480
481 static struct clocksource hyperv_cs_tsc = {
482 .name = "hyperv_clocksource_tsc_page",
483 .rating = 500,
484 .read = read_hv_clock_tsc_cs,
485 .mask = CLOCKSOURCE_MASK(64),
486 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
487 .suspend= suspend_hv_clock_tsc,
488 .resume = resume_hv_clock_tsc,
489 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
490 .enable = hv_cs_enable,
491 .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
492 #else
493 .vdso_clock_mode = VDSO_CLOCKMODE_NONE,
494 #endif
495 };
496
read_hv_clock_msr_cs(struct clocksource * arg)497 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
498 {
499 return read_hv_clock_msr();
500 }
501
502 static struct clocksource hyperv_cs_msr = {
503 .name = "hyperv_clocksource_msr",
504 .rating = 495,
505 .read = read_hv_clock_msr_cs,
506 .mask = CLOCKSOURCE_MASK(64),
507 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
508 };
509
510 /*
511 * Reference to pv_ops must be inline so objtool
512 * detection of noinstr violations can work correctly.
513 */
514 #ifdef CONFIG_GENERIC_SCHED_CLOCK
hv_setup_sched_clock(void * sched_clock)515 static __always_inline void hv_setup_sched_clock(void *sched_clock)
516 {
517 /*
518 * We're on an architecture with generic sched clock (not x86/x64).
519 * The Hyper-V sched clock read function returns nanoseconds, not
520 * the normal 100ns units of the Hyper-V synthetic clock.
521 */
522 sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
523 }
524 #elif defined CONFIG_PARAVIRT
hv_setup_sched_clock(void * sched_clock)525 static __always_inline void hv_setup_sched_clock(void *sched_clock)
526 {
527 /* We're on x86/x64 *and* using PV ops */
528 paravirt_set_sched_clock(sched_clock);
529 }
530 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
hv_setup_sched_clock(void * sched_clock)531 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
532 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
533
hv_init_tsc_clocksource(void)534 static void __init hv_init_tsc_clocksource(void)
535 {
536 union hv_reference_tsc_msr tsc_msr;
537
538 /*
539 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
540 * handles frequency and offset changes due to live migration,
541 * pause/resume, and other VM management operations. So lower the
542 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
543 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
544 * TSC will be preferred over the virtualized ARM64 arch counter.
545 */
546 if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
547 hyperv_cs_tsc.rating = 250;
548 hyperv_cs_msr.rating = 245;
549 }
550
551 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
552 return;
553
554 hv_read_reference_counter = read_hv_clock_tsc;
555
556 /*
557 * TSC page mapping works differently in root compared to guest.
558 * - In guest partition the guest PFN has to be passed to the
559 * hypervisor.
560 * - In root partition it's other way around: it has to map the PFN
561 * provided by the hypervisor.
562 * But it can't be mapped right here as it's too early and MMU isn't
563 * ready yet. So, we only set the enable bit here and will remap the
564 * page later in hv_remap_tsc_clocksource().
565 *
566 * It worth mentioning, that TSC clocksource read function
567 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
568 * TSC page is zeroed (which is the case until the PFN is remapped) and
569 * thus TSC clocksource will work even without the real TSC page
570 * mapped.
571 */
572 tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
573 if (hv_root_partition)
574 tsc_pfn = tsc_msr.pfn;
575 else
576 tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
577 tsc_msr.enable = 1;
578 tsc_msr.pfn = tsc_pfn;
579 hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
580
581 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
582
583 /*
584 * If TSC is invariant, then let it stay as the sched clock since it
585 * will be faster than reading the TSC page. But if not invariant, use
586 * the TSC page so that live migrations across hosts with different
587 * frequencies is handled correctly.
588 */
589 if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
590 hv_sched_clock_offset = hv_read_reference_counter();
591 hv_setup_sched_clock(read_hv_sched_clock_tsc);
592 }
593 }
594
hv_init_clocksource(void)595 void __init hv_init_clocksource(void)
596 {
597 /*
598 * Try to set up the TSC page clocksource, then the MSR clocksource.
599 * At least one of these will always be available except on very old
600 * versions of Hyper-V on x86. In that case we won't have a Hyper-V
601 * clocksource, but Linux will still run with a clocksource based
602 * on the emulated PIT or LAPIC timer.
603 *
604 * Never use the MSR clocksource as sched clock. It's too slow.
605 * Better to use the native sched clock as the fallback.
606 */
607 hv_init_tsc_clocksource();
608
609 if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
610 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
611 }
612
hv_remap_tsc_clocksource(void)613 void __init hv_remap_tsc_clocksource(void)
614 {
615 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
616 return;
617
618 if (!hv_root_partition) {
619 WARN(1, "%s: attempt to remap TSC page in guest partition\n",
620 __func__);
621 return;
622 }
623
624 tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
625 MEMREMAP_WB);
626 if (!tsc_page)
627 pr_err("Failed to remap Hyper-V TSC page.\n");
628 }
629