1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3 *
4 * Copyright (C) 2015-2021 Google, Inc.
5 */
6
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/ip.h>
11 #include <linux/tcp.h>
12 #include <linux/vmalloc.h>
13 #include <linux/skbuff.h>
14 #include <net/xdp_sock_drv.h>
15
gve_tx_put_doorbell(struct gve_priv * priv,struct gve_queue_resources * q_resources,u32 val)16 static inline void gve_tx_put_doorbell(struct gve_priv *priv,
17 struct gve_queue_resources *q_resources,
18 u32 val)
19 {
20 iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
21 }
22
gve_xdp_tx_flush(struct gve_priv * priv,u32 xdp_qid)23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid)
24 {
25 u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid);
26 struct gve_tx_ring *tx = &priv->tx[tx_qid];
27
28 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
29 }
30
31 /* gvnic can only transmit from a Registered Segment.
32 * We copy skb payloads into the registered segment before writing Tx
33 * descriptors and ringing the Tx doorbell.
34 *
35 * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
36 * free allocations in the order they were allocated.
37 */
38
gve_tx_fifo_init(struct gve_priv * priv,struct gve_tx_fifo * fifo)39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
40 {
41 fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
42 PAGE_KERNEL);
43 if (unlikely(!fifo->base)) {
44 netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
45 fifo->qpl->id);
46 return -ENOMEM;
47 }
48
49 fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
50 atomic_set(&fifo->available, fifo->size);
51 fifo->head = 0;
52 return 0;
53 }
54
gve_tx_fifo_release(struct gve_priv * priv,struct gve_tx_fifo * fifo)55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
56 {
57 WARN(atomic_read(&fifo->available) != fifo->size,
58 "Releasing non-empty fifo");
59
60 vunmap(fifo->base);
61 }
62
gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo * fifo,size_t bytes)63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
64 size_t bytes)
65 {
66 return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
67 }
68
gve_tx_fifo_can_alloc(struct gve_tx_fifo * fifo,size_t bytes)69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
70 {
71 return (atomic_read(&fifo->available) <= bytes) ? false : true;
72 }
73
74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
75 * @fifo: FIFO to allocate from
76 * @bytes: Allocation size
77 * @iov: Scatter-gather elements to fill with allocation fragment base/len
78 *
79 * Returns number of valid elements in iov[] or negative on error.
80 *
81 * Allocations from a given FIFO must be externally synchronized but concurrent
82 * allocation and frees are allowed.
83 */
gve_tx_alloc_fifo(struct gve_tx_fifo * fifo,size_t bytes,struct gve_tx_iovec iov[2])84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
85 struct gve_tx_iovec iov[2])
86 {
87 size_t overflow, padding;
88 u32 aligned_head;
89 int nfrags = 0;
90
91 if (!bytes)
92 return 0;
93
94 /* This check happens before we know how much padding is needed to
95 * align to a cacheline boundary for the payload, but that is fine,
96 * because the FIFO head always start aligned, and the FIFO's boundaries
97 * are aligned, so if there is space for the data, there is space for
98 * the padding to the next alignment.
99 */
100 WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
101 "Reached %s when there's not enough space in the fifo", __func__);
102
103 nfrags++;
104
105 iov[0].iov_offset = fifo->head;
106 iov[0].iov_len = bytes;
107 fifo->head += bytes;
108
109 if (fifo->head > fifo->size) {
110 /* If the allocation did not fit in the tail fragment of the
111 * FIFO, also use the head fragment.
112 */
113 nfrags++;
114 overflow = fifo->head - fifo->size;
115 iov[0].iov_len -= overflow;
116 iov[1].iov_offset = 0; /* Start of fifo*/
117 iov[1].iov_len = overflow;
118
119 fifo->head = overflow;
120 }
121
122 /* Re-align to a cacheline boundary */
123 aligned_head = L1_CACHE_ALIGN(fifo->head);
124 padding = aligned_head - fifo->head;
125 iov[nfrags - 1].iov_padding = padding;
126 atomic_sub(bytes + padding, &fifo->available);
127 fifo->head = aligned_head;
128
129 if (fifo->head == fifo->size)
130 fifo->head = 0;
131
132 return nfrags;
133 }
134
135 /* gve_tx_free_fifo - Return space to Tx FIFO
136 * @fifo: FIFO to return fragments to
137 * @bytes: Bytes to free
138 */
gve_tx_free_fifo(struct gve_tx_fifo * fifo,size_t bytes)139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
140 {
141 atomic_add(bytes, &fifo->available);
142 }
143
gve_tx_clear_buffer_state(struct gve_tx_buffer_state * info)144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info)
145 {
146 size_t space_freed = 0;
147 int i;
148
149 for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
150 space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
151 info->iov[i].iov_len = 0;
152 info->iov[i].iov_padding = 0;
153 }
154 return space_freed;
155 }
156
gve_clean_xdp_done(struct gve_priv * priv,struct gve_tx_ring * tx,u32 to_do)157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx,
158 u32 to_do)
159 {
160 struct gve_tx_buffer_state *info;
161 u64 pkts = 0, bytes = 0;
162 size_t space_freed = 0;
163 u32 xsk_complete = 0;
164 u32 idx;
165 int i;
166
167 for (i = 0; i < to_do; i++) {
168 idx = tx->done & tx->mask;
169 info = &tx->info[idx];
170 tx->done++;
171
172 if (unlikely(!info->xdp.size))
173 continue;
174
175 bytes += info->xdp.size;
176 pkts++;
177 xsk_complete += info->xdp.is_xsk;
178
179 info->xdp.size = 0;
180 if (info->xdp_frame) {
181 xdp_return_frame(info->xdp_frame);
182 info->xdp_frame = NULL;
183 }
184 space_freed += gve_tx_clear_buffer_state(info);
185 }
186
187 gve_tx_free_fifo(&tx->tx_fifo, space_freed);
188 if (xsk_complete > 0 && tx->xsk_pool)
189 xsk_tx_completed(tx->xsk_pool, xsk_complete);
190 u64_stats_update_begin(&tx->statss);
191 tx->bytes_done += bytes;
192 tx->pkt_done += pkts;
193 u64_stats_update_end(&tx->statss);
194 return pkts;
195 }
196
197 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
198 u32 to_do, bool try_to_wake);
199
gve_tx_stop_ring_gqi(struct gve_priv * priv,int idx)200 void gve_tx_stop_ring_gqi(struct gve_priv *priv, int idx)
201 {
202 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
203 struct gve_tx_ring *tx = &priv->tx[idx];
204
205 if (!gve_tx_was_added_to_block(priv, idx))
206 return;
207
208 gve_remove_napi(priv, ntfy_idx);
209 if (tx->q_num < priv->tx_cfg.num_queues)
210 gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false);
211 else
212 gve_clean_xdp_done(priv, tx, priv->tx_desc_cnt);
213 netdev_tx_reset_queue(tx->netdev_txq);
214 gve_tx_remove_from_block(priv, idx);
215 }
216
gve_tx_free_ring_gqi(struct gve_priv * priv,struct gve_tx_ring * tx,struct gve_tx_alloc_rings_cfg * cfg)217 static void gve_tx_free_ring_gqi(struct gve_priv *priv, struct gve_tx_ring *tx,
218 struct gve_tx_alloc_rings_cfg *cfg)
219 {
220 struct device *hdev = &priv->pdev->dev;
221 int idx = tx->q_num;
222 size_t bytes;
223 u32 qpl_id;
224 u32 slots;
225
226 slots = tx->mask + 1;
227 dma_free_coherent(hdev, sizeof(*tx->q_resources),
228 tx->q_resources, tx->q_resources_bus);
229 tx->q_resources = NULL;
230
231 if (tx->tx_fifo.qpl) {
232 if (tx->tx_fifo.base)
233 gve_tx_fifo_release(priv, &tx->tx_fifo);
234
235 qpl_id = gve_tx_qpl_id(priv, tx->q_num);
236 gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id);
237 tx->tx_fifo.qpl = NULL;
238 }
239
240 bytes = sizeof(*tx->desc) * slots;
241 dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
242 tx->desc = NULL;
243
244 vfree(tx->info);
245 tx->info = NULL;
246
247 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
248 }
249
gve_tx_start_ring_gqi(struct gve_priv * priv,int idx)250 void gve_tx_start_ring_gqi(struct gve_priv *priv, int idx)
251 {
252 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
253 struct gve_tx_ring *tx = &priv->tx[idx];
254
255 gve_tx_add_to_block(priv, idx);
256
257 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
258 gve_add_napi(priv, ntfy_idx, gve_napi_poll);
259 }
260
gve_tx_alloc_ring_gqi(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg,struct gve_tx_ring * tx,int idx)261 static int gve_tx_alloc_ring_gqi(struct gve_priv *priv,
262 struct gve_tx_alloc_rings_cfg *cfg,
263 struct gve_tx_ring *tx,
264 int idx)
265 {
266 struct device *hdev = &priv->pdev->dev;
267 int qpl_page_cnt;
268 u32 qpl_id = 0;
269 size_t bytes;
270
271 /* Make sure everything is zeroed to start */
272 memset(tx, 0, sizeof(*tx));
273 spin_lock_init(&tx->clean_lock);
274 spin_lock_init(&tx->xdp_lock);
275 tx->q_num = idx;
276
277 tx->mask = cfg->ring_size - 1;
278
279 /* alloc metadata */
280 tx->info = vcalloc(cfg->ring_size, sizeof(*tx->info));
281 if (!tx->info)
282 return -ENOMEM;
283
284 /* alloc tx queue */
285 bytes = sizeof(*tx->desc) * cfg->ring_size;
286 tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
287 if (!tx->desc)
288 goto abort_with_info;
289
290 tx->raw_addressing = cfg->raw_addressing;
291 tx->dev = hdev;
292 if (!tx->raw_addressing) {
293 qpl_id = gve_tx_qpl_id(priv, tx->q_num);
294 qpl_page_cnt = priv->tx_pages_per_qpl;
295
296 tx->tx_fifo.qpl = gve_alloc_queue_page_list(priv, qpl_id,
297 qpl_page_cnt);
298 if (!tx->tx_fifo.qpl)
299 goto abort_with_desc;
300
301 /* map Tx FIFO */
302 if (gve_tx_fifo_init(priv, &tx->tx_fifo))
303 goto abort_with_qpl;
304 }
305
306 tx->q_resources =
307 dma_alloc_coherent(hdev,
308 sizeof(*tx->q_resources),
309 &tx->q_resources_bus,
310 GFP_KERNEL);
311 if (!tx->q_resources)
312 goto abort_with_fifo;
313
314 return 0;
315
316 abort_with_fifo:
317 if (!tx->raw_addressing)
318 gve_tx_fifo_release(priv, &tx->tx_fifo);
319 abort_with_qpl:
320 if (!tx->raw_addressing) {
321 gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id);
322 tx->tx_fifo.qpl = NULL;
323 }
324 abort_with_desc:
325 dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
326 tx->desc = NULL;
327 abort_with_info:
328 vfree(tx->info);
329 tx->info = NULL;
330 return -ENOMEM;
331 }
332
gve_tx_alloc_rings_gqi(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)333 int gve_tx_alloc_rings_gqi(struct gve_priv *priv,
334 struct gve_tx_alloc_rings_cfg *cfg)
335 {
336 struct gve_tx_ring *tx = cfg->tx;
337 int total_queues;
338 int err = 0;
339 int i, j;
340
341 total_queues = cfg->qcfg->num_queues + cfg->num_xdp_rings;
342 if (total_queues > cfg->qcfg->max_queues) {
343 netif_err(priv, drv, priv->dev,
344 "Cannot alloc more than the max num of Tx rings\n");
345 return -EINVAL;
346 }
347
348 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
349 GFP_KERNEL);
350 if (!tx)
351 return -ENOMEM;
352
353 for (i = 0; i < total_queues; i++) {
354 err = gve_tx_alloc_ring_gqi(priv, cfg, &tx[i], i);
355 if (err) {
356 netif_err(priv, drv, priv->dev,
357 "Failed to alloc tx ring=%d: err=%d\n",
358 i, err);
359 goto cleanup;
360 }
361 }
362
363 cfg->tx = tx;
364 return 0;
365
366 cleanup:
367 for (j = 0; j < i; j++)
368 gve_tx_free_ring_gqi(priv, &tx[j], cfg);
369 kvfree(tx);
370 return err;
371 }
372
gve_tx_free_rings_gqi(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)373 void gve_tx_free_rings_gqi(struct gve_priv *priv,
374 struct gve_tx_alloc_rings_cfg *cfg)
375 {
376 struct gve_tx_ring *tx = cfg->tx;
377 int i;
378
379 if (!tx)
380 return;
381
382 for (i = 0; i < cfg->qcfg->num_queues + cfg->qcfg->num_xdp_queues; i++)
383 gve_tx_free_ring_gqi(priv, &tx[i], cfg);
384
385 kvfree(tx);
386 cfg->tx = NULL;
387 }
388
389 /* gve_tx_avail - Calculates the number of slots available in the ring
390 * @tx: tx ring to check
391 *
392 * Returns the number of slots available
393 *
394 * The capacity of the queue is mask + 1. We don't need to reserve an entry.
395 **/
gve_tx_avail(struct gve_tx_ring * tx)396 static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
397 {
398 return tx->mask + 1 - (tx->req - tx->done);
399 }
400
gve_skb_fifo_bytes_required(struct gve_tx_ring * tx,struct sk_buff * skb)401 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
402 struct sk_buff *skb)
403 {
404 int pad_bytes, align_hdr_pad;
405 int bytes;
406 int hlen;
407
408 hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) :
409 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
410
411 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
412 hlen);
413 /* We need to take into account the header alignment padding. */
414 align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
415 bytes = align_hdr_pad + pad_bytes + skb->len;
416
417 return bytes;
418 }
419
420 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 :
421 * 1 for each skb frag
422 * 1 for the skb linear portion
423 * 1 for when tcp hdr needs to be in separate descriptor
424 * 1 if the payload wraps to the beginning of the FIFO
425 * 1 for metadata descriptor
426 */
427 #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 4)
gve_tx_unmap_buf(struct device * dev,struct gve_tx_buffer_state * info)428 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
429 {
430 if (info->skb) {
431 dma_unmap_single(dev, dma_unmap_addr(info, dma),
432 dma_unmap_len(info, len),
433 DMA_TO_DEVICE);
434 dma_unmap_len_set(info, len, 0);
435 } else {
436 dma_unmap_page(dev, dma_unmap_addr(info, dma),
437 dma_unmap_len(info, len),
438 DMA_TO_DEVICE);
439 dma_unmap_len_set(info, len, 0);
440 }
441 }
442
443 /* Check if sufficient resources (descriptor ring space, FIFO space) are
444 * available to transmit the given number of bytes.
445 */
gve_can_tx(struct gve_tx_ring * tx,int bytes_required)446 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
447 {
448 bool can_alloc = true;
449
450 if (!tx->raw_addressing)
451 can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
452
453 return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
454 }
455
456 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED);
457
458 /* Stops the queue if the skb cannot be transmitted. */
gve_maybe_stop_tx(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)459 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
460 struct sk_buff *skb)
461 {
462 int bytes_required = 0;
463 u32 nic_done;
464 u32 to_do;
465 int ret;
466
467 if (!tx->raw_addressing)
468 bytes_required = gve_skb_fifo_bytes_required(tx, skb);
469
470 if (likely(gve_can_tx(tx, bytes_required)))
471 return 0;
472
473 ret = -EBUSY;
474 spin_lock(&tx->clean_lock);
475 nic_done = gve_tx_load_event_counter(priv, tx);
476 to_do = nic_done - tx->done;
477
478 /* Only try to clean if there is hope for TX */
479 if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) {
480 if (to_do > 0) {
481 to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT);
482 gve_clean_tx_done(priv, tx, to_do, false);
483 }
484 if (likely(gve_can_tx(tx, bytes_required)))
485 ret = 0;
486 }
487 if (ret) {
488 /* No space, so stop the queue */
489 tx->stop_queue++;
490 netif_tx_stop_queue(tx->netdev_txq);
491 }
492 spin_unlock(&tx->clean_lock);
493
494 return ret;
495 }
496
gve_tx_fill_pkt_desc(union gve_tx_desc * pkt_desc,u16 csum_offset,u8 ip_summed,bool is_gso,int l4_hdr_offset,u32 desc_cnt,u16 hlen,u64 addr,u16 pkt_len)497 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
498 u16 csum_offset, u8 ip_summed, bool is_gso,
499 int l4_hdr_offset, u32 desc_cnt,
500 u16 hlen, u64 addr, u16 pkt_len)
501 {
502 /* l4_hdr_offset and csum_offset are in units of 16-bit words */
503 if (is_gso) {
504 pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
505 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
506 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
507 } else if (likely(ip_summed == CHECKSUM_PARTIAL)) {
508 pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
509 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
510 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
511 } else {
512 pkt_desc->pkt.type_flags = GVE_TXD_STD;
513 pkt_desc->pkt.l4_csum_offset = 0;
514 pkt_desc->pkt.l4_hdr_offset = 0;
515 }
516 pkt_desc->pkt.desc_cnt = desc_cnt;
517 pkt_desc->pkt.len = cpu_to_be16(pkt_len);
518 pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
519 pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
520 }
521
gve_tx_fill_mtd_desc(union gve_tx_desc * mtd_desc,struct sk_buff * skb)522 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc,
523 struct sk_buff *skb)
524 {
525 BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt));
526
527 mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH;
528 mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT |
529 GVE_MTD_PATH_HASH_L4;
530 mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash);
531 mtd_desc->mtd.reserved0 = 0;
532 mtd_desc->mtd.reserved1 = 0;
533 }
534
gve_tx_fill_seg_desc(union gve_tx_desc * seg_desc,u16 l3_offset,u16 gso_size,bool is_gso_v6,bool is_gso,u16 len,u64 addr)535 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
536 u16 l3_offset, u16 gso_size,
537 bool is_gso_v6, bool is_gso,
538 u16 len, u64 addr)
539 {
540 seg_desc->seg.type_flags = GVE_TXD_SEG;
541 if (is_gso) {
542 if (is_gso_v6)
543 seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
544 seg_desc->seg.l3_offset = l3_offset >> 1;
545 seg_desc->seg.mss = cpu_to_be16(gso_size);
546 }
547 seg_desc->seg.seg_len = cpu_to_be16(len);
548 seg_desc->seg.seg_addr = cpu_to_be64(addr);
549 }
550
gve_dma_sync_for_device(struct device * dev,dma_addr_t * page_buses,u64 iov_offset,u64 iov_len)551 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
552 u64 iov_offset, u64 iov_len)
553 {
554 u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
555 u64 first_page = iov_offset / PAGE_SIZE;
556 u64 page;
557
558 for (page = first_page; page <= last_page; page++)
559 dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
560 }
561
gve_tx_add_skb_copy(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)562 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
563 {
564 int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
565 union gve_tx_desc *pkt_desc, *seg_desc;
566 struct gve_tx_buffer_state *info;
567 int mtd_desc_nr = !!skb->l4_hash;
568 bool is_gso = skb_is_gso(skb);
569 u32 idx = tx->req & tx->mask;
570 int payload_iov = 2;
571 int copy_offset;
572 u32 next_idx;
573 int i;
574
575 info = &tx->info[idx];
576 pkt_desc = &tx->desc[idx];
577
578 l4_hdr_offset = skb_checksum_start_offset(skb);
579 /* If the skb is gso, then we want the tcp header alone in the first segment
580 * otherwise we want the minimum required by the gVNIC spec.
581 */
582 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
583 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
584
585 info->skb = skb;
586 /* We don't want to split the header, so if necessary, pad to the end
587 * of the fifo and then put the header at the beginning of the fifo.
588 */
589 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
590 hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
591 &info->iov[0]);
592 WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
593 payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
594 &info->iov[payload_iov]);
595
596 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
597 is_gso, l4_hdr_offset,
598 1 + mtd_desc_nr + payload_nfrags, hlen,
599 info->iov[hdr_nfrags - 1].iov_offset, skb->len);
600
601 skb_copy_bits(skb, 0,
602 tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
603 hlen);
604 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
605 info->iov[hdr_nfrags - 1].iov_offset,
606 info->iov[hdr_nfrags - 1].iov_len);
607 copy_offset = hlen;
608
609 if (mtd_desc_nr) {
610 next_idx = (tx->req + 1) & tx->mask;
611 gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb);
612 }
613
614 for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
615 next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask;
616 seg_desc = &tx->desc[next_idx];
617
618 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
619 skb_shinfo(skb)->gso_size,
620 skb_is_gso_v6(skb), is_gso,
621 info->iov[i].iov_len,
622 info->iov[i].iov_offset);
623
624 skb_copy_bits(skb, copy_offset,
625 tx->tx_fifo.base + info->iov[i].iov_offset,
626 info->iov[i].iov_len);
627 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
628 info->iov[i].iov_offset,
629 info->iov[i].iov_len);
630 copy_offset += info->iov[i].iov_len;
631 }
632
633 return 1 + mtd_desc_nr + payload_nfrags;
634 }
635
gve_tx_add_skb_no_copy(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)636 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
637 struct sk_buff *skb)
638 {
639 const struct skb_shared_info *shinfo = skb_shinfo(skb);
640 int hlen, num_descriptors, l4_hdr_offset;
641 union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc;
642 struct gve_tx_buffer_state *info;
643 int mtd_desc_nr = !!skb->l4_hash;
644 bool is_gso = skb_is_gso(skb);
645 u32 idx = tx->req & tx->mask;
646 u64 addr;
647 u32 len;
648 int i;
649
650 info = &tx->info[idx];
651 pkt_desc = &tx->desc[idx];
652
653 l4_hdr_offset = skb_checksum_start_offset(skb);
654 /* If the skb is gso, then we want only up to the tcp header in the first segment
655 * to efficiently replicate on each segment otherwise we want the linear portion
656 * of the skb (which will contain the checksum because skb->csum_start and
657 * skb->csum_offset are given relative to skb->head) in the first segment.
658 */
659 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
660 len = skb_headlen(skb);
661
662 info->skb = skb;
663
664 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
665 if (unlikely(dma_mapping_error(tx->dev, addr))) {
666 tx->dma_mapping_error++;
667 goto drop;
668 }
669 dma_unmap_len_set(info, len, len);
670 dma_unmap_addr_set(info, dma, addr);
671
672 num_descriptors = 1 + shinfo->nr_frags;
673 if (hlen < len)
674 num_descriptors++;
675 if (mtd_desc_nr)
676 num_descriptors++;
677
678 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
679 is_gso, l4_hdr_offset,
680 num_descriptors, hlen, addr, skb->len);
681
682 if (mtd_desc_nr) {
683 idx = (idx + 1) & tx->mask;
684 mtd_desc = &tx->desc[idx];
685 gve_tx_fill_mtd_desc(mtd_desc, skb);
686 }
687
688 if (hlen < len) {
689 /* For gso the rest of the linear portion of the skb needs to
690 * be in its own descriptor.
691 */
692 len -= hlen;
693 addr += hlen;
694 idx = (idx + 1) & tx->mask;
695 seg_desc = &tx->desc[idx];
696 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
697 skb_shinfo(skb)->gso_size,
698 skb_is_gso_v6(skb), is_gso, len, addr);
699 }
700
701 for (i = 0; i < shinfo->nr_frags; i++) {
702 const skb_frag_t *frag = &shinfo->frags[i];
703
704 idx = (idx + 1) & tx->mask;
705 seg_desc = &tx->desc[idx];
706 len = skb_frag_size(frag);
707 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
708 if (unlikely(dma_mapping_error(tx->dev, addr))) {
709 tx->dma_mapping_error++;
710 goto unmap_drop;
711 }
712 tx->info[idx].skb = NULL;
713 dma_unmap_len_set(&tx->info[idx], len, len);
714 dma_unmap_addr_set(&tx->info[idx], dma, addr);
715
716 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
717 skb_shinfo(skb)->gso_size,
718 skb_is_gso_v6(skb), is_gso, len, addr);
719 }
720
721 return num_descriptors;
722
723 unmap_drop:
724 i += num_descriptors - shinfo->nr_frags;
725 while (i--) {
726 /* Skip metadata descriptor, if set */
727 if (i == 1 && mtd_desc_nr == 1)
728 continue;
729 idx--;
730 gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
731 }
732 drop:
733 tx->dropped_pkt++;
734 return 0;
735 }
736
gve_tx(struct sk_buff * skb,struct net_device * dev)737 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
738 {
739 struct gve_priv *priv = netdev_priv(dev);
740 struct gve_tx_ring *tx;
741 int nsegs;
742
743 WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues,
744 "skb queue index out of range");
745 tx = &priv->tx[skb_get_queue_mapping(skb)];
746 if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) {
747 /* We need to ring the txq doorbell -- we have stopped the Tx
748 * queue for want of resources, but prior calls to gve_tx()
749 * may have added descriptors without ringing the doorbell.
750 */
751
752 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
753 return NETDEV_TX_BUSY;
754 }
755 if (tx->raw_addressing)
756 nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
757 else
758 nsegs = gve_tx_add_skb_copy(priv, tx, skb);
759
760 /* If the packet is getting sent, we need to update the skb */
761 if (nsegs) {
762 netdev_tx_sent_queue(tx->netdev_txq, skb->len);
763 skb_tx_timestamp(skb);
764 tx->req += nsegs;
765 } else {
766 dev_kfree_skb_any(skb);
767 }
768
769 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
770 return NETDEV_TX_OK;
771
772 /* Give packets to NIC. Even if this packet failed to send the doorbell
773 * might need to be rung because of xmit_more.
774 */
775 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
776 return NETDEV_TX_OK;
777 }
778
gve_tx_fill_xdp(struct gve_priv * priv,struct gve_tx_ring * tx,void * data,int len,void * frame_p,bool is_xsk)779 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx,
780 void *data, int len, void *frame_p, bool is_xsk)
781 {
782 int pad, nfrags, ndescs, iovi, offset;
783 struct gve_tx_buffer_state *info;
784 u32 reqi = tx->req;
785
786 pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len);
787 if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES)
788 pad = 0;
789 info = &tx->info[reqi & tx->mask];
790 info->xdp_frame = frame_p;
791 info->xdp.size = len;
792 info->xdp.is_xsk = is_xsk;
793
794 nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len,
795 &info->iov[0]);
796 iovi = pad > 0;
797 ndescs = nfrags - iovi;
798 offset = 0;
799
800 while (iovi < nfrags) {
801 if (!offset)
802 gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0,
803 CHECKSUM_NONE, false, 0, ndescs,
804 info->iov[iovi].iov_len,
805 info->iov[iovi].iov_offset, len);
806 else
807 gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask],
808 0, 0, false, false,
809 info->iov[iovi].iov_len,
810 info->iov[iovi].iov_offset);
811
812 memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset,
813 data + offset, info->iov[iovi].iov_len);
814 gve_dma_sync_for_device(&priv->pdev->dev,
815 tx->tx_fifo.qpl->page_buses,
816 info->iov[iovi].iov_offset,
817 info->iov[iovi].iov_len);
818 offset += info->iov[iovi].iov_len;
819 iovi++;
820 reqi++;
821 }
822
823 return ndescs;
824 }
825
gve_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)826 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
827 u32 flags)
828 {
829 struct gve_priv *priv = netdev_priv(dev);
830 struct gve_tx_ring *tx;
831 int i, err = 0, qid;
832
833 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK) || !priv->xdp_prog)
834 return -EINVAL;
835
836 if (!gve_get_napi_enabled(priv))
837 return -ENETDOWN;
838
839 qid = gve_xdp_tx_queue_id(priv,
840 smp_processor_id() % priv->tx_cfg.num_xdp_queues);
841
842 tx = &priv->tx[qid];
843
844 spin_lock(&tx->xdp_lock);
845 for (i = 0; i < n; i++) {
846 err = gve_xdp_xmit_one(priv, tx, frames[i]->data,
847 frames[i]->len, frames[i]);
848 if (err)
849 break;
850 }
851
852 if (flags & XDP_XMIT_FLUSH)
853 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
854
855 spin_unlock(&tx->xdp_lock);
856
857 u64_stats_update_begin(&tx->statss);
858 tx->xdp_xmit += n;
859 tx->xdp_xmit_errors += n - i;
860 u64_stats_update_end(&tx->statss);
861
862 return i ? i : err;
863 }
864
gve_xdp_xmit_one(struct gve_priv * priv,struct gve_tx_ring * tx,void * data,int len,void * frame_p)865 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx,
866 void *data, int len, void *frame_p)
867 {
868 int nsegs;
869
870 if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1))
871 return -EBUSY;
872
873 nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false);
874 tx->req += nsegs;
875
876 return 0;
877 }
878
879 #define GVE_TX_START_THRESH 4096
880
gve_clean_tx_done(struct gve_priv * priv,struct gve_tx_ring * tx,u32 to_do,bool try_to_wake)881 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
882 u32 to_do, bool try_to_wake)
883 {
884 struct gve_tx_buffer_state *info;
885 u64 pkts = 0, bytes = 0;
886 size_t space_freed = 0;
887 struct sk_buff *skb;
888 u32 idx;
889 int j;
890
891 for (j = 0; j < to_do; j++) {
892 idx = tx->done & tx->mask;
893 netif_info(priv, tx_done, priv->dev,
894 "[%d] %s: idx=%d (req=%u done=%u)\n",
895 tx->q_num, __func__, idx, tx->req, tx->done);
896 info = &tx->info[idx];
897 skb = info->skb;
898
899 /* Unmap the buffer */
900 if (tx->raw_addressing)
901 gve_tx_unmap_buf(tx->dev, info);
902 tx->done++;
903 /* Mark as free */
904 if (skb) {
905 info->skb = NULL;
906 bytes += skb->len;
907 pkts++;
908 dev_consume_skb_any(skb);
909 if (tx->raw_addressing)
910 continue;
911 space_freed += gve_tx_clear_buffer_state(info);
912 }
913 }
914
915 if (!tx->raw_addressing)
916 gve_tx_free_fifo(&tx->tx_fifo, space_freed);
917 u64_stats_update_begin(&tx->statss);
918 tx->bytes_done += bytes;
919 tx->pkt_done += pkts;
920 u64_stats_update_end(&tx->statss);
921 netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
922
923 /* start the queue if we've stopped it */
924 #ifndef CONFIG_BQL
925 /* Make sure that the doorbells are synced */
926 smp_mb();
927 #endif
928 if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
929 likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
930 tx->wake_queue++;
931 netif_tx_wake_queue(tx->netdev_txq);
932 }
933
934 return pkts;
935 }
936
gve_tx_load_event_counter(struct gve_priv * priv,struct gve_tx_ring * tx)937 u32 gve_tx_load_event_counter(struct gve_priv *priv,
938 struct gve_tx_ring *tx)
939 {
940 u32 counter_index = be32_to_cpu(tx->q_resources->counter_index);
941 __be32 counter = READ_ONCE(priv->counter_array[counter_index]);
942
943 return be32_to_cpu(counter);
944 }
945
gve_xsk_tx(struct gve_priv * priv,struct gve_tx_ring * tx,int budget)946 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
947 int budget)
948 {
949 struct xdp_desc desc;
950 int sent = 0, nsegs;
951 void *data;
952
953 spin_lock(&tx->xdp_lock);
954 while (sent < budget) {
955 if (!gve_can_tx(tx, GVE_TX_START_THRESH) ||
956 !xsk_tx_peek_desc(tx->xsk_pool, &desc))
957 goto out;
958
959 data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr);
960 nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true);
961 tx->req += nsegs;
962 sent++;
963 }
964 out:
965 if (sent > 0) {
966 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
967 xsk_tx_release(tx->xsk_pool);
968 }
969 spin_unlock(&tx->xdp_lock);
970 return sent;
971 }
972
gve_xsk_tx_poll(struct gve_notify_block * rx_block,int budget)973 int gve_xsk_tx_poll(struct gve_notify_block *rx_block, int budget)
974 {
975 struct gve_rx_ring *rx = rx_block->rx;
976 struct gve_priv *priv = rx->gve;
977 struct gve_tx_ring *tx;
978 int sent = 0;
979
980 tx = &priv->tx[gve_xdp_tx_queue_id(priv, rx->q_num)];
981 if (tx->xsk_pool) {
982 sent = gve_xsk_tx(priv, tx, budget);
983
984 u64_stats_update_begin(&tx->statss);
985 tx->xdp_xsk_sent += sent;
986 u64_stats_update_end(&tx->statss);
987 if (xsk_uses_need_wakeup(tx->xsk_pool))
988 xsk_set_tx_need_wakeup(tx->xsk_pool);
989 }
990
991 return sent;
992 }
993
gve_xdp_poll(struct gve_notify_block * block,int budget)994 bool gve_xdp_poll(struct gve_notify_block *block, int budget)
995 {
996 struct gve_priv *priv = block->priv;
997 struct gve_tx_ring *tx = block->tx;
998 u32 nic_done;
999 u32 to_do;
1000
1001 /* Find out how much work there is to be done */
1002 nic_done = gve_tx_load_event_counter(priv, tx);
1003 to_do = min_t(u32, (nic_done - tx->done), budget);
1004 gve_clean_xdp_done(priv, tx, to_do);
1005
1006 /* If we still have work we want to repoll */
1007 return nic_done != tx->done;
1008 }
1009
gve_tx_poll(struct gve_notify_block * block,int budget)1010 bool gve_tx_poll(struct gve_notify_block *block, int budget)
1011 {
1012 struct gve_priv *priv = block->priv;
1013 struct gve_tx_ring *tx = block->tx;
1014 u32 nic_done;
1015 u32 to_do;
1016
1017 /* If budget is 0, do all the work */
1018 if (budget == 0)
1019 budget = INT_MAX;
1020
1021 /* In TX path, it may try to clean completed pkts in order to xmit,
1022 * to avoid cleaning conflict, use spin_lock(), it yields better
1023 * concurrency between xmit/clean than netif's lock.
1024 */
1025 spin_lock(&tx->clean_lock);
1026 /* Find out how much work there is to be done */
1027 nic_done = gve_tx_load_event_counter(priv, tx);
1028 to_do = min_t(u32, (nic_done - tx->done), budget);
1029 gve_clean_tx_done(priv, tx, to_do, true);
1030 spin_unlock(&tx->clean_lock);
1031 /* If we still have work we want to repoll */
1032 return nic_done != tx->done;
1033 }
1034
gve_tx_clean_pending(struct gve_priv * priv,struct gve_tx_ring * tx)1035 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx)
1036 {
1037 u32 nic_done = gve_tx_load_event_counter(priv, tx);
1038
1039 return nic_done != tx->done;
1040 }
1041