xref: /linux/arch/x86/events/core.c (revision 766331f2860b08695418109582c94e98cc3528fe)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32 
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 #include <asm/uprobes.h>
45 #include <asm/ibt.h>
46 
47 #include "perf_event.h"
48 
49 struct x86_pmu x86_pmu __read_mostly;
50 static struct pmu pmu;
51 
52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
53 	.enabled = 1,
54 	.pmu = &pmu,
55 };
56 
57 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
58 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
59 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
60 
61 /*
62  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
63  * from just a typename, as opposed to an actual function.
64  */
65 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
68 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
69 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
70 
71 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
72 
73 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
76 
77 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
80 
81 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
83 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
84 
85 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
86 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
88 
89 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
90 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
91 
92 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
93 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
94 
95 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
96 
97 /*
98  * This one is magic, it will get called even when PMU init fails (because
99  * there is no PMU), in which case it should simply return NULL.
100  */
101 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
102 
103 u64 __read_mostly hw_cache_event_ids
104 				[PERF_COUNT_HW_CACHE_MAX]
105 				[PERF_COUNT_HW_CACHE_OP_MAX]
106 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
107 u64 __read_mostly hw_cache_extra_regs
108 				[PERF_COUNT_HW_CACHE_MAX]
109 				[PERF_COUNT_HW_CACHE_OP_MAX]
110 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
111 
112 /*
113  * Propagate event elapsed time into the generic event.
114  * Can only be executed on the CPU where the event is active.
115  * Returns the delta events processed.
116  */
x86_perf_event_update(struct perf_event * event)117 u64 x86_perf_event_update(struct perf_event *event)
118 {
119 	struct hw_perf_event *hwc = &event->hw;
120 	int shift = 64 - x86_pmu.cntval_bits;
121 	u64 prev_raw_count, new_raw_count;
122 	u64 delta;
123 
124 	if (unlikely(!hwc->event_base))
125 		return 0;
126 
127 	/*
128 	 * Careful: an NMI might modify the previous event value.
129 	 *
130 	 * Our tactic to handle this is to first atomically read and
131 	 * exchange a new raw count - then add that new-prev delta
132 	 * count to the generic event atomically:
133 	 */
134 	prev_raw_count = local64_read(&hwc->prev_count);
135 	do {
136 		rdpmcl(hwc->event_base_rdpmc, new_raw_count);
137 	} while (!local64_try_cmpxchg(&hwc->prev_count,
138 				      &prev_raw_count, new_raw_count));
139 
140 	/*
141 	 * Now we have the new raw value and have updated the prev
142 	 * timestamp already. We can now calculate the elapsed delta
143 	 * (event-)time and add that to the generic event.
144 	 *
145 	 * Careful, not all hw sign-extends above the physical width
146 	 * of the count.
147 	 */
148 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
149 	delta >>= shift;
150 
151 	local64_add(delta, &event->count);
152 	local64_sub(delta, &hwc->period_left);
153 
154 	return new_raw_count;
155 }
156 
157 /*
158  * Find and validate any extra registers to set up.
159  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)160 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
161 {
162 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
163 	struct hw_perf_event_extra *reg;
164 	struct extra_reg *er;
165 
166 	reg = &event->hw.extra_reg;
167 
168 	if (!extra_regs)
169 		return 0;
170 
171 	for (er = extra_regs; er->msr; er++) {
172 		if (er->event != (config & er->config_mask))
173 			continue;
174 		if (event->attr.config1 & ~er->valid_mask)
175 			return -EINVAL;
176 		/* Check if the extra msrs can be safely accessed*/
177 		if (!er->extra_msr_access)
178 			return -ENXIO;
179 
180 		reg->idx = er->idx;
181 		reg->config = event->attr.config1;
182 		reg->reg = er->msr;
183 		break;
184 	}
185 	return 0;
186 }
187 
188 static atomic_t active_events;
189 static atomic_t pmc_refcount;
190 static DEFINE_MUTEX(pmc_reserve_mutex);
191 
192 #ifdef CONFIG_X86_LOCAL_APIC
193 
get_possible_counter_mask(void)194 static inline u64 get_possible_counter_mask(void)
195 {
196 	u64 cntr_mask = x86_pmu.cntr_mask64;
197 	int i;
198 
199 	if (!is_hybrid())
200 		return cntr_mask;
201 
202 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
203 		cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64;
204 
205 	return cntr_mask;
206 }
207 
reserve_pmc_hardware(void)208 static bool reserve_pmc_hardware(void)
209 {
210 	u64 cntr_mask = get_possible_counter_mask();
211 	int i, end;
212 
213 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
214 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
215 			goto perfctr_fail;
216 	}
217 
218 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
219 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
220 			goto eventsel_fail;
221 	}
222 
223 	return true;
224 
225 eventsel_fail:
226 	end = i;
227 	for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
228 		release_evntsel_nmi(x86_pmu_config_addr(i));
229 	i = X86_PMC_IDX_MAX;
230 
231 perfctr_fail:
232 	end = i;
233 	for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
234 		release_perfctr_nmi(x86_pmu_event_addr(i));
235 
236 	return false;
237 }
238 
release_pmc_hardware(void)239 static void release_pmc_hardware(void)
240 {
241 	u64 cntr_mask = get_possible_counter_mask();
242 	int i;
243 
244 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
245 		release_perfctr_nmi(x86_pmu_event_addr(i));
246 		release_evntsel_nmi(x86_pmu_config_addr(i));
247 	}
248 }
249 
250 #else
251 
reserve_pmc_hardware(void)252 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)253 static void release_pmc_hardware(void) {}
254 
255 #endif
256 
check_hw_exists(struct pmu * pmu,unsigned long * cntr_mask,unsigned long * fixed_cntr_mask)257 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
258 		     unsigned long *fixed_cntr_mask)
259 {
260 	u64 val, val_fail = -1, val_new= ~0;
261 	int i, reg, reg_fail = -1, ret = 0;
262 	int bios_fail = 0;
263 	int reg_safe = -1;
264 
265 	/*
266 	 * Check to see if the BIOS enabled any of the counters, if so
267 	 * complain and bail.
268 	 */
269 	for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) {
270 		reg = x86_pmu_config_addr(i);
271 		ret = rdmsrl_safe(reg, &val);
272 		if (ret)
273 			goto msr_fail;
274 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
275 			bios_fail = 1;
276 			val_fail = val;
277 			reg_fail = reg;
278 		} else {
279 			reg_safe = i;
280 		}
281 	}
282 
283 	if (*(u64 *)fixed_cntr_mask) {
284 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
285 		ret = rdmsrl_safe(reg, &val);
286 		if (ret)
287 			goto msr_fail;
288 		for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) {
289 			if (fixed_counter_disabled(i, pmu))
290 				continue;
291 			if (val & (0x03ULL << i*4)) {
292 				bios_fail = 1;
293 				val_fail = val;
294 				reg_fail = reg;
295 			}
296 		}
297 	}
298 
299 	/*
300 	 * If all the counters are enabled, the below test will always
301 	 * fail.  The tools will also become useless in this scenario.
302 	 * Just fail and disable the hardware counters.
303 	 */
304 
305 	if (reg_safe == -1) {
306 		reg = reg_safe;
307 		goto msr_fail;
308 	}
309 
310 	/*
311 	 * Read the current value, change it and read it back to see if it
312 	 * matches, this is needed to detect certain hardware emulators
313 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
314 	 */
315 	reg = x86_pmu_event_addr(reg_safe);
316 	if (rdmsrl_safe(reg, &val))
317 		goto msr_fail;
318 	val ^= 0xffffUL;
319 	ret = wrmsrl_safe(reg, val);
320 	ret |= rdmsrl_safe(reg, &val_new);
321 	if (ret || val != val_new)
322 		goto msr_fail;
323 
324 	/*
325 	 * We still allow the PMU driver to operate:
326 	 */
327 	if (bios_fail) {
328 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
329 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
330 			      reg_fail, val_fail);
331 	}
332 
333 	return true;
334 
335 msr_fail:
336 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
337 		pr_cont("PMU not available due to virtualization, using software events only.\n");
338 	} else {
339 		pr_cont("Broken PMU hardware detected, using software events only.\n");
340 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
341 		       reg, val_new);
342 	}
343 
344 	return false;
345 }
346 
hw_perf_event_destroy(struct perf_event * event)347 static void hw_perf_event_destroy(struct perf_event *event)
348 {
349 	x86_release_hardware();
350 	atomic_dec(&active_events);
351 }
352 
hw_perf_lbr_event_destroy(struct perf_event * event)353 void hw_perf_lbr_event_destroy(struct perf_event *event)
354 {
355 	hw_perf_event_destroy(event);
356 
357 	/* undo the lbr/bts event accounting */
358 	x86_del_exclusive(x86_lbr_exclusive_lbr);
359 }
360 
x86_pmu_initialized(void)361 static inline int x86_pmu_initialized(void)
362 {
363 	return x86_pmu.handle_irq != NULL;
364 }
365 
366 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)367 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
368 {
369 	struct perf_event_attr *attr = &event->attr;
370 	unsigned int cache_type, cache_op, cache_result;
371 	u64 config, val;
372 
373 	config = attr->config;
374 
375 	cache_type = (config >> 0) & 0xff;
376 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
377 		return -EINVAL;
378 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
379 
380 	cache_op = (config >>  8) & 0xff;
381 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
382 		return -EINVAL;
383 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
384 
385 	cache_result = (config >> 16) & 0xff;
386 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
387 		return -EINVAL;
388 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
389 
390 	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
391 	if (val == 0)
392 		return -ENOENT;
393 
394 	if (val == -1)
395 		return -EINVAL;
396 
397 	hwc->config |= val;
398 	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
399 	return x86_pmu_extra_regs(val, event);
400 }
401 
x86_reserve_hardware(void)402 int x86_reserve_hardware(void)
403 {
404 	int err = 0;
405 
406 	if (!atomic_inc_not_zero(&pmc_refcount)) {
407 		mutex_lock(&pmc_reserve_mutex);
408 		if (atomic_read(&pmc_refcount) == 0) {
409 			if (!reserve_pmc_hardware()) {
410 				err = -EBUSY;
411 			} else {
412 				reserve_ds_buffers();
413 				reserve_lbr_buffers();
414 			}
415 		}
416 		if (!err)
417 			atomic_inc(&pmc_refcount);
418 		mutex_unlock(&pmc_reserve_mutex);
419 	}
420 
421 	return err;
422 }
423 
x86_release_hardware(void)424 void x86_release_hardware(void)
425 {
426 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
427 		release_pmc_hardware();
428 		release_ds_buffers();
429 		release_lbr_buffers();
430 		mutex_unlock(&pmc_reserve_mutex);
431 	}
432 }
433 
434 /*
435  * Check if we can create event of a certain type (that no conflicting events
436  * are present).
437  */
x86_add_exclusive(unsigned int what)438 int x86_add_exclusive(unsigned int what)
439 {
440 	int i;
441 
442 	/*
443 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
444 	 * LBR and BTS are still mutually exclusive.
445 	 */
446 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
447 		goto out;
448 
449 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
450 		mutex_lock(&pmc_reserve_mutex);
451 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
452 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
453 				goto fail_unlock;
454 		}
455 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
456 		mutex_unlock(&pmc_reserve_mutex);
457 	}
458 
459 out:
460 	atomic_inc(&active_events);
461 	return 0;
462 
463 fail_unlock:
464 	mutex_unlock(&pmc_reserve_mutex);
465 	return -EBUSY;
466 }
467 
x86_del_exclusive(unsigned int what)468 void x86_del_exclusive(unsigned int what)
469 {
470 	atomic_dec(&active_events);
471 
472 	/*
473 	 * See the comment in x86_add_exclusive().
474 	 */
475 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
476 		return;
477 
478 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
479 }
480 
x86_setup_perfctr(struct perf_event * event)481 int x86_setup_perfctr(struct perf_event *event)
482 {
483 	struct perf_event_attr *attr = &event->attr;
484 	struct hw_perf_event *hwc = &event->hw;
485 	u64 config;
486 
487 	if (!is_sampling_event(event)) {
488 		hwc->sample_period = x86_pmu.max_period;
489 		hwc->last_period = hwc->sample_period;
490 		local64_set(&hwc->period_left, hwc->sample_period);
491 	}
492 
493 	if (attr->type == event->pmu->type)
494 		return x86_pmu_extra_regs(event->attr.config, event);
495 
496 	if (attr->type == PERF_TYPE_HW_CACHE)
497 		return set_ext_hw_attr(hwc, event);
498 
499 	if (attr->config >= x86_pmu.max_events)
500 		return -EINVAL;
501 
502 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
503 
504 	/*
505 	 * The generic map:
506 	 */
507 	config = x86_pmu.event_map(attr->config);
508 
509 	if (config == 0)
510 		return -ENOENT;
511 
512 	if (config == -1LL)
513 		return -EINVAL;
514 
515 	hwc->config |= config;
516 
517 	return 0;
518 }
519 
520 /*
521  * check that branch_sample_type is compatible with
522  * settings needed for precise_ip > 1 which implies
523  * using the LBR to capture ALL taken branches at the
524  * priv levels of the measurement
525  */
precise_br_compat(struct perf_event * event)526 static inline int precise_br_compat(struct perf_event *event)
527 {
528 	u64 m = event->attr.branch_sample_type;
529 	u64 b = 0;
530 
531 	/* must capture all branches */
532 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
533 		return 0;
534 
535 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
536 
537 	if (!event->attr.exclude_user)
538 		b |= PERF_SAMPLE_BRANCH_USER;
539 
540 	if (!event->attr.exclude_kernel)
541 		b |= PERF_SAMPLE_BRANCH_KERNEL;
542 
543 	/*
544 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
545 	 */
546 
547 	return m == b;
548 }
549 
x86_pmu_max_precise(void)550 int x86_pmu_max_precise(void)
551 {
552 	int precise = 0;
553 
554 	/* Support for constant skid */
555 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
556 		precise++;
557 
558 		/* Support for IP fixup */
559 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
560 			precise++;
561 
562 		if (x86_pmu.pebs_prec_dist)
563 			precise++;
564 	}
565 	return precise;
566 }
567 
x86_pmu_hw_config(struct perf_event * event)568 int x86_pmu_hw_config(struct perf_event *event)
569 {
570 	if (event->attr.precise_ip) {
571 		int precise = x86_pmu_max_precise();
572 
573 		if (event->attr.precise_ip > precise)
574 			return -EOPNOTSUPP;
575 
576 		/* There's no sense in having PEBS for non sampling events: */
577 		if (!is_sampling_event(event))
578 			return -EINVAL;
579 	}
580 	/*
581 	 * check that PEBS LBR correction does not conflict with
582 	 * whatever the user is asking with attr->branch_sample_type
583 	 */
584 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
585 		u64 *br_type = &event->attr.branch_sample_type;
586 
587 		if (has_branch_stack(event)) {
588 			if (!precise_br_compat(event))
589 				return -EOPNOTSUPP;
590 
591 			/* branch_sample_type is compatible */
592 
593 		} else {
594 			/*
595 			 * user did not specify  branch_sample_type
596 			 *
597 			 * For PEBS fixups, we capture all
598 			 * the branches at the priv level of the
599 			 * event.
600 			 */
601 			*br_type = PERF_SAMPLE_BRANCH_ANY;
602 
603 			if (!event->attr.exclude_user)
604 				*br_type |= PERF_SAMPLE_BRANCH_USER;
605 
606 			if (!event->attr.exclude_kernel)
607 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
608 		}
609 	}
610 
611 	if (branch_sample_call_stack(event))
612 		event->attach_state |= PERF_ATTACH_TASK_DATA;
613 
614 	/*
615 	 * Generate PMC IRQs:
616 	 * (keep 'enabled' bit clear for now)
617 	 */
618 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
619 
620 	/*
621 	 * Count user and OS events unless requested not to
622 	 */
623 	if (!event->attr.exclude_user)
624 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
625 	if (!event->attr.exclude_kernel)
626 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
627 
628 	if (event->attr.type == event->pmu->type)
629 		event->hw.config |= x86_pmu_get_event_config(event);
630 
631 	if (!event->attr.freq && x86_pmu.limit_period) {
632 		s64 left = event->attr.sample_period;
633 		x86_pmu.limit_period(event, &left);
634 		if (left > event->attr.sample_period)
635 			return -EINVAL;
636 	}
637 
638 	/* sample_regs_user never support XMM registers */
639 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
640 		return -EINVAL;
641 	/*
642 	 * Besides the general purpose registers, XMM registers may
643 	 * be collected in PEBS on some platforms, e.g. Icelake
644 	 */
645 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
646 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
647 			return -EINVAL;
648 
649 		if (!event->attr.precise_ip)
650 			return -EINVAL;
651 	}
652 
653 	return x86_setup_perfctr(event);
654 }
655 
656 /*
657  * Setup the hardware configuration for a given attr_type
658  */
__x86_pmu_event_init(struct perf_event * event)659 static int __x86_pmu_event_init(struct perf_event *event)
660 {
661 	int err;
662 
663 	if (!x86_pmu_initialized())
664 		return -ENODEV;
665 
666 	err = x86_reserve_hardware();
667 	if (err)
668 		return err;
669 
670 	atomic_inc(&active_events);
671 	event->destroy = hw_perf_event_destroy;
672 
673 	event->hw.idx = -1;
674 	event->hw.last_cpu = -1;
675 	event->hw.last_tag = ~0ULL;
676 
677 	/* mark unused */
678 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
679 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
680 
681 	return x86_pmu.hw_config(event);
682 }
683 
x86_pmu_disable_all(void)684 void x86_pmu_disable_all(void)
685 {
686 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
687 	int idx;
688 
689 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
690 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
691 		u64 val;
692 
693 		if (!test_bit(idx, cpuc->active_mask))
694 			continue;
695 		rdmsrl(x86_pmu_config_addr(idx), val);
696 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
697 			continue;
698 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
699 		wrmsrl(x86_pmu_config_addr(idx), val);
700 		if (is_counter_pair(hwc))
701 			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
702 	}
703 }
704 
perf_guest_get_msrs(int * nr,void * data)705 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
706 {
707 	return static_call(x86_pmu_guest_get_msrs)(nr, data);
708 }
709 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
710 
711 /*
712  * There may be PMI landing after enabled=0. The PMI hitting could be before or
713  * after disable_all.
714  *
715  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
716  * It will not be re-enabled in the NMI handler again, because enabled=0. After
717  * handling the NMI, disable_all will be called, which will not change the
718  * state either. If PMI hits after disable_all, the PMU is already disabled
719  * before entering NMI handler. The NMI handler will not change the state
720  * either.
721  *
722  * So either situation is harmless.
723  */
x86_pmu_disable(struct pmu * pmu)724 static void x86_pmu_disable(struct pmu *pmu)
725 {
726 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
727 
728 	if (!x86_pmu_initialized())
729 		return;
730 
731 	if (!cpuc->enabled)
732 		return;
733 
734 	cpuc->n_added = 0;
735 	cpuc->enabled = 0;
736 	barrier();
737 
738 	static_call(x86_pmu_disable_all)();
739 }
740 
x86_pmu_enable_all(int added)741 void x86_pmu_enable_all(int added)
742 {
743 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
744 	int idx;
745 
746 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
747 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
748 
749 		if (!test_bit(idx, cpuc->active_mask))
750 			continue;
751 
752 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
753 	}
754 }
755 
is_x86_event(struct perf_event * event)756 static inline int is_x86_event(struct perf_event *event)
757 {
758 	int i;
759 
760 	if (!is_hybrid())
761 		return event->pmu == &pmu;
762 
763 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
764 		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
765 			return true;
766 	}
767 
768 	return false;
769 }
770 
x86_get_pmu(unsigned int cpu)771 struct pmu *x86_get_pmu(unsigned int cpu)
772 {
773 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
774 
775 	/*
776 	 * All CPUs of the hybrid type have been offline.
777 	 * The x86_get_pmu() should not be invoked.
778 	 */
779 	if (WARN_ON_ONCE(!cpuc->pmu))
780 		return &pmu;
781 
782 	return cpuc->pmu;
783 }
784 /*
785  * Event scheduler state:
786  *
787  * Assign events iterating over all events and counters, beginning
788  * with events with least weights first. Keep the current iterator
789  * state in struct sched_state.
790  */
791 struct sched_state {
792 	int	weight;
793 	int	event;		/* event index */
794 	int	counter;	/* counter index */
795 	int	unassigned;	/* number of events to be assigned left */
796 	int	nr_gp;		/* number of GP counters used */
797 	u64	used;
798 };
799 
800 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
801 #define	SCHED_STATES_MAX	2
802 
803 struct perf_sched {
804 	int			max_weight;
805 	int			max_events;
806 	int			max_gp;
807 	int			saved_states;
808 	struct event_constraint	**constraints;
809 	struct sched_state	state;
810 	struct sched_state	saved[SCHED_STATES_MAX];
811 };
812 
813 /*
814  * Initialize iterator that runs through all events and counters.
815  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)816 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
817 			    int num, int wmin, int wmax, int gpmax)
818 {
819 	int idx;
820 
821 	memset(sched, 0, sizeof(*sched));
822 	sched->max_events	= num;
823 	sched->max_weight	= wmax;
824 	sched->max_gp		= gpmax;
825 	sched->constraints	= constraints;
826 
827 	for (idx = 0; idx < num; idx++) {
828 		if (constraints[idx]->weight == wmin)
829 			break;
830 	}
831 
832 	sched->state.event	= idx;		/* start with min weight */
833 	sched->state.weight	= wmin;
834 	sched->state.unassigned	= num;
835 }
836 
perf_sched_save_state(struct perf_sched * sched)837 static void perf_sched_save_state(struct perf_sched *sched)
838 {
839 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
840 		return;
841 
842 	sched->saved[sched->saved_states] = sched->state;
843 	sched->saved_states++;
844 }
845 
perf_sched_restore_state(struct perf_sched * sched)846 static bool perf_sched_restore_state(struct perf_sched *sched)
847 {
848 	if (!sched->saved_states)
849 		return false;
850 
851 	sched->saved_states--;
852 	sched->state = sched->saved[sched->saved_states];
853 
854 	/* this assignment didn't work out */
855 	/* XXX broken vs EVENT_PAIR */
856 	sched->state.used &= ~BIT_ULL(sched->state.counter);
857 
858 	/* try the next one */
859 	sched->state.counter++;
860 
861 	return true;
862 }
863 
864 /*
865  * Select a counter for the current event to schedule. Return true on
866  * success.
867  */
__perf_sched_find_counter(struct perf_sched * sched)868 static bool __perf_sched_find_counter(struct perf_sched *sched)
869 {
870 	struct event_constraint *c;
871 	int idx;
872 
873 	if (!sched->state.unassigned)
874 		return false;
875 
876 	if (sched->state.event >= sched->max_events)
877 		return false;
878 
879 	c = sched->constraints[sched->state.event];
880 	/* Prefer fixed purpose counters */
881 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
882 		idx = INTEL_PMC_IDX_FIXED;
883 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
884 			u64 mask = BIT_ULL(idx);
885 
886 			if (sched->state.used & mask)
887 				continue;
888 
889 			sched->state.used |= mask;
890 			goto done;
891 		}
892 	}
893 
894 	/* Grab the first unused counter starting with idx */
895 	idx = sched->state.counter;
896 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
897 		u64 mask = BIT_ULL(idx);
898 
899 		if (c->flags & PERF_X86_EVENT_PAIR)
900 			mask |= mask << 1;
901 
902 		if (sched->state.used & mask)
903 			continue;
904 
905 		if (sched->state.nr_gp++ >= sched->max_gp)
906 			return false;
907 
908 		sched->state.used |= mask;
909 		goto done;
910 	}
911 
912 	return false;
913 
914 done:
915 	sched->state.counter = idx;
916 
917 	if (c->overlap)
918 		perf_sched_save_state(sched);
919 
920 	return true;
921 }
922 
perf_sched_find_counter(struct perf_sched * sched)923 static bool perf_sched_find_counter(struct perf_sched *sched)
924 {
925 	while (!__perf_sched_find_counter(sched)) {
926 		if (!perf_sched_restore_state(sched))
927 			return false;
928 	}
929 
930 	return true;
931 }
932 
933 /*
934  * Go through all unassigned events and find the next one to schedule.
935  * Take events with the least weight first. Return true on success.
936  */
perf_sched_next_event(struct perf_sched * sched)937 static bool perf_sched_next_event(struct perf_sched *sched)
938 {
939 	struct event_constraint *c;
940 
941 	if (!sched->state.unassigned || !--sched->state.unassigned)
942 		return false;
943 
944 	do {
945 		/* next event */
946 		sched->state.event++;
947 		if (sched->state.event >= sched->max_events) {
948 			/* next weight */
949 			sched->state.event = 0;
950 			sched->state.weight++;
951 			if (sched->state.weight > sched->max_weight)
952 				return false;
953 		}
954 		c = sched->constraints[sched->state.event];
955 	} while (c->weight != sched->state.weight);
956 
957 	sched->state.counter = 0;	/* start with first counter */
958 
959 	return true;
960 }
961 
962 /*
963  * Assign a counter for each event.
964  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)965 int perf_assign_events(struct event_constraint **constraints, int n,
966 			int wmin, int wmax, int gpmax, int *assign)
967 {
968 	struct perf_sched sched;
969 
970 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
971 
972 	do {
973 		if (!perf_sched_find_counter(&sched))
974 			break;	/* failed */
975 		if (assign)
976 			assign[sched.state.event] = sched.state.counter;
977 	} while (perf_sched_next_event(&sched));
978 
979 	return sched.state.unassigned;
980 }
981 EXPORT_SYMBOL_GPL(perf_assign_events);
982 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)983 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
984 {
985 	struct event_constraint *c;
986 	struct perf_event *e;
987 	int n0, i, wmin, wmax, unsched = 0;
988 	struct hw_perf_event *hwc;
989 	u64 used_mask = 0;
990 
991 	/*
992 	 * Compute the number of events already present; see x86_pmu_add(),
993 	 * validate_group() and x86_pmu_commit_txn(). For the former two
994 	 * cpuc->n_events hasn't been updated yet, while for the latter
995 	 * cpuc->n_txn contains the number of events added in the current
996 	 * transaction.
997 	 */
998 	n0 = cpuc->n_events;
999 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1000 		n0 -= cpuc->n_txn;
1001 
1002 	static_call_cond(x86_pmu_start_scheduling)(cpuc);
1003 
1004 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1005 		c = cpuc->event_constraint[i];
1006 
1007 		/*
1008 		 * Previously scheduled events should have a cached constraint,
1009 		 * while new events should not have one.
1010 		 */
1011 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1012 
1013 		/*
1014 		 * Request constraints for new events; or for those events that
1015 		 * have a dynamic constraint -- for those the constraint can
1016 		 * change due to external factors (sibling state, allow_tfa).
1017 		 */
1018 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1019 			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1020 			cpuc->event_constraint[i] = c;
1021 		}
1022 
1023 		wmin = min(wmin, c->weight);
1024 		wmax = max(wmax, c->weight);
1025 	}
1026 
1027 	/*
1028 	 * fastpath, try to reuse previous register
1029 	 */
1030 	for (i = 0; i < n; i++) {
1031 		u64 mask;
1032 
1033 		hwc = &cpuc->event_list[i]->hw;
1034 		c = cpuc->event_constraint[i];
1035 
1036 		/* never assigned */
1037 		if (hwc->idx == -1)
1038 			break;
1039 
1040 		/* constraint still honored */
1041 		if (!test_bit(hwc->idx, c->idxmsk))
1042 			break;
1043 
1044 		mask = BIT_ULL(hwc->idx);
1045 		if (is_counter_pair(hwc))
1046 			mask |= mask << 1;
1047 
1048 		/* not already used */
1049 		if (used_mask & mask)
1050 			break;
1051 
1052 		used_mask |= mask;
1053 
1054 		if (assign)
1055 			assign[i] = hwc->idx;
1056 	}
1057 
1058 	/* slow path */
1059 	if (i != n) {
1060 		int gpmax = x86_pmu_max_num_counters(cpuc->pmu);
1061 
1062 		/*
1063 		 * Do not allow scheduling of more than half the available
1064 		 * generic counters.
1065 		 *
1066 		 * This helps avoid counter starvation of sibling thread by
1067 		 * ensuring at most half the counters cannot be in exclusive
1068 		 * mode. There is no designated counters for the limits. Any
1069 		 * N/2 counters can be used. This helps with events with
1070 		 * specific counter constraints.
1071 		 */
1072 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1073 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1074 			gpmax /= 2;
1075 
1076 		/*
1077 		 * Reduce the amount of available counters to allow fitting
1078 		 * the extra Merge events needed by large increment events.
1079 		 */
1080 		if (x86_pmu.flags & PMU_FL_PAIR) {
1081 			gpmax -= cpuc->n_pair;
1082 			WARN_ON(gpmax <= 0);
1083 		}
1084 
1085 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1086 					     wmax, gpmax, assign);
1087 	}
1088 
1089 	/*
1090 	 * In case of success (unsched = 0), mark events as committed,
1091 	 * so we do not put_constraint() in case new events are added
1092 	 * and fail to be scheduled
1093 	 *
1094 	 * We invoke the lower level commit callback to lock the resource
1095 	 *
1096 	 * We do not need to do all of this in case we are called to
1097 	 * validate an event group (assign == NULL)
1098 	 */
1099 	if (!unsched && assign) {
1100 		for (i = 0; i < n; i++)
1101 			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1102 	} else {
1103 		for (i = n0; i < n; i++) {
1104 			e = cpuc->event_list[i];
1105 
1106 			/*
1107 			 * release events that failed scheduling
1108 			 */
1109 			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1110 
1111 			cpuc->event_constraint[i] = NULL;
1112 		}
1113 	}
1114 
1115 	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1116 
1117 	return unsched ? -EINVAL : 0;
1118 }
1119 
add_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1120 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1121 			       struct perf_event *event)
1122 {
1123 	if (is_metric_event(event)) {
1124 		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1125 			return -EINVAL;
1126 		cpuc->n_metric++;
1127 		cpuc->n_txn_metric++;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
del_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1133 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1134 				struct perf_event *event)
1135 {
1136 	if (is_metric_event(event))
1137 		cpuc->n_metric--;
1138 }
1139 
collect_event(struct cpu_hw_events * cpuc,struct perf_event * event,int max_count,int n)1140 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1141 			 int max_count, int n)
1142 {
1143 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1144 
1145 	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1146 		return -EINVAL;
1147 
1148 	if (n >= max_count + cpuc->n_metric)
1149 		return -EINVAL;
1150 
1151 	cpuc->event_list[n] = event;
1152 	if (is_counter_pair(&event->hw)) {
1153 		cpuc->n_pair++;
1154 		cpuc->n_txn_pair++;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 /*
1161  * dogrp: true if must collect siblings events (group)
1162  * returns total number of events and error code
1163  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1164 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1165 {
1166 	struct perf_event *event;
1167 	int n, max_count;
1168 
1169 	max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu);
1170 
1171 	/* current number of events already accepted */
1172 	n = cpuc->n_events;
1173 	if (!cpuc->n_events)
1174 		cpuc->pebs_output = 0;
1175 
1176 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1177 		/*
1178 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1179 		 * away, the group was broken down and this singleton event
1180 		 * can't schedule any more.
1181 		 */
1182 		if (is_pebs_pt(leader) && !leader->aux_event)
1183 			return -EINVAL;
1184 
1185 		/*
1186 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1187 		 */
1188 		if (cpuc->pebs_output &&
1189 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1190 			return -EINVAL;
1191 
1192 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1193 	}
1194 
1195 	if (is_x86_event(leader)) {
1196 		if (collect_event(cpuc, leader, max_count, n))
1197 			return -EINVAL;
1198 		n++;
1199 	}
1200 
1201 	if (!dogrp)
1202 		return n;
1203 
1204 	for_each_sibling_event(event, leader) {
1205 		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1206 			continue;
1207 
1208 		if (collect_event(cpuc, event, max_count, n))
1209 			return -EINVAL;
1210 
1211 		n++;
1212 	}
1213 	return n;
1214 }
1215 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1216 static inline void x86_assign_hw_event(struct perf_event *event,
1217 				struct cpu_hw_events *cpuc, int i)
1218 {
1219 	struct hw_perf_event *hwc = &event->hw;
1220 	int idx;
1221 
1222 	idx = hwc->idx = cpuc->assign[i];
1223 	hwc->last_cpu = smp_processor_id();
1224 	hwc->last_tag = ++cpuc->tags[i];
1225 
1226 	static_call_cond(x86_pmu_assign)(event, idx);
1227 
1228 	switch (hwc->idx) {
1229 	case INTEL_PMC_IDX_FIXED_BTS:
1230 	case INTEL_PMC_IDX_FIXED_VLBR:
1231 		hwc->config_base = 0;
1232 		hwc->event_base	= 0;
1233 		break;
1234 
1235 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1236 		/* All the metric events are mapped onto the fixed counter 3. */
1237 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1238 		fallthrough;
1239 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1240 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1241 		hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED);
1242 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1243 					INTEL_PMC_FIXED_RDPMC_BASE;
1244 		break;
1245 
1246 	default:
1247 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1248 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1249 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1250 		break;
1251 	}
1252 }
1253 
1254 /**
1255  * x86_perf_rdpmc_index - Return PMC counter used for event
1256  * @event: the perf_event to which the PMC counter was assigned
1257  *
1258  * The counter assigned to this performance event may change if interrupts
1259  * are enabled. This counter should thus never be used while interrupts are
1260  * enabled. Before this function is used to obtain the assigned counter the
1261  * event should be checked for validity using, for example,
1262  * perf_event_read_local(), within the same interrupt disabled section in
1263  * which this counter is planned to be used.
1264  *
1265  * Return: The index of the performance monitoring counter assigned to
1266  * @perf_event.
1267  */
x86_perf_rdpmc_index(struct perf_event * event)1268 int x86_perf_rdpmc_index(struct perf_event *event)
1269 {
1270 	lockdep_assert_irqs_disabled();
1271 
1272 	return event->hw.event_base_rdpmc;
1273 }
1274 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1275 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1276 					struct cpu_hw_events *cpuc,
1277 					int i)
1278 {
1279 	return hwc->idx == cpuc->assign[i] &&
1280 		hwc->last_cpu == smp_processor_id() &&
1281 		hwc->last_tag == cpuc->tags[i];
1282 }
1283 
1284 static void x86_pmu_start(struct perf_event *event, int flags);
1285 
x86_pmu_enable(struct pmu * pmu)1286 static void x86_pmu_enable(struct pmu *pmu)
1287 {
1288 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1289 	struct perf_event *event;
1290 	struct hw_perf_event *hwc;
1291 	int i, added = cpuc->n_added;
1292 
1293 	if (!x86_pmu_initialized())
1294 		return;
1295 
1296 	if (cpuc->enabled)
1297 		return;
1298 
1299 	if (cpuc->n_added) {
1300 		int n_running = cpuc->n_events - cpuc->n_added;
1301 		/*
1302 		 * apply assignment obtained either from
1303 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1304 		 *
1305 		 * step1: save events moving to new counters
1306 		 */
1307 		for (i = 0; i < n_running; i++) {
1308 			event = cpuc->event_list[i];
1309 			hwc = &event->hw;
1310 
1311 			/*
1312 			 * we can avoid reprogramming counter if:
1313 			 * - assigned same counter as last time
1314 			 * - running on same CPU as last time
1315 			 * - no other event has used the counter since
1316 			 */
1317 			if (hwc->idx == -1 ||
1318 			    match_prev_assignment(hwc, cpuc, i))
1319 				continue;
1320 
1321 			/*
1322 			 * Ensure we don't accidentally enable a stopped
1323 			 * counter simply because we rescheduled.
1324 			 */
1325 			if (hwc->state & PERF_HES_STOPPED)
1326 				hwc->state |= PERF_HES_ARCH;
1327 
1328 			x86_pmu_stop(event, PERF_EF_UPDATE);
1329 		}
1330 
1331 		/*
1332 		 * step2: reprogram moved events into new counters
1333 		 */
1334 		for (i = 0; i < cpuc->n_events; i++) {
1335 			event = cpuc->event_list[i];
1336 			hwc = &event->hw;
1337 
1338 			if (!match_prev_assignment(hwc, cpuc, i))
1339 				x86_assign_hw_event(event, cpuc, i);
1340 			else if (i < n_running)
1341 				continue;
1342 
1343 			if (hwc->state & PERF_HES_ARCH)
1344 				continue;
1345 
1346 			/*
1347 			 * if cpuc->enabled = 0, then no wrmsr as
1348 			 * per x86_pmu_enable_event()
1349 			 */
1350 			x86_pmu_start(event, PERF_EF_RELOAD);
1351 		}
1352 		cpuc->n_added = 0;
1353 		perf_events_lapic_init();
1354 	}
1355 
1356 	cpuc->enabled = 1;
1357 	barrier();
1358 
1359 	static_call(x86_pmu_enable_all)(added);
1360 }
1361 
1362 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1363 
1364 /*
1365  * Set the next IRQ period, based on the hwc->period_left value.
1366  * To be called with the event disabled in hw:
1367  */
x86_perf_event_set_period(struct perf_event * event)1368 int x86_perf_event_set_period(struct perf_event *event)
1369 {
1370 	struct hw_perf_event *hwc = &event->hw;
1371 	s64 left = local64_read(&hwc->period_left);
1372 	s64 period = hwc->sample_period;
1373 	int ret = 0, idx = hwc->idx;
1374 
1375 	if (unlikely(!hwc->event_base))
1376 		return 0;
1377 
1378 	/*
1379 	 * If we are way outside a reasonable range then just skip forward:
1380 	 */
1381 	if (unlikely(left <= -period)) {
1382 		left = period;
1383 		local64_set(&hwc->period_left, left);
1384 		hwc->last_period = period;
1385 		ret = 1;
1386 	}
1387 
1388 	if (unlikely(left <= 0)) {
1389 		left += period;
1390 		local64_set(&hwc->period_left, left);
1391 		hwc->last_period = period;
1392 		ret = 1;
1393 	}
1394 	/*
1395 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1396 	 */
1397 	if (unlikely(left < 2))
1398 		left = 2;
1399 
1400 	if (left > x86_pmu.max_period)
1401 		left = x86_pmu.max_period;
1402 
1403 	static_call_cond(x86_pmu_limit_period)(event, &left);
1404 
1405 	this_cpu_write(pmc_prev_left[idx], left);
1406 
1407 	/*
1408 	 * The hw event starts counting from this event offset,
1409 	 * mark it to be able to extra future deltas:
1410 	 */
1411 	local64_set(&hwc->prev_count, (u64)-left);
1412 
1413 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1414 
1415 	/*
1416 	 * Sign extend the Merge event counter's upper 16 bits since
1417 	 * we currently declare a 48-bit counter width
1418 	 */
1419 	if (is_counter_pair(hwc))
1420 		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1421 
1422 	perf_event_update_userpage(event);
1423 
1424 	return ret;
1425 }
1426 
x86_pmu_enable_event(struct perf_event * event)1427 void x86_pmu_enable_event(struct perf_event *event)
1428 {
1429 	if (__this_cpu_read(cpu_hw_events.enabled))
1430 		__x86_pmu_enable_event(&event->hw,
1431 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1432 }
1433 
1434 /*
1435  * Add a single event to the PMU.
1436  *
1437  * The event is added to the group of enabled events
1438  * but only if it can be scheduled with existing events.
1439  */
x86_pmu_add(struct perf_event * event,int flags)1440 static int x86_pmu_add(struct perf_event *event, int flags)
1441 {
1442 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1443 	struct hw_perf_event *hwc;
1444 	int assign[X86_PMC_IDX_MAX];
1445 	int n, n0, ret;
1446 
1447 	hwc = &event->hw;
1448 
1449 	n0 = cpuc->n_events;
1450 	ret = n = collect_events(cpuc, event, false);
1451 	if (ret < 0)
1452 		goto out;
1453 
1454 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1455 	if (!(flags & PERF_EF_START))
1456 		hwc->state |= PERF_HES_ARCH;
1457 
1458 	/*
1459 	 * If group events scheduling transaction was started,
1460 	 * skip the schedulability test here, it will be performed
1461 	 * at commit time (->commit_txn) as a whole.
1462 	 *
1463 	 * If commit fails, we'll call ->del() on all events
1464 	 * for which ->add() was called.
1465 	 */
1466 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1467 		goto done_collect;
1468 
1469 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1470 	if (ret)
1471 		goto out;
1472 	/*
1473 	 * copy new assignment, now we know it is possible
1474 	 * will be used by hw_perf_enable()
1475 	 */
1476 	memcpy(cpuc->assign, assign, n*sizeof(int));
1477 
1478 done_collect:
1479 	/*
1480 	 * Commit the collect_events() state. See x86_pmu_del() and
1481 	 * x86_pmu_*_txn().
1482 	 */
1483 	cpuc->n_events = n;
1484 	cpuc->n_added += n - n0;
1485 	cpuc->n_txn += n - n0;
1486 
1487 	/*
1488 	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1489 	 * so we enable LBRs before an event needs them etc..
1490 	 */
1491 	static_call_cond(x86_pmu_add)(event);
1492 
1493 	ret = 0;
1494 out:
1495 	return ret;
1496 }
1497 
x86_pmu_start(struct perf_event * event,int flags)1498 static void x86_pmu_start(struct perf_event *event, int flags)
1499 {
1500 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1501 	int idx = event->hw.idx;
1502 
1503 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1504 		return;
1505 
1506 	if (WARN_ON_ONCE(idx == -1))
1507 		return;
1508 
1509 	if (flags & PERF_EF_RELOAD) {
1510 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1511 		static_call(x86_pmu_set_period)(event);
1512 	}
1513 
1514 	event->hw.state = 0;
1515 
1516 	cpuc->events[idx] = event;
1517 	__set_bit(idx, cpuc->active_mask);
1518 	static_call(x86_pmu_enable)(event);
1519 	perf_event_update_userpage(event);
1520 }
1521 
perf_event_print_debug(void)1522 void perf_event_print_debug(void)
1523 {
1524 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1525 	unsigned long *cntr_mask, *fixed_cntr_mask;
1526 	struct event_constraint *pebs_constraints;
1527 	struct cpu_hw_events *cpuc;
1528 	u64 pebs, debugctl;
1529 	int cpu, idx;
1530 
1531 	guard(irqsave)();
1532 
1533 	cpu = smp_processor_id();
1534 	cpuc = &per_cpu(cpu_hw_events, cpu);
1535 	cntr_mask = hybrid(cpuc->pmu, cntr_mask);
1536 	fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
1537 	pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1538 
1539 	if (!*(u64 *)cntr_mask)
1540 		return;
1541 
1542 	if (x86_pmu.version >= 2) {
1543 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1544 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1545 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1546 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1547 
1548 		pr_info("\n");
1549 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1550 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1551 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1552 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1553 		if (pebs_constraints) {
1554 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1555 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1556 		}
1557 		if (x86_pmu.lbr_nr) {
1558 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1559 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1560 		}
1561 	}
1562 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1563 
1564 	for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) {
1565 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1566 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1567 
1568 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1569 
1570 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1571 			cpu, idx, pmc_ctrl);
1572 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1573 			cpu, idx, pmc_count);
1574 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1575 			cpu, idx, prev_left);
1576 	}
1577 	for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) {
1578 		if (fixed_counter_disabled(idx, cpuc->pmu))
1579 			continue;
1580 		rdmsrl(x86_pmu_fixed_ctr_addr(idx), pmc_count);
1581 
1582 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1583 			cpu, idx, pmc_count);
1584 	}
1585 }
1586 
x86_pmu_stop(struct perf_event * event,int flags)1587 void x86_pmu_stop(struct perf_event *event, int flags)
1588 {
1589 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1590 	struct hw_perf_event *hwc = &event->hw;
1591 
1592 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1593 		static_call(x86_pmu_disable)(event);
1594 		__clear_bit(hwc->idx, cpuc->active_mask);
1595 		cpuc->events[hwc->idx] = NULL;
1596 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1597 		hwc->state |= PERF_HES_STOPPED;
1598 	}
1599 
1600 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1601 		/*
1602 		 * Drain the remaining delta count out of a event
1603 		 * that we are disabling:
1604 		 */
1605 		static_call(x86_pmu_update)(event);
1606 		hwc->state |= PERF_HES_UPTODATE;
1607 	}
1608 }
1609 
x86_pmu_del(struct perf_event * event,int flags)1610 static void x86_pmu_del(struct perf_event *event, int flags)
1611 {
1612 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1613 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1614 	int i;
1615 
1616 	/*
1617 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1618 	 * The events never got scheduled and ->cancel_txn will truncate
1619 	 * the event_list.
1620 	 *
1621 	 * XXX assumes any ->del() called during a TXN will only be on
1622 	 * an event added during that same TXN.
1623 	 */
1624 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1625 		goto do_del;
1626 
1627 	__set_bit(event->hw.idx, cpuc->dirty);
1628 
1629 	/*
1630 	 * Not a TXN, therefore cleanup properly.
1631 	 */
1632 	x86_pmu_stop(event, PERF_EF_UPDATE);
1633 
1634 	for (i = 0; i < cpuc->n_events; i++) {
1635 		if (event == cpuc->event_list[i])
1636 			break;
1637 	}
1638 
1639 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1640 		return;
1641 
1642 	/* If we have a newly added event; make sure to decrease n_added. */
1643 	if (i >= cpuc->n_events - cpuc->n_added)
1644 		--cpuc->n_added;
1645 
1646 	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1647 
1648 	/* Delete the array entry. */
1649 	while (++i < cpuc->n_events) {
1650 		cpuc->event_list[i-1] = cpuc->event_list[i];
1651 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1652 		cpuc->assign[i-1] = cpuc->assign[i];
1653 	}
1654 	cpuc->event_constraint[i-1] = NULL;
1655 	--cpuc->n_events;
1656 	if (intel_cap.perf_metrics)
1657 		del_nr_metric_event(cpuc, event);
1658 
1659 	perf_event_update_userpage(event);
1660 
1661 do_del:
1662 
1663 	/*
1664 	 * This is after x86_pmu_stop(); so we disable LBRs after any
1665 	 * event can need them etc..
1666 	 */
1667 	static_call_cond(x86_pmu_del)(event);
1668 }
1669 
x86_pmu_handle_irq(struct pt_regs * regs)1670 int x86_pmu_handle_irq(struct pt_regs *regs)
1671 {
1672 	struct perf_sample_data data;
1673 	struct cpu_hw_events *cpuc;
1674 	struct perf_event *event;
1675 	int idx, handled = 0;
1676 	u64 val;
1677 
1678 	cpuc = this_cpu_ptr(&cpu_hw_events);
1679 
1680 	/*
1681 	 * Some chipsets need to unmask the LVTPC in a particular spot
1682 	 * inside the nmi handler.  As a result, the unmasking was pushed
1683 	 * into all the nmi handlers.
1684 	 *
1685 	 * This generic handler doesn't seem to have any issues where the
1686 	 * unmasking occurs so it was left at the top.
1687 	 */
1688 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1689 
1690 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1691 		if (!test_bit(idx, cpuc->active_mask))
1692 			continue;
1693 
1694 		event = cpuc->events[idx];
1695 
1696 		val = static_call(x86_pmu_update)(event);
1697 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1698 			continue;
1699 
1700 		/*
1701 		 * event overflow
1702 		 */
1703 		handled++;
1704 
1705 		if (!static_call(x86_pmu_set_period)(event))
1706 			continue;
1707 
1708 		perf_sample_data_init(&data, 0, event->hw.last_period);
1709 
1710 		perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1711 
1712 		if (perf_event_overflow(event, &data, regs))
1713 			x86_pmu_stop(event, 0);
1714 	}
1715 
1716 	if (handled)
1717 		inc_irq_stat(apic_perf_irqs);
1718 
1719 	return handled;
1720 }
1721 
perf_events_lapic_init(void)1722 void perf_events_lapic_init(void)
1723 {
1724 	if (!x86_pmu.apic || !x86_pmu_initialized())
1725 		return;
1726 
1727 	/*
1728 	 * Always use NMI for PMU
1729 	 */
1730 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1731 }
1732 
1733 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1734 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1735 {
1736 	u64 start_clock;
1737 	u64 finish_clock;
1738 	int ret;
1739 
1740 	/*
1741 	 * All PMUs/events that share this PMI handler should make sure to
1742 	 * increment active_events for their events.
1743 	 */
1744 	if (!atomic_read(&active_events))
1745 		return NMI_DONE;
1746 
1747 	start_clock = sched_clock();
1748 	ret = static_call(x86_pmu_handle_irq)(regs);
1749 	finish_clock = sched_clock();
1750 
1751 	perf_sample_event_took(finish_clock - start_clock);
1752 
1753 	return ret;
1754 }
1755 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1756 
1757 struct event_constraint emptyconstraint;
1758 struct event_constraint unconstrained;
1759 
x86_pmu_prepare_cpu(unsigned int cpu)1760 static int x86_pmu_prepare_cpu(unsigned int cpu)
1761 {
1762 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1763 	int i;
1764 
1765 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1766 		cpuc->kfree_on_online[i] = NULL;
1767 	if (x86_pmu.cpu_prepare)
1768 		return x86_pmu.cpu_prepare(cpu);
1769 	return 0;
1770 }
1771 
x86_pmu_dead_cpu(unsigned int cpu)1772 static int x86_pmu_dead_cpu(unsigned int cpu)
1773 {
1774 	if (x86_pmu.cpu_dead)
1775 		x86_pmu.cpu_dead(cpu);
1776 	return 0;
1777 }
1778 
x86_pmu_online_cpu(unsigned int cpu)1779 static int x86_pmu_online_cpu(unsigned int cpu)
1780 {
1781 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1782 	int i;
1783 
1784 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1785 		kfree(cpuc->kfree_on_online[i]);
1786 		cpuc->kfree_on_online[i] = NULL;
1787 	}
1788 	return 0;
1789 }
1790 
x86_pmu_starting_cpu(unsigned int cpu)1791 static int x86_pmu_starting_cpu(unsigned int cpu)
1792 {
1793 	if (x86_pmu.cpu_starting)
1794 		x86_pmu.cpu_starting(cpu);
1795 	return 0;
1796 }
1797 
x86_pmu_dying_cpu(unsigned int cpu)1798 static int x86_pmu_dying_cpu(unsigned int cpu)
1799 {
1800 	if (x86_pmu.cpu_dying)
1801 		x86_pmu.cpu_dying(cpu);
1802 	return 0;
1803 }
1804 
pmu_check_apic(void)1805 static void __init pmu_check_apic(void)
1806 {
1807 	if (boot_cpu_has(X86_FEATURE_APIC))
1808 		return;
1809 
1810 	x86_pmu.apic = 0;
1811 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1812 	pr_info("no hardware sampling interrupt available.\n");
1813 
1814 	/*
1815 	 * If we have a PMU initialized but no APIC
1816 	 * interrupts, we cannot sample hardware
1817 	 * events (user-space has to fall back and
1818 	 * sample via a hrtimer based software event):
1819 	 */
1820 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1821 
1822 }
1823 
1824 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1825 	.name = "format",
1826 	.attrs = NULL,
1827 };
1828 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1829 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1830 {
1831 	struct perf_pmu_events_attr *pmu_attr =
1832 		container_of(attr, struct perf_pmu_events_attr, attr);
1833 	u64 config = 0;
1834 
1835 	if (pmu_attr->id < x86_pmu.max_events)
1836 		config = x86_pmu.event_map(pmu_attr->id);
1837 
1838 	/* string trumps id */
1839 	if (pmu_attr->event_str)
1840 		return sprintf(page, "%s\n", pmu_attr->event_str);
1841 
1842 	return x86_pmu.events_sysfs_show(page, config);
1843 }
1844 EXPORT_SYMBOL_GPL(events_sysfs_show);
1845 
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1846 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1847 			  char *page)
1848 {
1849 	struct perf_pmu_events_ht_attr *pmu_attr =
1850 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1851 
1852 	/*
1853 	 * Report conditional events depending on Hyper-Threading.
1854 	 *
1855 	 * This is overly conservative as usually the HT special
1856 	 * handling is not needed if the other CPU thread is idle.
1857 	 *
1858 	 * Note this does not (and cannot) handle the case when thread
1859 	 * siblings are invisible, for example with virtualization
1860 	 * if they are owned by some other guest.  The user tool
1861 	 * has to re-read when a thread sibling gets onlined later.
1862 	 */
1863 	return sprintf(page, "%s",
1864 			topology_max_smt_threads() > 1 ?
1865 			pmu_attr->event_str_ht :
1866 			pmu_attr->event_str_noht);
1867 }
1868 
events_hybrid_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1869 ssize_t events_hybrid_sysfs_show(struct device *dev,
1870 				 struct device_attribute *attr,
1871 				 char *page)
1872 {
1873 	struct perf_pmu_events_hybrid_attr *pmu_attr =
1874 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1875 	struct x86_hybrid_pmu *pmu;
1876 	const char *str, *next_str;
1877 	int i;
1878 
1879 	if (hweight64(pmu_attr->pmu_type) == 1)
1880 		return sprintf(page, "%s", pmu_attr->event_str);
1881 
1882 	/*
1883 	 * Hybrid PMUs may support the same event name, but with different
1884 	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1885 	 * different event encoding from a Core PMU.
1886 	 *
1887 	 * The event_str includes all event encodings. Each event encoding
1888 	 * is divided by ";". The order of the event encodings must follow
1889 	 * the order of the hybrid PMU index.
1890 	 */
1891 	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1892 
1893 	str = pmu_attr->event_str;
1894 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1895 		if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1896 			continue;
1897 		if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1898 			next_str = strchr(str, ';');
1899 			if (next_str)
1900 				return snprintf(page, next_str - str + 1, "%s", str);
1901 			else
1902 				return sprintf(page, "%s", str);
1903 		}
1904 		str = strchr(str, ';');
1905 		str++;
1906 	}
1907 
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1911 
1912 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1913 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1914 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1915 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1916 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1917 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1918 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1919 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1920 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1921 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1922 
1923 static struct attribute *empty_attrs;
1924 
1925 static struct attribute *events_attr[] = {
1926 	EVENT_PTR(CPU_CYCLES),
1927 	EVENT_PTR(INSTRUCTIONS),
1928 	EVENT_PTR(CACHE_REFERENCES),
1929 	EVENT_PTR(CACHE_MISSES),
1930 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1931 	EVENT_PTR(BRANCH_MISSES),
1932 	EVENT_PTR(BUS_CYCLES),
1933 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1934 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1935 	EVENT_PTR(REF_CPU_CYCLES),
1936 	NULL,
1937 };
1938 
1939 /*
1940  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1941  * out of events_attr attributes.
1942  */
1943 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1944 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1945 {
1946 	struct perf_pmu_events_attr *pmu_attr;
1947 
1948 	if (idx >= x86_pmu.max_events)
1949 		return 0;
1950 
1951 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1952 	/* str trumps id */
1953 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1954 }
1955 
1956 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1957 	.name = "events",
1958 	.attrs = events_attr,
1959 	.is_visible = is_visible,
1960 };
1961 
x86_event_sysfs_show(char * page,u64 config,u64 event)1962 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1963 {
1964 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1965 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1966 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1967 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1968 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1969 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1970 	ssize_t ret;
1971 
1972 	/*
1973 	* We have whole page size to spend and just little data
1974 	* to write, so we can safely use sprintf.
1975 	*/
1976 	ret = sprintf(page, "event=0x%02llx", event);
1977 
1978 	if (umask)
1979 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1980 
1981 	if (edge)
1982 		ret += sprintf(page + ret, ",edge");
1983 
1984 	if (pc)
1985 		ret += sprintf(page + ret, ",pc");
1986 
1987 	if (any)
1988 		ret += sprintf(page + ret, ",any");
1989 
1990 	if (inv)
1991 		ret += sprintf(page + ret, ",inv");
1992 
1993 	if (cmask)
1994 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1995 
1996 	ret += sprintf(page + ret, "\n");
1997 
1998 	return ret;
1999 }
2000 
2001 static struct attribute_group x86_pmu_attr_group;
2002 static struct attribute_group x86_pmu_caps_group;
2003 
x86_pmu_static_call_update(void)2004 static void x86_pmu_static_call_update(void)
2005 {
2006 	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2007 	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2008 	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2009 	static_call_update(x86_pmu_enable, x86_pmu.enable);
2010 	static_call_update(x86_pmu_disable, x86_pmu.disable);
2011 
2012 	static_call_update(x86_pmu_assign, x86_pmu.assign);
2013 
2014 	static_call_update(x86_pmu_add, x86_pmu.add);
2015 	static_call_update(x86_pmu_del, x86_pmu.del);
2016 	static_call_update(x86_pmu_read, x86_pmu.read);
2017 
2018 	static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2019 	static_call_update(x86_pmu_update, x86_pmu.update);
2020 	static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2021 
2022 	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2023 	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2024 	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2025 
2026 	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2027 	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2028 	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2029 
2030 	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2031 	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2032 
2033 	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2034 	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2035 
2036 	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2037 	static_call_update(x86_pmu_filter, x86_pmu.filter);
2038 }
2039 
_x86_pmu_read(struct perf_event * event)2040 static void _x86_pmu_read(struct perf_event *event)
2041 {
2042 	static_call(x86_pmu_update)(event);
2043 }
2044 
x86_pmu_show_pmu_cap(struct pmu * pmu)2045 void x86_pmu_show_pmu_cap(struct pmu *pmu)
2046 {
2047 	pr_info("... version:                %d\n",     x86_pmu.version);
2048 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2049 	pr_info("... generic registers:      %d\n",     x86_pmu_num_counters(pmu));
2050 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2051 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2052 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu_num_counters_fixed(pmu));
2053 	pr_info("... event mask:             %016Lx\n", hybrid(pmu, intel_ctrl));
2054 }
2055 
init_hw_perf_events(void)2056 static int __init init_hw_perf_events(void)
2057 {
2058 	struct x86_pmu_quirk *quirk;
2059 	int err;
2060 
2061 	pr_info("Performance Events: ");
2062 
2063 	switch (boot_cpu_data.x86_vendor) {
2064 	case X86_VENDOR_INTEL:
2065 		err = intel_pmu_init();
2066 		break;
2067 	case X86_VENDOR_AMD:
2068 		err = amd_pmu_init();
2069 		break;
2070 	case X86_VENDOR_HYGON:
2071 		err = amd_pmu_init();
2072 		x86_pmu.name = "HYGON";
2073 		break;
2074 	case X86_VENDOR_ZHAOXIN:
2075 	case X86_VENDOR_CENTAUR:
2076 		err = zhaoxin_pmu_init();
2077 		break;
2078 	default:
2079 		err = -ENOTSUPP;
2080 	}
2081 	if (err != 0) {
2082 		pr_cont("no PMU driver, software events only.\n");
2083 		err = 0;
2084 		goto out_bad_pmu;
2085 	}
2086 
2087 	pmu_check_apic();
2088 
2089 	/* sanity check that the hardware exists or is emulated */
2090 	if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask))
2091 		goto out_bad_pmu;
2092 
2093 	pr_cont("%s PMU driver.\n", x86_pmu.name);
2094 
2095 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2096 
2097 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2098 		quirk->func();
2099 
2100 	if (!x86_pmu.intel_ctrl)
2101 		x86_pmu.intel_ctrl = x86_pmu.cntr_mask64;
2102 
2103 	if (!x86_pmu.config_mask)
2104 		x86_pmu.config_mask = X86_RAW_EVENT_MASK;
2105 
2106 	perf_events_lapic_init();
2107 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2108 
2109 	unconstrained = (struct event_constraint)
2110 		__EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64,
2111 				   0, x86_pmu_num_counters(NULL), 0, 0);
2112 
2113 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2114 
2115 	if (!x86_pmu.events_sysfs_show)
2116 		x86_pmu_events_group.attrs = &empty_attrs;
2117 
2118 	pmu.attr_update = x86_pmu.attr_update;
2119 
2120 	if (!is_hybrid())
2121 		x86_pmu_show_pmu_cap(NULL);
2122 
2123 	if (!x86_pmu.read)
2124 		x86_pmu.read = _x86_pmu_read;
2125 
2126 	if (!x86_pmu.guest_get_msrs)
2127 		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2128 
2129 	if (!x86_pmu.set_period)
2130 		x86_pmu.set_period = x86_perf_event_set_period;
2131 
2132 	if (!x86_pmu.update)
2133 		x86_pmu.update = x86_perf_event_update;
2134 
2135 	x86_pmu_static_call_update();
2136 
2137 	/*
2138 	 * Install callbacks. Core will call them for each online
2139 	 * cpu.
2140 	 */
2141 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2142 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2143 	if (err)
2144 		return err;
2145 
2146 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2147 				"perf/x86:starting", x86_pmu_starting_cpu,
2148 				x86_pmu_dying_cpu);
2149 	if (err)
2150 		goto out;
2151 
2152 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2153 				x86_pmu_online_cpu, NULL);
2154 	if (err)
2155 		goto out1;
2156 
2157 	if (!is_hybrid()) {
2158 		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2159 		if (err)
2160 			goto out2;
2161 	} else {
2162 		struct x86_hybrid_pmu *hybrid_pmu;
2163 		int i, j;
2164 
2165 		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2166 			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2167 
2168 			hybrid_pmu->pmu = pmu;
2169 			hybrid_pmu->pmu.type = -1;
2170 			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2171 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2172 
2173 			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2174 						(hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2175 			if (err)
2176 				break;
2177 		}
2178 
2179 		if (i < x86_pmu.num_hybrid_pmus) {
2180 			for (j = 0; j < i; j++)
2181 				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2182 			pr_warn("Failed to register hybrid PMUs\n");
2183 			kfree(x86_pmu.hybrid_pmu);
2184 			x86_pmu.hybrid_pmu = NULL;
2185 			x86_pmu.num_hybrid_pmus = 0;
2186 			goto out2;
2187 		}
2188 	}
2189 
2190 	return 0;
2191 
2192 out2:
2193 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2194 out1:
2195 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2196 out:
2197 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2198 out_bad_pmu:
2199 	memset(&x86_pmu, 0, sizeof(x86_pmu));
2200 	return err;
2201 }
2202 early_initcall(init_hw_perf_events);
2203 
x86_pmu_read(struct perf_event * event)2204 static void x86_pmu_read(struct perf_event *event)
2205 {
2206 	static_call(x86_pmu_read)(event);
2207 }
2208 
2209 /*
2210  * Start group events scheduling transaction
2211  * Set the flag to make pmu::enable() not perform the
2212  * schedulability test, it will be performed at commit time
2213  *
2214  * We only support PERF_PMU_TXN_ADD transactions. Save the
2215  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2216  * transactions.
2217  */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)2218 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2219 {
2220 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2221 
2222 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2223 
2224 	cpuc->txn_flags = txn_flags;
2225 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2226 		return;
2227 
2228 	perf_pmu_disable(pmu);
2229 	__this_cpu_write(cpu_hw_events.n_txn, 0);
2230 	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2231 	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2232 }
2233 
2234 /*
2235  * Stop group events scheduling transaction
2236  * Clear the flag and pmu::enable() will perform the
2237  * schedulability test.
2238  */
x86_pmu_cancel_txn(struct pmu * pmu)2239 static void x86_pmu_cancel_txn(struct pmu *pmu)
2240 {
2241 	unsigned int txn_flags;
2242 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2243 
2244 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2245 
2246 	txn_flags = cpuc->txn_flags;
2247 	cpuc->txn_flags = 0;
2248 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2249 		return;
2250 
2251 	/*
2252 	 * Truncate collected array by the number of events added in this
2253 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2254 	 */
2255 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2256 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2257 	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2258 	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2259 	perf_pmu_enable(pmu);
2260 }
2261 
2262 /*
2263  * Commit group events scheduling transaction
2264  * Perform the group schedulability test as a whole
2265  * Return 0 if success
2266  *
2267  * Does not cancel the transaction on failure; expects the caller to do this.
2268  */
x86_pmu_commit_txn(struct pmu * pmu)2269 static int x86_pmu_commit_txn(struct pmu *pmu)
2270 {
2271 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2272 	int assign[X86_PMC_IDX_MAX];
2273 	int n, ret;
2274 
2275 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2276 
2277 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2278 		cpuc->txn_flags = 0;
2279 		return 0;
2280 	}
2281 
2282 	n = cpuc->n_events;
2283 
2284 	if (!x86_pmu_initialized())
2285 		return -EAGAIN;
2286 
2287 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2288 	if (ret)
2289 		return ret;
2290 
2291 	/*
2292 	 * copy new assignment, now we know it is possible
2293 	 * will be used by hw_perf_enable()
2294 	 */
2295 	memcpy(cpuc->assign, assign, n*sizeof(int));
2296 
2297 	cpuc->txn_flags = 0;
2298 	perf_pmu_enable(pmu);
2299 	return 0;
2300 }
2301 /*
2302  * a fake_cpuc is used to validate event groups. Due to
2303  * the extra reg logic, we need to also allocate a fake
2304  * per_core and per_cpu structure. Otherwise, group events
2305  * using extra reg may conflict without the kernel being
2306  * able to catch this when the last event gets added to
2307  * the group.
2308  */
free_fake_cpuc(struct cpu_hw_events * cpuc)2309 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2310 {
2311 	intel_cpuc_finish(cpuc);
2312 	kfree(cpuc);
2313 }
2314 
allocate_fake_cpuc(struct pmu * event_pmu)2315 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2316 {
2317 	struct cpu_hw_events *cpuc;
2318 	int cpu;
2319 
2320 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2321 	if (!cpuc)
2322 		return ERR_PTR(-ENOMEM);
2323 	cpuc->is_fake = 1;
2324 
2325 	if (is_hybrid()) {
2326 		struct x86_hybrid_pmu *h_pmu;
2327 
2328 		h_pmu = hybrid_pmu(event_pmu);
2329 		if (cpumask_empty(&h_pmu->supported_cpus))
2330 			goto error;
2331 		cpu = cpumask_first(&h_pmu->supported_cpus);
2332 	} else
2333 		cpu = raw_smp_processor_id();
2334 	cpuc->pmu = event_pmu;
2335 
2336 	if (intel_cpuc_prepare(cpuc, cpu))
2337 		goto error;
2338 
2339 	return cpuc;
2340 error:
2341 	free_fake_cpuc(cpuc);
2342 	return ERR_PTR(-ENOMEM);
2343 }
2344 
2345 /*
2346  * validate that we can schedule this event
2347  */
validate_event(struct perf_event * event)2348 static int validate_event(struct perf_event *event)
2349 {
2350 	struct cpu_hw_events *fake_cpuc;
2351 	struct event_constraint *c;
2352 	int ret = 0;
2353 
2354 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2355 	if (IS_ERR(fake_cpuc))
2356 		return PTR_ERR(fake_cpuc);
2357 
2358 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2359 
2360 	if (!c || !c->weight)
2361 		ret = -EINVAL;
2362 
2363 	if (x86_pmu.put_event_constraints)
2364 		x86_pmu.put_event_constraints(fake_cpuc, event);
2365 
2366 	free_fake_cpuc(fake_cpuc);
2367 
2368 	return ret;
2369 }
2370 
2371 /*
2372  * validate a single event group
2373  *
2374  * validation include:
2375  *	- check events are compatible which each other
2376  *	- events do not compete for the same counter
2377  *	- number of events <= number of counters
2378  *
2379  * validation ensures the group can be loaded onto the
2380  * PMU if it was the only group available.
2381  */
validate_group(struct perf_event * event)2382 static int validate_group(struct perf_event *event)
2383 {
2384 	struct perf_event *leader = event->group_leader;
2385 	struct cpu_hw_events *fake_cpuc;
2386 	int ret = -EINVAL, n;
2387 
2388 	/*
2389 	 * Reject events from different hybrid PMUs.
2390 	 */
2391 	if (is_hybrid()) {
2392 		struct perf_event *sibling;
2393 		struct pmu *pmu = NULL;
2394 
2395 		if (is_x86_event(leader))
2396 			pmu = leader->pmu;
2397 
2398 		for_each_sibling_event(sibling, leader) {
2399 			if (!is_x86_event(sibling))
2400 				continue;
2401 			if (!pmu)
2402 				pmu = sibling->pmu;
2403 			else if (pmu != sibling->pmu)
2404 				return ret;
2405 		}
2406 	}
2407 
2408 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2409 	if (IS_ERR(fake_cpuc))
2410 		return PTR_ERR(fake_cpuc);
2411 	/*
2412 	 * the event is not yet connected with its
2413 	 * siblings therefore we must first collect
2414 	 * existing siblings, then add the new event
2415 	 * before we can simulate the scheduling
2416 	 */
2417 	n = collect_events(fake_cpuc, leader, true);
2418 	if (n < 0)
2419 		goto out;
2420 
2421 	fake_cpuc->n_events = n;
2422 	n = collect_events(fake_cpuc, event, false);
2423 	if (n < 0)
2424 		goto out;
2425 
2426 	fake_cpuc->n_events = 0;
2427 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2428 
2429 out:
2430 	free_fake_cpuc(fake_cpuc);
2431 	return ret;
2432 }
2433 
x86_pmu_event_init(struct perf_event * event)2434 static int x86_pmu_event_init(struct perf_event *event)
2435 {
2436 	struct x86_hybrid_pmu *pmu = NULL;
2437 	int err;
2438 
2439 	if ((event->attr.type != event->pmu->type) &&
2440 	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2441 	    (event->attr.type != PERF_TYPE_HW_CACHE))
2442 		return -ENOENT;
2443 
2444 	if (is_hybrid() && (event->cpu != -1)) {
2445 		pmu = hybrid_pmu(event->pmu);
2446 		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2447 			return -ENOENT;
2448 	}
2449 
2450 	err = __x86_pmu_event_init(event);
2451 	if (!err) {
2452 		if (event->group_leader != event)
2453 			err = validate_group(event);
2454 		else
2455 			err = validate_event(event);
2456 	}
2457 	if (err) {
2458 		if (event->destroy)
2459 			event->destroy(event);
2460 		event->destroy = NULL;
2461 	}
2462 
2463 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2464 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2465 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2466 
2467 	return err;
2468 }
2469 
perf_clear_dirty_counters(void)2470 void perf_clear_dirty_counters(void)
2471 {
2472 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2473 	int i;
2474 
2475 	 /* Don't need to clear the assigned counter. */
2476 	for (i = 0; i < cpuc->n_events; i++)
2477 		__clear_bit(cpuc->assign[i], cpuc->dirty);
2478 
2479 	if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2480 		return;
2481 
2482 	for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2483 		if (i >= INTEL_PMC_IDX_FIXED) {
2484 			/* Metrics and fake events don't have corresponding HW counters. */
2485 			if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask)))
2486 				continue;
2487 
2488 			wrmsrl(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0);
2489 		} else {
2490 			wrmsrl(x86_pmu_event_addr(i), 0);
2491 		}
2492 	}
2493 
2494 	bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2495 }
2496 
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2497 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2498 {
2499 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2500 		return;
2501 
2502 	/*
2503 	 * This function relies on not being called concurrently in two
2504 	 * tasks in the same mm.  Otherwise one task could observe
2505 	 * perf_rdpmc_allowed > 1 and return all the way back to
2506 	 * userspace with CR4.PCE clear while another task is still
2507 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2508 	 *
2509 	 * For now, this can't happen because all callers hold mmap_lock
2510 	 * for write.  If this changes, we'll need a different solution.
2511 	 */
2512 	mmap_assert_write_locked(mm);
2513 
2514 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2515 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2516 }
2517 
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2518 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2519 {
2520 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2521 		return;
2522 
2523 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2524 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2525 }
2526 
x86_pmu_event_idx(struct perf_event * event)2527 static int x86_pmu_event_idx(struct perf_event *event)
2528 {
2529 	struct hw_perf_event *hwc = &event->hw;
2530 
2531 	if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2532 		return 0;
2533 
2534 	if (is_metric_idx(hwc->idx))
2535 		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2536 	else
2537 		return hwc->event_base_rdpmc + 1;
2538 }
2539 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2540 static ssize_t get_attr_rdpmc(struct device *cdev,
2541 			      struct device_attribute *attr,
2542 			      char *buf)
2543 {
2544 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2545 }
2546 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2547 static ssize_t set_attr_rdpmc(struct device *cdev,
2548 			      struct device_attribute *attr,
2549 			      const char *buf, size_t count)
2550 {
2551 	static DEFINE_MUTEX(rdpmc_mutex);
2552 	unsigned long val;
2553 	ssize_t ret;
2554 
2555 	ret = kstrtoul(buf, 0, &val);
2556 	if (ret)
2557 		return ret;
2558 
2559 	if (val > 2)
2560 		return -EINVAL;
2561 
2562 	if (x86_pmu.attr_rdpmc_broken)
2563 		return -ENOTSUPP;
2564 
2565 	guard(mutex)(&rdpmc_mutex);
2566 
2567 	if (val != x86_pmu.attr_rdpmc) {
2568 		/*
2569 		 * Changing into or out of never available or always available,
2570 		 * aka perf-event-bypassing mode. This path is extremely slow,
2571 		 * but only root can trigger it, so it's okay.
2572 		 */
2573 		if (val == 0)
2574 			static_branch_inc(&rdpmc_never_available_key);
2575 		else if (x86_pmu.attr_rdpmc == 0)
2576 			static_branch_dec(&rdpmc_never_available_key);
2577 
2578 		if (val == 2)
2579 			static_branch_inc(&rdpmc_always_available_key);
2580 		else if (x86_pmu.attr_rdpmc == 2)
2581 			static_branch_dec(&rdpmc_always_available_key);
2582 
2583 		on_each_cpu(cr4_update_pce, NULL, 1);
2584 		x86_pmu.attr_rdpmc = val;
2585 	}
2586 
2587 	return count;
2588 }
2589 
2590 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2591 
2592 static struct attribute *x86_pmu_attrs[] = {
2593 	&dev_attr_rdpmc.attr,
2594 	NULL,
2595 };
2596 
2597 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2598 	.attrs = x86_pmu_attrs,
2599 };
2600 
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2601 static ssize_t max_precise_show(struct device *cdev,
2602 				  struct device_attribute *attr,
2603 				  char *buf)
2604 {
2605 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2606 }
2607 
2608 static DEVICE_ATTR_RO(max_precise);
2609 
2610 static struct attribute *x86_pmu_caps_attrs[] = {
2611 	&dev_attr_max_precise.attr,
2612 	NULL
2613 };
2614 
2615 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2616 	.name = "caps",
2617 	.attrs = x86_pmu_caps_attrs,
2618 };
2619 
2620 static const struct attribute_group *x86_pmu_attr_groups[] = {
2621 	&x86_pmu_attr_group,
2622 	&x86_pmu_format_group,
2623 	&x86_pmu_events_group,
2624 	&x86_pmu_caps_group,
2625 	NULL,
2626 };
2627 
x86_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)2628 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2629 {
2630 	static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2631 }
2632 
x86_pmu_swap_task_ctx(struct perf_event_pmu_context * prev_epc,struct perf_event_pmu_context * next_epc)2633 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2634 				  struct perf_event_pmu_context *next_epc)
2635 {
2636 	static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2637 }
2638 
perf_check_microcode(void)2639 void perf_check_microcode(void)
2640 {
2641 	if (x86_pmu.check_microcode)
2642 		x86_pmu.check_microcode();
2643 }
2644 
x86_pmu_check_period(struct perf_event * event,u64 value)2645 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2646 {
2647 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2648 		return -EINVAL;
2649 
2650 	if (value && x86_pmu.limit_period) {
2651 		s64 left = value;
2652 		x86_pmu.limit_period(event, &left);
2653 		if (left > value)
2654 			return -EINVAL;
2655 	}
2656 
2657 	return 0;
2658 }
2659 
x86_pmu_aux_output_match(struct perf_event * event)2660 static int x86_pmu_aux_output_match(struct perf_event *event)
2661 {
2662 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2663 		return 0;
2664 
2665 	if (x86_pmu.aux_output_match)
2666 		return x86_pmu.aux_output_match(event);
2667 
2668 	return 0;
2669 }
2670 
x86_pmu_filter(struct pmu * pmu,int cpu)2671 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2672 {
2673 	bool ret = false;
2674 
2675 	static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2676 
2677 	return ret;
2678 }
2679 
2680 static struct pmu pmu = {
2681 	.pmu_enable		= x86_pmu_enable,
2682 	.pmu_disable		= x86_pmu_disable,
2683 
2684 	.attr_groups		= x86_pmu_attr_groups,
2685 
2686 	.event_init		= x86_pmu_event_init,
2687 
2688 	.event_mapped		= x86_pmu_event_mapped,
2689 	.event_unmapped		= x86_pmu_event_unmapped,
2690 
2691 	.add			= x86_pmu_add,
2692 	.del			= x86_pmu_del,
2693 	.start			= x86_pmu_start,
2694 	.stop			= x86_pmu_stop,
2695 	.read			= x86_pmu_read,
2696 
2697 	.start_txn		= x86_pmu_start_txn,
2698 	.cancel_txn		= x86_pmu_cancel_txn,
2699 	.commit_txn		= x86_pmu_commit_txn,
2700 
2701 	.event_idx		= x86_pmu_event_idx,
2702 	.sched_task		= x86_pmu_sched_task,
2703 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2704 	.check_period		= x86_pmu_check_period,
2705 
2706 	.aux_output_match	= x86_pmu_aux_output_match,
2707 
2708 	.filter			= x86_pmu_filter,
2709 };
2710 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2711 void arch_perf_update_userpage(struct perf_event *event,
2712 			       struct perf_event_mmap_page *userpg, u64 now)
2713 {
2714 	struct cyc2ns_data data;
2715 	u64 offset;
2716 
2717 	userpg->cap_user_time = 0;
2718 	userpg->cap_user_time_zero = 0;
2719 	userpg->cap_user_rdpmc =
2720 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2721 	userpg->pmc_width = x86_pmu.cntval_bits;
2722 
2723 	if (!using_native_sched_clock() || !sched_clock_stable())
2724 		return;
2725 
2726 	cyc2ns_read_begin(&data);
2727 
2728 	offset = data.cyc2ns_offset + __sched_clock_offset;
2729 
2730 	/*
2731 	 * Internal timekeeping for enabled/running/stopped times
2732 	 * is always in the local_clock domain.
2733 	 */
2734 	userpg->cap_user_time = 1;
2735 	userpg->time_mult = data.cyc2ns_mul;
2736 	userpg->time_shift = data.cyc2ns_shift;
2737 	userpg->time_offset = offset - now;
2738 
2739 	/*
2740 	 * cap_user_time_zero doesn't make sense when we're using a different
2741 	 * time base for the records.
2742 	 */
2743 	if (!event->attr.use_clockid) {
2744 		userpg->cap_user_time_zero = 1;
2745 		userpg->time_zero = offset;
2746 	}
2747 
2748 	cyc2ns_read_end();
2749 }
2750 
2751 /*
2752  * Determine whether the regs were taken from an irq/exception handler rather
2753  * than from perf_arch_fetch_caller_regs().
2754  */
perf_hw_regs(struct pt_regs * regs)2755 static bool perf_hw_regs(struct pt_regs *regs)
2756 {
2757 	return regs->flags & X86_EFLAGS_FIXED;
2758 }
2759 
2760 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2761 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2762 {
2763 	struct unwind_state state;
2764 	unsigned long addr;
2765 
2766 	if (perf_guest_state()) {
2767 		/* TODO: We don't support guest os callchain now */
2768 		return;
2769 	}
2770 
2771 	if (perf_callchain_store(entry, regs->ip))
2772 		return;
2773 
2774 	if (perf_hw_regs(regs))
2775 		unwind_start(&state, current, regs, NULL);
2776 	else
2777 		unwind_start(&state, current, NULL, (void *)regs->sp);
2778 
2779 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2780 		addr = unwind_get_return_address(&state);
2781 		if (!addr || perf_callchain_store(entry, addr))
2782 			return;
2783 	}
2784 }
2785 
2786 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2787 valid_user_frame(const void __user *fp, unsigned long size)
2788 {
2789 	return __access_ok(fp, size);
2790 }
2791 
get_segment_base(unsigned int segment)2792 static unsigned long get_segment_base(unsigned int segment)
2793 {
2794 	struct desc_struct *desc;
2795 	unsigned int idx = segment >> 3;
2796 
2797 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2798 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2799 		struct ldt_struct *ldt;
2800 
2801 		/* IRQs are off, so this synchronizes with smp_store_release */
2802 		ldt = READ_ONCE(current->active_mm->context.ldt);
2803 		if (!ldt || idx >= ldt->nr_entries)
2804 			return 0;
2805 
2806 		desc = &ldt->entries[idx];
2807 #else
2808 		return 0;
2809 #endif
2810 	} else {
2811 		if (idx >= GDT_ENTRIES)
2812 			return 0;
2813 
2814 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2815 	}
2816 
2817 	return get_desc_base(desc);
2818 }
2819 
2820 #ifdef CONFIG_UPROBES
2821 /*
2822  * Heuristic-based check if uprobe is installed at the function entry.
2823  *
2824  * Under assumption of user code being compiled with frame pointers,
2825  * `push %rbp/%ebp` is a good indicator that we indeed are.
2826  *
2827  * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern.
2828  * If we get this wrong, captured stack trace might have one extra bogus
2829  * entry, but the rest of stack trace will still be meaningful.
2830  */
is_uprobe_at_func_entry(struct pt_regs * regs)2831 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2832 {
2833 	struct arch_uprobe *auprobe;
2834 
2835 	if (!current->utask)
2836 		return false;
2837 
2838 	auprobe = current->utask->auprobe;
2839 	if (!auprobe)
2840 		return false;
2841 
2842 	/* push %rbp/%ebp */
2843 	if (auprobe->insn[0] == 0x55)
2844 		return true;
2845 
2846 	/* endbr64 (64-bit only) */
2847 	if (user_64bit_mode(regs) && is_endbr(*(u32 *)auprobe->insn))
2848 		return true;
2849 
2850 	return false;
2851 }
2852 
2853 #else
is_uprobe_at_func_entry(struct pt_regs * regs)2854 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2855 {
2856 	return false;
2857 }
2858 #endif /* CONFIG_UPROBES */
2859 
2860 #ifdef CONFIG_IA32_EMULATION
2861 
2862 #include <linux/compat.h>
2863 
2864 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2865 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2866 {
2867 	/* 32-bit process in 64-bit kernel. */
2868 	unsigned long ss_base, cs_base;
2869 	struct stack_frame_ia32 frame;
2870 	const struct stack_frame_ia32 __user *fp;
2871 	u32 ret_addr;
2872 
2873 	if (user_64bit_mode(regs))
2874 		return 0;
2875 
2876 	cs_base = get_segment_base(regs->cs);
2877 	ss_base = get_segment_base(regs->ss);
2878 
2879 	fp = compat_ptr(ss_base + regs->bp);
2880 	pagefault_disable();
2881 
2882 	/* see perf_callchain_user() below for why we do this */
2883 	if (is_uprobe_at_func_entry(regs) &&
2884 	    !get_user(ret_addr, (const u32 __user *)regs->sp))
2885 		perf_callchain_store(entry, ret_addr);
2886 
2887 	while (entry->nr < entry->max_stack) {
2888 		if (!valid_user_frame(fp, sizeof(frame)))
2889 			break;
2890 
2891 		if (__get_user(frame.next_frame, &fp->next_frame))
2892 			break;
2893 		if (__get_user(frame.return_address, &fp->return_address))
2894 			break;
2895 
2896 		perf_callchain_store(entry, cs_base + frame.return_address);
2897 		fp = compat_ptr(ss_base + frame.next_frame);
2898 	}
2899 	pagefault_enable();
2900 	return 1;
2901 }
2902 #else
2903 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2904 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2905 {
2906     return 0;
2907 }
2908 #endif
2909 
2910 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2911 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2912 {
2913 	struct stack_frame frame;
2914 	const struct stack_frame __user *fp;
2915 	unsigned long ret_addr;
2916 
2917 	if (perf_guest_state()) {
2918 		/* TODO: We don't support guest os callchain now */
2919 		return;
2920 	}
2921 
2922 	/*
2923 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2924 	 */
2925 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2926 		return;
2927 
2928 	fp = (void __user *)regs->bp;
2929 
2930 	perf_callchain_store(entry, regs->ip);
2931 
2932 	if (!nmi_uaccess_okay())
2933 		return;
2934 
2935 	if (perf_callchain_user32(regs, entry))
2936 		return;
2937 
2938 	pagefault_disable();
2939 
2940 	/*
2941 	 * If we are called from uprobe handler, and we are indeed at the very
2942 	 * entry to user function (which is normally a `push %rbp` instruction,
2943 	 * under assumption of application being compiled with frame pointers),
2944 	 * we should read return address from *regs->sp before proceeding
2945 	 * to follow frame pointers, otherwise we'll skip immediate caller
2946 	 * as %rbp is not yet setup.
2947 	 */
2948 	if (is_uprobe_at_func_entry(regs) &&
2949 	    !get_user(ret_addr, (const unsigned long __user *)regs->sp))
2950 		perf_callchain_store(entry, ret_addr);
2951 
2952 	while (entry->nr < entry->max_stack) {
2953 		if (!valid_user_frame(fp, sizeof(frame)))
2954 			break;
2955 
2956 		if (__get_user(frame.next_frame, &fp->next_frame))
2957 			break;
2958 		if (__get_user(frame.return_address, &fp->return_address))
2959 			break;
2960 
2961 		perf_callchain_store(entry, frame.return_address);
2962 		fp = (void __user *)frame.next_frame;
2963 	}
2964 	pagefault_enable();
2965 }
2966 
2967 /*
2968  * Deal with code segment offsets for the various execution modes:
2969  *
2970  *   VM86 - the good olde 16 bit days, where the linear address is
2971  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2972  *
2973  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2974  *          to figure out what the 32bit base address is.
2975  *
2976  *    X32 - has TIF_X32 set, but is running in x86_64
2977  *
2978  * X86_64 - CS,DS,SS,ES are all zero based.
2979  */
code_segment_base(struct pt_regs * regs)2980 static unsigned long code_segment_base(struct pt_regs *regs)
2981 {
2982 	/*
2983 	 * For IA32 we look at the GDT/LDT segment base to convert the
2984 	 * effective IP to a linear address.
2985 	 */
2986 
2987 #ifdef CONFIG_X86_32
2988 	/*
2989 	 * If we are in VM86 mode, add the segment offset to convert to a
2990 	 * linear address.
2991 	 */
2992 	if (regs->flags & X86_VM_MASK)
2993 		return 0x10 * regs->cs;
2994 
2995 	if (user_mode(regs) && regs->cs != __USER_CS)
2996 		return get_segment_base(regs->cs);
2997 #else
2998 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2999 	    regs->cs != __USER32_CS)
3000 		return get_segment_base(regs->cs);
3001 #endif
3002 	return 0;
3003 }
3004 
perf_arch_instruction_pointer(struct pt_regs * regs)3005 unsigned long perf_arch_instruction_pointer(struct pt_regs *regs)
3006 {
3007 	return regs->ip + code_segment_base(regs);
3008 }
3009 
common_misc_flags(struct pt_regs * regs)3010 static unsigned long common_misc_flags(struct pt_regs *regs)
3011 {
3012 	if (regs->flags & PERF_EFLAGS_EXACT)
3013 		return PERF_RECORD_MISC_EXACT_IP;
3014 
3015 	return 0;
3016 }
3017 
guest_misc_flags(struct pt_regs * regs)3018 static unsigned long guest_misc_flags(struct pt_regs *regs)
3019 {
3020 	unsigned long guest_state = perf_guest_state();
3021 
3022 	if (!(guest_state & PERF_GUEST_ACTIVE))
3023 		return 0;
3024 
3025 	if (guest_state & PERF_GUEST_USER)
3026 		return PERF_RECORD_MISC_GUEST_USER;
3027 	else
3028 		return PERF_RECORD_MISC_GUEST_KERNEL;
3029 
3030 }
3031 
host_misc_flags(struct pt_regs * regs)3032 static unsigned long host_misc_flags(struct pt_regs *regs)
3033 {
3034 	if (user_mode(regs))
3035 		return PERF_RECORD_MISC_USER;
3036 	else
3037 		return PERF_RECORD_MISC_KERNEL;
3038 }
3039 
perf_arch_guest_misc_flags(struct pt_regs * regs)3040 unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
3041 {
3042 	unsigned long flags = common_misc_flags(regs);
3043 
3044 	flags |= guest_misc_flags(regs);
3045 
3046 	return flags;
3047 }
3048 
perf_arch_misc_flags(struct pt_regs * regs)3049 unsigned long perf_arch_misc_flags(struct pt_regs *regs)
3050 {
3051 	unsigned long flags = common_misc_flags(regs);
3052 
3053 	flags |= host_misc_flags(regs);
3054 
3055 	return flags;
3056 }
3057 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)3058 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
3059 {
3060 	/* This API doesn't currently support enumerating hybrid PMUs. */
3061 	if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
3062 	    !x86_pmu_initialized()) {
3063 		memset(cap, 0, sizeof(*cap));
3064 		return;
3065 	}
3066 
3067 	/*
3068 	 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
3069 	 * all E-cores are disabled via BIOS.  When E-cores are disabled, the
3070 	 * base PMU holds the correct number of counters for P-cores.
3071 	 */
3072 	cap->version		= x86_pmu.version;
3073 	cap->num_counters_gp	= x86_pmu_num_counters(NULL);
3074 	cap->num_counters_fixed	= x86_pmu_num_counters_fixed(NULL);
3075 	cap->bit_width_gp	= x86_pmu.cntval_bits;
3076 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
3077 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
3078 	cap->events_mask_len	= x86_pmu.events_mask_len;
3079 	cap->pebs_ept		= x86_pmu.pebs_ept;
3080 }
3081 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3082 
perf_get_hw_event_config(int hw_event)3083 u64 perf_get_hw_event_config(int hw_event)
3084 {
3085 	int max = x86_pmu.max_events;
3086 
3087 	if (hw_event < max)
3088 		return x86_pmu.event_map(array_index_nospec(hw_event, max));
3089 
3090 	return 0;
3091 }
3092 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3093