1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Hewlett-Packard Harmony audio driver
3 *
4 * This is a driver for the Harmony audio chipset found
5 * on the LASI ASIC of various early HP PA-RISC workstations.
6 *
7 * Copyright (C) 2004, Kyle McMartin <kyle@{debian.org,parisc-linux.org}>
8 *
9 * Based on the previous Harmony incarnations by,
10 * Copyright 2000 (c) Linuxcare Canada, Alex deVries
11 * Copyright 2000-2003 (c) Helge Deller
12 * Copyright 2001 (c) Matthieu Delahaye
13 * Copyright 2001 (c) Jean-Christophe Vaugeois
14 * Copyright 2003 (c) Laurent Canet
15 * Copyright 2004 (c) Stuart Brady
16 *
17 * Notes:
18 * - graveyard and silence buffers last for lifetime of
19 * the driver. playback and capture buffers are allocated
20 * per _open()/_close().
21 *
22 * TODO:
23 */
24
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/time.h>
28 #include <linux/wait.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/interrupt.h>
32 #include <linux/spinlock.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/io.h>
35
36 #include <sound/core.h>
37 #include <sound/pcm.h>
38 #include <sound/control.h>
39 #include <sound/rawmidi.h>
40 #include <sound/initval.h>
41 #include <sound/info.h>
42
43 #include <asm/hardware.h>
44 #include <asm/parisc-device.h>
45
46 #include "harmony.h"
47
48 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
49 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
50 module_param(index, int, 0444);
51 MODULE_PARM_DESC(index, "Index value for Harmony driver.");
52 module_param(id, charp, 0444);
53 MODULE_PARM_DESC(id, "ID string for Harmony driver.");
54
55
56 static const struct parisc_device_id snd_harmony_devtable[] __initconst = {
57 /* bushmaster / flounder */
58 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007A },
59 /* 712 / 715 */
60 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007B },
61 /* pace */
62 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007E },
63 /* outfield / coral II */
64 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007F },
65 { 0, }
66 };
67
68 MODULE_DEVICE_TABLE(parisc, snd_harmony_devtable);
69
70 #define NAME "harmony"
71 #define PFX NAME ": "
72
73 static const unsigned int snd_harmony_rates[] = {
74 5512, 6615, 8000, 9600,
75 11025, 16000, 18900, 22050,
76 27428, 32000, 33075, 37800,
77 44100, 48000
78 };
79
80 static const unsigned int rate_bits[14] = {
81 HARMONY_SR_5KHZ, HARMONY_SR_6KHZ, HARMONY_SR_8KHZ,
82 HARMONY_SR_9KHZ, HARMONY_SR_11KHZ, HARMONY_SR_16KHZ,
83 HARMONY_SR_18KHZ, HARMONY_SR_22KHZ, HARMONY_SR_27KHZ,
84 HARMONY_SR_32KHZ, HARMONY_SR_33KHZ, HARMONY_SR_37KHZ,
85 HARMONY_SR_44KHZ, HARMONY_SR_48KHZ
86 };
87
88 static const struct snd_pcm_hw_constraint_list hw_constraint_rates = {
89 .count = ARRAY_SIZE(snd_harmony_rates),
90 .list = snd_harmony_rates,
91 .mask = 0,
92 };
93
94 static inline unsigned long
harmony_read(struct snd_harmony * h,unsigned r)95 harmony_read(struct snd_harmony *h, unsigned r)
96 {
97 return __raw_readl(h->iobase + r);
98 }
99
100 static inline void
harmony_write(struct snd_harmony * h,unsigned r,unsigned long v)101 harmony_write(struct snd_harmony *h, unsigned r, unsigned long v)
102 {
103 __raw_writel(v, h->iobase + r);
104 }
105
106 static inline void
harmony_wait_for_control(struct snd_harmony * h)107 harmony_wait_for_control(struct snd_harmony *h)
108 {
109 while (harmony_read(h, HARMONY_CNTL) & HARMONY_CNTL_C) ;
110 }
111
112 static inline void
harmony_reset(struct snd_harmony * h)113 harmony_reset(struct snd_harmony *h)
114 {
115 harmony_write(h, HARMONY_RESET, 1);
116 mdelay(50);
117 harmony_write(h, HARMONY_RESET, 0);
118 }
119
120 static void
harmony_disable_interrupts(struct snd_harmony * h)121 harmony_disable_interrupts(struct snd_harmony *h)
122 {
123 u32 dstatus;
124 harmony_wait_for_control(h);
125 dstatus = harmony_read(h, HARMONY_DSTATUS);
126 dstatus &= ~HARMONY_DSTATUS_IE;
127 harmony_write(h, HARMONY_DSTATUS, dstatus);
128 }
129
130 static void
harmony_enable_interrupts(struct snd_harmony * h)131 harmony_enable_interrupts(struct snd_harmony *h)
132 {
133 u32 dstatus;
134 harmony_wait_for_control(h);
135 dstatus = harmony_read(h, HARMONY_DSTATUS);
136 dstatus |= HARMONY_DSTATUS_IE;
137 harmony_write(h, HARMONY_DSTATUS, dstatus);
138 }
139
140 static void
harmony_mute(struct snd_harmony * h)141 harmony_mute(struct snd_harmony *h)
142 {
143 unsigned long flags;
144
145 spin_lock_irqsave(&h->mixer_lock, flags);
146 harmony_wait_for_control(h);
147 harmony_write(h, HARMONY_GAINCTL, HARMONY_GAIN_SILENCE);
148 spin_unlock_irqrestore(&h->mixer_lock, flags);
149 }
150
151 static void
harmony_unmute(struct snd_harmony * h)152 harmony_unmute(struct snd_harmony *h)
153 {
154 unsigned long flags;
155
156 spin_lock_irqsave(&h->mixer_lock, flags);
157 harmony_wait_for_control(h);
158 harmony_write(h, HARMONY_GAINCTL, h->st.gain);
159 spin_unlock_irqrestore(&h->mixer_lock, flags);
160 }
161
162 static void
harmony_set_control(struct snd_harmony * h)163 harmony_set_control(struct snd_harmony *h)
164 {
165 u32 ctrl;
166 unsigned long flags;
167
168 spin_lock_irqsave(&h->lock, flags);
169
170 ctrl = (HARMONY_CNTL_C |
171 (h->st.format << 6) |
172 (h->st.stereo << 5) |
173 (h->st.rate));
174
175 harmony_wait_for_control(h);
176 harmony_write(h, HARMONY_CNTL, ctrl);
177
178 spin_unlock_irqrestore(&h->lock, flags);
179 }
180
181 static irqreturn_t
snd_harmony_interrupt(int irq,void * dev)182 snd_harmony_interrupt(int irq, void *dev)
183 {
184 u32 dstatus;
185 struct snd_harmony *h = dev;
186
187 spin_lock(&h->lock);
188 harmony_disable_interrupts(h);
189 harmony_wait_for_control(h);
190 dstatus = harmony_read(h, HARMONY_DSTATUS);
191 spin_unlock(&h->lock);
192
193 if (dstatus & HARMONY_DSTATUS_PN) {
194 if (h->psubs && h->st.playing) {
195 spin_lock(&h->lock);
196 h->pbuf.buf += h->pbuf.count; /* PAGE_SIZE */
197 h->pbuf.buf %= h->pbuf.size; /* MAX_BUFS*PAGE_SIZE */
198
199 harmony_write(h, HARMONY_PNXTADD,
200 h->pbuf.addr + h->pbuf.buf);
201 h->stats.play_intr++;
202 spin_unlock(&h->lock);
203 snd_pcm_period_elapsed(h->psubs);
204 } else {
205 spin_lock(&h->lock);
206 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
207 h->stats.silence_intr++;
208 spin_unlock(&h->lock);
209 }
210 }
211
212 if (dstatus & HARMONY_DSTATUS_RN) {
213 if (h->csubs && h->st.capturing) {
214 spin_lock(&h->lock);
215 h->cbuf.buf += h->cbuf.count;
216 h->cbuf.buf %= h->cbuf.size;
217
218 harmony_write(h, HARMONY_RNXTADD,
219 h->cbuf.addr + h->cbuf.buf);
220 h->stats.rec_intr++;
221 spin_unlock(&h->lock);
222 snd_pcm_period_elapsed(h->csubs);
223 } else {
224 spin_lock(&h->lock);
225 harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
226 h->stats.graveyard_intr++;
227 spin_unlock(&h->lock);
228 }
229 }
230
231 spin_lock(&h->lock);
232 harmony_enable_interrupts(h);
233 spin_unlock(&h->lock);
234
235 return IRQ_HANDLED;
236 }
237
238 static unsigned int
snd_harmony_rate_bits(int rate)239 snd_harmony_rate_bits(int rate)
240 {
241 unsigned int i;
242
243 for (i = 0; i < ARRAY_SIZE(snd_harmony_rates); i++)
244 if (snd_harmony_rates[i] == rate)
245 return rate_bits[i];
246
247 return HARMONY_SR_44KHZ;
248 }
249
250 static const struct snd_pcm_hardware snd_harmony_playback =
251 {
252 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
253 SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
254 SNDRV_PCM_INFO_BLOCK_TRANSFER),
255 .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
256 SNDRV_PCM_FMTBIT_A_LAW),
257 .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
258 SNDRV_PCM_RATE_KNOT),
259 .rate_min = 5512,
260 .rate_max = 48000,
261 .channels_min = 1,
262 .channels_max = 2,
263 .buffer_bytes_max = MAX_BUF_SIZE,
264 .period_bytes_min = BUF_SIZE,
265 .period_bytes_max = BUF_SIZE,
266 .periods_min = 1,
267 .periods_max = MAX_BUFS,
268 .fifo_size = 0,
269 };
270
271 static const struct snd_pcm_hardware snd_harmony_capture =
272 {
273 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
274 SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
275 SNDRV_PCM_INFO_BLOCK_TRANSFER),
276 .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
277 SNDRV_PCM_FMTBIT_A_LAW),
278 .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
279 SNDRV_PCM_RATE_KNOT),
280 .rate_min = 5512,
281 .rate_max = 48000,
282 .channels_min = 1,
283 .channels_max = 2,
284 .buffer_bytes_max = MAX_BUF_SIZE,
285 .period_bytes_min = BUF_SIZE,
286 .period_bytes_max = BUF_SIZE,
287 .periods_min = 1,
288 .periods_max = MAX_BUFS,
289 .fifo_size = 0,
290 };
291
292 static int
snd_harmony_playback_trigger(struct snd_pcm_substream * ss,int cmd)293 snd_harmony_playback_trigger(struct snd_pcm_substream *ss, int cmd)
294 {
295 struct snd_harmony *h = snd_pcm_substream_chip(ss);
296
297 if (h->st.capturing)
298 return -EBUSY;
299
300 spin_lock(&h->lock);
301 switch (cmd) {
302 case SNDRV_PCM_TRIGGER_START:
303 h->st.playing = 1;
304 harmony_write(h, HARMONY_PNXTADD, h->pbuf.addr);
305 harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
306 harmony_unmute(h);
307 harmony_enable_interrupts(h);
308 break;
309 case SNDRV_PCM_TRIGGER_STOP:
310 h->st.playing = 0;
311 harmony_mute(h);
312 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
313 harmony_disable_interrupts(h);
314 break;
315 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
316 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
317 case SNDRV_PCM_TRIGGER_SUSPEND:
318 default:
319 spin_unlock(&h->lock);
320 snd_BUG();
321 return -EINVAL;
322 }
323 spin_unlock(&h->lock);
324
325 return 0;
326 }
327
328 static int
snd_harmony_capture_trigger(struct snd_pcm_substream * ss,int cmd)329 snd_harmony_capture_trigger(struct snd_pcm_substream *ss, int cmd)
330 {
331 struct snd_harmony *h = snd_pcm_substream_chip(ss);
332
333 if (h->st.playing)
334 return -EBUSY;
335
336 spin_lock(&h->lock);
337 switch (cmd) {
338 case SNDRV_PCM_TRIGGER_START:
339 h->st.capturing = 1;
340 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
341 harmony_write(h, HARMONY_RNXTADD, h->cbuf.addr);
342 harmony_unmute(h);
343 harmony_enable_interrupts(h);
344 break;
345 case SNDRV_PCM_TRIGGER_STOP:
346 h->st.capturing = 0;
347 harmony_mute(h);
348 harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
349 harmony_disable_interrupts(h);
350 break;
351 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
352 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
353 case SNDRV_PCM_TRIGGER_SUSPEND:
354 default:
355 spin_unlock(&h->lock);
356 snd_BUG();
357 return -EINVAL;
358 }
359 spin_unlock(&h->lock);
360
361 return 0;
362 }
363
364 static int
snd_harmony_set_data_format(struct snd_harmony * h,int fmt,int force)365 snd_harmony_set_data_format(struct snd_harmony *h, int fmt, int force)
366 {
367 int o = h->st.format;
368 int n;
369
370 switch(fmt) {
371 case SNDRV_PCM_FORMAT_S16_BE:
372 n = HARMONY_DF_16BIT_LINEAR;
373 break;
374 case SNDRV_PCM_FORMAT_A_LAW:
375 n = HARMONY_DF_8BIT_ALAW;
376 break;
377 case SNDRV_PCM_FORMAT_MU_LAW:
378 n = HARMONY_DF_8BIT_ULAW;
379 break;
380 default:
381 n = HARMONY_DF_16BIT_LINEAR;
382 break;
383 }
384
385 if (force || o != n) {
386 snd_pcm_format_set_silence(fmt, h->sdma.area, SILENCE_BUFSZ /
387 (snd_pcm_format_physical_width(fmt)
388 / 8));
389 }
390
391 return n;
392 }
393
394 static int
snd_harmony_playback_prepare(struct snd_pcm_substream * ss)395 snd_harmony_playback_prepare(struct snd_pcm_substream *ss)
396 {
397 struct snd_harmony *h = snd_pcm_substream_chip(ss);
398 struct snd_pcm_runtime *rt = ss->runtime;
399
400 if (h->st.capturing)
401 return -EBUSY;
402
403 h->pbuf.size = snd_pcm_lib_buffer_bytes(ss);
404 h->pbuf.count = snd_pcm_lib_period_bytes(ss);
405 if (h->pbuf.buf >= h->pbuf.size)
406 h->pbuf.buf = 0;
407 h->st.playing = 0;
408
409 h->st.rate = snd_harmony_rate_bits(rt->rate);
410 h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
411
412 if (rt->channels == 2)
413 h->st.stereo = HARMONY_SS_STEREO;
414 else
415 h->st.stereo = HARMONY_SS_MONO;
416
417 harmony_set_control(h);
418
419 h->pbuf.addr = rt->dma_addr;
420
421 return 0;
422 }
423
424 static int
snd_harmony_capture_prepare(struct snd_pcm_substream * ss)425 snd_harmony_capture_prepare(struct snd_pcm_substream *ss)
426 {
427 struct snd_harmony *h = snd_pcm_substream_chip(ss);
428 struct snd_pcm_runtime *rt = ss->runtime;
429
430 if (h->st.playing)
431 return -EBUSY;
432
433 h->cbuf.size = snd_pcm_lib_buffer_bytes(ss);
434 h->cbuf.count = snd_pcm_lib_period_bytes(ss);
435 if (h->cbuf.buf >= h->cbuf.size)
436 h->cbuf.buf = 0;
437 h->st.capturing = 0;
438
439 h->st.rate = snd_harmony_rate_bits(rt->rate);
440 h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
441
442 if (rt->channels == 2)
443 h->st.stereo = HARMONY_SS_STEREO;
444 else
445 h->st.stereo = HARMONY_SS_MONO;
446
447 harmony_set_control(h);
448
449 h->cbuf.addr = rt->dma_addr;
450
451 return 0;
452 }
453
454 static snd_pcm_uframes_t
snd_harmony_playback_pointer(struct snd_pcm_substream * ss)455 snd_harmony_playback_pointer(struct snd_pcm_substream *ss)
456 {
457 struct snd_pcm_runtime *rt = ss->runtime;
458 struct snd_harmony *h = snd_pcm_substream_chip(ss);
459 unsigned long pcuradd;
460 unsigned long played;
461
462 if (!(h->st.playing) || (h->psubs == NULL))
463 return 0;
464
465 if ((h->pbuf.addr == 0) || (h->pbuf.size == 0))
466 return 0;
467
468 pcuradd = harmony_read(h, HARMONY_PCURADD);
469 played = pcuradd - h->pbuf.addr;
470
471 #ifdef HARMONY_DEBUG
472 printk(KERN_DEBUG PFX "playback_pointer is 0x%lx-0x%lx = %d bytes\n",
473 pcuradd, h->pbuf.addr, played);
474 #endif
475
476 if (pcuradd > h->pbuf.addr + h->pbuf.size) {
477 return 0;
478 }
479
480 return bytes_to_frames(rt, played);
481 }
482
483 static snd_pcm_uframes_t
snd_harmony_capture_pointer(struct snd_pcm_substream * ss)484 snd_harmony_capture_pointer(struct snd_pcm_substream *ss)
485 {
486 struct snd_pcm_runtime *rt = ss->runtime;
487 struct snd_harmony *h = snd_pcm_substream_chip(ss);
488 unsigned long rcuradd;
489 unsigned long caught;
490
491 if (!(h->st.capturing) || (h->csubs == NULL))
492 return 0;
493
494 if ((h->cbuf.addr == 0) || (h->cbuf.size == 0))
495 return 0;
496
497 rcuradd = harmony_read(h, HARMONY_RCURADD);
498 caught = rcuradd - h->cbuf.addr;
499
500 #ifdef HARMONY_DEBUG
501 printk(KERN_DEBUG PFX "capture_pointer is 0x%lx-0x%lx = %d bytes\n",
502 rcuradd, h->cbuf.addr, caught);
503 #endif
504
505 if (rcuradd > h->cbuf.addr + h->cbuf.size) {
506 return 0;
507 }
508
509 return bytes_to_frames(rt, caught);
510 }
511
512 static int
snd_harmony_playback_open(struct snd_pcm_substream * ss)513 snd_harmony_playback_open(struct snd_pcm_substream *ss)
514 {
515 struct snd_harmony *h = snd_pcm_substream_chip(ss);
516 struct snd_pcm_runtime *rt = ss->runtime;
517 int err;
518
519 h->psubs = ss;
520 rt->hw = snd_harmony_playback;
521 snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
522 &hw_constraint_rates);
523
524 err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
525 if (err < 0)
526 return err;
527
528 return 0;
529 }
530
531 static int
snd_harmony_capture_open(struct snd_pcm_substream * ss)532 snd_harmony_capture_open(struct snd_pcm_substream *ss)
533 {
534 struct snd_harmony *h = snd_pcm_substream_chip(ss);
535 struct snd_pcm_runtime *rt = ss->runtime;
536 int err;
537
538 h->csubs = ss;
539 rt->hw = snd_harmony_capture;
540 snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
541 &hw_constraint_rates);
542
543 err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
544 if (err < 0)
545 return err;
546
547 return 0;
548 }
549
550 static int
snd_harmony_playback_close(struct snd_pcm_substream * ss)551 snd_harmony_playback_close(struct snd_pcm_substream *ss)
552 {
553 struct snd_harmony *h = snd_pcm_substream_chip(ss);
554 h->psubs = NULL;
555 return 0;
556 }
557
558 static int
snd_harmony_capture_close(struct snd_pcm_substream * ss)559 snd_harmony_capture_close(struct snd_pcm_substream *ss)
560 {
561 struct snd_harmony *h = snd_pcm_substream_chip(ss);
562 h->csubs = NULL;
563 return 0;
564 }
565
566 static const struct snd_pcm_ops snd_harmony_playback_ops = {
567 .open = snd_harmony_playback_open,
568 .close = snd_harmony_playback_close,
569 .prepare = snd_harmony_playback_prepare,
570 .trigger = snd_harmony_playback_trigger,
571 .pointer = snd_harmony_playback_pointer,
572 };
573
574 static const struct snd_pcm_ops snd_harmony_capture_ops = {
575 .open = snd_harmony_capture_open,
576 .close = snd_harmony_capture_close,
577 .prepare = snd_harmony_capture_prepare,
578 .trigger = snd_harmony_capture_trigger,
579 .pointer = snd_harmony_capture_pointer,
580 };
581
582 static int
snd_harmony_pcm_init(struct snd_harmony * h)583 snd_harmony_pcm_init(struct snd_harmony *h)
584 {
585 struct snd_pcm *pcm;
586 int err;
587
588 if (snd_BUG_ON(!h))
589 return -EINVAL;
590
591 harmony_disable_interrupts(h);
592
593 err = snd_pcm_new(h->card, "harmony", 0, 1, 1, &pcm);
594 if (err < 0)
595 return err;
596
597 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
598 &snd_harmony_playback_ops);
599 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
600 &snd_harmony_capture_ops);
601
602 pcm->private_data = h;
603 pcm->info_flags = 0;
604 strcpy(pcm->name, "harmony");
605 h->pcm = pcm;
606
607 h->psubs = NULL;
608 h->csubs = NULL;
609
610 /* initialize graveyard buffer */
611 h->dma.type = SNDRV_DMA_TYPE_DEV;
612 h->dma.dev = &h->dev->dev;
613 err = snd_dma_alloc_pages(h->dma.type,
614 h->dma.dev,
615 BUF_SIZE*GRAVEYARD_BUFS,
616 &h->gdma);
617 if (err < 0) {
618 printk(KERN_ERR PFX "cannot allocate graveyard buffer!\n");
619 return err;
620 }
621
622 /* initialize silence buffers */
623 err = snd_dma_alloc_pages(h->dma.type,
624 h->dma.dev,
625 BUF_SIZE*SILENCE_BUFS,
626 &h->sdma);
627 if (err < 0) {
628 printk(KERN_ERR PFX "cannot allocate silence buffer!\n");
629 return err;
630 }
631
632 /* pre-allocate space for DMA */
633 snd_pcm_set_managed_buffer_all(pcm, h->dma.type, h->dma.dev,
634 MAX_BUF_SIZE, MAX_BUF_SIZE);
635
636 h->st.format = snd_harmony_set_data_format(h,
637 SNDRV_PCM_FORMAT_S16_BE, 1);
638
639 return 0;
640 }
641
642 static void
snd_harmony_set_new_gain(struct snd_harmony * h)643 snd_harmony_set_new_gain(struct snd_harmony *h)
644 {
645 harmony_wait_for_control(h);
646 harmony_write(h, HARMONY_GAINCTL, h->st.gain);
647 }
648
649 static int
snd_harmony_mixercontrol_info(struct snd_kcontrol * kc,struct snd_ctl_elem_info * uinfo)650 snd_harmony_mixercontrol_info(struct snd_kcontrol *kc,
651 struct snd_ctl_elem_info *uinfo)
652 {
653 int mask = (kc->private_value >> 16) & 0xff;
654 int left_shift = (kc->private_value) & 0xff;
655 int right_shift = (kc->private_value >> 8) & 0xff;
656
657 uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN :
658 SNDRV_CTL_ELEM_TYPE_INTEGER;
659 uinfo->count = left_shift == right_shift ? 1 : 2;
660 uinfo->value.integer.min = 0;
661 uinfo->value.integer.max = mask;
662
663 return 0;
664 }
665
666 static int
snd_harmony_volume_get(struct snd_kcontrol * kc,struct snd_ctl_elem_value * ucontrol)667 snd_harmony_volume_get(struct snd_kcontrol *kc,
668 struct snd_ctl_elem_value *ucontrol)
669 {
670 struct snd_harmony *h = snd_kcontrol_chip(kc);
671 int shift_left = (kc->private_value) & 0xff;
672 int shift_right = (kc->private_value >> 8) & 0xff;
673 int mask = (kc->private_value >> 16) & 0xff;
674 int invert = (kc->private_value >> 24) & 0xff;
675 int left, right;
676
677 spin_lock_irq(&h->mixer_lock);
678
679 left = (h->st.gain >> shift_left) & mask;
680 right = (h->st.gain >> shift_right) & mask;
681 if (invert) {
682 left = mask - left;
683 right = mask - right;
684 }
685
686 ucontrol->value.integer.value[0] = left;
687 if (shift_left != shift_right)
688 ucontrol->value.integer.value[1] = right;
689
690 spin_unlock_irq(&h->mixer_lock);
691
692 return 0;
693 }
694
695 static int
snd_harmony_volume_put(struct snd_kcontrol * kc,struct snd_ctl_elem_value * ucontrol)696 snd_harmony_volume_put(struct snd_kcontrol *kc,
697 struct snd_ctl_elem_value *ucontrol)
698 {
699 struct snd_harmony *h = snd_kcontrol_chip(kc);
700 int shift_left = (kc->private_value) & 0xff;
701 int shift_right = (kc->private_value >> 8) & 0xff;
702 int mask = (kc->private_value >> 16) & 0xff;
703 int invert = (kc->private_value >> 24) & 0xff;
704 int left, right;
705 int old_gain = h->st.gain;
706
707 spin_lock_irq(&h->mixer_lock);
708
709 left = ucontrol->value.integer.value[0] & mask;
710 if (invert)
711 left = mask - left;
712 h->st.gain &= ~( (mask << shift_left ) );
713 h->st.gain |= (left << shift_left);
714
715 if (shift_left != shift_right) {
716 right = ucontrol->value.integer.value[1] & mask;
717 if (invert)
718 right = mask - right;
719 h->st.gain &= ~( (mask << shift_right) );
720 h->st.gain |= (right << shift_right);
721 }
722
723 snd_harmony_set_new_gain(h);
724
725 spin_unlock_irq(&h->mixer_lock);
726
727 return h->st.gain != old_gain;
728 }
729
730 static int
snd_harmony_captureroute_info(struct snd_kcontrol * kc,struct snd_ctl_elem_info * uinfo)731 snd_harmony_captureroute_info(struct snd_kcontrol *kc,
732 struct snd_ctl_elem_info *uinfo)
733 {
734 static const char * const texts[2] = { "Line", "Mic" };
735
736 return snd_ctl_enum_info(uinfo, 1, 2, texts);
737 }
738
739 static int
snd_harmony_captureroute_get(struct snd_kcontrol * kc,struct snd_ctl_elem_value * ucontrol)740 snd_harmony_captureroute_get(struct snd_kcontrol *kc,
741 struct snd_ctl_elem_value *ucontrol)
742 {
743 struct snd_harmony *h = snd_kcontrol_chip(kc);
744 int value;
745
746 spin_lock_irq(&h->mixer_lock);
747
748 value = (h->st.gain >> HARMONY_GAIN_IS_SHIFT) & 1;
749 ucontrol->value.enumerated.item[0] = value;
750
751 spin_unlock_irq(&h->mixer_lock);
752
753 return 0;
754 }
755
756 static int
snd_harmony_captureroute_put(struct snd_kcontrol * kc,struct snd_ctl_elem_value * ucontrol)757 snd_harmony_captureroute_put(struct snd_kcontrol *kc,
758 struct snd_ctl_elem_value *ucontrol)
759 {
760 struct snd_harmony *h = snd_kcontrol_chip(kc);
761 int value;
762 int old_gain = h->st.gain;
763
764 spin_lock_irq(&h->mixer_lock);
765
766 value = ucontrol->value.enumerated.item[0] & 1;
767 h->st.gain &= ~HARMONY_GAIN_IS_MASK;
768 h->st.gain |= value << HARMONY_GAIN_IS_SHIFT;
769
770 snd_harmony_set_new_gain(h);
771
772 spin_unlock_irq(&h->mixer_lock);
773
774 return h->st.gain != old_gain;
775 }
776
777 #define HARMONY_CONTROLS ARRAY_SIZE(snd_harmony_controls)
778
779 #define HARMONY_VOLUME(xname, left_shift, right_shift, mask, invert) \
780 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
781 .info = snd_harmony_mixercontrol_info, \
782 .get = snd_harmony_volume_get, .put = snd_harmony_volume_put, \
783 .private_value = ((left_shift) | ((right_shift) << 8) | \
784 ((mask) << 16) | ((invert) << 24)) }
785
786 static const struct snd_kcontrol_new snd_harmony_controls[] = {
787 HARMONY_VOLUME("Master Playback Volume", HARMONY_GAIN_LO_SHIFT,
788 HARMONY_GAIN_RO_SHIFT, HARMONY_GAIN_OUT, 1),
789 HARMONY_VOLUME("Capture Volume", HARMONY_GAIN_LI_SHIFT,
790 HARMONY_GAIN_RI_SHIFT, HARMONY_GAIN_IN, 0),
791 HARMONY_VOLUME("Monitor Volume", HARMONY_GAIN_MA_SHIFT,
792 HARMONY_GAIN_MA_SHIFT, HARMONY_GAIN_MA, 1),
793 {
794 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
795 .name = "Input Route",
796 .info = snd_harmony_captureroute_info,
797 .get = snd_harmony_captureroute_get,
798 .put = snd_harmony_captureroute_put
799 },
800 HARMONY_VOLUME("Internal Speaker Switch", HARMONY_GAIN_SE_SHIFT,
801 HARMONY_GAIN_SE_SHIFT, 1, 0),
802 HARMONY_VOLUME("Line-Out Switch", HARMONY_GAIN_LE_SHIFT,
803 HARMONY_GAIN_LE_SHIFT, 1, 0),
804 HARMONY_VOLUME("Headphones Switch", HARMONY_GAIN_HE_SHIFT,
805 HARMONY_GAIN_HE_SHIFT, 1, 0),
806 };
807
808 static void
snd_harmony_mixer_reset(struct snd_harmony * h)809 snd_harmony_mixer_reset(struct snd_harmony *h)
810 {
811 harmony_mute(h);
812 harmony_reset(h);
813 h->st.gain = HARMONY_GAIN_DEFAULT;
814 harmony_unmute(h);
815 }
816
817 static int
snd_harmony_mixer_init(struct snd_harmony * h)818 snd_harmony_mixer_init(struct snd_harmony *h)
819 {
820 struct snd_card *card;
821 int idx, err;
822
823 if (snd_BUG_ON(!h))
824 return -EINVAL;
825 card = h->card;
826 strcpy(card->mixername, "Harmony Gain control interface");
827
828 for (idx = 0; idx < HARMONY_CONTROLS; idx++) {
829 err = snd_ctl_add(card,
830 snd_ctl_new1(&snd_harmony_controls[idx], h));
831 if (err < 0)
832 return err;
833 }
834
835 snd_harmony_mixer_reset(h);
836
837 return 0;
838 }
839
840 static int
snd_harmony_free(struct snd_harmony * h)841 snd_harmony_free(struct snd_harmony *h)
842 {
843 if (h->gdma.addr)
844 snd_dma_free_pages(&h->gdma);
845 if (h->sdma.addr)
846 snd_dma_free_pages(&h->sdma);
847
848 if (h->irq >= 0)
849 free_irq(h->irq, h);
850
851 iounmap(h->iobase);
852 kfree(h);
853 return 0;
854 }
855
856 static int
snd_harmony_dev_free(struct snd_device * dev)857 snd_harmony_dev_free(struct snd_device *dev)
858 {
859 struct snd_harmony *h = dev->device_data;
860 return snd_harmony_free(h);
861 }
862
863 static int
snd_harmony_create(struct snd_card * card,struct parisc_device * padev,struct snd_harmony ** rchip)864 snd_harmony_create(struct snd_card *card,
865 struct parisc_device *padev,
866 struct snd_harmony **rchip)
867 {
868 int err;
869 struct snd_harmony *h;
870 static const struct snd_device_ops ops = {
871 .dev_free = snd_harmony_dev_free,
872 };
873
874 *rchip = NULL;
875
876 h = kzalloc(sizeof(*h), GFP_KERNEL);
877 if (h == NULL)
878 return -ENOMEM;
879
880 h->hpa = padev->hpa.start;
881 h->card = card;
882 h->dev = padev;
883 h->irq = -1;
884 h->iobase = ioremap(padev->hpa.start, HARMONY_SIZE);
885 if (h->iobase == NULL) {
886 printk(KERN_ERR PFX "unable to remap hpa 0x%lx\n",
887 (unsigned long)padev->hpa.start);
888 err = -EBUSY;
889 goto free_and_ret;
890 }
891
892 err = request_irq(padev->irq, snd_harmony_interrupt, 0,
893 "harmony", h);
894 if (err) {
895 printk(KERN_ERR PFX "could not obtain interrupt %d",
896 padev->irq);
897 goto free_and_ret;
898 }
899 h->irq = padev->irq;
900
901 spin_lock_init(&h->mixer_lock);
902 spin_lock_init(&h->lock);
903
904 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, h, &ops);
905 if (err < 0)
906 goto free_and_ret;
907
908 *rchip = h;
909
910 return 0;
911
912 free_and_ret:
913 snd_harmony_free(h);
914 return err;
915 }
916
917 static int __init
snd_harmony_probe(struct parisc_device * padev)918 snd_harmony_probe(struct parisc_device *padev)
919 {
920 int err;
921 struct snd_card *card;
922 struct snd_harmony *h;
923
924 err = snd_card_new(&padev->dev, index, id, THIS_MODULE, 0, &card);
925 if (err < 0)
926 return err;
927
928 err = snd_harmony_create(card, padev, &h);
929 if (err < 0)
930 goto free_and_ret;
931
932 err = snd_harmony_pcm_init(h);
933 if (err < 0)
934 goto free_and_ret;
935
936 err = snd_harmony_mixer_init(h);
937 if (err < 0)
938 goto free_and_ret;
939
940 strcpy(card->driver, "harmony");
941 strcpy(card->shortname, "Harmony");
942 sprintf(card->longname, "%s at 0x%lx, irq %i",
943 card->shortname, h->hpa, h->irq);
944
945 err = snd_card_register(card);
946 if (err < 0)
947 goto free_and_ret;
948
949 parisc_set_drvdata(padev, card);
950 return 0;
951
952 free_and_ret:
953 snd_card_free(card);
954 return err;
955 }
956
957 static void __exit
snd_harmony_remove(struct parisc_device * padev)958 snd_harmony_remove(struct parisc_device *padev)
959 {
960 snd_card_free(parisc_get_drvdata(padev));
961 }
962
963 static struct parisc_driver snd_harmony_driver __refdata = {
964 .name = "harmony",
965 .id_table = snd_harmony_devtable,
966 .probe = snd_harmony_probe,
967 .remove = __exit_p(snd_harmony_remove),
968 };
969
970 static int __init
alsa_harmony_init(void)971 alsa_harmony_init(void)
972 {
973 return register_parisc_driver(&snd_harmony_driver);
974 }
975
976 static void __exit
alsa_harmony_fini(void)977 alsa_harmony_fini(void)
978 {
979 unregister_parisc_driver(&snd_harmony_driver);
980 }
981
982 MODULE_LICENSE("GPL");
983 MODULE_AUTHOR("Kyle McMartin <kyle@parisc-linux.org>");
984 MODULE_DESCRIPTION("Harmony sound driver");
985
986 module_init(alsa_harmony_init);
987 module_exit(alsa_harmony_fini);
988