xref: /linux/sound/x86/intel_hdmi_audio.c (revision 05a54fa773284d1a7923cdfdd8f0c8dabb98bd26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *   intel_hdmi_audio.c - Intel HDMI audio driver
4  *
5  *  Copyright (C) 2016 Intel Corp
6  *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7  *		Ramesh Babu K V	<ramesh.babu@intel.com>
8  *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9  *		Jerome Anand <jerome.anand@intel.com>
10  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  * ALSA driver for Intel HDMI audio
14  */
15 
16 #include <linux/types.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/delay.h>
25 #include <linux/string.h>
26 #include <sound/core.h>
27 #include <sound/asoundef.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/initval.h>
31 #include <sound/control.h>
32 #include <sound/jack.h>
33 #include <drm/drm_edid.h>
34 #include <drm/drm_eld.h>
35 #include <drm/intel/intel_lpe_audio.h>
36 #include "intel_hdmi_audio.h"
37 
38 #define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS  5000
39 
40 #define for_each_pipe(card_ctx, pipe) \
41 	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
42 #define for_each_port(card_ctx, port) \
43 	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
44 
45 /*standard module options for ALSA. This module supports only one card*/
46 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
47 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
48 static bool single_port;
49 
50 module_param_named(index, hdmi_card_index, int, 0444);
51 MODULE_PARM_DESC(index,
52 		"Index value for INTEL Intel HDMI Audio controller.");
53 module_param_named(id, hdmi_card_id, charp, 0444);
54 MODULE_PARM_DESC(id,
55 		"ID string for INTEL Intel HDMI Audio controller.");
56 module_param(single_port, bool, 0444);
57 MODULE_PARM_DESC(single_port,
58 		"Single-port mode (for compatibility)");
59 
60 /*
61  * ELD SA bits in the CEA Speaker Allocation data block
62  */
63 static const int eld_speaker_allocation_bits[] = {
64 	[0] = FL | FR,
65 	[1] = LFE,
66 	[2] = FC,
67 	[3] = RL | RR,
68 	[4] = RC,
69 	[5] = FLC | FRC,
70 	[6] = RLC | RRC,
71 	/* the following are not defined in ELD yet */
72 	[7] = 0,
73 };
74 
75 /*
76  * This is an ordered list!
77  *
78  * The preceding ones have better chances to be selected by
79  * hdmi_channel_allocation().
80  */
81 static struct cea_channel_speaker_allocation channel_allocations[] = {
82 /*                        channel:   7     6    5    4    3     2    1    0  */
83 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
84 				/* 2.1 */
85 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
86 				/* Dolby Surround */
87 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
88 				/* surround40 */
89 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
90 				/* surround41 */
91 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
92 				/* surround50 */
93 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
94 				/* surround51 */
95 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
96 				/* 6.1 */
97 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
98 				/* surround71 */
99 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
100 
101 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
102 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
103 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
104 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
105 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
106 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
107 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
108 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
109 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
110 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
111 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
112 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
113 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
114 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
115 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
116 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
117 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
118 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
119 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
120 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
121 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
122 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
123 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
124 };
125 
126 static const struct channel_map_table map_tables[] = {
127 	{ SNDRV_CHMAP_FL,       0x00,   FL },
128 	{ SNDRV_CHMAP_FR,       0x01,   FR },
129 	{ SNDRV_CHMAP_RL,       0x04,   RL },
130 	{ SNDRV_CHMAP_RR,       0x05,   RR },
131 	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
132 	{ SNDRV_CHMAP_FC,       0x03,   FC },
133 	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
134 	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
135 	{} /* terminator */
136 };
137 
138 /* hardware capability structure */
139 static const struct snd_pcm_hardware had_pcm_hardware = {
140 	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
141 		SNDRV_PCM_INFO_MMAP |
142 		SNDRV_PCM_INFO_MMAP_VALID |
143 		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
144 	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
145 		    SNDRV_PCM_FMTBIT_S24_LE |
146 		    SNDRV_PCM_FMTBIT_S32_LE),
147 	.rates = SNDRV_PCM_RATE_32000 |
148 		SNDRV_PCM_RATE_44100 |
149 		SNDRV_PCM_RATE_48000 |
150 		SNDRV_PCM_RATE_88200 |
151 		SNDRV_PCM_RATE_96000 |
152 		SNDRV_PCM_RATE_176400 |
153 		SNDRV_PCM_RATE_192000,
154 	.rate_min = HAD_MIN_RATE,
155 	.rate_max = HAD_MAX_RATE,
156 	.channels_min = HAD_MIN_CHANNEL,
157 	.channels_max = HAD_MAX_CHANNEL,
158 	.buffer_bytes_max = HAD_MAX_BUFFER,
159 	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
160 	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
161 	.periods_min = HAD_MIN_PERIODS,
162 	.periods_max = HAD_MAX_PERIODS,
163 	.fifo_size = HAD_FIFO_SIZE,
164 };
165 
166 /* Get the active PCM substream;
167  * Call had_substream_put() for unreferecing.
168  * Don't call this inside had_spinlock, as it takes by itself
169  */
170 static struct snd_pcm_substream *
171 had_substream_get(struct snd_intelhad *intelhaddata)
172 {
173 	struct snd_pcm_substream *substream;
174 
175 	guard(spinlock_irqsave)(&intelhaddata->had_spinlock);
176 	substream = intelhaddata->stream_info.substream;
177 	if (substream)
178 		intelhaddata->stream_info.substream_refcount++;
179 	return substream;
180 }
181 
182 /* Unref the active PCM substream;
183  * Don't call this inside had_spinlock, as it takes by itself
184  */
185 static void had_substream_put(struct snd_intelhad *intelhaddata)
186 {
187 	guard(spinlock_irqsave)(&intelhaddata->had_spinlock);
188 	intelhaddata->stream_info.substream_refcount--;
189 }
190 
191 static u32 had_config_offset(int pipe)
192 {
193 	switch (pipe) {
194 	default:
195 	case 0:
196 		return AUDIO_HDMI_CONFIG_A;
197 	case 1:
198 		return AUDIO_HDMI_CONFIG_B;
199 	case 2:
200 		return AUDIO_HDMI_CONFIG_C;
201 	}
202 }
203 
204 /* Register access functions */
205 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
206 				 int pipe, u32 reg)
207 {
208 	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
209 }
210 
211 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
212 				   int pipe, u32 reg, u32 val)
213 {
214 	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
215 }
216 
217 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
218 {
219 	if (!ctx->connected)
220 		*val = 0;
221 	else
222 		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
223 }
224 
225 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
226 {
227 	if (ctx->connected)
228 		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
229 }
230 
231 /*
232  * enable / disable audio configuration
233  *
234  * The normal read/modify should not directly be used on VLV2 for
235  * updating AUD_CONFIG register.
236  * This is because:
237  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
238  * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
239  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
240  * register. This field should be 1xy binary for configuration with 6 or
241  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
242  * causes the "channels" field to be updated as 0xy binary resulting in
243  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
244  * appropriate value when doing read-modify of AUD_CONFIG register.
245  */
246 static void had_enable_audio(struct snd_intelhad *intelhaddata,
247 			     bool enable)
248 {
249 	/* update the cached value */
250 	intelhaddata->aud_config.regx.aud_en = enable;
251 	had_write_register(intelhaddata, AUD_CONFIG,
252 			   intelhaddata->aud_config.regval);
253 }
254 
255 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
256 static void had_ack_irqs(struct snd_intelhad *ctx)
257 {
258 	u32 status_reg;
259 
260 	if (!ctx->connected)
261 		return;
262 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
263 	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
264 	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
265 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
266 }
267 
268 /* Reset buffer pointers */
269 static void had_reset_audio(struct snd_intelhad *intelhaddata)
270 {
271 	had_write_register(intelhaddata, AUD_HDMI_STATUS,
272 			   AUD_HDMI_STATUSG_MASK_FUNCRST);
273 	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
274 }
275 
276 /*
277  * initialize audio channel status registers
278  * This function is called in the prepare callback
279  */
280 static int had_prog_status_reg(struct snd_pcm_substream *substream,
281 			struct snd_intelhad *intelhaddata)
282 {
283 	union aud_ch_status_0 ch_stat0 = {.regval = 0};
284 	union aud_ch_status_1 ch_stat1 = {.regval = 0};
285 
286 	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
287 					  IEC958_AES0_NONAUDIO) >> 1;
288 	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
289 					  IEC958_AES3_CON_CLOCK) >> 4;
290 
291 	switch (substream->runtime->rate) {
292 	case AUD_SAMPLE_RATE_32:
293 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
294 		break;
295 
296 	case AUD_SAMPLE_RATE_44_1:
297 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
298 		break;
299 	case AUD_SAMPLE_RATE_48:
300 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
301 		break;
302 	case AUD_SAMPLE_RATE_88_2:
303 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
304 		break;
305 	case AUD_SAMPLE_RATE_96:
306 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
307 		break;
308 	case AUD_SAMPLE_RATE_176_4:
309 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
310 		break;
311 	case AUD_SAMPLE_RATE_192:
312 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
313 		break;
314 
315 	default:
316 		/* control should never come here */
317 		return -EINVAL;
318 	}
319 
320 	had_write_register(intelhaddata,
321 			   AUD_CH_STATUS_0, ch_stat0.regval);
322 
323 	switch (substream->runtime->format) {
324 	case SNDRV_PCM_FORMAT_S16_LE:
325 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
326 		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
327 		break;
328 	case SNDRV_PCM_FORMAT_S24_LE:
329 	case SNDRV_PCM_FORMAT_S32_LE:
330 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
331 		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
332 		break;
333 	default:
334 		return -EINVAL;
335 	}
336 
337 	had_write_register(intelhaddata,
338 			   AUD_CH_STATUS_1, ch_stat1.regval);
339 	return 0;
340 }
341 
342 /*
343  * function to initialize audio
344  * registers and buffer configuration registers
345  * This function is called in the prepare callback
346  */
347 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
348 			       struct snd_intelhad *intelhaddata)
349 {
350 	union aud_cfg cfg_val = {.regval = 0};
351 	union aud_buf_config buf_cfg = {.regval = 0};
352 	u8 channels;
353 
354 	had_prog_status_reg(substream, intelhaddata);
355 
356 	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
357 	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
358 	buf_cfg.regx.aud_delay = 0;
359 	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
360 
361 	channels = substream->runtime->channels;
362 	cfg_val.regx.num_ch = channels - 2;
363 	if (channels <= 2)
364 		cfg_val.regx.layout = LAYOUT0;
365 	else
366 		cfg_val.regx.layout = LAYOUT1;
367 
368 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
369 		cfg_val.regx.packet_mode = 1;
370 
371 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
372 		cfg_val.regx.left_align = 1;
373 
374 	cfg_val.regx.val_bit = 1;
375 
376 	/* fix up the DP bits */
377 	if (intelhaddata->dp_output) {
378 		cfg_val.regx.dp_modei = 1;
379 		cfg_val.regx.set = 1;
380 	}
381 
382 	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
383 	intelhaddata->aud_config = cfg_val;
384 	return 0;
385 }
386 
387 /*
388  * Compute derived values in channel_allocations[].
389  */
390 static void init_channel_allocations(void)
391 {
392 	int i, j;
393 	struct cea_channel_speaker_allocation *p;
394 
395 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
396 		p = channel_allocations + i;
397 		p->channels = 0;
398 		p->spk_mask = 0;
399 		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
400 			if (p->speakers[j]) {
401 				p->channels++;
402 				p->spk_mask |= p->speakers[j];
403 			}
404 	}
405 }
406 
407 /*
408  * The transformation takes two steps:
409  *
410  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
411  *            spk_mask => (channel_allocations[])         => ai->CA
412  *
413  * TODO: it could select the wrong CA from multiple candidates.
414  */
415 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
416 				  int channels)
417 {
418 	int i;
419 	int ca = 0;
420 	int spk_mask = 0;
421 
422 	/*
423 	 * CA defaults to 0 for basic stereo audio
424 	 */
425 	if (channels <= 2)
426 		return 0;
427 
428 	/*
429 	 * expand ELD's speaker allocation mask
430 	 *
431 	 * ELD tells the speaker mask in a compact(paired) form,
432 	 * expand ELD's notions to match the ones used by Audio InfoFrame.
433 	 */
434 
435 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
436 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
437 			spk_mask |= eld_speaker_allocation_bits[i];
438 	}
439 
440 	/* search for the first working match in the CA table */
441 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
442 		if (channels == channel_allocations[i].channels &&
443 		(spk_mask & channel_allocations[i].spk_mask) ==
444 				channel_allocations[i].spk_mask) {
445 			ca = channel_allocations[i].ca_index;
446 			break;
447 		}
448 	}
449 
450 	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
451 
452 	return ca;
453 }
454 
455 /* from speaker bit mask to ALSA API channel position */
456 static int spk_to_chmap(int spk)
457 {
458 	const struct channel_map_table *t = map_tables;
459 
460 	for (; t->map; t++) {
461 		if (t->spk_mask == spk)
462 			return t->map;
463 	}
464 	return 0;
465 }
466 
467 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
468 {
469 	int i, c;
470 	int spk_mask = 0;
471 	struct snd_pcm_chmap_elem *chmap;
472 	u8 eld_high, eld_high_mask = 0xF0;
473 	u8 high_msb;
474 
475 	kfree(intelhaddata->chmap->chmap);
476 	intelhaddata->chmap->chmap = NULL;
477 
478 	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
479 	if (!chmap)
480 		return;
481 
482 	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
483 		intelhaddata->eld[DRM_ELD_SPEAKER]);
484 
485 	/* WA: Fix the max channel supported to 8 */
486 
487 	/*
488 	 * Sink may support more than 8 channels, if eld_high has more than
489 	 * one bit set. SOC supports max 8 channels.
490 	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
491 	 */
492 
493 	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
494 	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
495 	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
496 		/* eld_high & (eld_high-1): if more than 1 bit set */
497 		/* 0x1F: 7 channels */
498 		for (i = 1; i < 4; i++) {
499 			high_msb = eld_high & (0x80 >> i);
500 			if (high_msb) {
501 				intelhaddata->eld[DRM_ELD_SPEAKER] &=
502 					high_msb | 0xF;
503 				break;
504 			}
505 		}
506 	}
507 
508 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
509 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
510 			spk_mask |= eld_speaker_allocation_bits[i];
511 	}
512 
513 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
514 		if (spk_mask == channel_allocations[i].spk_mask) {
515 			for (c = 0; c < channel_allocations[i].channels; c++) {
516 				chmap->map[c] = spk_to_chmap(
517 					channel_allocations[i].speakers[
518 						(MAX_SPEAKERS - 1) - c]);
519 			}
520 			chmap->channels = channel_allocations[i].channels;
521 			intelhaddata->chmap->chmap = chmap;
522 			break;
523 		}
524 	}
525 	if (i >= ARRAY_SIZE(channel_allocations))
526 		kfree(chmap);
527 }
528 
529 /*
530  * ALSA API channel-map control callbacks
531  */
532 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
533 				struct snd_ctl_elem_info *uinfo)
534 {
535 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
536 	uinfo->count = HAD_MAX_CHANNEL;
537 	uinfo->value.integer.min = 0;
538 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
539 	return 0;
540 }
541 
542 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
543 				struct snd_ctl_elem_value *ucontrol)
544 {
545 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
546 	struct snd_intelhad *intelhaddata = info->private_data;
547 	int i;
548 	const struct snd_pcm_chmap_elem *chmap;
549 
550 	memset(ucontrol->value.integer.value, 0,
551 	       sizeof(long) * HAD_MAX_CHANNEL);
552 	guard(mutex)(&intelhaddata->mutex);
553 	if (!intelhaddata->chmap->chmap)
554 		return 0;
555 
556 	chmap = intelhaddata->chmap->chmap;
557 	for (i = 0; i < chmap->channels; i++)
558 		ucontrol->value.integer.value[i] = chmap->map[i];
559 
560 	return 0;
561 }
562 
563 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
564 						struct snd_pcm *pcm)
565 {
566 	int err;
567 
568 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
569 			NULL, 0, (unsigned long)intelhaddata,
570 			&intelhaddata->chmap);
571 	if (err < 0)
572 		return err;
573 
574 	intelhaddata->chmap->private_data = intelhaddata;
575 	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
576 	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
577 	intelhaddata->chmap->chmap = NULL;
578 	return 0;
579 }
580 
581 /*
582  * Initialize Data Island Packets registers
583  * This function is called in the prepare callback
584  */
585 static void had_prog_dip(struct snd_pcm_substream *substream,
586 			 struct snd_intelhad *intelhaddata)
587 {
588 	int i;
589 	union aud_ctrl_st ctrl_state = {.regval = 0};
590 	union aud_info_frame2 frame2 = {.regval = 0};
591 	union aud_info_frame3 frame3 = {.regval = 0};
592 	u8 checksum = 0;
593 	u32 info_frame;
594 	int channels;
595 	int ca;
596 
597 	channels = substream->runtime->channels;
598 
599 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
600 
601 	ca = had_channel_allocation(intelhaddata, channels);
602 	if (intelhaddata->dp_output) {
603 		info_frame = DP_INFO_FRAME_WORD1;
604 		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
605 	} else {
606 		info_frame = HDMI_INFO_FRAME_WORD1;
607 		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
608 		frame3.regx.chnl_alloc = ca;
609 
610 		/* Calculte the byte wide checksum for all valid DIP words */
611 		for (i = 0; i < BYTES_PER_WORD; i++)
612 			checksum += (info_frame >> (i * 8)) & 0xff;
613 		for (i = 0; i < BYTES_PER_WORD; i++)
614 			checksum += (frame2.regval >> (i * 8)) & 0xff;
615 		for (i = 0; i < BYTES_PER_WORD; i++)
616 			checksum += (frame3.regval >> (i * 8)) & 0xff;
617 
618 		frame2.regx.chksum = -(checksum);
619 	}
620 
621 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
622 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
623 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
624 
625 	/* program remaining DIP words with zero */
626 	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
627 		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
628 
629 	ctrl_state.regx.dip_freq = 1;
630 	ctrl_state.regx.dip_en_sta = 1;
631 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
632 }
633 
634 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
635 {
636 	u32 maud_val;
637 
638 	/* Select maud according to DP 1.2 spec */
639 	if (link_rate == DP_2_7_GHZ) {
640 		switch (aud_samp_freq) {
641 		case AUD_SAMPLE_RATE_32:
642 			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
643 			break;
644 
645 		case AUD_SAMPLE_RATE_44_1:
646 			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
647 			break;
648 
649 		case AUD_SAMPLE_RATE_48:
650 			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
651 			break;
652 
653 		case AUD_SAMPLE_RATE_88_2:
654 			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
655 			break;
656 
657 		case AUD_SAMPLE_RATE_96:
658 			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
659 			break;
660 
661 		case AUD_SAMPLE_RATE_176_4:
662 			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
663 			break;
664 
665 		case HAD_MAX_RATE:
666 			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
667 			break;
668 
669 		default:
670 			maud_val = -EINVAL;
671 			break;
672 		}
673 	} else if (link_rate == DP_1_62_GHZ) {
674 		switch (aud_samp_freq) {
675 		case AUD_SAMPLE_RATE_32:
676 			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
677 			break;
678 
679 		case AUD_SAMPLE_RATE_44_1:
680 			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
681 			break;
682 
683 		case AUD_SAMPLE_RATE_48:
684 			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
685 			break;
686 
687 		case AUD_SAMPLE_RATE_88_2:
688 			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
689 			break;
690 
691 		case AUD_SAMPLE_RATE_96:
692 			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
693 			break;
694 
695 		case AUD_SAMPLE_RATE_176_4:
696 			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
697 			break;
698 
699 		case HAD_MAX_RATE:
700 			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
701 			break;
702 
703 		default:
704 			maud_val = -EINVAL;
705 			break;
706 		}
707 	} else
708 		maud_val = -EINVAL;
709 
710 	return maud_val;
711 }
712 
713 /*
714  * Program HDMI audio CTS value
715  *
716  * @aud_samp_freq: sampling frequency of audio data
717  * @tmds: sampling frequency of the display data
718  * @link_rate: DP link rate
719  * @n_param: N value, depends on aud_samp_freq
720  * @intelhaddata: substream private data
721  *
722  * Program CTS register based on the audio and display sampling frequency
723  */
724 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
725 			 u32 n_param, struct snd_intelhad *intelhaddata)
726 {
727 	u32 cts_val;
728 	u64 dividend, divisor;
729 
730 	if (intelhaddata->dp_output) {
731 		/* Substitute cts_val with Maud according to DP 1.2 spec*/
732 		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
733 	} else {
734 		/* Calculate CTS according to HDMI 1.3a spec*/
735 		dividend = (u64)tmds * n_param*1000;
736 		divisor = 128 * aud_samp_freq;
737 		cts_val = div64_u64(dividend, divisor);
738 	}
739 	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
740 		 tmds, n_param, cts_val);
741 	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
742 }
743 
744 static int had_calculate_n_value(u32 aud_samp_freq)
745 {
746 	int n_val;
747 
748 	/* Select N according to HDMI 1.3a spec*/
749 	switch (aud_samp_freq) {
750 	case AUD_SAMPLE_RATE_32:
751 		n_val = 4096;
752 		break;
753 
754 	case AUD_SAMPLE_RATE_44_1:
755 		n_val = 6272;
756 		break;
757 
758 	case AUD_SAMPLE_RATE_48:
759 		n_val = 6144;
760 		break;
761 
762 	case AUD_SAMPLE_RATE_88_2:
763 		n_val = 12544;
764 		break;
765 
766 	case AUD_SAMPLE_RATE_96:
767 		n_val = 12288;
768 		break;
769 
770 	case AUD_SAMPLE_RATE_176_4:
771 		n_val = 25088;
772 		break;
773 
774 	case HAD_MAX_RATE:
775 		n_val = 24576;
776 		break;
777 
778 	default:
779 		n_val = -EINVAL;
780 		break;
781 	}
782 	return n_val;
783 }
784 
785 /*
786  * Program HDMI audio N value
787  *
788  * @aud_samp_freq: sampling frequency of audio data
789  * @n_param: N value, depends on aud_samp_freq
790  * @intelhaddata: substream private data
791  *
792  * This function is called in the prepare callback.
793  * It programs based on the audio and display sampling frequency
794  */
795 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
796 		      struct snd_intelhad *intelhaddata)
797 {
798 	int n_val;
799 
800 	if (intelhaddata->dp_output) {
801 		/*
802 		 * According to DP specs, Maud and Naud values hold
803 		 * a relationship, which is stated as:
804 		 * Maud/Naud = 512 * fs / f_LS_Clk
805 		 * where, fs is the sampling frequency of the audio stream
806 		 * and Naud is 32768 for Async clock.
807 		 */
808 
809 		n_val = DP_NAUD_VAL;
810 	} else
811 		n_val =	had_calculate_n_value(aud_samp_freq);
812 
813 	if (n_val < 0)
814 		return n_val;
815 
816 	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
817 	*n_param = n_val;
818 	return 0;
819 }
820 
821 /*
822  * PCM ring buffer handling
823  *
824  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
825  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
826  * moves at each period elapsed.  The below illustrates how it works:
827  *
828  * At time=0
829  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
830  *  BD  | 0 | 1 | 2 | 3 |
831  *
832  * At time=1 (period elapsed)
833  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
834  *  BD      | 1 | 2 | 3 | 0 |
835  *
836  * At time=2 (second period elapsed)
837  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
838  *  BD          | 2 | 3 | 0 | 1 |
839  *
840  * The bd_head field points to the index of the BD to be read.  It's also the
841  * position to be filled at next.  The pcm_head and the pcm_filled fields
842  * point to the indices of the current position and of the next position to
843  * be filled, respectively.  For PCM buffer there are both _head and _filled
844  * because they may be difference when nperiods > 4.  For example, in the
845  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
846  *
847  * pcm_head (=1) --v               v-- pcm_filled (=5)
848  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
849  *       BD      | 1 | 2 | 3 | 0 |
850  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
851  *
852  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
853  * the hardware skips those BDs in the loop.
854  *
855  * An exceptional setup is the case with nperiods=1.  Since we have to update
856  * BDs after finishing one BD processing, we'd need at least two BDs, where
857  * both BDs point to the same content, the same address, the same size of the
858  * whole PCM buffer.
859  */
860 
861 #define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
862 #define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
863 
864 /* Set up a buffer descriptor at the "filled" position */
865 static void had_prog_bd(struct snd_pcm_substream *substream,
866 			struct snd_intelhad *intelhaddata)
867 {
868 	int idx = intelhaddata->bd_head;
869 	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
870 	u32 addr = substream->runtime->dma_addr + ofs;
871 
872 	addr |= AUD_BUF_VALID;
873 	if (!substream->runtime->no_period_wakeup)
874 		addr |= AUD_BUF_INTR_EN;
875 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
876 	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
877 			   intelhaddata->period_bytes);
878 
879 	/* advance the indices to the next */
880 	intelhaddata->bd_head++;
881 	intelhaddata->bd_head %= intelhaddata->num_bds;
882 	intelhaddata->pcmbuf_filled++;
883 	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
884 }
885 
886 /* invalidate a buffer descriptor with the given index */
887 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
888 			      int idx)
889 {
890 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
891 	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
892 }
893 
894 /* Initial programming of ring buffer */
895 static void had_init_ringbuf(struct snd_pcm_substream *substream,
896 			     struct snd_intelhad *intelhaddata)
897 {
898 	struct snd_pcm_runtime *runtime = substream->runtime;
899 	int i, num_periods;
900 
901 	num_periods = runtime->periods;
902 	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
903 	/* set the minimum 2 BDs for num_periods=1 */
904 	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
905 	intelhaddata->period_bytes =
906 		frames_to_bytes(runtime, runtime->period_size);
907 	WARN_ON(intelhaddata->period_bytes & 0x3f);
908 
909 	intelhaddata->bd_head = 0;
910 	intelhaddata->pcmbuf_head = 0;
911 	intelhaddata->pcmbuf_filled = 0;
912 
913 	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
914 		if (i < intelhaddata->num_bds)
915 			had_prog_bd(substream, intelhaddata);
916 		else /* invalidate the rest */
917 			had_invalidate_bd(intelhaddata, i);
918 	}
919 
920 	intelhaddata->bd_head = 0; /* reset at head again before starting */
921 }
922 
923 /* process a bd, advance to the next */
924 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
925 				struct snd_intelhad *intelhaddata)
926 {
927 	int num_periods = substream->runtime->periods;
928 
929 	/* reprogram the next buffer */
930 	had_prog_bd(substream, intelhaddata);
931 
932 	/* proceed to next */
933 	intelhaddata->pcmbuf_head++;
934 	intelhaddata->pcmbuf_head %= num_periods;
935 }
936 
937 /* process the current BD(s);
938  * returns the current PCM buffer byte position, or -EPIPE for underrun.
939  */
940 static int had_process_ringbuf(struct snd_pcm_substream *substream,
941 			       struct snd_intelhad *intelhaddata)
942 {
943 	int len, processed;
944 
945 	processed = 0;
946 	guard(spinlock_irqsave)(&intelhaddata->had_spinlock);
947 	for (;;) {
948 		/* get the remaining bytes on the buffer */
949 		had_read_register(intelhaddata,
950 				  AUD_BUF_LEN(intelhaddata->bd_head),
951 				  &len);
952 		if (len < 0 || len > intelhaddata->period_bytes) {
953 			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
954 				len);
955 			return -EPIPE;
956 		}
957 
958 		if (len > 0) /* OK, this is the current buffer */
959 			break;
960 
961 		/* len=0 => already empty, check the next buffer */
962 		if (++processed >= intelhaddata->num_bds)
963 			return -EPIPE; /* all empty? - report underrun */
964 		had_advance_ringbuf(substream, intelhaddata);
965 	}
966 
967 	len = intelhaddata->period_bytes - len;
968 	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
969 	return len;
970 }
971 
972 /* called from irq handler */
973 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
974 {
975 	struct snd_pcm_substream *substream;
976 
977 	substream = had_substream_get(intelhaddata);
978 	if (!substream)
979 		return; /* no stream? - bail out */
980 
981 	if (!intelhaddata->connected) {
982 		snd_pcm_stop_xrun(substream);
983 		goto out; /* disconnected? - bail out */
984 	}
985 
986 	/* process or stop the stream */
987 	if (had_process_ringbuf(substream, intelhaddata) < 0)
988 		snd_pcm_stop_xrun(substream);
989 	else
990 		snd_pcm_period_elapsed(substream);
991 
992  out:
993 	had_substream_put(intelhaddata);
994 }
995 
996 /*
997  * The interrupt status 'sticky' bits might not be cleared by
998  * setting '1' to that bit once...
999  */
1000 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1001 {
1002 	int i;
1003 	u32 val;
1004 
1005 	for (i = 0; i < 100; i++) {
1006 		/* clear bit30, 31 AUD_HDMI_STATUS */
1007 		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1008 		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1009 			return;
1010 		udelay(100);
1011 		cond_resched();
1012 		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1013 	}
1014 	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1015 }
1016 
1017 /* Perform some reset procedure after stopping the stream;
1018  * this is called from prepare or hw_free callbacks once after trigger STOP
1019  * or underrun has been processed in order to settle down the h/w state.
1020  */
1021 static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1022 {
1023 	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1024 
1025 	if (!intelhaddata->connected)
1026 		return 0;
1027 
1028 	/* Reset buffer pointers */
1029 	had_reset_audio(intelhaddata);
1030 	wait_clear_underrun_bit(intelhaddata);
1031 	return 0;
1032 }
1033 
1034 /* called from irq handler */
1035 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1036 {
1037 	struct snd_pcm_substream *substream;
1038 
1039 	/* Report UNDERRUN error to above layers */
1040 	substream = had_substream_get(intelhaddata);
1041 	if (substream) {
1042 		snd_pcm_stop_xrun(substream);
1043 		had_substream_put(intelhaddata);
1044 	}
1045 }
1046 
1047 /*
1048  * ALSA PCM open callback
1049  */
1050 static int had_pcm_open(struct snd_pcm_substream *substream)
1051 {
1052 	struct snd_intelhad *intelhaddata;
1053 	struct snd_pcm_runtime *runtime;
1054 	int retval;
1055 
1056 	intelhaddata = snd_pcm_substream_chip(substream);
1057 	runtime = substream->runtime;
1058 
1059 	retval = pm_runtime_resume_and_get(intelhaddata->dev);
1060 	if (retval < 0)
1061 		return retval;
1062 
1063 	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1064 	runtime->hw = had_pcm_hardware;
1065 
1066 	retval = snd_pcm_hw_constraint_integer(runtime,
1067 			 SNDRV_PCM_HW_PARAM_PERIODS);
1068 	if (retval < 0)
1069 		goto error;
1070 
1071 	/* Make sure, that the period size is always aligned
1072 	 * 64byte boundary
1073 	 */
1074 	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1075 			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1076 	if (retval < 0)
1077 		goto error;
1078 
1079 	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1080 	if (retval < 0)
1081 		goto error;
1082 
1083 	/* expose PCM substream */
1084 	scoped_guard(spinlock_irq, &intelhaddata->had_spinlock) {
1085 		intelhaddata->stream_info.substream = substream;
1086 		intelhaddata->stream_info.substream_refcount++;
1087 	}
1088 
1089 	return retval;
1090  error:
1091 	pm_runtime_put_autosuspend(intelhaddata->dev);
1092 	return retval;
1093 }
1094 
1095 /*
1096  * ALSA PCM close callback
1097  */
1098 static int had_pcm_close(struct snd_pcm_substream *substream)
1099 {
1100 	struct snd_intelhad *intelhaddata;
1101 
1102 	intelhaddata = snd_pcm_substream_chip(substream);
1103 
1104 	/* unreference and sync with the pending PCM accesses */
1105 	spin_lock_irq(&intelhaddata->had_spinlock);
1106 	intelhaddata->stream_info.substream = NULL;
1107 	intelhaddata->stream_info.substream_refcount--;
1108 	while (intelhaddata->stream_info.substream_refcount > 0) {
1109 		spin_unlock_irq(&intelhaddata->had_spinlock);
1110 		cpu_relax();
1111 		spin_lock_irq(&intelhaddata->had_spinlock);
1112 	}
1113 	spin_unlock_irq(&intelhaddata->had_spinlock);
1114 
1115 	pm_runtime_put_autosuspend(intelhaddata->dev);
1116 	return 0;
1117 }
1118 
1119 /*
1120  * ALSA PCM hw_params callback
1121  */
1122 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1123 			     struct snd_pcm_hw_params *hw_params)
1124 {
1125 	struct snd_intelhad *intelhaddata;
1126 	int buf_size;
1127 
1128 	intelhaddata = snd_pcm_substream_chip(substream);
1129 	buf_size = params_buffer_bytes(hw_params);
1130 	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1131 		__func__, buf_size);
1132 	return 0;
1133 }
1134 
1135 /*
1136  * ALSA PCM trigger callback
1137  */
1138 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1139 {
1140 	int retval = 0;
1141 	struct snd_intelhad *intelhaddata;
1142 
1143 	intelhaddata = snd_pcm_substream_chip(substream);
1144 
1145 	guard(spinlock)(&intelhaddata->had_spinlock);
1146 	switch (cmd) {
1147 	case SNDRV_PCM_TRIGGER_START:
1148 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1149 	case SNDRV_PCM_TRIGGER_RESUME:
1150 		/* Enable Audio */
1151 		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1152 		had_enable_audio(intelhaddata, true);
1153 		break;
1154 
1155 	case SNDRV_PCM_TRIGGER_STOP:
1156 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1157 		/* Disable Audio */
1158 		had_enable_audio(intelhaddata, false);
1159 		break;
1160 
1161 	default:
1162 		retval = -EINVAL;
1163 	}
1164 	return retval;
1165 }
1166 
1167 /*
1168  * ALSA PCM prepare callback
1169  */
1170 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1171 {
1172 	int retval;
1173 	u32 disp_samp_freq, n_param;
1174 	u32 link_rate = 0;
1175 	struct snd_intelhad *intelhaddata;
1176 	struct snd_pcm_runtime *runtime;
1177 
1178 	intelhaddata = snd_pcm_substream_chip(substream);
1179 	runtime = substream->runtime;
1180 
1181 	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1182 		(int)frames_to_bytes(runtime, runtime->period_size));
1183 	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1184 	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1185 		(int)snd_pcm_lib_buffer_bytes(substream));
1186 	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1187 	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1188 
1189 	/* Get N value in KHz */
1190 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1191 
1192 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1193 	if (retval) {
1194 		dev_err(intelhaddata->dev,
1195 			"programming N value failed %#x\n", retval);
1196 		goto prep_end;
1197 	}
1198 
1199 	if (intelhaddata->dp_output)
1200 		link_rate = intelhaddata->link_rate;
1201 
1202 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1203 		     n_param, intelhaddata);
1204 
1205 	had_prog_dip(substream, intelhaddata);
1206 
1207 	retval = had_init_audio_ctrl(substream, intelhaddata);
1208 
1209 	/* Prog buffer address */
1210 	had_init_ringbuf(substream, intelhaddata);
1211 
1212 	/*
1213 	 * Program channel mapping in following order:
1214 	 * FL, FR, C, LFE, RL, RR
1215 	 */
1216 
1217 	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1218 
1219 prep_end:
1220 	return retval;
1221 }
1222 
1223 /*
1224  * ALSA PCM pointer callback
1225  */
1226 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1227 {
1228 	struct snd_intelhad *intelhaddata;
1229 	int len;
1230 
1231 	intelhaddata = snd_pcm_substream_chip(substream);
1232 
1233 	if (!intelhaddata->connected)
1234 		return SNDRV_PCM_POS_XRUN;
1235 
1236 	len = had_process_ringbuf(substream, intelhaddata);
1237 	if (len < 0)
1238 		return SNDRV_PCM_POS_XRUN;
1239 	len = bytes_to_frames(substream->runtime, len);
1240 	/* wrapping may happen when periods=1 */
1241 	len %= substream->runtime->buffer_size;
1242 	return len;
1243 }
1244 
1245 /*
1246  * ALSA PCM ops
1247  */
1248 static const struct snd_pcm_ops had_pcm_ops = {
1249 	.open =		had_pcm_open,
1250 	.close =	had_pcm_close,
1251 	.hw_params =	had_pcm_hw_params,
1252 	.prepare =	had_pcm_prepare,
1253 	.trigger =	had_pcm_trigger,
1254 	.sync_stop =	had_pcm_sync_stop,
1255 	.pointer =	had_pcm_pointer,
1256 };
1257 
1258 /* process mode change of the running stream; called in mutex */
1259 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1260 {
1261 	struct snd_pcm_substream *substream;
1262 	int retval = 0;
1263 	u32 disp_samp_freq, n_param;
1264 	u32 link_rate = 0;
1265 
1266 	substream = had_substream_get(intelhaddata);
1267 	if (!substream)
1268 		return 0;
1269 
1270 	/* Disable Audio */
1271 	had_enable_audio(intelhaddata, false);
1272 
1273 	/* Update CTS value */
1274 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1275 
1276 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1277 	if (retval) {
1278 		dev_err(intelhaddata->dev,
1279 			"programming N value failed %#x\n", retval);
1280 		goto out;
1281 	}
1282 
1283 	if (intelhaddata->dp_output)
1284 		link_rate = intelhaddata->link_rate;
1285 
1286 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1287 		     n_param, intelhaddata);
1288 
1289 	/* Enable Audio */
1290 	had_enable_audio(intelhaddata, true);
1291 
1292 out:
1293 	had_substream_put(intelhaddata);
1294 	return retval;
1295 }
1296 
1297 /* process hot plug, called from wq with mutex locked */
1298 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1299 {
1300 	struct snd_pcm_substream *substream;
1301 
1302 	scoped_guard(spinlock_irq, &intelhaddata->had_spinlock) {
1303 		if (intelhaddata->connected) {
1304 			dev_dbg(intelhaddata->dev, "Device already connected\n");
1305 			return;
1306 		}
1307 
1308 		/* Disable Audio */
1309 		had_enable_audio(intelhaddata, false);
1310 
1311 		intelhaddata->connected = true;
1312 		dev_dbg(intelhaddata->dev,
1313 			"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1314 			__func__, __LINE__);
1315 	}
1316 
1317 	had_build_channel_allocation_map(intelhaddata);
1318 
1319 	/* Report to above ALSA layer */
1320 	substream = had_substream_get(intelhaddata);
1321 	if (substream) {
1322 		snd_pcm_stop_xrun(substream);
1323 		had_substream_put(intelhaddata);
1324 	}
1325 
1326 	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1327 }
1328 
1329 /* process hot unplug, called from wq with mutex locked */
1330 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1331 {
1332 	struct snd_pcm_substream *substream;
1333 
1334 	scoped_guard(spinlock_irq, &intelhaddata->had_spinlock) {
1335 		if (!intelhaddata->connected) {
1336 			dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1337 			return;
1338 		}
1339 
1340 		/* Disable Audio */
1341 		had_enable_audio(intelhaddata, false);
1342 
1343 		intelhaddata->connected = false;
1344 		dev_dbg(intelhaddata->dev,
1345 			"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1346 			__func__, __LINE__);
1347 	}
1348 
1349 	kfree(intelhaddata->chmap->chmap);
1350 	intelhaddata->chmap->chmap = NULL;
1351 
1352 	/* Report to above ALSA layer */
1353 	substream = had_substream_get(intelhaddata);
1354 	if (substream) {
1355 		snd_pcm_stop_xrun(substream);
1356 		had_substream_put(intelhaddata);
1357 	}
1358 
1359 	snd_jack_report(intelhaddata->jack, 0);
1360 }
1361 
1362 /*
1363  * ALSA iec958 and ELD controls
1364  */
1365 
1366 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1367 				struct snd_ctl_elem_info *uinfo)
1368 {
1369 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1370 	uinfo->count = 1;
1371 	return 0;
1372 }
1373 
1374 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1375 				struct snd_ctl_elem_value *ucontrol)
1376 {
1377 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1378 
1379 	guard(mutex)(&intelhaddata->mutex);
1380 	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1381 	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1382 	ucontrol->value.iec958.status[2] =
1383 					(intelhaddata->aes_bits >> 16) & 0xff;
1384 	ucontrol->value.iec958.status[3] =
1385 					(intelhaddata->aes_bits >> 24) & 0xff;
1386 	return 0;
1387 }
1388 
1389 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1390 				struct snd_ctl_elem_value *ucontrol)
1391 {
1392 	ucontrol->value.iec958.status[0] = 0xff;
1393 	ucontrol->value.iec958.status[1] = 0xff;
1394 	ucontrol->value.iec958.status[2] = 0xff;
1395 	ucontrol->value.iec958.status[3] = 0xff;
1396 	return 0;
1397 }
1398 
1399 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1400 				struct snd_ctl_elem_value *ucontrol)
1401 {
1402 	unsigned int val;
1403 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1404 	int changed = 0;
1405 
1406 	val = (ucontrol->value.iec958.status[0] << 0) |
1407 		(ucontrol->value.iec958.status[1] << 8) |
1408 		(ucontrol->value.iec958.status[2] << 16) |
1409 		(ucontrol->value.iec958.status[3] << 24);
1410 	guard(mutex)(&intelhaddata->mutex);
1411 	if (intelhaddata->aes_bits != val) {
1412 		intelhaddata->aes_bits = val;
1413 		changed = 1;
1414 	}
1415 	return changed;
1416 }
1417 
1418 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1419 			    struct snd_ctl_elem_info *uinfo)
1420 {
1421 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1422 	uinfo->count = HDMI_MAX_ELD_BYTES;
1423 	return 0;
1424 }
1425 
1426 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1427 			   struct snd_ctl_elem_value *ucontrol)
1428 {
1429 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1430 
1431 	guard(mutex)(&intelhaddata->mutex);
1432 	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1433 	       HDMI_MAX_ELD_BYTES);
1434 	return 0;
1435 }
1436 
1437 static const struct snd_kcontrol_new had_controls[] = {
1438 	{
1439 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1440 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1441 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1442 		.info = had_iec958_info, /* shared */
1443 		.get = had_iec958_mask_get,
1444 	},
1445 	{
1446 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1447 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1448 		.info = had_iec958_info,
1449 		.get = had_iec958_get,
1450 		.put = had_iec958_put,
1451 	},
1452 	{
1453 		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1454 			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1455 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1456 		.name = "ELD",
1457 		.info = had_ctl_eld_info,
1458 		.get = had_ctl_eld_get,
1459 	},
1460 };
1461 
1462 /*
1463  * audio interrupt handler
1464  */
1465 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1466 {
1467 	struct snd_intelhad_card *card_ctx = dev_id;
1468 	u32 audio_stat[3] = {};
1469 	int pipe, port;
1470 
1471 	for_each_pipe(card_ctx, pipe) {
1472 		/* use raw register access to ack IRQs even while disconnected */
1473 		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1474 							 AUD_HDMI_STATUS) &
1475 			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1476 
1477 		if (audio_stat[pipe])
1478 			had_write_register_raw(card_ctx, pipe,
1479 					       AUD_HDMI_STATUS, audio_stat[pipe]);
1480 	}
1481 
1482 	for_each_port(card_ctx, port) {
1483 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1484 		int pipe = ctx->pipe;
1485 
1486 		if (pipe < 0)
1487 			continue;
1488 
1489 		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1490 			had_process_buffer_done(ctx);
1491 		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1492 			had_process_buffer_underrun(ctx);
1493 	}
1494 
1495 	return IRQ_HANDLED;
1496 }
1497 
1498 /*
1499  * monitor plug/unplug notification from i915; just kick off the work
1500  */
1501 static void notify_audio_lpe(struct platform_device *pdev, int port)
1502 {
1503 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1504 	struct snd_intelhad *ctx;
1505 
1506 	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1507 	if (single_port)
1508 		ctx->port = port;
1509 
1510 	schedule_work(&ctx->hdmi_audio_wq);
1511 }
1512 
1513 /* the work to handle monitor hot plug/unplug */
1514 static void had_audio_wq(struct work_struct *work)
1515 {
1516 	struct snd_intelhad *ctx =
1517 		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1518 	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1519 	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1520 	int ret;
1521 
1522 	ret = pm_runtime_resume_and_get(ctx->dev);
1523 	if (ret < 0)
1524 		return;
1525 
1526 	mutex_lock(&ctx->mutex);
1527 	if (ppdata->pipe < 0) {
1528 		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1529 			__func__, ctx->port);
1530 
1531 		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1532 
1533 		ctx->dp_output = false;
1534 		ctx->tmds_clock_speed = 0;
1535 		ctx->link_rate = 0;
1536 
1537 		/* Shut down the stream */
1538 		had_process_hot_unplug(ctx);
1539 
1540 		ctx->pipe = -1;
1541 	} else {
1542 		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1543 			__func__, ctx->port, ppdata->ls_clock);
1544 
1545 		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1546 
1547 		ctx->dp_output = ppdata->dp_output;
1548 		if (ctx->dp_output) {
1549 			ctx->tmds_clock_speed = 0;
1550 			ctx->link_rate = ppdata->ls_clock;
1551 		} else {
1552 			ctx->tmds_clock_speed = ppdata->ls_clock;
1553 			ctx->link_rate = 0;
1554 		}
1555 
1556 		/*
1557 		 * Shut down the stream before we change
1558 		 * the pipe assignment for this pcm device
1559 		 */
1560 		had_process_hot_plug(ctx);
1561 
1562 		ctx->pipe = ppdata->pipe;
1563 
1564 		/* Restart the stream if necessary */
1565 		had_process_mode_change(ctx);
1566 	}
1567 
1568 	mutex_unlock(&ctx->mutex);
1569 	pm_runtime_put_autosuspend(ctx->dev);
1570 }
1571 
1572 /*
1573  * Jack interface
1574  */
1575 static int had_create_jack(struct snd_intelhad *ctx,
1576 			   struct snd_pcm *pcm)
1577 {
1578 	char hdmi_str[32];
1579 	int err;
1580 
1581 	snprintf(hdmi_str, sizeof(hdmi_str),
1582 		 "HDMI/DP,pcm=%d", pcm->device);
1583 
1584 	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1585 			   SND_JACK_AVOUT, &ctx->jack,
1586 			   true, false);
1587 	if (err < 0)
1588 		return err;
1589 	ctx->jack->private_data = ctx;
1590 	return 0;
1591 }
1592 
1593 /*
1594  * PM callbacks
1595  */
1596 
1597 static int hdmi_lpe_audio_suspend(struct device *dev)
1598 {
1599 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1600 
1601 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1602 
1603 	return 0;
1604 }
1605 
1606 static int hdmi_lpe_audio_resume(struct device *dev)
1607 {
1608 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1609 
1610 	pm_runtime_mark_last_busy(dev);
1611 
1612 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1613 
1614 	return 0;
1615 }
1616 
1617 /* release resources */
1618 static void hdmi_lpe_audio_free(struct snd_card *card)
1619 {
1620 	struct snd_intelhad_card *card_ctx = card->private_data;
1621 	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1622 	int port;
1623 
1624 	scoped_guard(spinlock_irq, &pdata->lpe_audio_slock) {
1625 		pdata->notify_audio_lpe = NULL;
1626 	}
1627 
1628 	for_each_port(card_ctx, port) {
1629 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1630 
1631 		cancel_work_sync(&ctx->hdmi_audio_wq);
1632 	}
1633 }
1634 
1635 /*
1636  * hdmi_lpe_audio_probe - start bridge with i915
1637  *
1638  * This function is called when the i915 driver creates the
1639  * hdmi-lpe-audio platform device.
1640  */
1641 static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1642 {
1643 	struct snd_card *card;
1644 	struct snd_intelhad_card *card_ctx;
1645 	struct snd_intelhad *ctx;
1646 	struct snd_pcm *pcm;
1647 	struct intel_hdmi_lpe_audio_pdata *pdata;
1648 	int irq;
1649 	struct resource *res_mmio;
1650 	int port, ret;
1651 
1652 	pdata = pdev->dev.platform_data;
1653 	if (!pdata) {
1654 		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1655 		return -EINVAL;
1656 	}
1657 
1658 	/* get resources */
1659 	irq = platform_get_irq(pdev, 0);
1660 	if (irq < 0)
1661 		return irq;
1662 
1663 	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1664 	if (!res_mmio) {
1665 		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1666 		return -ENXIO;
1667 	}
1668 
1669 	/* create a card instance with ALSA framework */
1670 	ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1671 				THIS_MODULE, sizeof(*card_ctx), &card);
1672 	if (ret)
1673 		return ret;
1674 
1675 	card_ctx = card->private_data;
1676 	card_ctx->dev = &pdev->dev;
1677 	card_ctx->card = card;
1678 	strscpy(card->driver, INTEL_HAD);
1679 	strscpy(card->shortname, "Intel HDMI/DP LPE Audio");
1680 	strscpy(card->longname, "Intel HDMI/DP LPE Audio");
1681 
1682 	card_ctx->irq = -1;
1683 
1684 	card->private_free = hdmi_lpe_audio_free;
1685 
1686 	platform_set_drvdata(pdev, card_ctx);
1687 
1688 	card_ctx->num_pipes = pdata->num_pipes;
1689 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1690 
1691 	for_each_port(card_ctx, port) {
1692 		ctx = &card_ctx->pcm_ctx[port];
1693 		ctx->card_ctx = card_ctx;
1694 		ctx->dev = card_ctx->dev;
1695 		ctx->port = single_port ? -1 : port;
1696 		ctx->pipe = -1;
1697 
1698 		spin_lock_init(&ctx->had_spinlock);
1699 		mutex_init(&ctx->mutex);
1700 		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1701 	}
1702 
1703 	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1704 		__func__, (unsigned int)res_mmio->start,
1705 		(unsigned int)res_mmio->end);
1706 
1707 	card_ctx->mmio_start =
1708 		devm_ioremap(&pdev->dev, res_mmio->start,
1709 			     (size_t)(resource_size(res_mmio)));
1710 	if (!card_ctx->mmio_start) {
1711 		dev_err(&pdev->dev, "Could not get ioremap\n");
1712 		return -EACCES;
1713 	}
1714 
1715 	/* setup interrupt handler */
1716 	ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1717 			       0, pdev->name, card_ctx);
1718 	if (ret < 0) {
1719 		dev_err(&pdev->dev, "request_irq failed\n");
1720 		return ret;
1721 	}
1722 
1723 	card_ctx->irq = irq;
1724 
1725 	/* only 32bit addressable */
1726 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1727 	if (ret)
1728 		return ret;
1729 
1730 	init_channel_allocations();
1731 
1732 	card_ctx->num_pipes = pdata->num_pipes;
1733 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1734 
1735 	for_each_port(card_ctx, port) {
1736 		int i;
1737 
1738 		ctx = &card_ctx->pcm_ctx[port];
1739 		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1740 				  MAX_CAP_STREAMS, &pcm);
1741 		if (ret)
1742 			return ret;
1743 
1744 		/* setup private data which can be retrieved when required */
1745 		pcm->private_data = ctx;
1746 		pcm->info_flags = 0;
1747 		strscpy(pcm->name, card->shortname, sizeof(pcm->name));
1748 		/* setup the ops for playback */
1749 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1750 
1751 		/* allocate dma pages;
1752 		 * try to allocate 600k buffer as default which is large enough
1753 		 */
1754 		snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1755 					       card->dev, HAD_DEFAULT_BUFFER,
1756 					       HAD_MAX_BUFFER);
1757 
1758 		/* create controls */
1759 		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1760 			struct snd_kcontrol *kctl;
1761 
1762 			kctl = snd_ctl_new1(&had_controls[i], ctx);
1763 			if (!kctl)
1764 				return -ENOMEM;
1765 
1766 			kctl->id.device = pcm->device;
1767 
1768 			ret = snd_ctl_add(card, kctl);
1769 			if (ret < 0)
1770 				return ret;
1771 		}
1772 
1773 		/* Register channel map controls */
1774 		ret = had_register_chmap_ctls(ctx, pcm);
1775 		if (ret < 0)
1776 			return ret;
1777 
1778 		ret = had_create_jack(ctx, pcm);
1779 		if (ret < 0)
1780 			return ret;
1781 	}
1782 
1783 	ret = snd_card_register(card);
1784 	if (ret)
1785 		return ret;
1786 
1787 	scoped_guard(spinlock_irq, &pdata->lpe_audio_slock) {
1788 		pdata->notify_audio_lpe = notify_audio_lpe;
1789 	}
1790 
1791 	pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1792 	pm_runtime_use_autosuspend(&pdev->dev);
1793 	pm_runtime_enable(&pdev->dev);
1794 	pm_runtime_mark_last_busy(&pdev->dev);
1795 	pm_runtime_idle(&pdev->dev);
1796 
1797 	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1798 	for_each_port(card_ctx, port) {
1799 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1800 
1801 		schedule_work(&ctx->hdmi_audio_wq);
1802 	}
1803 
1804 	return 0;
1805 }
1806 
1807 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1808 {
1809 	return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1810 }
1811 
1812 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1813 	SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1814 };
1815 
1816 static struct platform_driver hdmi_lpe_audio_driver = {
1817 	.driver		= {
1818 		.name  = "hdmi-lpe-audio",
1819 		.pm = pm_ptr(&hdmi_lpe_audio_pm),
1820 	},
1821 	.probe          = hdmi_lpe_audio_probe,
1822 };
1823 
1824 module_platform_driver(hdmi_lpe_audio_driver);
1825 MODULE_ALIAS("platform:hdmi_lpe_audio");
1826 
1827 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1828 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1829 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1830 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1831 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1832 MODULE_LICENSE("GPL v2");
1833