1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements UBIFS journal.
13 *
14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15 * length and position, while a bud logical eraseblock is any LEB in the main
16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17 * contains only references to buds and some other stuff like commit
18 * start node. The idea is that when we commit the journal, we do
19 * not copy the data, the buds just become indexed. Since after the commit the
20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22 * become leafs in the future.
23 *
24 * The journal is multi-headed because we want to write data to the journal as
25 * optimally as possible. It is nice to have nodes belonging to the same inode
26 * in one LEB, so we may write data owned by different inodes to different
27 * journal heads, although at present only one data head is used.
28 *
29 * For recovery reasons, the base head contains all inode nodes, all directory
30 * entry nodes and all truncate nodes. This means that the other heads contain
31 * only data nodes.
32 *
33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34 * time of commit, the bud is retained to continue to be used in the journal,
35 * even though the "front" of the LEB is now indexed. In that case, the log
36 * reference contains the offset where the bud starts for the purposes of the
37 * journal.
38 *
39 * The journal size has to be limited, because the larger is the journal, the
40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41 * takes (indexing in the TNC).
42 *
43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
46 * all the nodes.
47 */
48
49 #include "ubifs.h"
50
51 /**
52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53 * @ino: the inode to zero out
54 */
zero_ino_node_unused(struct ubifs_ino_node * ino)55 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56 {
57 memset(ino->padding1, 0, 4);
58 memset(ino->padding2, 0, 26);
59 }
60
61 /**
62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
63 * entry node.
64 * @dent: the directory entry to zero out
65 */
zero_dent_node_unused(struct ubifs_dent_node * dent)66 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67 {
68 dent->padding1 = 0;
69 }
70
71 /**
72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73 * node.
74 * @trun: the truncation node to zero out
75 */
zero_trun_node_unused(struct ubifs_trun_node * trun)76 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77 {
78 memset(trun->padding, 0, 12);
79 }
80
ubifs_add_auth_dirt(struct ubifs_info * c,int lnum)81 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82 {
83 if (ubifs_authenticated(c))
84 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
85 }
86
87 /**
88 * reserve_space - reserve space in the journal.
89 * @c: UBIFS file-system description object
90 * @jhead: journal head number
91 * @len: node length
92 *
93 * This function reserves space in journal head @head. If the reservation
94 * succeeded, the journal head stays locked and later has to be unlocked using
95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96 * be done, and other negative error codes in case of other failures.
97 */
reserve_space(struct ubifs_info * c,int jhead,int len)98 static int reserve_space(struct ubifs_info *c, int jhead, int len)
99 {
100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102
103 /*
104 * Typically, the base head has smaller nodes written to it, so it is
105 * better to try to allocate space at the ends of eraseblocks. This is
106 * what the squeeze parameter does.
107 */
108 ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 squeeze = (jhead == BASEHD);
110 again:
111 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
112
113 if (c->ro_error) {
114 err = -EROFS;
115 goto out_unlock;
116 }
117
118 avail = c->leb_size - wbuf->offs - wbuf->used;
119 if (wbuf->lnum != -1 && avail >= len)
120 return 0;
121
122 /*
123 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 * LEB with some empty space.
125 */
126 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127 if (lnum >= 0)
128 goto out;
129
130 err = lnum;
131 if (err != -ENOSPC)
132 goto out_unlock;
133
134 /*
135 * No free space, we have to run garbage collector to make
136 * some. But the write-buffer mutex has to be unlocked because
137 * GC also takes it.
138 */
139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 mutex_unlock(&wbuf->io_mutex);
141
142 lnum = ubifs_garbage_collect(c, 0);
143 if (lnum < 0) {
144 err = lnum;
145 if (err != -ENOSPC)
146 return err;
147
148 /*
149 * GC could not make a free LEB. But someone else may
150 * have allocated new bud for this journal head,
151 * because we dropped @wbuf->io_mutex, so try once
152 * again.
153 */
154 dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 dbg_jhead(jhead));
156 if (retries++ < 2) {
157 dbg_jnl("retry (%d)", retries);
158 goto again;
159 }
160
161 dbg_jnl("return -ENOSPC");
162 return err;
163 }
164
165 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 avail = c->leb_size - wbuf->offs - wbuf->used;
168
169 if (wbuf->lnum != -1 && avail >= len) {
170 /*
171 * Someone else has switched the journal head and we have
172 * enough space now. This happens when more than one process is
173 * trying to write to the same journal head at the same time.
174 */
175 dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 err = ubifs_return_leb(c, lnum);
178 if (err)
179 goto out_unlock;
180 return 0;
181 }
182
183 offs = 0;
184
185 out:
186 /*
187 * Make sure we synchronize the write-buffer before we add the new bud
188 * to the log. Otherwise we may have a power cut after the log
189 * reference node for the last bud (@lnum) is written but before the
190 * write-buffer data are written to the next-to-last bud
191 * (@wbuf->lnum). And the effect would be that the recovery would see
192 * that there is corruption in the next-to-last bud.
193 */
194 err = ubifs_wbuf_sync_nolock(wbuf);
195 if (err)
196 goto out_return;
197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 if (err)
199 goto out_return;
200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 if (err)
202 goto out_unlock;
203
204 return 0;
205
206 out_unlock:
207 mutex_unlock(&wbuf->io_mutex);
208 return err;
209
210 out_return:
211 /* An error occurred and the LEB has to be returned to lprops */
212 ubifs_assert(c, err < 0);
213 err1 = ubifs_return_leb(c, lnum);
214 if (err1 && err == -EAGAIN)
215 /*
216 * Return original error code only if it is not %-EAGAIN,
217 * which is not really an error. Otherwise, return the error
218 * code of 'ubifs_return_leb()'.
219 */
220 err = err1;
221 mutex_unlock(&wbuf->io_mutex);
222 return err;
223 }
224
ubifs_hash_nodes(struct ubifs_info * c,void * node,int len,struct shash_desc * hash)225 static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 int len, struct shash_desc *hash)
227 {
228 int auth_node_size = ubifs_auth_node_sz(c);
229 int err;
230
231 while (1) {
232 const struct ubifs_ch *ch = node;
233 int nodelen = le32_to_cpu(ch->len);
234
235 ubifs_assert(c, len >= auth_node_size);
236
237 if (len == auth_node_size)
238 break;
239
240 ubifs_assert(c, len > nodelen);
241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242
243 err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244 if (err)
245 return err;
246
247 node += ALIGN(nodelen, 8);
248 len -= ALIGN(nodelen, 8);
249 }
250
251 return ubifs_prepare_auth_node(c, node, hash);
252 }
253
254 /**
255 * write_head - write data to a journal head.
256 * @c: UBIFS file-system description object
257 * @jhead: journal head
258 * @buf: buffer to write
259 * @len: length to write
260 * @lnum: LEB number written is returned here
261 * @offs: offset written is returned here
262 * @sync: non-zero if the write-buffer has to by synchronized
263 *
264 * This function writes data to the reserved space of journal head @jhead.
265 * Returns zero in case of success and a negative error code in case of
266 * failure.
267 */
write_head(struct ubifs_info * c,int jhead,void * buf,int len,int * lnum,int * offs,int sync)268 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 int *lnum, int *offs, int sync)
270 {
271 int err;
272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273
274 ubifs_assert(c, jhead != GCHD);
275
276 *lnum = c->jheads[jhead].wbuf.lnum;
277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 dbg_jhead(jhead), *lnum, *offs, len);
280
281 if (ubifs_authenticated(c)) {
282 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283 if (err)
284 return err;
285 }
286
287 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 if (err)
289 return err;
290 if (sync)
291 err = ubifs_wbuf_sync_nolock(wbuf);
292 return err;
293 }
294
295 /**
296 * __queue_and_wait - queue a task and wait until the task is waked up.
297 * @c: UBIFS file-system description object
298 *
299 * This function adds current task in queue and waits until the task is waked
300 * up. This function should be called with @c->reserve_space_wq locked.
301 */
__queue_and_wait(struct ubifs_info * c)302 static void __queue_and_wait(struct ubifs_info *c)
303 {
304 DEFINE_WAIT(wait);
305
306 __add_wait_queue_entry_tail_exclusive(&c->reserve_space_wq, &wait);
307 set_current_state(TASK_UNINTERRUPTIBLE);
308 spin_unlock(&c->reserve_space_wq.lock);
309
310 schedule();
311 finish_wait(&c->reserve_space_wq, &wait);
312 }
313
314 /**
315 * wait_for_reservation - try queuing current task to wait until waked up.
316 * @c: UBIFS file-system description object
317 *
318 * This function queues current task to wait until waked up, if queuing is
319 * started(@c->need_wait_space is not %0). Returns %true if current task is
320 * added in queue, otherwise %false is returned.
321 */
wait_for_reservation(struct ubifs_info * c)322 static bool wait_for_reservation(struct ubifs_info *c)
323 {
324 if (likely(atomic_read(&c->need_wait_space) == 0))
325 /* Quick path to check whether queuing is started. */
326 return false;
327
328 spin_lock(&c->reserve_space_wq.lock);
329 if (atomic_read(&c->need_wait_space) == 0) {
330 /* Queuing is not started, don't queue current task. */
331 spin_unlock(&c->reserve_space_wq.lock);
332 return false;
333 }
334
335 __queue_and_wait(c);
336 return true;
337 }
338
339 /**
340 * wake_up_reservation - wake up first task in queue or stop queuing.
341 * @c: UBIFS file-system description object
342 *
343 * This function wakes up the first task in queue if it exists, or stops
344 * queuing if no tasks in queue.
345 */
wake_up_reservation(struct ubifs_info * c)346 static void wake_up_reservation(struct ubifs_info *c)
347 {
348 spin_lock(&c->reserve_space_wq.lock);
349 if (waitqueue_active(&c->reserve_space_wq))
350 wake_up_locked(&c->reserve_space_wq);
351 else
352 /*
353 * Compared with wait_for_reservation(), set @c->need_wait_space
354 * under the protection of wait queue lock, which can avoid that
355 * @c->need_wait_space is set to 0 after new task queued.
356 */
357 atomic_set(&c->need_wait_space, 0);
358 spin_unlock(&c->reserve_space_wq.lock);
359 }
360
361 /**
362 * add_or_start_queue - add current task in queue or start queuing.
363 * @c: UBIFS file-system description object
364 *
365 * This function starts queuing if queuing is not started, otherwise adds
366 * current task in queue.
367 */
add_or_start_queue(struct ubifs_info * c)368 static void add_or_start_queue(struct ubifs_info *c)
369 {
370 spin_lock(&c->reserve_space_wq.lock);
371 if (atomic_cmpxchg(&c->need_wait_space, 0, 1) == 0) {
372 /* Starts queuing, task can go on directly. */
373 spin_unlock(&c->reserve_space_wq.lock);
374 return;
375 }
376
377 /*
378 * There are at least two tasks have retried more than 32 times
379 * at certain point, first task has started queuing, just queue
380 * the left tasks.
381 */
382 __queue_and_wait(c);
383 }
384
385 /**
386 * make_reservation - reserve journal space.
387 * @c: UBIFS file-system description object
388 * @jhead: journal head
389 * @len: how many bytes to reserve
390 *
391 * This function makes space reservation in journal head @jhead. The function
392 * takes the commit lock and locks the journal head, and the caller has to
393 * unlock the head and finish the reservation with 'finish_reservation()'.
394 * Returns zero in case of success and a negative error code in case of
395 * failure.
396 *
397 * Note, the journal head may be unlocked as soon as the data is written, while
398 * the commit lock has to be released after the data has been added to the
399 * TNC.
400 */
make_reservation(struct ubifs_info * c,int jhead,int len)401 static int make_reservation(struct ubifs_info *c, int jhead, int len)
402 {
403 int err, cmt_retries = 0, nospc_retries = 0;
404 bool blocked = wait_for_reservation(c);
405
406 again:
407 down_read(&c->commit_sem);
408 err = reserve_space(c, jhead, len);
409 if (!err) {
410 /* c->commit_sem will get released via finish_reservation(). */
411 goto out_wake_up;
412 }
413 up_read(&c->commit_sem);
414
415 if (err == -ENOSPC) {
416 /*
417 * GC could not make any progress. We should try to commit
418 * because it could make some dirty space and GC would make
419 * progress, so make the error -EAGAIN so that the below
420 * will commit and re-try.
421 */
422 nospc_retries++;
423 dbg_jnl("no space, retry");
424 err = -EAGAIN;
425 }
426
427 if (err != -EAGAIN)
428 goto out;
429
430 /*
431 * -EAGAIN means that the journal is full or too large, or the above
432 * code wants to do one commit. Do this and re-try.
433 */
434 if (cmt_retries > 128) {
435 /*
436 * This should not happen unless:
437 * 1. The journal size limitations are too tough.
438 * 2. The budgeting is incorrect. We always have to be able to
439 * write to the media, because all operations are budgeted.
440 * Deletions are not budgeted, though, but we reserve an
441 * extra LEB for them.
442 */
443 ubifs_err(c, "stuck in space allocation, nospc_retries %d",
444 nospc_retries);
445 err = -ENOSPC;
446 goto out;
447 } else if (cmt_retries > 32) {
448 /*
449 * It's almost impossible to happen, unless there are many tasks
450 * making reservation concurrently and someone task has retried
451 * gc + commit for many times, generated available space during
452 * this period are grabbed by other tasks.
453 * But if it happens, start queuing up all tasks that will make
454 * space reservation, then there is only one task making space
455 * reservation at any time, and it can always make success under
456 * the premise of correct budgeting.
457 */
458 ubifs_warn(c, "too many space allocation cmt_retries (%d) "
459 "nospc_retries (%d), start queuing tasks",
460 cmt_retries, nospc_retries);
461
462 if (!blocked) {
463 blocked = true;
464 add_or_start_queue(c);
465 }
466 }
467
468 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
469 cmt_retries);
470 cmt_retries += 1;
471
472 err = ubifs_run_commit(c);
473 if (err)
474 goto out_wake_up;
475 goto again;
476
477 out:
478 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
479 len, jhead, err);
480 if (err == -ENOSPC) {
481 /* This are some budgeting problems, print useful information */
482 down_write(&c->commit_sem);
483 dump_stack();
484 ubifs_dump_budg(c, &c->bi);
485 ubifs_dump_lprops(c);
486 cmt_retries = dbg_check_lprops(c);
487 up_write(&c->commit_sem);
488 }
489 out_wake_up:
490 if (blocked) {
491 /*
492 * Only tasks that have ever started queuing or ever been queued
493 * can wake up other queued tasks, which can make sure that
494 * there is only one task waked up to make space reservation.
495 * For example:
496 * task A task B task C
497 * make_reservation make_reservation
498 * reserve_space // 0
499 * wake_up_reservation
500 * atomic_cmpxchg // 0, start queuing
501 * reserve_space
502 * wait_for_reservation
503 * __queue_and_wait
504 * add_wait_queue
505 * if (blocked) // false
506 * // So that task C won't be waked up to race with task B
507 */
508 wake_up_reservation(c);
509 }
510 return err;
511 }
512
513 /**
514 * release_head - release a journal head.
515 * @c: UBIFS file-system description object
516 * @jhead: journal head
517 *
518 * This function releases journal head @jhead which was locked by
519 * the 'make_reservation()' function. It has to be called after each successful
520 * 'make_reservation()' invocation.
521 */
release_head(struct ubifs_info * c,int jhead)522 static inline void release_head(struct ubifs_info *c, int jhead)
523 {
524 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
525 }
526
527 /**
528 * finish_reservation - finish a reservation.
529 * @c: UBIFS file-system description object
530 *
531 * This function finishes journal space reservation. It must be called after
532 * 'make_reservation()'.
533 */
finish_reservation(struct ubifs_info * c)534 static void finish_reservation(struct ubifs_info *c)
535 {
536 up_read(&c->commit_sem);
537 }
538
539 /**
540 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
541 * @mode: inode mode
542 */
get_dent_type(int mode)543 static int get_dent_type(int mode)
544 {
545 switch (mode & S_IFMT) {
546 case S_IFREG:
547 return UBIFS_ITYPE_REG;
548 case S_IFDIR:
549 return UBIFS_ITYPE_DIR;
550 case S_IFLNK:
551 return UBIFS_ITYPE_LNK;
552 case S_IFBLK:
553 return UBIFS_ITYPE_BLK;
554 case S_IFCHR:
555 return UBIFS_ITYPE_CHR;
556 case S_IFIFO:
557 return UBIFS_ITYPE_FIFO;
558 case S_IFSOCK:
559 return UBIFS_ITYPE_SOCK;
560 default:
561 BUG();
562 }
563 return 0;
564 }
565
566 /**
567 * pack_inode - pack an inode node.
568 * @c: UBIFS file-system description object
569 * @ino: buffer in which to pack inode node
570 * @inode: inode to pack
571 * @last: indicates the last node of the group
572 */
pack_inode(struct ubifs_info * c,struct ubifs_ino_node * ino,const struct inode * inode,int last)573 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
574 const struct inode *inode, int last)
575 {
576 int data_len = 0, last_reference = !inode->i_nlink;
577 struct ubifs_inode *ui = ubifs_inode(inode);
578
579 ino->ch.node_type = UBIFS_INO_NODE;
580 ino_key_init_flash(c, &ino->key, inode->i_ino);
581 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
582 ino->atime_sec = cpu_to_le64(inode_get_atime_sec(inode));
583 ino->atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
584 ino->ctime_sec = cpu_to_le64(inode_get_ctime_sec(inode));
585 ino->ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
586 ino->mtime_sec = cpu_to_le64(inode_get_mtime_sec(inode));
587 ino->mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
588 ino->uid = cpu_to_le32(i_uid_read(inode));
589 ino->gid = cpu_to_le32(i_gid_read(inode));
590 ino->mode = cpu_to_le32(inode->i_mode);
591 ino->flags = cpu_to_le32(ui->flags);
592 ino->size = cpu_to_le64(ui->ui_size);
593 ino->nlink = cpu_to_le32(inode->i_nlink);
594 ino->compr_type = cpu_to_le16(ui->compr_type);
595 ino->data_len = cpu_to_le32(ui->data_len);
596 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
597 ino->xattr_size = cpu_to_le32(ui->xattr_size);
598 ino->xattr_names = cpu_to_le32(ui->xattr_names);
599 zero_ino_node_unused(ino);
600
601 /*
602 * Drop the attached data if this is a deletion inode, the data is not
603 * needed anymore.
604 */
605 if (!last_reference) {
606 memcpy(ino->data, ui->data, ui->data_len);
607 data_len = ui->data_len;
608 }
609
610 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
611 }
612
613 /**
614 * mark_inode_clean - mark UBIFS inode as clean.
615 * @c: UBIFS file-system description object
616 * @ui: UBIFS inode to mark as clean
617 *
618 * This helper function marks UBIFS inode @ui as clean by cleaning the
619 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
620 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
621 * just do nothing.
622 */
mark_inode_clean(struct ubifs_info * c,struct ubifs_inode * ui)623 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
624 {
625 if (ui->dirty)
626 ubifs_release_dirty_inode_budget(c, ui);
627 ui->dirty = 0;
628 }
629
set_dent_cookie(struct ubifs_info * c,struct ubifs_dent_node * dent)630 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
631 {
632 if (c->double_hash)
633 dent->cookie = (__force __le32) get_random_u32();
634 else
635 dent->cookie = 0;
636 }
637
638 /**
639 * ubifs_jnl_update - update inode.
640 * @c: UBIFS file-system description object
641 * @dir: parent inode or host inode in case of extended attributes
642 * @nm: directory entry name
643 * @inode: inode to update
644 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
645 * @xent: non-zero if the directory entry is an extended attribute entry
646 * @in_orphan: indicates whether the @inode is in orphan list
647 *
648 * This function updates an inode by writing a directory entry (or extended
649 * attribute entry), the inode itself, and the parent directory inode (or the
650 * host inode) to the journal.
651 *
652 * The function writes the host inode @dir last, which is important in case of
653 * extended attributes. Indeed, then we guarantee that if the host inode gets
654 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
655 * the extended attribute inode gets flushed too. And this is exactly what the
656 * user expects - synchronizing the host inode synchronizes its extended
657 * attributes. Similarly, this guarantees that if @dir is synchronized, its
658 * directory entry corresponding to @nm gets synchronized too.
659 *
660 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
661 * function synchronizes the write-buffer.
662 *
663 * This function marks the @dir and @inode inodes as clean and returns zero on
664 * success. In case of failure, a negative error code is returned.
665 */
ubifs_jnl_update(struct ubifs_info * c,const struct inode * dir,const struct fscrypt_name * nm,const struct inode * inode,int deletion,int xent,int in_orphan)666 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
667 const struct fscrypt_name *nm, const struct inode *inode,
668 int deletion, int xent, int in_orphan)
669 {
670 int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
671 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
672 int last_reference = !!(deletion && inode->i_nlink == 0);
673 struct ubifs_inode *ui = ubifs_inode(inode);
674 struct ubifs_inode *host_ui = ubifs_inode(dir);
675 struct ubifs_dent_node *dent;
676 struct ubifs_ino_node *ino;
677 union ubifs_key dent_key, ino_key;
678 u8 hash_dent[UBIFS_HASH_ARR_SZ];
679 u8 hash_ino[UBIFS_HASH_ARR_SZ];
680 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
681
682 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
683
684 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
685 ilen = UBIFS_INO_NODE_SZ;
686
687 /*
688 * If the last reference to the inode is being deleted, then there is
689 * no need to attach and write inode data, it is being deleted anyway.
690 * And if the inode is being deleted, no need to synchronize
691 * write-buffer even if the inode is synchronous.
692 */
693 if (!last_reference) {
694 ilen += ui->data_len;
695 sync |= IS_SYNC(inode);
696 }
697
698 aligned_dlen = ALIGN(dlen, 8);
699 aligned_ilen = ALIGN(ilen, 8);
700
701 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
702 /* Make sure to also account for extended attributes */
703 if (ubifs_authenticated(c))
704 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
705 else
706 len += host_ui->data_len;
707
708 dent = kzalloc(len, GFP_NOFS);
709 if (!dent)
710 return -ENOMEM;
711
712 /* Make reservation before allocating sequence numbers */
713 err = make_reservation(c, BASEHD, len);
714 if (err)
715 goto out_free;
716
717 if (!xent) {
718 dent->ch.node_type = UBIFS_DENT_NODE;
719 if (fname_name(nm) == NULL)
720 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
721 else
722 dent_key_init(c, &dent_key, dir->i_ino, nm);
723 } else {
724 dent->ch.node_type = UBIFS_XENT_NODE;
725 xent_key_init(c, &dent_key, dir->i_ino, nm);
726 }
727
728 key_write(c, &dent_key, dent->key);
729 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
730 dent->type = get_dent_type(inode->i_mode);
731 dent->nlen = cpu_to_le16(fname_len(nm));
732 memcpy(dent->name, fname_name(nm), fname_len(nm));
733 dent->name[fname_len(nm)] = '\0';
734 set_dent_cookie(c, dent);
735
736 zero_dent_node_unused(dent);
737 ubifs_prep_grp_node(c, dent, dlen, 0);
738 err = ubifs_node_calc_hash(c, dent, hash_dent);
739 if (err)
740 goto out_release;
741
742 ino = (void *)dent + aligned_dlen;
743 pack_inode(c, ino, inode, 0);
744 err = ubifs_node_calc_hash(c, ino, hash_ino);
745 if (err)
746 goto out_release;
747
748 ino = (void *)ino + aligned_ilen;
749 pack_inode(c, ino, dir, 1);
750 err = ubifs_node_calc_hash(c, ino, hash_ino_host);
751 if (err)
752 goto out_release;
753
754 if (last_reference && !in_orphan) {
755 err = ubifs_add_orphan(c, inode->i_ino);
756 if (err) {
757 release_head(c, BASEHD);
758 goto out_finish;
759 }
760 ui->del_cmtno = c->cmt_no;
761 orphan_added = 1;
762 }
763
764 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
765 if (err)
766 goto out_release;
767 if (!sync) {
768 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
769
770 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
771 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
772 }
773 release_head(c, BASEHD);
774 kfree(dent);
775 ubifs_add_auth_dirt(c, lnum);
776
777 if (deletion) {
778 if (fname_name(nm) == NULL)
779 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
780 else
781 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
782 if (err)
783 goto out_ro;
784 err = ubifs_add_dirt(c, lnum, dlen);
785 } else
786 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
787 hash_dent, nm);
788 if (err)
789 goto out_ro;
790
791 /*
792 * Note, we do not remove the inode from TNC even if the last reference
793 * to it has just been deleted, because the inode may still be opened.
794 * Instead, the inode has been added to orphan lists and the orphan
795 * subsystem will take further care about it.
796 */
797 ino_key_init(c, &ino_key, inode->i_ino);
798 ino_offs = dent_offs + aligned_dlen;
799 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
800 if (err)
801 goto out_ro;
802
803 ino_key_init(c, &ino_key, dir->i_ino);
804 ino_offs += aligned_ilen;
805 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
806 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
807 if (err)
808 goto out_ro;
809
810 if (in_orphan && inode->i_nlink)
811 ubifs_delete_orphan(c, inode->i_ino);
812
813 finish_reservation(c);
814 spin_lock(&ui->ui_lock);
815 ui->synced_i_size = ui->ui_size;
816 spin_unlock(&ui->ui_lock);
817 if (xent) {
818 spin_lock(&host_ui->ui_lock);
819 host_ui->synced_i_size = host_ui->ui_size;
820 spin_unlock(&host_ui->ui_lock);
821 }
822 mark_inode_clean(c, ui);
823 mark_inode_clean(c, host_ui);
824 return 0;
825
826 out_finish:
827 finish_reservation(c);
828 out_free:
829 kfree(dent);
830 return err;
831
832 out_release:
833 release_head(c, BASEHD);
834 kfree(dent);
835 out_ro:
836 ubifs_ro_mode(c, err);
837 if (orphan_added)
838 ubifs_delete_orphan(c, inode->i_ino);
839 finish_reservation(c);
840 return err;
841 }
842
843 /**
844 * ubifs_jnl_write_data - write a data node to the journal.
845 * @c: UBIFS file-system description object
846 * @inode: inode the data node belongs to
847 * @key: node key
848 * @folio: buffer to write
849 * @offset: offset to write at
850 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
851 *
852 * This function writes a data node to the journal. Returns %0 if the data node
853 * was successfully written, and a negative error code in case of failure.
854 */
ubifs_jnl_write_data(struct ubifs_info * c,const struct inode * inode,const union ubifs_key * key,struct folio * folio,size_t offset,int len)855 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
856 const union ubifs_key *key, struct folio *folio,
857 size_t offset, int len)
858 {
859 struct ubifs_data_node *data;
860 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
861 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
862 int write_len;
863 struct ubifs_inode *ui = ubifs_inode(inode);
864 bool encrypted = IS_ENCRYPTED(inode);
865 u8 hash[UBIFS_HASH_ARR_SZ];
866
867 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
868 (unsigned long)key_inum(c, key), key_block(c, key), len);
869 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
870
871 if (encrypted)
872 dlen += UBIFS_CIPHER_BLOCK_SIZE;
873
874 auth_len = ubifs_auth_node_sz(c);
875
876 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
877 if (!data) {
878 /*
879 * Fall-back to the write reserve buffer. Note, we might be
880 * currently on the memory reclaim path, when the kernel is
881 * trying to free some memory by writing out dirty pages. The
882 * write reserve buffer helps us to guarantee that we are
883 * always able to write the data.
884 */
885 allocated = 0;
886 mutex_lock(&c->write_reserve_mutex);
887 data = c->write_reserve_buf;
888 }
889
890 data->ch.node_type = UBIFS_DATA_NODE;
891 key_write(c, key, &data->key);
892 data->size = cpu_to_le32(len);
893
894 if (!(ui->flags & UBIFS_COMPR_FL))
895 /* Compression is disabled for this inode */
896 compr_type = UBIFS_COMPR_NONE;
897 else
898 compr_type = ui->compr_type;
899
900 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
901 ubifs_compress_folio(c, folio, offset, len, &data->data, &compr_len,
902 &compr_type);
903 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
904
905 if (encrypted) {
906 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
907 if (err)
908 goto out_free;
909
910 } else {
911 data->compr_size = 0;
912 out_len = compr_len;
913 }
914
915 dlen = UBIFS_DATA_NODE_SZ + out_len;
916 if (ubifs_authenticated(c))
917 write_len = ALIGN(dlen, 8) + auth_len;
918 else
919 write_len = dlen;
920
921 data->compr_type = cpu_to_le16(compr_type);
922
923 /* Make reservation before allocating sequence numbers */
924 err = make_reservation(c, DATAHD, write_len);
925 if (err)
926 goto out_free;
927
928 ubifs_prepare_node(c, data, dlen, 0);
929 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
930 if (err)
931 goto out_release;
932
933 err = ubifs_node_calc_hash(c, data, hash);
934 if (err)
935 goto out_release;
936
937 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
938 release_head(c, DATAHD);
939
940 ubifs_add_auth_dirt(c, lnum);
941
942 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
943 if (err)
944 goto out_ro;
945
946 finish_reservation(c);
947 if (!allocated)
948 mutex_unlock(&c->write_reserve_mutex);
949 else
950 kfree(data);
951 return 0;
952
953 out_release:
954 release_head(c, DATAHD);
955 out_ro:
956 ubifs_ro_mode(c, err);
957 finish_reservation(c);
958 out_free:
959 if (!allocated)
960 mutex_unlock(&c->write_reserve_mutex);
961 else
962 kfree(data);
963 return err;
964 }
965
966 /**
967 * ubifs_jnl_write_inode - flush inode to the journal.
968 * @c: UBIFS file-system description object
969 * @inode: inode to flush
970 *
971 * This function writes inode @inode to the journal. If the inode is
972 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
973 * success and a negative error code in case of failure.
974 */
ubifs_jnl_write_inode(struct ubifs_info * c,const struct inode * inode)975 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
976 {
977 int err, lnum, offs;
978 struct ubifs_ino_node *ino, *ino_start;
979 struct ubifs_inode *ui = ubifs_inode(inode);
980 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
981 int last_reference = !inode->i_nlink;
982 int kill_xattrs = ui->xattr_cnt && last_reference;
983 u8 hash[UBIFS_HASH_ARR_SZ];
984
985 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
986
987 if (kill_xattrs && ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
988 ubifs_err(c, "Cannot delete inode, it has too many xattrs!");
989 err = -EPERM;
990 ubifs_ro_mode(c, err);
991 return err;
992 }
993
994 /*
995 * If the inode is being deleted, do not write the attached data. No
996 * need to synchronize the write-buffer either.
997 */
998 if (!last_reference) {
999 ilen += ui->data_len;
1000 sync = IS_SYNC(inode);
1001 } else if (kill_xattrs) {
1002 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
1003 }
1004
1005 if (ubifs_authenticated(c))
1006 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
1007 else
1008 write_len += ilen;
1009
1010 ino_start = ino = kmalloc(write_len, GFP_NOFS);
1011 if (!ino)
1012 return -ENOMEM;
1013
1014 /* Make reservation before allocating sequence numbers */
1015 err = make_reservation(c, BASEHD, write_len);
1016 if (err)
1017 goto out_free;
1018
1019 if (kill_xattrs) {
1020 union ubifs_key key;
1021 struct fscrypt_name nm = {0};
1022 struct inode *xino;
1023 struct ubifs_dent_node *xent, *pxent = NULL;
1024
1025 lowest_xent_key(c, &key, inode->i_ino);
1026 while (1) {
1027 xent = ubifs_tnc_next_ent(c, &key, &nm);
1028 if (IS_ERR(xent)) {
1029 err = PTR_ERR(xent);
1030 if (err == -ENOENT)
1031 break;
1032
1033 kfree(pxent);
1034 goto out_release;
1035 }
1036
1037 fname_name(&nm) = xent->name;
1038 fname_len(&nm) = le16_to_cpu(xent->nlen);
1039
1040 xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
1041 if (IS_ERR(xino)) {
1042 err = PTR_ERR(xino);
1043 ubifs_err(c, "dead directory entry '%s', error %d",
1044 xent->name, err);
1045 ubifs_ro_mode(c, err);
1046 kfree(pxent);
1047 kfree(xent);
1048 goto out_release;
1049 }
1050 ubifs_assert(c, ubifs_inode(xino)->xattr);
1051
1052 clear_nlink(xino);
1053 pack_inode(c, ino, xino, 0);
1054 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1055 iput(xino);
1056
1057 kfree(pxent);
1058 pxent = xent;
1059 key_read(c, &xent->key, &key);
1060 }
1061 kfree(pxent);
1062 }
1063
1064 pack_inode(c, ino, inode, 1);
1065 err = ubifs_node_calc_hash(c, ino, hash);
1066 if (err)
1067 goto out_release;
1068
1069 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
1070 if (err)
1071 goto out_release;
1072 if (!sync)
1073 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1074 inode->i_ino);
1075 release_head(c, BASEHD);
1076
1077 if (last_reference) {
1078 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1079 if (err)
1080 goto out_ro;
1081 ubifs_delete_orphan(c, inode->i_ino);
1082 err = ubifs_add_dirt(c, lnum, write_len);
1083 } else {
1084 union ubifs_key key;
1085
1086 ubifs_add_auth_dirt(c, lnum);
1087
1088 ino_key_init(c, &key, inode->i_ino);
1089 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
1090 }
1091 if (err)
1092 goto out_ro;
1093
1094 finish_reservation(c);
1095 spin_lock(&ui->ui_lock);
1096 ui->synced_i_size = ui->ui_size;
1097 spin_unlock(&ui->ui_lock);
1098 kfree(ino_start);
1099 return 0;
1100
1101 out_release:
1102 release_head(c, BASEHD);
1103 out_ro:
1104 ubifs_ro_mode(c, err);
1105 finish_reservation(c);
1106 out_free:
1107 kfree(ino_start);
1108 return err;
1109 }
1110
1111 /**
1112 * ubifs_jnl_delete_inode - delete an inode.
1113 * @c: UBIFS file-system description object
1114 * @inode: inode to delete
1115 *
1116 * This function deletes inode @inode which includes removing it from orphans,
1117 * deleting it from TNC and, in some cases, writing a deletion inode to the
1118 * journal.
1119 *
1120 * When regular file inodes are unlinked or a directory inode is removed, the
1121 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
1122 * direntry to the media, and adds the inode to orphans. After this, when the
1123 * last reference to this inode has been dropped, this function is called. In
1124 * general, it has to write one more deletion inode to the media, because if
1125 * a commit happened between 'ubifs_jnl_update()' and
1126 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
1127 * anymore, and in fact it might not be on the flash anymore, because it might
1128 * have been garbage-collected already. And for optimization reasons UBIFS does
1129 * not read the orphan area if it has been unmounted cleanly, so it would have
1130 * no indication in the journal that there is a deleted inode which has to be
1131 * removed from TNC.
1132 *
1133 * However, if there was no commit between 'ubifs_jnl_update()' and
1134 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1135 * inode to the media for the second time. And this is quite a typical case.
1136 *
1137 * This function returns zero in case of success and a negative error code in
1138 * case of failure.
1139 */
ubifs_jnl_delete_inode(struct ubifs_info * c,const struct inode * inode)1140 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1141 {
1142 int err;
1143 struct ubifs_inode *ui = ubifs_inode(inode);
1144
1145 ubifs_assert(c, inode->i_nlink == 0);
1146
1147 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1148 /* A commit happened for sure or inode hosts xattrs */
1149 return ubifs_jnl_write_inode(c, inode);
1150
1151 down_read(&c->commit_sem);
1152 /*
1153 * Check commit number again, because the first test has been done
1154 * without @c->commit_sem, so a commit might have happened.
1155 */
1156 if (ui->del_cmtno != c->cmt_no) {
1157 up_read(&c->commit_sem);
1158 return ubifs_jnl_write_inode(c, inode);
1159 }
1160
1161 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1162 if (err)
1163 ubifs_ro_mode(c, err);
1164 else
1165 ubifs_delete_orphan(c, inode->i_ino);
1166 up_read(&c->commit_sem);
1167 return err;
1168 }
1169
1170 /**
1171 * ubifs_jnl_xrename - cross rename two directory entries.
1172 * @c: UBIFS file-system description object
1173 * @fst_dir: parent inode of 1st directory entry to exchange
1174 * @fst_inode: 1st inode to exchange
1175 * @fst_nm: name of 1st inode to exchange
1176 * @snd_dir: parent inode of 2nd directory entry to exchange
1177 * @snd_inode: 2nd inode to exchange
1178 * @snd_nm: name of 2nd inode to exchange
1179 * @sync: non-zero if the write-buffer has to be synchronized
1180 *
1181 * This function implements the cross rename operation which may involve
1182 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1183 * and returns zero on success. In case of failure, a negative error code is
1184 * returned.
1185 */
ubifs_jnl_xrename(struct ubifs_info * c,const struct inode * fst_dir,const struct inode * fst_inode,const struct fscrypt_name * fst_nm,const struct inode * snd_dir,const struct inode * snd_inode,const struct fscrypt_name * snd_nm,int sync)1186 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1187 const struct inode *fst_inode,
1188 const struct fscrypt_name *fst_nm,
1189 const struct inode *snd_dir,
1190 const struct inode *snd_inode,
1191 const struct fscrypt_name *snd_nm, int sync)
1192 {
1193 union ubifs_key key;
1194 struct ubifs_dent_node *dent1, *dent2;
1195 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1196 int aligned_dlen1, aligned_dlen2;
1197 int twoparents = (fst_dir != snd_dir);
1198 void *p;
1199 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1200 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1201 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1202 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1203
1204 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1205 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1206 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1207 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1208
1209 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1210 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1211 aligned_dlen1 = ALIGN(dlen1, 8);
1212 aligned_dlen2 = ALIGN(dlen2, 8);
1213
1214 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1215 if (twoparents)
1216 len += plen;
1217
1218 len += ubifs_auth_node_sz(c);
1219
1220 dent1 = kzalloc(len, GFP_NOFS);
1221 if (!dent1)
1222 return -ENOMEM;
1223
1224 /* Make reservation before allocating sequence numbers */
1225 err = make_reservation(c, BASEHD, len);
1226 if (err)
1227 goto out_free;
1228
1229 /* Make new dent for 1st entry */
1230 dent1->ch.node_type = UBIFS_DENT_NODE;
1231 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1232 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1233 dent1->type = get_dent_type(fst_inode->i_mode);
1234 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1235 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1236 dent1->name[fname_len(snd_nm)] = '\0';
1237 set_dent_cookie(c, dent1);
1238 zero_dent_node_unused(dent1);
1239 ubifs_prep_grp_node(c, dent1, dlen1, 0);
1240 err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1241 if (err)
1242 goto out_release;
1243
1244 /* Make new dent for 2nd entry */
1245 dent2 = (void *)dent1 + aligned_dlen1;
1246 dent2->ch.node_type = UBIFS_DENT_NODE;
1247 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1248 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1249 dent2->type = get_dent_type(snd_inode->i_mode);
1250 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1251 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1252 dent2->name[fname_len(fst_nm)] = '\0';
1253 set_dent_cookie(c, dent2);
1254 zero_dent_node_unused(dent2);
1255 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1256 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1257 if (err)
1258 goto out_release;
1259
1260 p = (void *)dent2 + aligned_dlen2;
1261 if (!twoparents) {
1262 pack_inode(c, p, fst_dir, 1);
1263 err = ubifs_node_calc_hash(c, p, hash_p1);
1264 if (err)
1265 goto out_release;
1266 } else {
1267 pack_inode(c, p, fst_dir, 0);
1268 err = ubifs_node_calc_hash(c, p, hash_p1);
1269 if (err)
1270 goto out_release;
1271 p += ALIGN(plen, 8);
1272 pack_inode(c, p, snd_dir, 1);
1273 err = ubifs_node_calc_hash(c, p, hash_p2);
1274 if (err)
1275 goto out_release;
1276 }
1277
1278 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1279 if (err)
1280 goto out_release;
1281 if (!sync) {
1282 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1283
1284 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1285 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1286 }
1287 release_head(c, BASEHD);
1288
1289 ubifs_add_auth_dirt(c, lnum);
1290
1291 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1292 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1293 if (err)
1294 goto out_ro;
1295
1296 offs += aligned_dlen1;
1297 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1298 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1299 if (err)
1300 goto out_ro;
1301
1302 offs += aligned_dlen2;
1303
1304 ino_key_init(c, &key, fst_dir->i_ino);
1305 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1306 if (err)
1307 goto out_ro;
1308
1309 if (twoparents) {
1310 offs += ALIGN(plen, 8);
1311 ino_key_init(c, &key, snd_dir->i_ino);
1312 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1313 if (err)
1314 goto out_ro;
1315 }
1316
1317 finish_reservation(c);
1318
1319 mark_inode_clean(c, ubifs_inode(fst_dir));
1320 if (twoparents)
1321 mark_inode_clean(c, ubifs_inode(snd_dir));
1322 kfree(dent1);
1323 return 0;
1324
1325 out_release:
1326 release_head(c, BASEHD);
1327 out_ro:
1328 ubifs_ro_mode(c, err);
1329 finish_reservation(c);
1330 out_free:
1331 kfree(dent1);
1332 return err;
1333 }
1334
1335 /**
1336 * ubifs_jnl_rename - rename a directory entry.
1337 * @c: UBIFS file-system description object
1338 * @old_dir: parent inode of directory entry to rename
1339 * @old_inode: directory entry's inode to rename
1340 * @old_nm: name of the old directory entry to rename
1341 * @new_dir: parent inode of directory entry to rename
1342 * @new_inode: new directory entry's inode (or directory entry's inode to
1343 * replace)
1344 * @new_nm: new name of the new directory entry
1345 * @whiteout: whiteout inode
1346 * @sync: non-zero if the write-buffer has to be synchronized
1347 * @delete_orphan: indicates an orphan entry deletion for @whiteout
1348 *
1349 * This function implements the re-name operation which may involve writing up
1350 * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
1351 * and 2 directory entries. It marks the written inodes as clean and returns
1352 * zero on success. In case of failure, a negative error code is returned.
1353 */
ubifs_jnl_rename(struct ubifs_info * c,const struct inode * old_dir,const struct inode * old_inode,const struct fscrypt_name * old_nm,const struct inode * new_dir,const struct inode * new_inode,const struct fscrypt_name * new_nm,const struct inode * whiteout,int sync,int delete_orphan)1354 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1355 const struct inode *old_inode,
1356 const struct fscrypt_name *old_nm,
1357 const struct inode *new_dir,
1358 const struct inode *new_inode,
1359 const struct fscrypt_name *new_nm,
1360 const struct inode *whiteout, int sync, int delete_orphan)
1361 {
1362 void *p;
1363 union ubifs_key key;
1364 struct ubifs_dent_node *dent, *dent2;
1365 int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
1366 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1367 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1368 int move = (old_dir != new_dir);
1369 struct ubifs_inode *new_ui, *whiteout_ui;
1370 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1371 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1372 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1373 u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
1374 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1375 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1376
1377 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1378 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1379 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1380 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1381
1382 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1383 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1384 if (new_inode) {
1385 new_ui = ubifs_inode(new_inode);
1386 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1387 ilen = UBIFS_INO_NODE_SZ;
1388 if (!last_reference)
1389 ilen += new_ui->data_len;
1390 } else
1391 ilen = 0;
1392
1393 if (whiteout) {
1394 whiteout_ui = ubifs_inode(whiteout);
1395 ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
1396 ubifs_assert(c, whiteout->i_nlink == 1);
1397 ubifs_assert(c, !whiteout_ui->dirty);
1398 wlen = UBIFS_INO_NODE_SZ;
1399 wlen += whiteout_ui->data_len;
1400 } else
1401 wlen = 0;
1402
1403 aligned_dlen1 = ALIGN(dlen1, 8);
1404 aligned_dlen2 = ALIGN(dlen2, 8);
1405 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
1406 ALIGN(wlen, 8) + ALIGN(plen, 8);
1407 if (move)
1408 len += plen;
1409
1410 len += ubifs_auth_node_sz(c);
1411
1412 dent = kzalloc(len, GFP_NOFS);
1413 if (!dent)
1414 return -ENOMEM;
1415
1416 /* Make reservation before allocating sequence numbers */
1417 err = make_reservation(c, BASEHD, len);
1418 if (err)
1419 goto out_free;
1420
1421 /* Make new dent */
1422 dent->ch.node_type = UBIFS_DENT_NODE;
1423 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1424 dent->inum = cpu_to_le64(old_inode->i_ino);
1425 dent->type = get_dent_type(old_inode->i_mode);
1426 dent->nlen = cpu_to_le16(fname_len(new_nm));
1427 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1428 dent->name[fname_len(new_nm)] = '\0';
1429 set_dent_cookie(c, dent);
1430 zero_dent_node_unused(dent);
1431 ubifs_prep_grp_node(c, dent, dlen1, 0);
1432 err = ubifs_node_calc_hash(c, dent, hash_dent1);
1433 if (err)
1434 goto out_release;
1435
1436 dent2 = (void *)dent + aligned_dlen1;
1437 dent2->ch.node_type = UBIFS_DENT_NODE;
1438 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1439
1440 if (whiteout) {
1441 dent2->inum = cpu_to_le64(whiteout->i_ino);
1442 dent2->type = get_dent_type(whiteout->i_mode);
1443 } else {
1444 /* Make deletion dent */
1445 dent2->inum = 0;
1446 dent2->type = DT_UNKNOWN;
1447 }
1448 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1449 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1450 dent2->name[fname_len(old_nm)] = '\0';
1451 set_dent_cookie(c, dent2);
1452 zero_dent_node_unused(dent2);
1453 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1454 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1455 if (err)
1456 goto out_release;
1457
1458 p = (void *)dent2 + aligned_dlen2;
1459 if (new_inode) {
1460 pack_inode(c, p, new_inode, 0);
1461 err = ubifs_node_calc_hash(c, p, hash_new_inode);
1462 if (err)
1463 goto out_release;
1464
1465 p += ALIGN(ilen, 8);
1466 }
1467
1468 if (whiteout) {
1469 pack_inode(c, p, whiteout, 0);
1470 err = ubifs_node_calc_hash(c, p, hash_whiteout_inode);
1471 if (err)
1472 goto out_release;
1473
1474 p += ALIGN(wlen, 8);
1475 }
1476
1477 if (!move) {
1478 pack_inode(c, p, old_dir, 1);
1479 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1480 if (err)
1481 goto out_release;
1482 } else {
1483 pack_inode(c, p, old_dir, 0);
1484 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1485 if (err)
1486 goto out_release;
1487
1488 p += ALIGN(plen, 8);
1489 pack_inode(c, p, new_dir, 1);
1490 err = ubifs_node_calc_hash(c, p, hash_new_dir);
1491 if (err)
1492 goto out_release;
1493 }
1494
1495 if (last_reference) {
1496 err = ubifs_add_orphan(c, new_inode->i_ino);
1497 if (err) {
1498 release_head(c, BASEHD);
1499 goto out_finish;
1500 }
1501 new_ui->del_cmtno = c->cmt_no;
1502 orphan_added = 1;
1503 }
1504
1505 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1506 if (err)
1507 goto out_release;
1508 if (!sync) {
1509 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1510
1511 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1512 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1513 if (new_inode)
1514 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1515 new_inode->i_ino);
1516 if (whiteout)
1517 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1518 whiteout->i_ino);
1519 }
1520 release_head(c, BASEHD);
1521
1522 ubifs_add_auth_dirt(c, lnum);
1523
1524 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1525 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1526 if (err)
1527 goto out_ro;
1528
1529 offs += aligned_dlen1;
1530 if (whiteout) {
1531 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1532 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1533 if (err)
1534 goto out_ro;
1535 } else {
1536 err = ubifs_add_dirt(c, lnum, dlen2);
1537 if (err)
1538 goto out_ro;
1539
1540 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1541 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1542 if (err)
1543 goto out_ro;
1544 }
1545
1546 offs += aligned_dlen2;
1547 if (new_inode) {
1548 ino_key_init(c, &key, new_inode->i_ino);
1549 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1550 if (err)
1551 goto out_ro;
1552 offs += ALIGN(ilen, 8);
1553 }
1554
1555 if (whiteout) {
1556 ino_key_init(c, &key, whiteout->i_ino);
1557 err = ubifs_tnc_add(c, &key, lnum, offs, wlen,
1558 hash_whiteout_inode);
1559 if (err)
1560 goto out_ro;
1561 offs += ALIGN(wlen, 8);
1562 }
1563
1564 ino_key_init(c, &key, old_dir->i_ino);
1565 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1566 if (err)
1567 goto out_ro;
1568
1569 if (move) {
1570 offs += ALIGN(plen, 8);
1571 ino_key_init(c, &key, new_dir->i_ino);
1572 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1573 if (err)
1574 goto out_ro;
1575 }
1576
1577 if (delete_orphan)
1578 ubifs_delete_orphan(c, whiteout->i_ino);
1579
1580 finish_reservation(c);
1581 if (new_inode) {
1582 mark_inode_clean(c, new_ui);
1583 spin_lock(&new_ui->ui_lock);
1584 new_ui->synced_i_size = new_ui->ui_size;
1585 spin_unlock(&new_ui->ui_lock);
1586 }
1587 /*
1588 * No need to mark whiteout inode clean.
1589 * Whiteout doesn't have non-zero size, no need to update
1590 * synced_i_size for whiteout_ui.
1591 */
1592 mark_inode_clean(c, ubifs_inode(old_dir));
1593 if (move)
1594 mark_inode_clean(c, ubifs_inode(new_dir));
1595 kfree(dent);
1596 return 0;
1597
1598 out_release:
1599 release_head(c, BASEHD);
1600 out_ro:
1601 ubifs_ro_mode(c, err);
1602 if (orphan_added)
1603 ubifs_delete_orphan(c, new_inode->i_ino);
1604 out_finish:
1605 finish_reservation(c);
1606 out_free:
1607 kfree(dent);
1608 return err;
1609 }
1610
1611 /**
1612 * truncate_data_node - re-compress/encrypt a truncated data node.
1613 * @c: UBIFS file-system description object
1614 * @inode: inode which refers to the data node
1615 * @block: data block number
1616 * @dn: data node to re-compress
1617 * @new_len: new length
1618 * @dn_size: size of the data node @dn in memory
1619 *
1620 * This function is used when an inode is truncated and the last data node of
1621 * the inode has to be re-compressed/encrypted and re-written.
1622 */
truncate_data_node(const struct ubifs_info * c,const struct inode * inode,unsigned int block,struct ubifs_data_node * dn,int * new_len,int dn_size)1623 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1624 unsigned int block, struct ubifs_data_node *dn,
1625 int *new_len, int dn_size)
1626 {
1627 void *buf;
1628 int err, dlen, compr_type, out_len, data_size;
1629
1630 out_len = le32_to_cpu(dn->size);
1631 buf = kmalloc(out_len, GFP_NOFS);
1632 if (!buf)
1633 return -ENOMEM;
1634
1635 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1636 data_size = dn_size - UBIFS_DATA_NODE_SZ;
1637 compr_type = le16_to_cpu(dn->compr_type);
1638
1639 if (IS_ENCRYPTED(inode)) {
1640 err = ubifs_decrypt(inode, dn, &dlen, block);
1641 if (err)
1642 goto out;
1643 }
1644
1645 if (compr_type == UBIFS_COMPR_NONE) {
1646 out_len = *new_len;
1647 } else {
1648 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1649 if (err)
1650 goto out;
1651
1652 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1653 }
1654
1655 if (IS_ENCRYPTED(inode)) {
1656 err = ubifs_encrypt(inode, dn, out_len, &data_size, block);
1657 if (err)
1658 goto out;
1659
1660 out_len = data_size;
1661 } else {
1662 dn->compr_size = 0;
1663 }
1664
1665 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1666 dn->compr_type = cpu_to_le16(compr_type);
1667 dn->size = cpu_to_le32(*new_len);
1668 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1669 err = 0;
1670 out:
1671 kfree(buf);
1672 return err;
1673 }
1674
1675 /**
1676 * ubifs_jnl_truncate - update the journal for a truncation.
1677 * @c: UBIFS file-system description object
1678 * @inode: inode to truncate
1679 * @old_size: old size
1680 * @new_size: new size
1681 *
1682 * When the size of a file decreases due to truncation, a truncation node is
1683 * written, the journal tree is updated, and the last data block is re-written
1684 * if it has been affected. The inode is also updated in order to synchronize
1685 * the new inode size.
1686 *
1687 * This function marks the inode as clean and returns zero on success. In case
1688 * of failure, a negative error code is returned.
1689 */
ubifs_jnl_truncate(struct ubifs_info * c,const struct inode * inode,loff_t old_size,loff_t new_size)1690 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1691 loff_t old_size, loff_t new_size)
1692 {
1693 union ubifs_key key, to_key;
1694 struct ubifs_ino_node *ino;
1695 struct ubifs_trun_node *trun;
1696 struct ubifs_data_node *dn;
1697 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1698 int dn_size;
1699 struct ubifs_inode *ui = ubifs_inode(inode);
1700 ino_t inum = inode->i_ino;
1701 unsigned int blk;
1702 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1703 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1704
1705 dbg_jnl("ino %lu, size %lld -> %lld",
1706 (unsigned long)inum, old_size, new_size);
1707 ubifs_assert(c, !ui->data_len);
1708 ubifs_assert(c, S_ISREG(inode->i_mode));
1709 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1710
1711 dn_size = COMPRESSED_DATA_NODE_BUF_SZ;
1712
1713 if (IS_ENCRYPTED(inode))
1714 dn_size += UBIFS_CIPHER_BLOCK_SIZE;
1715
1716 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1717 dn_size + ubifs_auth_node_sz(c);
1718
1719 ino = kmalloc(sz, GFP_NOFS);
1720 if (!ino)
1721 return -ENOMEM;
1722
1723 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1724 trun->ch.node_type = UBIFS_TRUN_NODE;
1725 trun->inum = cpu_to_le32(inum);
1726 trun->old_size = cpu_to_le64(old_size);
1727 trun->new_size = cpu_to_le64(new_size);
1728 zero_trun_node_unused(trun);
1729
1730 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1731 if (dlen) {
1732 /* Get last data block so it can be truncated */
1733 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1734 blk = new_size >> UBIFS_BLOCK_SHIFT;
1735 data_key_init(c, &key, inum, blk);
1736 dbg_jnlk(&key, "last block key ");
1737 err = ubifs_tnc_lookup(c, &key, dn);
1738 if (err == -ENOENT)
1739 dlen = 0; /* Not found (so it is a hole) */
1740 else if (err)
1741 goto out_free;
1742 else {
1743 int dn_len = le32_to_cpu(dn->size);
1744
1745 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1746 ubifs_err(c, "bad data node (block %u, inode %lu)",
1747 blk, inode->i_ino);
1748 ubifs_dump_node(c, dn, dn_size);
1749 err = -EUCLEAN;
1750 goto out_free;
1751 }
1752
1753 if (dn_len <= dlen)
1754 dlen = 0; /* Nothing to do */
1755 else {
1756 err = truncate_data_node(c, inode, blk, dn,
1757 &dlen, dn_size);
1758 if (err)
1759 goto out_free;
1760 }
1761 }
1762 }
1763
1764 /* Must make reservation before allocating sequence numbers */
1765 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1766
1767 if (ubifs_authenticated(c))
1768 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1769 else
1770 len += dlen;
1771
1772 err = make_reservation(c, BASEHD, len);
1773 if (err)
1774 goto out_free;
1775
1776 pack_inode(c, ino, inode, 0);
1777 err = ubifs_node_calc_hash(c, ino, hash_ino);
1778 if (err)
1779 goto out_release;
1780
1781 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1782 if (dlen) {
1783 ubifs_prep_grp_node(c, dn, dlen, 1);
1784 err = ubifs_node_calc_hash(c, dn, hash_dn);
1785 if (err)
1786 goto out_release;
1787 }
1788
1789 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1790 if (err)
1791 goto out_release;
1792 if (!sync)
1793 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1794 release_head(c, BASEHD);
1795
1796 ubifs_add_auth_dirt(c, lnum);
1797
1798 if (dlen) {
1799 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1800 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1801 if (err)
1802 goto out_ro;
1803 }
1804
1805 ino_key_init(c, &key, inum);
1806 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1807 if (err)
1808 goto out_ro;
1809
1810 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1811 if (err)
1812 goto out_ro;
1813
1814 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1815 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1816 data_key_init(c, &key, inum, blk);
1817
1818 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1819 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1820 data_key_init(c, &to_key, inum, blk);
1821
1822 err = ubifs_tnc_remove_range(c, &key, &to_key);
1823 if (err)
1824 goto out_ro;
1825
1826 finish_reservation(c);
1827 spin_lock(&ui->ui_lock);
1828 ui->synced_i_size = ui->ui_size;
1829 spin_unlock(&ui->ui_lock);
1830 mark_inode_clean(c, ui);
1831 kfree(ino);
1832 return 0;
1833
1834 out_release:
1835 release_head(c, BASEHD);
1836 out_ro:
1837 ubifs_ro_mode(c, err);
1838 finish_reservation(c);
1839 out_free:
1840 kfree(ino);
1841 return err;
1842 }
1843
1844
1845 /**
1846 * ubifs_jnl_delete_xattr - delete an extended attribute.
1847 * @c: UBIFS file-system description object
1848 * @host: host inode
1849 * @inode: extended attribute inode
1850 * @nm: extended attribute entry name
1851 *
1852 * This function delete an extended attribute which is very similar to
1853 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1854 * updates the target inode. Returns zero in case of success and a negative
1855 * error code in case of failure.
1856 */
ubifs_jnl_delete_xattr(struct ubifs_info * c,const struct inode * host,const struct inode * inode,const struct fscrypt_name * nm)1857 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1858 const struct inode *inode,
1859 const struct fscrypt_name *nm)
1860 {
1861 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1862 struct ubifs_dent_node *xent;
1863 struct ubifs_ino_node *ino;
1864 union ubifs_key xent_key, key1, key2;
1865 int sync = IS_DIRSYNC(host);
1866 struct ubifs_inode *host_ui = ubifs_inode(host);
1867 u8 hash[UBIFS_HASH_ARR_SZ];
1868
1869 ubifs_assert(c, inode->i_nlink == 0);
1870 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1871
1872 /*
1873 * Since we are deleting the inode, we do not bother to attach any data
1874 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1875 */
1876 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1877 aligned_xlen = ALIGN(xlen, 8);
1878 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1879 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1880
1881 write_len = len + ubifs_auth_node_sz(c);
1882
1883 xent = kzalloc(write_len, GFP_NOFS);
1884 if (!xent)
1885 return -ENOMEM;
1886
1887 /* Make reservation before allocating sequence numbers */
1888 err = make_reservation(c, BASEHD, write_len);
1889 if (err) {
1890 kfree(xent);
1891 return err;
1892 }
1893
1894 xent->ch.node_type = UBIFS_XENT_NODE;
1895 xent_key_init(c, &xent_key, host->i_ino, nm);
1896 key_write(c, &xent_key, xent->key);
1897 xent->inum = 0;
1898 xent->type = get_dent_type(inode->i_mode);
1899 xent->nlen = cpu_to_le16(fname_len(nm));
1900 memcpy(xent->name, fname_name(nm), fname_len(nm));
1901 xent->name[fname_len(nm)] = '\0';
1902 zero_dent_node_unused(xent);
1903 ubifs_prep_grp_node(c, xent, xlen, 0);
1904
1905 ino = (void *)xent + aligned_xlen;
1906 pack_inode(c, ino, inode, 0);
1907 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1908 pack_inode(c, ino, host, 1);
1909 err = ubifs_node_calc_hash(c, ino, hash);
1910 if (err)
1911 goto out_release;
1912
1913 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1914 if (!sync && !err)
1915 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1916 release_head(c, BASEHD);
1917
1918 ubifs_add_auth_dirt(c, lnum);
1919 kfree(xent);
1920 if (err)
1921 goto out_ro;
1922
1923 /* Remove the extended attribute entry from TNC */
1924 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1925 if (err)
1926 goto out_ro;
1927 err = ubifs_add_dirt(c, lnum, xlen);
1928 if (err)
1929 goto out_ro;
1930
1931 /*
1932 * Remove all nodes belonging to the extended attribute inode from TNC.
1933 * Well, there actually must be only one node - the inode itself.
1934 */
1935 lowest_ino_key(c, &key1, inode->i_ino);
1936 highest_ino_key(c, &key2, inode->i_ino);
1937 err = ubifs_tnc_remove_range(c, &key1, &key2);
1938 if (err)
1939 goto out_ro;
1940 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1941 if (err)
1942 goto out_ro;
1943
1944 /* And update TNC with the new host inode position */
1945 ino_key_init(c, &key1, host->i_ino);
1946 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1947 if (err)
1948 goto out_ro;
1949
1950 finish_reservation(c);
1951 spin_lock(&host_ui->ui_lock);
1952 host_ui->synced_i_size = host_ui->ui_size;
1953 spin_unlock(&host_ui->ui_lock);
1954 mark_inode_clean(c, host_ui);
1955 return 0;
1956
1957 out_release:
1958 kfree(xent);
1959 release_head(c, BASEHD);
1960 out_ro:
1961 ubifs_ro_mode(c, err);
1962 finish_reservation(c);
1963 return err;
1964 }
1965
1966 /**
1967 * ubifs_jnl_change_xattr - change an extended attribute.
1968 * @c: UBIFS file-system description object
1969 * @inode: extended attribute inode
1970 * @host: host inode
1971 *
1972 * This function writes the updated version of an extended attribute inode and
1973 * the host inode to the journal (to the base head). The host inode is written
1974 * after the extended attribute inode in order to guarantee that the extended
1975 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1976 * consequently, the write-buffer is synchronized. This function returns zero
1977 * in case of success and a negative error code in case of failure.
1978 */
ubifs_jnl_change_xattr(struct ubifs_info * c,const struct inode * inode,const struct inode * host)1979 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1980 const struct inode *host)
1981 {
1982 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1983 struct ubifs_inode *host_ui = ubifs_inode(host);
1984 struct ubifs_ino_node *ino;
1985 union ubifs_key key;
1986 int sync = IS_DIRSYNC(host);
1987 u8 hash_host[UBIFS_HASH_ARR_SZ];
1988 u8 hash[UBIFS_HASH_ARR_SZ];
1989
1990 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1991 ubifs_assert(c, inode->i_nlink > 0);
1992 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1993
1994 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1995 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1996 aligned_len1 = ALIGN(len1, 8);
1997 aligned_len = aligned_len1 + ALIGN(len2, 8);
1998
1999 aligned_len += ubifs_auth_node_sz(c);
2000
2001 ino = kzalloc(aligned_len, GFP_NOFS);
2002 if (!ino)
2003 return -ENOMEM;
2004
2005 /* Make reservation before allocating sequence numbers */
2006 err = make_reservation(c, BASEHD, aligned_len);
2007 if (err)
2008 goto out_free;
2009
2010 pack_inode(c, ino, host, 0);
2011 err = ubifs_node_calc_hash(c, ino, hash_host);
2012 if (err)
2013 goto out_release;
2014 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
2015 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
2016 if (err)
2017 goto out_release;
2018
2019 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
2020 if (!sync && !err) {
2021 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
2022
2023 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
2024 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
2025 }
2026 release_head(c, BASEHD);
2027 if (err)
2028 goto out_ro;
2029
2030 ubifs_add_auth_dirt(c, lnum);
2031
2032 ino_key_init(c, &key, host->i_ino);
2033 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
2034 if (err)
2035 goto out_ro;
2036
2037 ino_key_init(c, &key, inode->i_ino);
2038 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
2039 if (err)
2040 goto out_ro;
2041
2042 finish_reservation(c);
2043 spin_lock(&host_ui->ui_lock);
2044 host_ui->synced_i_size = host_ui->ui_size;
2045 spin_unlock(&host_ui->ui_lock);
2046 mark_inode_clean(c, host_ui);
2047 kfree(ino);
2048 return 0;
2049
2050 out_release:
2051 release_head(c, BASEHD);
2052 out_ro:
2053 ubifs_ro_mode(c, err);
2054 finish_reservation(c);
2055 out_free:
2056 kfree(ino);
2057 return err;
2058 }
2059
2060