xref: /linux/arch/arm64/kvm/handle_exit.c (revision e2ee2e9b159094527ae7ad78058b1316f62fc5b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/handle_exit.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 
14 #include <asm/esr.h>
15 #include <asm/exception.h>
16 #include <asm/kvm_asm.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_mmu.h>
19 #include <asm/kvm_nested.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/stacktrace/nvhe.h>
22 #include <asm/traps.h>
23 
24 #include <kvm/arm_hypercalls.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_handle_exit.h"
28 
29 typedef int (*exit_handle_fn)(struct kvm_vcpu *);
30 
31 static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
32 {
33 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
34 		kvm_inject_vabt(vcpu);
35 }
36 
37 static int handle_hvc(struct kvm_vcpu *vcpu)
38 {
39 	trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
40 			    kvm_vcpu_hvc_get_imm(vcpu));
41 	vcpu->stat.hvc_exit_stat++;
42 
43 	/* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
44 	if (vcpu_has_nv(vcpu)) {
45 		if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
46 			kvm_inject_undefined(vcpu);
47 		else
48 			kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
49 
50 		return 1;
51 	}
52 
53 	return kvm_smccc_call_handler(vcpu);
54 }
55 
56 static int handle_smc(struct kvm_vcpu *vcpu)
57 {
58 	/*
59 	 * Forward this trapped smc instruction to the virtual EL2 if
60 	 * the guest has asked for it.
61 	 */
62 	if (forward_smc_trap(vcpu))
63 		return 1;
64 
65 	/*
66 	 * "If an SMC instruction executed at Non-secure EL1 is
67 	 * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
68 	 * Trap exception, not a Secure Monitor Call exception [...]"
69 	 *
70 	 * We need to advance the PC after the trap, as it would
71 	 * otherwise return to the same address. Furthermore, pre-incrementing
72 	 * the PC before potentially exiting to userspace maintains the same
73 	 * abstraction for both SMCs and HVCs.
74 	 */
75 	kvm_incr_pc(vcpu);
76 
77 	/*
78 	 * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
79 	 * "SMC and HVC immediate value".
80 	 */
81 	if (kvm_vcpu_hvc_get_imm(vcpu)) {
82 		vcpu_set_reg(vcpu, 0, ~0UL);
83 		return 1;
84 	}
85 
86 	/*
87 	 * If imm is zero then it is likely an SMCCC call.
88 	 *
89 	 * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
90 	 * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
91 	 * being treated as UNDEFINED.
92 	 */
93 	return kvm_smccc_call_handler(vcpu);
94 }
95 
96 /*
97  * This handles the cases where the system does not support FP/ASIMD or when
98  * we are running nested virtualization and the guest hypervisor is trapping
99  * FP/ASIMD accesses by its guest guest.
100  *
101  * All other handling of guest vs. host FP/ASIMD register state is handled in
102  * fixup_guest_exit().
103  */
104 static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu)
105 {
106 	if (guest_hyp_fpsimd_traps_enabled(vcpu))
107 		return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
108 
109 	/* This is the case when the system doesn't support FP/ASIMD. */
110 	kvm_inject_undefined(vcpu);
111 	return 1;
112 }
113 
114 /**
115  * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
116  *		    instruction executed by a guest
117  *
118  * @vcpu:	the vcpu pointer
119  *
120  * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
121  * decides to.
122  * WFI: Simply call kvm_vcpu_halt(), which will halt execution of
123  * world-switches and schedule other host processes until there is an
124  * incoming IRQ or FIQ to the VM.
125  * WFIT: Same as WFI, with a timed wakeup implemented as a background timer
126  *
127  * WF{I,E}T can immediately return if the deadline has already expired.
128  */
129 static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
130 {
131 	u64 esr = kvm_vcpu_get_esr(vcpu);
132 
133 	if (esr & ESR_ELx_WFx_ISS_WFE) {
134 		trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
135 		vcpu->stat.wfe_exit_stat++;
136 	} else {
137 		trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
138 		vcpu->stat.wfi_exit_stat++;
139 	}
140 
141 	if (esr & ESR_ELx_WFx_ISS_WFxT) {
142 		if (esr & ESR_ELx_WFx_ISS_RV) {
143 			u64 val, now;
144 
145 			now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
146 			val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
147 
148 			if (now >= val)
149 				goto out;
150 		} else {
151 			/* Treat WFxT as WFx if RN is invalid */
152 			esr &= ~ESR_ELx_WFx_ISS_WFxT;
153 		}
154 	}
155 
156 	if (esr & ESR_ELx_WFx_ISS_WFE) {
157 		kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
158 	} else {
159 		if (esr & ESR_ELx_WFx_ISS_WFxT)
160 			vcpu_set_flag(vcpu, IN_WFIT);
161 
162 		kvm_vcpu_wfi(vcpu);
163 	}
164 out:
165 	kvm_incr_pc(vcpu);
166 
167 	return 1;
168 }
169 
170 /**
171  * kvm_handle_guest_debug - handle a debug exception instruction
172  *
173  * @vcpu:	the vcpu pointer
174  *
175  * We route all debug exceptions through the same handler. If both the
176  * guest and host are using the same debug facilities it will be up to
177  * userspace to re-inject the correct exception for guest delivery.
178  *
179  * @return: 0 (while setting vcpu->run->exit_reason)
180  */
181 static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
182 {
183 	struct kvm_run *run = vcpu->run;
184 	u64 esr = kvm_vcpu_get_esr(vcpu);
185 
186 	if (!vcpu->guest_debug && forward_debug_exception(vcpu))
187 		return 1;
188 
189 	run->exit_reason = KVM_EXIT_DEBUG;
190 	run->debug.arch.hsr = lower_32_bits(esr);
191 	run->debug.arch.hsr_high = upper_32_bits(esr);
192 	run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
193 
194 	switch (ESR_ELx_EC(esr)) {
195 	case ESR_ELx_EC_WATCHPT_LOW:
196 		run->debug.arch.far = vcpu->arch.fault.far_el2;
197 		break;
198 	case ESR_ELx_EC_SOFTSTP_LOW:
199 		*vcpu_cpsr(vcpu) |= DBG_SPSR_SS;
200 		break;
201 	}
202 
203 	return 0;
204 }
205 
206 static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
207 {
208 	u64 esr = kvm_vcpu_get_esr(vcpu);
209 
210 	kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
211 		      esr, esr_get_class_string(esr));
212 
213 	kvm_inject_undefined(vcpu);
214 	return 1;
215 }
216 
217 /*
218  * Guest access to SVE registers should be routed to this handler only
219  * when the system doesn't support SVE.
220  */
221 static int handle_sve(struct kvm_vcpu *vcpu)
222 {
223 	if (guest_hyp_sve_traps_enabled(vcpu))
224 		return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
225 
226 	kvm_inject_undefined(vcpu);
227 	return 1;
228 }
229 
230 /*
231  * Two possibilities to handle a trapping ptrauth instruction:
232  *
233  * - Guest usage of a ptrauth instruction (which the guest EL1 did not
234  *   turn into a NOP). If we get here, it is because we didn't enable
235  *   ptrauth for the guest. This results in an UNDEF, as it isn't
236  *   supposed to use ptrauth without being told it could.
237  *
238  * - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for
239  *   which we reinject the exception into L1.
240  *
241  * Anything else is an emulation bug (hence the WARN_ON + UNDEF).
242  */
243 static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
244 {
245 	if (!vcpu_has_ptrauth(vcpu)) {
246 		kvm_inject_undefined(vcpu);
247 		return 1;
248 	}
249 
250 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
251 		kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
252 		return 1;
253 	}
254 
255 	/* Really shouldn't be here! */
256 	WARN_ON_ONCE(1);
257 	kvm_inject_undefined(vcpu);
258 	return 1;
259 }
260 
261 static int kvm_handle_eret(struct kvm_vcpu *vcpu)
262 {
263 	if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) &&
264 	    !vcpu_has_ptrauth(vcpu))
265 		return kvm_handle_ptrauth(vcpu);
266 
267 	/*
268 	 * If we got here, two possibilities:
269 	 *
270 	 * - the guest is in EL2, and we need to fully emulate ERET
271 	 *
272 	 * - the guest is in EL1, and we need to reinject the
273          *   exception into the L1 hypervisor.
274 	 *
275 	 * If KVM ever traps ERET for its own use, we'll have to
276 	 * revisit this.
277 	 */
278 	if (is_hyp_ctxt(vcpu))
279 		kvm_emulate_nested_eret(vcpu);
280 	else
281 		kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
282 
283 	return 1;
284 }
285 
286 static int handle_svc(struct kvm_vcpu *vcpu)
287 {
288 	/*
289 	 * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
290 	 * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
291 	 * we should only have to deal with a 64 bit exception.
292 	 */
293 	kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
294 	return 1;
295 }
296 
297 static exit_handle_fn arm_exit_handlers[] = {
298 	[0 ... ESR_ELx_EC_MAX]	= kvm_handle_unknown_ec,
299 	[ESR_ELx_EC_WFx]	= kvm_handle_wfx,
300 	[ESR_ELx_EC_CP15_32]	= kvm_handle_cp15_32,
301 	[ESR_ELx_EC_CP15_64]	= kvm_handle_cp15_64,
302 	[ESR_ELx_EC_CP14_MR]	= kvm_handle_cp14_32,
303 	[ESR_ELx_EC_CP14_LS]	= kvm_handle_cp14_load_store,
304 	[ESR_ELx_EC_CP10_ID]	= kvm_handle_cp10_id,
305 	[ESR_ELx_EC_CP14_64]	= kvm_handle_cp14_64,
306 	[ESR_ELx_EC_HVC32]	= handle_hvc,
307 	[ESR_ELx_EC_SMC32]	= handle_smc,
308 	[ESR_ELx_EC_HVC64]	= handle_hvc,
309 	[ESR_ELx_EC_SMC64]	= handle_smc,
310 	[ESR_ELx_EC_SVC64]	= handle_svc,
311 	[ESR_ELx_EC_SYS64]	= kvm_handle_sys_reg,
312 	[ESR_ELx_EC_SVE]	= handle_sve,
313 	[ESR_ELx_EC_ERET]	= kvm_handle_eret,
314 	[ESR_ELx_EC_IABT_LOW]	= kvm_handle_guest_abort,
315 	[ESR_ELx_EC_DABT_LOW]	= kvm_handle_guest_abort,
316 	[ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
317 	[ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
318 	[ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
319 	[ESR_ELx_EC_BKPT32]	= kvm_handle_guest_debug,
320 	[ESR_ELx_EC_BRK64]	= kvm_handle_guest_debug,
321 	[ESR_ELx_EC_FP_ASIMD]	= kvm_handle_fpasimd,
322 	[ESR_ELx_EC_PAC]	= kvm_handle_ptrauth,
323 };
324 
325 static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
326 {
327 	u64 esr = kvm_vcpu_get_esr(vcpu);
328 	u8 esr_ec = ESR_ELx_EC(esr);
329 
330 	return arm_exit_handlers[esr_ec];
331 }
332 
333 /*
334  * We may be single-stepping an emulated instruction. If the emulation
335  * has been completed in the kernel, we can return to userspace with a
336  * KVM_EXIT_DEBUG, otherwise userspace needs to complete its
337  * emulation first.
338  */
339 static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
340 {
341 	int handled;
342 
343 	/*
344 	 * See ARM ARM B1.14.1: "Hyp traps on instructions
345 	 * that fail their condition code check"
346 	 */
347 	if (!kvm_condition_valid(vcpu)) {
348 		kvm_incr_pc(vcpu);
349 		handled = 1;
350 	} else {
351 		exit_handle_fn exit_handler;
352 
353 		exit_handler = kvm_get_exit_handler(vcpu);
354 		handled = exit_handler(vcpu);
355 	}
356 
357 	return handled;
358 }
359 
360 /*
361  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
362  * proper exit to userspace.
363  */
364 int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
365 {
366 	struct kvm_run *run = vcpu->run;
367 
368 	if (ARM_SERROR_PENDING(exception_index)) {
369 		/*
370 		 * The SError is handled by handle_exit_early(). If the guest
371 		 * survives it will re-execute the original instruction.
372 		 */
373 		return 1;
374 	}
375 
376 	exception_index = ARM_EXCEPTION_CODE(exception_index);
377 
378 	switch (exception_index) {
379 	case ARM_EXCEPTION_IRQ:
380 		return 1;
381 	case ARM_EXCEPTION_EL1_SERROR:
382 		return 1;
383 	case ARM_EXCEPTION_TRAP:
384 		return handle_trap_exceptions(vcpu);
385 	case ARM_EXCEPTION_HYP_GONE:
386 		/*
387 		 * EL2 has been reset to the hyp-stub. This happens when a guest
388 		 * is pre-emptied by kvm_reboot()'s shutdown call.
389 		 */
390 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
391 		return 0;
392 	case ARM_EXCEPTION_IL:
393 		/*
394 		 * We attempted an illegal exception return.  Guest state must
395 		 * have been corrupted somehow.  Give up.
396 		 */
397 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
398 		return -EINVAL;
399 	default:
400 		kvm_pr_unimpl("Unsupported exception type: %d",
401 			      exception_index);
402 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
403 		return 0;
404 	}
405 }
406 
407 /* For exit types that need handling before we can be preempted */
408 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
409 {
410 	if (ARM_SERROR_PENDING(exception_index)) {
411 		if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
412 			u64 disr = kvm_vcpu_get_disr(vcpu);
413 
414 			kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
415 		} else {
416 			kvm_inject_vabt(vcpu);
417 		}
418 
419 		return;
420 	}
421 
422 	exception_index = ARM_EXCEPTION_CODE(exception_index);
423 
424 	if (exception_index == ARM_EXCEPTION_EL1_SERROR)
425 		kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
426 }
427 
428 static void print_nvhe_hyp_panic(const char *name, u64 panic_addr)
429 {
430 	kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr,
431 		(void *)(panic_addr + kaslr_offset()));
432 }
433 
434 static void kvm_nvhe_report_cfi_failure(u64 panic_addr)
435 {
436 	print_nvhe_hyp_panic("CFI failure", panic_addr);
437 
438 	if (IS_ENABLED(CONFIG_CFI_PERMISSIVE))
439 		kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n");
440 }
441 
442 void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
443 					      u64 elr_virt, u64 elr_phys,
444 					      u64 par, uintptr_t vcpu,
445 					      u64 far, u64 hpfar) {
446 	u64 elr_in_kimg = __phys_to_kimg(elr_phys);
447 	u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
448 	u64 mode = spsr & PSR_MODE_MASK;
449 	u64 panic_addr = elr_virt + hyp_offset;
450 
451 	if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
452 		kvm_err("Invalid host exception to nVHE hyp!\n");
453 	} else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
454 		   esr_brk_comment(esr) == BUG_BRK_IMM) {
455 		const char *file = NULL;
456 		unsigned int line = 0;
457 
458 		/* All hyp bugs, including warnings, are treated as fatal. */
459 		if (!is_protected_kvm_enabled() ||
460 		    IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
461 			struct bug_entry *bug = find_bug(elr_in_kimg);
462 
463 			if (bug)
464 				bug_get_file_line(bug, &file, &line);
465 		}
466 
467 		if (file)
468 			kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
469 		else
470 			print_nvhe_hyp_panic("BUG", panic_addr);
471 	} else if (IS_ENABLED(CONFIG_CFI_CLANG) && esr_is_cfi_brk(esr)) {
472 		kvm_nvhe_report_cfi_failure(panic_addr);
473 	} else {
474 		print_nvhe_hyp_panic("panic", panic_addr);
475 	}
476 
477 	/* Dump the nVHE hypervisor backtrace */
478 	kvm_nvhe_dump_backtrace(hyp_offset);
479 
480 	/*
481 	 * Hyp has panicked and we're going to handle that by panicking the
482 	 * kernel. The kernel offset will be revealed in the panic so we're
483 	 * also safe to reveal the hyp offset as a debugging aid for translating
484 	 * hyp VAs to vmlinux addresses.
485 	 */
486 	kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
487 
488 	panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
489 	      spsr, elr_virt, esr, far, hpfar, par, vcpu);
490 }
491