1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Support for Versatile FPGA-based IRQ controllers
4 */
5 #include <linux/bitops.h>
6 #include <linux/irq.h>
7 #include <linux/io.h>
8 #include <linux/irqchip.h>
9 #include <linux/irqchip/chained_irq.h>
10 #include <linux/irqdomain.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/seq_file.h>
16
17 #include <asm/exception.h>
18 #include <asm/mach/irq.h>
19
20 #define IRQ_STATUS 0x00
21 #define IRQ_RAW_STATUS 0x04
22 #define IRQ_ENABLE_SET 0x08
23 #define IRQ_ENABLE_CLEAR 0x0c
24 #define INT_SOFT_SET 0x10
25 #define INT_SOFT_CLEAR 0x14
26 #define FIQ_STATUS 0x20
27 #define FIQ_RAW_STATUS 0x24
28 #define FIQ_ENABLE 0x28
29 #define FIQ_ENABLE_SET 0x28
30 #define FIQ_ENABLE_CLEAR 0x2C
31
32 #define PIC_ENABLES 0x20 /* set interrupt pass through bits */
33
34 /**
35 * struct fpga_irq_data - irq data container for the FPGA IRQ controller
36 * @base: memory offset in virtual memory
37 * @domain: IRQ domain for this instance
38 * @valid: mask for valid IRQs on this controller
39 * @used_irqs: number of active IRQs on this controller
40 */
41 struct fpga_irq_data {
42 void __iomem *base;
43 u32 valid;
44 struct irq_domain *domain;
45 u8 used_irqs;
46 };
47
48 /* we cannot allocate memory when the controllers are initially registered */
49 static struct fpga_irq_data fpga_irq_devices[CONFIG_VERSATILE_FPGA_IRQ_NR];
50 static int fpga_irq_id;
51
fpga_irq_mask(struct irq_data * d)52 static void fpga_irq_mask(struct irq_data *d)
53 {
54 struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
55 u32 mask = 1 << d->hwirq;
56
57 writel(mask, f->base + IRQ_ENABLE_CLEAR);
58 }
59
fpga_irq_unmask(struct irq_data * d)60 static void fpga_irq_unmask(struct irq_data *d)
61 {
62 struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
63 u32 mask = 1 << d->hwirq;
64
65 writel(mask, f->base + IRQ_ENABLE_SET);
66 }
67
fpga_irq_print_chip(struct irq_data * d,struct seq_file * p)68 static void fpga_irq_print_chip(struct irq_data *d, struct seq_file *p)
69 {
70 struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
71
72 seq_printf(p, irq_domain_get_of_node(f->domain)->name);
73 }
74
75 static const struct irq_chip fpga_chip = {
76 .irq_ack = fpga_irq_mask,
77 .irq_mask = fpga_irq_mask,
78 .irq_unmask = fpga_irq_unmask,
79 .irq_print_chip = fpga_irq_print_chip,
80 };
81
fpga_irq_handle(struct irq_desc * desc)82 static void fpga_irq_handle(struct irq_desc *desc)
83 {
84 struct irq_chip *chip = irq_desc_get_chip(desc);
85 struct fpga_irq_data *f = irq_desc_get_handler_data(desc);
86 u32 status;
87
88 chained_irq_enter(chip, desc);
89
90 status = readl(f->base + IRQ_STATUS);
91 if (status == 0) {
92 do_bad_IRQ(desc);
93 goto out;
94 }
95
96 do {
97 unsigned int irq = ffs(status) - 1;
98
99 status &= ~(1 << irq);
100 generic_handle_domain_irq(f->domain, irq);
101 } while (status);
102
103 out:
104 chained_irq_exit(chip, desc);
105 }
106
107 /*
108 * Handle each interrupt in a single FPGA IRQ controller. Returns non-zero
109 * if we've handled at least one interrupt. This does a single read of the
110 * status register and handles all interrupts in order from LSB first.
111 */
handle_one_fpga(struct fpga_irq_data * f,struct pt_regs * regs)112 static int handle_one_fpga(struct fpga_irq_data *f, struct pt_regs *regs)
113 {
114 int handled = 0;
115 int irq;
116 u32 status;
117
118 while ((status = readl(f->base + IRQ_STATUS))) {
119 irq = ffs(status) - 1;
120 generic_handle_domain_irq(f->domain, irq);
121 handled = 1;
122 }
123
124 return handled;
125 }
126
127 /*
128 * Keep iterating over all registered FPGA IRQ controllers until there are
129 * no pending interrupts.
130 */
fpga_handle_irq(struct pt_regs * regs)131 static void __exception_irq_entry fpga_handle_irq(struct pt_regs *regs)
132 {
133 int i, handled;
134
135 do {
136 for (i = 0, handled = 0; i < fpga_irq_id; ++i)
137 handled |= handle_one_fpga(&fpga_irq_devices[i], regs);
138 } while (handled);
139 }
140
fpga_irqdomain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hwirq)141 static int fpga_irqdomain_map(struct irq_domain *d, unsigned int irq,
142 irq_hw_number_t hwirq)
143 {
144 struct fpga_irq_data *f = d->host_data;
145
146 /* Skip invalid IRQs, only register handlers for the real ones */
147 if (!(f->valid & BIT(hwirq)))
148 return -EPERM;
149 irq_set_chip_data(irq, f);
150 irq_set_chip_and_handler(irq, &fpga_chip, handle_level_irq);
151 irq_set_probe(irq);
152 return 0;
153 }
154
155 static const struct irq_domain_ops fpga_irqdomain_ops = {
156 .map = fpga_irqdomain_map,
157 .xlate = irq_domain_xlate_onetwocell,
158 };
159
fpga_irq_init(void __iomem * base,int parent_irq,u32 valid,struct device_node * node)160 static void __init fpga_irq_init(void __iomem *base, int parent_irq,
161 u32 valid, struct device_node *node)
162 {
163 struct fpga_irq_data *f;
164 int i;
165
166 if (fpga_irq_id >= ARRAY_SIZE(fpga_irq_devices)) {
167 pr_err("%s: too few FPGA IRQ controllers, increase CONFIG_VERSATILE_FPGA_IRQ_NR\n", __func__);
168 return;
169 }
170 f = &fpga_irq_devices[fpga_irq_id];
171 f->base = base;
172 f->valid = valid;
173
174 if (parent_irq != -1) {
175 irq_set_chained_handler_and_data(parent_irq, fpga_irq_handle,
176 f);
177 }
178
179 f->domain = irq_domain_add_linear(node, fls(valid),
180 &fpga_irqdomain_ops, f);
181
182 /* This will allocate all valid descriptors in the linear case */
183 for (i = 0; i < fls(valid); i++)
184 if (valid & BIT(i)) {
185 /* Is this still required? */
186 irq_create_mapping(f->domain, i);
187 f->used_irqs++;
188 }
189
190 pr_info("FPGA IRQ chip %d \"%s\" @ %p, %u irqs",
191 fpga_irq_id, node->name, base, f->used_irqs);
192 if (parent_irq != -1)
193 pr_cont(", parent IRQ: %d\n", parent_irq);
194 else
195 pr_cont("\n");
196
197 fpga_irq_id++;
198 }
199
200 #ifdef CONFIG_OF
fpga_irq_of_init(struct device_node * node,struct device_node * parent)201 static int __init fpga_irq_of_init(struct device_node *node,
202 struct device_node *parent)
203 {
204 void __iomem *base;
205 u32 clear_mask;
206 u32 valid_mask;
207 int parent_irq;
208
209 if (WARN_ON(!node))
210 return -ENODEV;
211
212 base = of_iomap(node, 0);
213 WARN(!base, "unable to map fpga irq registers\n");
214
215 if (of_property_read_u32(node, "clear-mask", &clear_mask))
216 clear_mask = 0;
217
218 if (of_property_read_u32(node, "valid-mask", &valid_mask))
219 valid_mask = 0;
220
221 writel(clear_mask, base + IRQ_ENABLE_CLEAR);
222 writel(clear_mask, base + FIQ_ENABLE_CLEAR);
223
224 /* Some chips are cascaded from a parent IRQ */
225 parent_irq = irq_of_parse_and_map(node, 0);
226 if (!parent_irq) {
227 set_handle_irq(fpga_handle_irq);
228 parent_irq = -1;
229 }
230
231 fpga_irq_init(base, parent_irq, valid_mask, node);
232
233 /*
234 * On Versatile AB/PB, some secondary interrupts have a direct
235 * pass-thru to the primary controller for IRQs 20 and 22-31 which need
236 * to be enabled. See section 3.10 of the Versatile AB user guide.
237 */
238 if (of_device_is_compatible(node, "arm,versatile-sic"))
239 writel(0xffd00000, base + PIC_ENABLES);
240
241 return 0;
242 }
243 IRQCHIP_DECLARE(arm_fpga, "arm,versatile-fpga-irq", fpga_irq_of_init);
244 IRQCHIP_DECLARE(arm_fpga_sic, "arm,versatile-sic", fpga_irq_of_init);
245 #endif
246