1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3 *
4 * Copyright (C) 2015-2021 Google, Inc.
5 */
6
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include "gve_dqo.h"
11 #include <net/ip.h>
12 #include <linux/tcp.h>
13 #include <linux/slab.h>
14 #include <linux/skbuff.h>
15
16 /* Returns true if tx_bufs are available. */
gve_has_free_tx_qpl_bufs(struct gve_tx_ring * tx,int count)17 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count)
18 {
19 int num_avail;
20
21 if (!tx->dqo.qpl)
22 return true;
23
24 num_avail = tx->dqo.num_tx_qpl_bufs -
25 (tx->dqo_tx.alloc_tx_qpl_buf_cnt -
26 tx->dqo_tx.free_tx_qpl_buf_cnt);
27
28 if (count <= num_avail)
29 return true;
30
31 /* Update cached value from dqo_compl. */
32 tx->dqo_tx.free_tx_qpl_buf_cnt =
33 atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt);
34
35 num_avail = tx->dqo.num_tx_qpl_bufs -
36 (tx->dqo_tx.alloc_tx_qpl_buf_cnt -
37 tx->dqo_tx.free_tx_qpl_buf_cnt);
38
39 return count <= num_avail;
40 }
41
42 static s16
gve_alloc_tx_qpl_buf(struct gve_tx_ring * tx)43 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx)
44 {
45 s16 index;
46
47 index = tx->dqo_tx.free_tx_qpl_buf_head;
48
49 /* No TX buffers available, try to steal the list from the
50 * completion handler.
51 */
52 if (unlikely(index == -1)) {
53 tx->dqo_tx.free_tx_qpl_buf_head =
54 atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
55 index = tx->dqo_tx.free_tx_qpl_buf_head;
56
57 if (unlikely(index == -1))
58 return index;
59 }
60
61 /* Remove TX buf from free list */
62 tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index];
63
64 return index;
65 }
66
67 static void
gve_free_tx_qpl_bufs(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pkt)68 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx,
69 struct gve_tx_pending_packet_dqo *pkt)
70 {
71 s16 index;
72 int i;
73
74 if (!pkt->num_bufs)
75 return;
76
77 index = pkt->tx_qpl_buf_ids[0];
78 /* Create a linked list of buffers to be added to the free list */
79 for (i = 1; i < pkt->num_bufs; i++) {
80 tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i];
81 index = pkt->tx_qpl_buf_ids[i];
82 }
83
84 while (true) {
85 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head);
86
87 tx->dqo.tx_qpl_buf_next[index] = old_head;
88 if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head,
89 old_head,
90 pkt->tx_qpl_buf_ids[0]) == old_head) {
91 break;
92 }
93 }
94
95 atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt);
96 pkt->num_bufs = 0;
97 }
98
99 /* Returns true if a gve_tx_pending_packet_dqo object is available. */
gve_has_pending_packet(struct gve_tx_ring * tx)100 static bool gve_has_pending_packet(struct gve_tx_ring *tx)
101 {
102 /* Check TX path's list. */
103 if (tx->dqo_tx.free_pending_packets != -1)
104 return true;
105
106 /* Check completion handler's list. */
107 if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1)
108 return true;
109
110 return false;
111 }
112
113 static struct gve_tx_pending_packet_dqo *
gve_alloc_pending_packet(struct gve_tx_ring * tx)114 gve_alloc_pending_packet(struct gve_tx_ring *tx)
115 {
116 struct gve_tx_pending_packet_dqo *pending_packet;
117 s16 index;
118
119 index = tx->dqo_tx.free_pending_packets;
120
121 /* No pending_packets available, try to steal the list from the
122 * completion handler.
123 */
124 if (unlikely(index == -1)) {
125 tx->dqo_tx.free_pending_packets =
126 atomic_xchg(&tx->dqo_compl.free_pending_packets, -1);
127 index = tx->dqo_tx.free_pending_packets;
128
129 if (unlikely(index == -1))
130 return NULL;
131 }
132
133 pending_packet = &tx->dqo.pending_packets[index];
134
135 /* Remove pending_packet from free list */
136 tx->dqo_tx.free_pending_packets = pending_packet->next;
137 pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL;
138
139 return pending_packet;
140 }
141
142 static void
gve_free_pending_packet(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pending_packet)143 gve_free_pending_packet(struct gve_tx_ring *tx,
144 struct gve_tx_pending_packet_dqo *pending_packet)
145 {
146 s16 index = pending_packet - tx->dqo.pending_packets;
147
148 pending_packet->state = GVE_PACKET_STATE_UNALLOCATED;
149 while (true) {
150 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets);
151
152 pending_packet->next = old_head;
153 if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets,
154 old_head, index) == old_head) {
155 break;
156 }
157 }
158 }
159
160 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers.
161 */
gve_tx_clean_pending_packets(struct gve_tx_ring * tx)162 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx)
163 {
164 int i;
165
166 for (i = 0; i < tx->dqo.num_pending_packets; i++) {
167 struct gve_tx_pending_packet_dqo *cur_state =
168 &tx->dqo.pending_packets[i];
169 int j;
170
171 for (j = 0; j < cur_state->num_bufs; j++) {
172 if (j == 0) {
173 dma_unmap_single(tx->dev,
174 dma_unmap_addr(cur_state, dma[j]),
175 dma_unmap_len(cur_state, len[j]),
176 DMA_TO_DEVICE);
177 } else {
178 dma_unmap_page(tx->dev,
179 dma_unmap_addr(cur_state, dma[j]),
180 dma_unmap_len(cur_state, len[j]),
181 DMA_TO_DEVICE);
182 }
183 }
184 if (cur_state->skb) {
185 dev_consume_skb_any(cur_state->skb);
186 cur_state->skb = NULL;
187 }
188 }
189 }
190
gve_tx_stop_ring_dqo(struct gve_priv * priv,int idx)191 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx)
192 {
193 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
194 struct gve_tx_ring *tx = &priv->tx[idx];
195
196 if (!gve_tx_was_added_to_block(priv, idx))
197 return;
198
199 gve_remove_napi(priv, ntfy_idx);
200 gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL);
201 netdev_tx_reset_queue(tx->netdev_txq);
202 gve_tx_clean_pending_packets(tx);
203 gve_tx_remove_from_block(priv, idx);
204 }
205
gve_tx_free_ring_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct gve_tx_alloc_rings_cfg * cfg)206 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
207 struct gve_tx_alloc_rings_cfg *cfg)
208 {
209 struct device *hdev = &priv->pdev->dev;
210 int idx = tx->q_num;
211 size_t bytes;
212 u32 qpl_id;
213
214 if (tx->q_resources) {
215 dma_free_coherent(hdev, sizeof(*tx->q_resources),
216 tx->q_resources, tx->q_resources_bus);
217 tx->q_resources = NULL;
218 }
219
220 if (tx->dqo.compl_ring) {
221 bytes = sizeof(tx->dqo.compl_ring[0]) *
222 (tx->dqo.complq_mask + 1);
223 dma_free_coherent(hdev, bytes, tx->dqo.compl_ring,
224 tx->complq_bus_dqo);
225 tx->dqo.compl_ring = NULL;
226 }
227
228 if (tx->dqo.tx_ring) {
229 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
230 dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus);
231 tx->dqo.tx_ring = NULL;
232 }
233
234 kvfree(tx->dqo.pending_packets);
235 tx->dqo.pending_packets = NULL;
236
237 kvfree(tx->dqo.tx_qpl_buf_next);
238 tx->dqo.tx_qpl_buf_next = NULL;
239
240 if (tx->dqo.qpl) {
241 qpl_id = gve_tx_qpl_id(priv, tx->q_num);
242 gve_free_queue_page_list(priv, tx->dqo.qpl, qpl_id);
243 tx->dqo.qpl = NULL;
244 }
245
246 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
247 }
248
gve_tx_qpl_buf_init(struct gve_tx_ring * tx)249 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx)
250 {
251 int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO *
252 tx->dqo.qpl->num_entries;
253 int i;
254
255 tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs,
256 sizeof(tx->dqo.tx_qpl_buf_next[0]),
257 GFP_KERNEL);
258 if (!tx->dqo.tx_qpl_buf_next)
259 return -ENOMEM;
260
261 tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs;
262
263 /* Generate free TX buf list */
264 for (i = 0; i < num_tx_qpl_bufs - 1; i++)
265 tx->dqo.tx_qpl_buf_next[i] = i + 1;
266 tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1;
267
268 atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
269 return 0;
270 }
271
gve_tx_start_ring_dqo(struct gve_priv * priv,int idx)272 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx)
273 {
274 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
275 struct gve_tx_ring *tx = &priv->tx[idx];
276
277 gve_tx_add_to_block(priv, idx);
278
279 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
280 gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo);
281 }
282
gve_tx_alloc_ring_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg,struct gve_tx_ring * tx,int idx)283 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv,
284 struct gve_tx_alloc_rings_cfg *cfg,
285 struct gve_tx_ring *tx,
286 int idx)
287 {
288 struct device *hdev = &priv->pdev->dev;
289 int num_pending_packets;
290 int qpl_page_cnt;
291 size_t bytes;
292 u32 qpl_id;
293 int i;
294
295 memset(tx, 0, sizeof(*tx));
296 tx->q_num = idx;
297 tx->dev = hdev;
298 atomic_set_release(&tx->dqo_compl.hw_tx_head, 0);
299
300 /* Queue sizes must be a power of 2 */
301 tx->mask = cfg->ring_size - 1;
302 tx->dqo.complq_mask = tx->mask;
303
304 /* The max number of pending packets determines the maximum number of
305 * descriptors which maybe written to the completion queue.
306 *
307 * We must set the number small enough to make sure we never overrun the
308 * completion queue.
309 */
310 num_pending_packets = tx->dqo.complq_mask + 1;
311
312 /* Reserve space for descriptor completions, which will be reported at
313 * most every GVE_TX_MIN_RE_INTERVAL packets.
314 */
315 num_pending_packets -=
316 (tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL;
317
318 /* Each packet may have at most 2 buffer completions if it receives both
319 * a miss and reinjection completion.
320 */
321 num_pending_packets /= 2;
322
323 tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX);
324 tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets,
325 sizeof(tx->dqo.pending_packets[0]),
326 GFP_KERNEL);
327 if (!tx->dqo.pending_packets)
328 goto err;
329
330 /* Set up linked list of pending packets */
331 for (i = 0; i < tx->dqo.num_pending_packets - 1; i++)
332 tx->dqo.pending_packets[i].next = i + 1;
333
334 tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1;
335 atomic_set_release(&tx->dqo_compl.free_pending_packets, -1);
336 tx->dqo_compl.miss_completions.head = -1;
337 tx->dqo_compl.miss_completions.tail = -1;
338 tx->dqo_compl.timed_out_completions.head = -1;
339 tx->dqo_compl.timed_out_completions.tail = -1;
340
341 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
342 tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
343 if (!tx->dqo.tx_ring)
344 goto err;
345
346 bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1);
347 tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes,
348 &tx->complq_bus_dqo,
349 GFP_KERNEL);
350 if (!tx->dqo.compl_ring)
351 goto err;
352
353 tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources),
354 &tx->q_resources_bus, GFP_KERNEL);
355 if (!tx->q_resources)
356 goto err;
357
358 if (!cfg->raw_addressing) {
359 qpl_id = gve_tx_qpl_id(priv, tx->q_num);
360 qpl_page_cnt = priv->tx_pages_per_qpl;
361
362 tx->dqo.qpl = gve_alloc_queue_page_list(priv, qpl_id,
363 qpl_page_cnt);
364 if (!tx->dqo.qpl)
365 goto err;
366
367 if (gve_tx_qpl_buf_init(tx))
368 goto err;
369 }
370
371 return 0;
372
373 err:
374 gve_tx_free_ring_dqo(priv, tx, cfg);
375 return -ENOMEM;
376 }
377
gve_tx_alloc_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)378 int gve_tx_alloc_rings_dqo(struct gve_priv *priv,
379 struct gve_tx_alloc_rings_cfg *cfg)
380 {
381 struct gve_tx_ring *tx = cfg->tx;
382 int total_queues;
383 int err = 0;
384 int i, j;
385
386 total_queues = cfg->qcfg->num_queues + cfg->num_xdp_rings;
387 if (total_queues > cfg->qcfg->max_queues) {
388 netif_err(priv, drv, priv->dev,
389 "Cannot alloc more than the max num of Tx rings\n");
390 return -EINVAL;
391 }
392
393 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
394 GFP_KERNEL);
395 if (!tx)
396 return -ENOMEM;
397
398 for (i = 0; i < total_queues; i++) {
399 err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i);
400 if (err) {
401 netif_err(priv, drv, priv->dev,
402 "Failed to alloc tx ring=%d: err=%d\n",
403 i, err);
404 goto err;
405 }
406 }
407
408 cfg->tx = tx;
409 return 0;
410
411 err:
412 for (j = 0; j < i; j++)
413 gve_tx_free_ring_dqo(priv, &tx[j], cfg);
414 kvfree(tx);
415 return err;
416 }
417
gve_tx_free_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)418 void gve_tx_free_rings_dqo(struct gve_priv *priv,
419 struct gve_tx_alloc_rings_cfg *cfg)
420 {
421 struct gve_tx_ring *tx = cfg->tx;
422 int i;
423
424 if (!tx)
425 return;
426
427 for (i = 0; i < cfg->qcfg->num_queues + cfg->qcfg->num_xdp_queues; i++)
428 gve_tx_free_ring_dqo(priv, &tx[i], cfg);
429
430 kvfree(tx);
431 cfg->tx = NULL;
432 }
433
434 /* Returns the number of slots available in the ring */
num_avail_tx_slots(const struct gve_tx_ring * tx)435 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx)
436 {
437 u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask;
438
439 return tx->mask - num_used;
440 }
441
gve_has_avail_slots_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)442 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx,
443 int desc_count, int buf_count)
444 {
445 return gve_has_pending_packet(tx) &&
446 num_avail_tx_slots(tx) >= desc_count &&
447 gve_has_free_tx_qpl_bufs(tx, buf_count);
448 }
449
450 /* Stops the queue if available descriptors is less than 'count'.
451 * Return: 0 if stop is not required.
452 */
gve_maybe_stop_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)453 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx,
454 int desc_count, int buf_count)
455 {
456 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
457 return 0;
458
459 /* Update cached TX head pointer */
460 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
461
462 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
463 return 0;
464
465 /* No space, so stop the queue */
466 tx->stop_queue++;
467 netif_tx_stop_queue(tx->netdev_txq);
468
469 /* Sync with restarting queue in `gve_tx_poll_dqo()` */
470 mb();
471
472 /* After stopping queue, check if we can transmit again in order to
473 * avoid TOCTOU bug.
474 */
475 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
476
477 if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
478 return -EBUSY;
479
480 netif_tx_start_queue(tx->netdev_txq);
481 tx->wake_queue++;
482 return 0;
483 }
484
gve_extract_tx_metadata_dqo(const struct sk_buff * skb,struct gve_tx_metadata_dqo * metadata)485 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb,
486 struct gve_tx_metadata_dqo *metadata)
487 {
488 memset(metadata, 0, sizeof(*metadata));
489 metadata->version = GVE_TX_METADATA_VERSION_DQO;
490
491 if (skb->l4_hash) {
492 u16 path_hash = skb->hash ^ (skb->hash >> 16);
493
494 path_hash &= (1 << 15) - 1;
495 if (unlikely(path_hash == 0))
496 path_hash = ~path_hash;
497
498 metadata->path_hash = path_hash;
499 }
500 }
501
gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring * tx,u32 * desc_idx,struct sk_buff * skb,u32 len,u64 addr,s16 compl_tag,bool eop,bool is_gso)502 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx,
503 struct sk_buff *skb, u32 len, u64 addr,
504 s16 compl_tag, bool eop, bool is_gso)
505 {
506 const bool checksum_offload_en = skb->ip_summed == CHECKSUM_PARTIAL;
507
508 while (len > 0) {
509 struct gve_tx_pkt_desc_dqo *desc =
510 &tx->dqo.tx_ring[*desc_idx].pkt;
511 u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO);
512 bool cur_eop = eop && cur_len == len;
513
514 *desc = (struct gve_tx_pkt_desc_dqo){
515 .buf_addr = cpu_to_le64(addr),
516 .dtype = GVE_TX_PKT_DESC_DTYPE_DQO,
517 .end_of_packet = cur_eop,
518 .checksum_offload_enable = checksum_offload_en,
519 .compl_tag = cpu_to_le16(compl_tag),
520 .buf_size = cur_len,
521 };
522
523 addr += cur_len;
524 len -= cur_len;
525 *desc_idx = (*desc_idx + 1) & tx->mask;
526 }
527 }
528
529 /* Validates and prepares `skb` for TSO.
530 *
531 * Returns header length, or < 0 if invalid.
532 */
gve_prep_tso(struct sk_buff * skb)533 static int gve_prep_tso(struct sk_buff *skb)
534 {
535 struct tcphdr *tcp;
536 int header_len;
537 u32 paylen;
538 int err;
539
540 /* Note: HW requires MSS (gso_size) to be <= 9728 and the total length
541 * of the TSO to be <= 262143.
542 *
543 * However, we don't validate these because:
544 * - Hypervisor enforces a limit of 9K MTU
545 * - Kernel will not produce a TSO larger than 64k
546 */
547
548 if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO))
549 return -1;
550
551 if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
552 return -EINVAL;
553
554 /* Needed because we will modify header. */
555 err = skb_cow_head(skb, 0);
556 if (err < 0)
557 return err;
558
559 tcp = tcp_hdr(skb);
560 paylen = skb->len - skb_transport_offset(skb);
561 csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen));
562 header_len = skb_tcp_all_headers(skb);
563
564 if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO))
565 return -EINVAL;
566
567 return header_len;
568 }
569
gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo * desc,const struct sk_buff * skb,const struct gve_tx_metadata_dqo * metadata,int header_len)570 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc,
571 const struct sk_buff *skb,
572 const struct gve_tx_metadata_dqo *metadata,
573 int header_len)
574 {
575 *desc = (struct gve_tx_tso_context_desc_dqo){
576 .header_len = header_len,
577 .cmd_dtype = {
578 .dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO,
579 .tso = 1,
580 },
581 .flex0 = metadata->bytes[0],
582 .flex5 = metadata->bytes[5],
583 .flex6 = metadata->bytes[6],
584 .flex7 = metadata->bytes[7],
585 .flex8 = metadata->bytes[8],
586 .flex9 = metadata->bytes[9],
587 .flex10 = metadata->bytes[10],
588 .flex11 = metadata->bytes[11],
589 };
590 desc->tso_total_len = skb->len - header_len;
591 desc->mss = skb_shinfo(skb)->gso_size;
592 }
593
594 static void
gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo * desc,const struct gve_tx_metadata_dqo * metadata)595 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc,
596 const struct gve_tx_metadata_dqo *metadata)
597 {
598 *desc = (struct gve_tx_general_context_desc_dqo){
599 .flex0 = metadata->bytes[0],
600 .flex1 = metadata->bytes[1],
601 .flex2 = metadata->bytes[2],
602 .flex3 = metadata->bytes[3],
603 .flex4 = metadata->bytes[4],
604 .flex5 = metadata->bytes[5],
605 .flex6 = metadata->bytes[6],
606 .flex7 = metadata->bytes[7],
607 .flex8 = metadata->bytes[8],
608 .flex9 = metadata->bytes[9],
609 .flex10 = metadata->bytes[10],
610 .flex11 = metadata->bytes[11],
611 .cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO},
612 };
613 }
614
gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)615 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx,
616 struct sk_buff *skb,
617 struct gve_tx_pending_packet_dqo *pkt,
618 s16 completion_tag,
619 u32 *desc_idx,
620 bool is_gso)
621 {
622 const struct skb_shared_info *shinfo = skb_shinfo(skb);
623 int i;
624
625 /* Note: HW requires that the size of a non-TSO packet be within the
626 * range of [17, 9728].
627 *
628 * We don't double check because
629 * - We limited `netdev->min_mtu` to ETH_MIN_MTU.
630 * - Hypervisor won't allow MTU larger than 9216.
631 */
632
633 pkt->num_bufs = 0;
634 /* Map the linear portion of skb */
635 {
636 u32 len = skb_headlen(skb);
637 dma_addr_t addr;
638
639 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
640 if (unlikely(dma_mapping_error(tx->dev, addr)))
641 goto err;
642
643 dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
644 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
645 ++pkt->num_bufs;
646
647 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr,
648 completion_tag,
649 /*eop=*/shinfo->nr_frags == 0, is_gso);
650 }
651
652 for (i = 0; i < shinfo->nr_frags; i++) {
653 const skb_frag_t *frag = &shinfo->frags[i];
654 bool is_eop = i == (shinfo->nr_frags - 1);
655 u32 len = skb_frag_size(frag);
656 dma_addr_t addr;
657
658 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
659 if (unlikely(dma_mapping_error(tx->dev, addr)))
660 goto err;
661
662 dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
663 netmem_dma_unmap_addr_set(skb_frag_netmem(frag), pkt,
664 dma[pkt->num_bufs], addr);
665 ++pkt->num_bufs;
666
667 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr,
668 completion_tag, is_eop, is_gso);
669 }
670
671 return 0;
672 err:
673 for (i = 0; i < pkt->num_bufs; i++) {
674 if (i == 0) {
675 dma_unmap_single(tx->dev,
676 dma_unmap_addr(pkt, dma[i]),
677 dma_unmap_len(pkt, len[i]),
678 DMA_TO_DEVICE);
679 } else {
680 dma_unmap_page(tx->dev,
681 dma_unmap_addr(pkt, dma[i]),
682 dma_unmap_len(pkt, len[i]),
683 DMA_TO_DEVICE);
684 }
685 }
686 pkt->num_bufs = 0;
687 return -1;
688 }
689
690 /* Tx buffer i corresponds to
691 * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO
692 * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO
693 */
gve_tx_buf_get_addr(struct gve_tx_ring * tx,s16 index,void ** va,dma_addr_t * dma_addr)694 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx,
695 s16 index,
696 void **va, dma_addr_t *dma_addr)
697 {
698 int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO);
699 int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO;
700
701 *va = page_address(tx->dqo.qpl->pages[page_id]) + offset;
702 *dma_addr = tx->dqo.qpl->page_buses[page_id] + offset;
703 }
704
gve_tx_add_skb_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)705 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx,
706 struct sk_buff *skb,
707 struct gve_tx_pending_packet_dqo *pkt,
708 s16 completion_tag,
709 u32 *desc_idx,
710 bool is_gso)
711 {
712 u32 copy_offset = 0;
713 dma_addr_t dma_addr;
714 u32 copy_len;
715 s16 index;
716 void *va;
717
718 /* Break the packet into buffer size chunks */
719 pkt->num_bufs = 0;
720 while (copy_offset < skb->len) {
721 index = gve_alloc_tx_qpl_buf(tx);
722 if (unlikely(index == -1))
723 goto err;
724
725 gve_tx_buf_get_addr(tx, index, &va, &dma_addr);
726 copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO,
727 skb->len - copy_offset);
728 skb_copy_bits(skb, copy_offset, va, copy_len);
729
730 copy_offset += copy_len;
731 dma_sync_single_for_device(tx->dev, dma_addr,
732 copy_len, DMA_TO_DEVICE);
733 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb,
734 copy_len,
735 dma_addr,
736 completion_tag,
737 copy_offset == skb->len,
738 is_gso);
739
740 pkt->tx_qpl_buf_ids[pkt->num_bufs] = index;
741 ++tx->dqo_tx.alloc_tx_qpl_buf_cnt;
742 ++pkt->num_bufs;
743 }
744
745 return 0;
746 err:
747 /* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */
748 gve_free_tx_qpl_bufs(tx, pkt);
749 return -ENOMEM;
750 }
751
752 /* Returns 0 on success, or < 0 on error.
753 *
754 * Before this function is called, the caller must ensure
755 * gve_has_pending_packet(tx) returns true.
756 */
gve_tx_add_skb_dqo(struct gve_tx_ring * tx,struct sk_buff * skb)757 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx,
758 struct sk_buff *skb)
759 {
760 const bool is_gso = skb_is_gso(skb);
761 u32 desc_idx = tx->dqo_tx.tail;
762 struct gve_tx_pending_packet_dqo *pkt;
763 struct gve_tx_metadata_dqo metadata;
764 s16 completion_tag;
765
766 pkt = gve_alloc_pending_packet(tx);
767 if (!pkt)
768 return -ENOMEM;
769
770 pkt->skb = skb;
771 completion_tag = pkt - tx->dqo.pending_packets;
772
773 gve_extract_tx_metadata_dqo(skb, &metadata);
774 if (is_gso) {
775 int header_len = gve_prep_tso(skb);
776
777 if (unlikely(header_len < 0))
778 goto err;
779
780 gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx,
781 skb, &metadata, header_len);
782 desc_idx = (desc_idx + 1) & tx->mask;
783 }
784
785 gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx,
786 &metadata);
787 desc_idx = (desc_idx + 1) & tx->mask;
788
789 if (tx->dqo.qpl) {
790 if (gve_tx_add_skb_copy_dqo(tx, skb, pkt,
791 completion_tag,
792 &desc_idx, is_gso))
793 goto err;
794 } else {
795 if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt,
796 completion_tag,
797 &desc_idx, is_gso))
798 goto err;
799 }
800
801 tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs;
802
803 /* Commit the changes to our state */
804 tx->dqo_tx.tail = desc_idx;
805
806 /* Request a descriptor completion on the last descriptor of the
807 * packet if we are allowed to by the HW enforced interval.
808 */
809 {
810 u32 last_desc_idx = (desc_idx - 1) & tx->mask;
811 u32 last_report_event_interval =
812 (last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask;
813
814 if (unlikely(last_report_event_interval >=
815 GVE_TX_MIN_RE_INTERVAL)) {
816 tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true;
817 tx->dqo_tx.last_re_idx = last_desc_idx;
818 }
819 }
820
821 return 0;
822
823 err:
824 pkt->skb = NULL;
825 gve_free_pending_packet(tx, pkt);
826
827 return -1;
828 }
829
gve_num_descs_per_buf(size_t size)830 static int gve_num_descs_per_buf(size_t size)
831 {
832 return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO);
833 }
834
gve_num_buffer_descs_needed(const struct sk_buff * skb)835 static int gve_num_buffer_descs_needed(const struct sk_buff *skb)
836 {
837 const struct skb_shared_info *shinfo = skb_shinfo(skb);
838 int num_descs;
839 int i;
840
841 num_descs = gve_num_descs_per_buf(skb_headlen(skb));
842
843 for (i = 0; i < shinfo->nr_frags; i++) {
844 unsigned int frag_size = skb_frag_size(&shinfo->frags[i]);
845
846 num_descs += gve_num_descs_per_buf(frag_size);
847 }
848
849 return num_descs;
850 }
851
852 /* Returns true if HW is capable of sending TSO represented by `skb`.
853 *
854 * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers.
855 * - The header is counted as one buffer for every single segment.
856 * - A buffer which is split between two segments is counted for both.
857 * - If a buffer contains both header and payload, it is counted as two buffers.
858 */
gve_can_send_tso(const struct sk_buff * skb)859 static bool gve_can_send_tso(const struct sk_buff *skb)
860 {
861 const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1;
862 const struct skb_shared_info *shinfo = skb_shinfo(skb);
863 const int header_len = skb_tcp_all_headers(skb);
864 const int gso_size = shinfo->gso_size;
865 int cur_seg_num_bufs;
866 int prev_frag_size;
867 int cur_seg_size;
868 int i;
869
870 cur_seg_size = skb_headlen(skb) - header_len;
871 prev_frag_size = skb_headlen(skb);
872 cur_seg_num_bufs = cur_seg_size > 0;
873
874 for (i = 0; i < shinfo->nr_frags; i++) {
875 if (cur_seg_size >= gso_size) {
876 cur_seg_size %= gso_size;
877 cur_seg_num_bufs = cur_seg_size > 0;
878
879 if (prev_frag_size > GVE_TX_MAX_BUF_SIZE_DQO) {
880 int prev_frag_remain = prev_frag_size %
881 GVE_TX_MAX_BUF_SIZE_DQO;
882
883 /* If the last descriptor of the previous frag
884 * is less than cur_seg_size, the segment will
885 * span two descriptors in the previous frag.
886 * Since max gso size (9728) is less than
887 * GVE_TX_MAX_BUF_SIZE_DQO, it is impossible
888 * for the segment to span more than two
889 * descriptors.
890 */
891 if (prev_frag_remain &&
892 cur_seg_size > prev_frag_remain)
893 cur_seg_num_bufs++;
894 }
895 }
896
897 if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg))
898 return false;
899
900 prev_frag_size = skb_frag_size(&shinfo->frags[i]);
901 cur_seg_size += prev_frag_size;
902 }
903
904 return true;
905 }
906
gve_features_check_dqo(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)907 netdev_features_t gve_features_check_dqo(struct sk_buff *skb,
908 struct net_device *dev,
909 netdev_features_t features)
910 {
911 if (skb_is_gso(skb) && !gve_can_send_tso(skb))
912 return features & ~NETIF_F_GSO_MASK;
913
914 return features;
915 }
916
917 /* Attempt to transmit specified SKB.
918 *
919 * Returns 0 if the SKB was transmitted or dropped.
920 * Returns -1 if there is not currently enough space to transmit the SKB.
921 */
gve_try_tx_skb(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)922 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx,
923 struct sk_buff *skb)
924 {
925 int num_buffer_descs;
926 int total_num_descs;
927
928 if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb)))
929 goto drop;
930
931 if (tx->dqo.qpl) {
932 /* We do not need to verify the number of buffers used per
933 * packet or per segment in case of TSO as with 2K size buffers
934 * none of the TX packet rules would be violated.
935 *
936 * gve_can_send_tso() checks that each TCP segment of gso_size is
937 * not distributed over more than 9 SKB frags..
938 */
939 num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO);
940 } else {
941 num_buffer_descs = gve_num_buffer_descs_needed(skb);
942 if (!skb_is_gso(skb)) {
943 if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) {
944 if (unlikely(skb_linearize(skb) < 0))
945 goto drop;
946
947 num_buffer_descs = 1;
948 }
949 }
950 }
951
952 /* Metadata + (optional TSO) + data descriptors. */
953 total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs;
954 if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs +
955 GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP,
956 num_buffer_descs))) {
957 return -1;
958 }
959
960 if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0))
961 goto drop;
962
963 netdev_tx_sent_queue(tx->netdev_txq, skb->len);
964 skb_tx_timestamp(skb);
965 return 0;
966
967 drop:
968 tx->dropped_pkt++;
969 dev_kfree_skb_any(skb);
970 return 0;
971 }
972
973 /* Transmit a given skb and ring the doorbell. */
gve_tx_dqo(struct sk_buff * skb,struct net_device * dev)974 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev)
975 {
976 struct gve_priv *priv = netdev_priv(dev);
977 struct gve_tx_ring *tx;
978
979 tx = &priv->tx[skb_get_queue_mapping(skb)];
980 if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) {
981 /* We need to ring the txq doorbell -- we have stopped the Tx
982 * queue for want of resources, but prior calls to gve_tx()
983 * may have added descriptors without ringing the doorbell.
984 */
985 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
986 return NETDEV_TX_BUSY;
987 }
988
989 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
990 return NETDEV_TX_OK;
991
992 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
993 return NETDEV_TX_OK;
994 }
995
add_to_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pending_packet)996 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list,
997 struct gve_tx_pending_packet_dqo *pending_packet)
998 {
999 s16 old_tail, index;
1000
1001 index = pending_packet - tx->dqo.pending_packets;
1002 old_tail = list->tail;
1003 list->tail = index;
1004 if (old_tail == -1)
1005 list->head = index;
1006 else
1007 tx->dqo.pending_packets[old_tail].next = index;
1008
1009 pending_packet->next = -1;
1010 pending_packet->prev = old_tail;
1011 }
1012
remove_from_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pkt)1013 static void remove_from_list(struct gve_tx_ring *tx,
1014 struct gve_index_list *list,
1015 struct gve_tx_pending_packet_dqo *pkt)
1016 {
1017 s16 prev_index, next_index;
1018
1019 prev_index = pkt->prev;
1020 next_index = pkt->next;
1021
1022 if (prev_index == -1) {
1023 /* Node is head */
1024 list->head = next_index;
1025 } else {
1026 tx->dqo.pending_packets[prev_index].next = next_index;
1027 }
1028 if (next_index == -1) {
1029 /* Node is tail */
1030 list->tail = prev_index;
1031 } else {
1032 tx->dqo.pending_packets[next_index].prev = prev_index;
1033 }
1034 }
1035
gve_unmap_packet(struct device * dev,struct gve_tx_pending_packet_dqo * pkt)1036 static void gve_unmap_packet(struct device *dev,
1037 struct gve_tx_pending_packet_dqo *pkt)
1038 {
1039 int i;
1040
1041 /* SKB linear portion is guaranteed to be mapped */
1042 dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]),
1043 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE);
1044 for (i = 1; i < pkt->num_bufs; i++) {
1045 netmem_dma_unmap_page_attrs(dev, dma_unmap_addr(pkt, dma[i]),
1046 dma_unmap_len(pkt, len[i]),
1047 DMA_TO_DEVICE, 0);
1048 }
1049 pkt->num_bufs = 0;
1050 }
1051
1052 /* Completion types and expected behavior:
1053 * No Miss compl + Packet compl = Packet completed normally.
1054 * Miss compl + Re-inject compl = Packet completed normally.
1055 * No Miss compl + Re-inject compl = Skipped i.e. packet not completed.
1056 * Miss compl + Packet compl = Skipped i.e. packet not completed.
1057 */
gve_handle_packet_completion(struct gve_priv * priv,struct gve_tx_ring * tx,bool is_napi,u16 compl_tag,u64 * bytes,u64 * pkts,bool is_reinjection)1058 static void gve_handle_packet_completion(struct gve_priv *priv,
1059 struct gve_tx_ring *tx, bool is_napi,
1060 u16 compl_tag, u64 *bytes, u64 *pkts,
1061 bool is_reinjection)
1062 {
1063 struct gve_tx_pending_packet_dqo *pending_packet;
1064
1065 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1066 net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1067 priv->dev->name, (int)compl_tag);
1068 return;
1069 }
1070
1071 pending_packet = &tx->dqo.pending_packets[compl_tag];
1072
1073 if (unlikely(is_reinjection)) {
1074 if (unlikely(pending_packet->state ==
1075 GVE_PACKET_STATE_TIMED_OUT_COMPL)) {
1076 net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n",
1077 priv->dev->name, (int)compl_tag);
1078 /* Packet was already completed as a result of timeout,
1079 * so just remove from list and free pending packet.
1080 */
1081 remove_from_list(tx,
1082 &tx->dqo_compl.timed_out_completions,
1083 pending_packet);
1084 gve_free_pending_packet(tx, pending_packet);
1085 return;
1086 }
1087 if (unlikely(pending_packet->state !=
1088 GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) {
1089 /* No outstanding miss completion but packet allocated
1090 * implies packet receives a re-injection completion
1091 * without a prior miss completion. Return without
1092 * completing the packet.
1093 */
1094 net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n",
1095 priv->dev->name, (int)compl_tag);
1096 return;
1097 }
1098 remove_from_list(tx, &tx->dqo_compl.miss_completions,
1099 pending_packet);
1100 } else {
1101 /* Packet is allocated but not a pending data completion. */
1102 if (unlikely(pending_packet->state !=
1103 GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1104 net_err_ratelimited("%s: No pending data completion: %d\n",
1105 priv->dev->name, (int)compl_tag);
1106 return;
1107 }
1108 }
1109 tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs;
1110 if (tx->dqo.qpl)
1111 gve_free_tx_qpl_bufs(tx, pending_packet);
1112 else
1113 gve_unmap_packet(tx->dev, pending_packet);
1114
1115 *bytes += pending_packet->skb->len;
1116 (*pkts)++;
1117 napi_consume_skb(pending_packet->skb, is_napi);
1118 pending_packet->skb = NULL;
1119 gve_free_pending_packet(tx, pending_packet);
1120 }
1121
gve_handle_miss_completion(struct gve_priv * priv,struct gve_tx_ring * tx,u16 compl_tag,u64 * bytes,u64 * pkts)1122 static void gve_handle_miss_completion(struct gve_priv *priv,
1123 struct gve_tx_ring *tx, u16 compl_tag,
1124 u64 *bytes, u64 *pkts)
1125 {
1126 struct gve_tx_pending_packet_dqo *pending_packet;
1127
1128 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1129 net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1130 priv->dev->name, (int)compl_tag);
1131 return;
1132 }
1133
1134 pending_packet = &tx->dqo.pending_packets[compl_tag];
1135 if (unlikely(pending_packet->state !=
1136 GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1137 net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n",
1138 priv->dev->name, (int)pending_packet->state,
1139 (int)compl_tag);
1140 return;
1141 }
1142
1143 pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL;
1144 /* jiffies can wraparound but time comparisons can handle overflows. */
1145 pending_packet->timeout_jiffies =
1146 jiffies +
1147 secs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT);
1148 add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet);
1149
1150 *bytes += pending_packet->skb->len;
1151 (*pkts)++;
1152 }
1153
remove_miss_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1154 static void remove_miss_completions(struct gve_priv *priv,
1155 struct gve_tx_ring *tx)
1156 {
1157 struct gve_tx_pending_packet_dqo *pending_packet;
1158 s16 next_index;
1159
1160 next_index = tx->dqo_compl.miss_completions.head;
1161 while (next_index != -1) {
1162 pending_packet = &tx->dqo.pending_packets[next_index];
1163 next_index = pending_packet->next;
1164 /* Break early because packets should timeout in order. */
1165 if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1166 break;
1167
1168 remove_from_list(tx, &tx->dqo_compl.miss_completions,
1169 pending_packet);
1170 /* Unmap/free TX buffers and free skb but do not unallocate packet i.e.
1171 * the completion tag is not freed to ensure that the driver
1172 * can take appropriate action if a corresponding valid
1173 * completion is received later.
1174 */
1175 if (tx->dqo.qpl)
1176 gve_free_tx_qpl_bufs(tx, pending_packet);
1177 else
1178 gve_unmap_packet(tx->dev, pending_packet);
1179
1180 /* This indicates the packet was dropped. */
1181 dev_kfree_skb_any(pending_packet->skb);
1182 pending_packet->skb = NULL;
1183 tx->dropped_pkt++;
1184 net_err_ratelimited("%s: No reinjection completion was received for: %d.\n",
1185 priv->dev->name,
1186 (int)(pending_packet - tx->dqo.pending_packets));
1187
1188 pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL;
1189 pending_packet->timeout_jiffies =
1190 jiffies +
1191 secs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT);
1192 /* Maintain pending packet in another list so the packet can be
1193 * unallocated at a later time.
1194 */
1195 add_to_list(tx, &tx->dqo_compl.timed_out_completions,
1196 pending_packet);
1197 }
1198 }
1199
remove_timed_out_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1200 static void remove_timed_out_completions(struct gve_priv *priv,
1201 struct gve_tx_ring *tx)
1202 {
1203 struct gve_tx_pending_packet_dqo *pending_packet;
1204 s16 next_index;
1205
1206 next_index = tx->dqo_compl.timed_out_completions.head;
1207 while (next_index != -1) {
1208 pending_packet = &tx->dqo.pending_packets[next_index];
1209 next_index = pending_packet->next;
1210 /* Break early because packets should timeout in order. */
1211 if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1212 break;
1213
1214 remove_from_list(tx, &tx->dqo_compl.timed_out_completions,
1215 pending_packet);
1216 gve_free_pending_packet(tx, pending_packet);
1217 }
1218 }
1219
gve_clean_tx_done_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct napi_struct * napi)1220 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1221 struct napi_struct *napi)
1222 {
1223 u64 reinject_compl_bytes = 0;
1224 u64 reinject_compl_pkts = 0;
1225 int num_descs_cleaned = 0;
1226 u64 miss_compl_bytes = 0;
1227 u64 miss_compl_pkts = 0;
1228 u64 pkt_compl_bytes = 0;
1229 u64 pkt_compl_pkts = 0;
1230
1231 /* Limit in order to avoid blocking for too long */
1232 while (!napi || pkt_compl_pkts < napi->weight) {
1233 struct gve_tx_compl_desc *compl_desc =
1234 &tx->dqo.compl_ring[tx->dqo_compl.head];
1235 u16 type;
1236
1237 if (compl_desc->generation == tx->dqo_compl.cur_gen_bit)
1238 break;
1239
1240 /* Prefetch the next descriptor. */
1241 prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) &
1242 tx->dqo.complq_mask]);
1243
1244 /* Do not read data until we own the descriptor */
1245 dma_rmb();
1246 type = compl_desc->type;
1247
1248 if (type == GVE_COMPL_TYPE_DQO_DESC) {
1249 /* This is the last descriptor fetched by HW plus one */
1250 u16 tx_head = le16_to_cpu(compl_desc->tx_head);
1251
1252 atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head);
1253 } else if (type == GVE_COMPL_TYPE_DQO_PKT) {
1254 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1255 if (compl_tag & GVE_ALT_MISS_COMPL_BIT) {
1256 compl_tag &= ~GVE_ALT_MISS_COMPL_BIT;
1257 gve_handle_miss_completion(priv, tx, compl_tag,
1258 &miss_compl_bytes,
1259 &miss_compl_pkts);
1260 } else {
1261 gve_handle_packet_completion(priv, tx, !!napi,
1262 compl_tag,
1263 &pkt_compl_bytes,
1264 &pkt_compl_pkts,
1265 false);
1266 }
1267 } else if (type == GVE_COMPL_TYPE_DQO_MISS) {
1268 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1269
1270 gve_handle_miss_completion(priv, tx, compl_tag,
1271 &miss_compl_bytes,
1272 &miss_compl_pkts);
1273 } else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) {
1274 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1275
1276 gve_handle_packet_completion(priv, tx, !!napi,
1277 compl_tag,
1278 &reinject_compl_bytes,
1279 &reinject_compl_pkts,
1280 true);
1281 }
1282
1283 tx->dqo_compl.head =
1284 (tx->dqo_compl.head + 1) & tx->dqo.complq_mask;
1285 /* Flip the generation bit when we wrap around */
1286 tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0;
1287 num_descs_cleaned++;
1288 }
1289
1290 netdev_tx_completed_queue(tx->netdev_txq,
1291 pkt_compl_pkts + miss_compl_pkts,
1292 pkt_compl_bytes + miss_compl_bytes);
1293
1294 remove_miss_completions(priv, tx);
1295 remove_timed_out_completions(priv, tx);
1296
1297 u64_stats_update_begin(&tx->statss);
1298 tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes;
1299 tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts;
1300 u64_stats_update_end(&tx->statss);
1301 return num_descs_cleaned;
1302 }
1303
gve_tx_poll_dqo(struct gve_notify_block * block,bool do_clean)1304 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean)
1305 {
1306 struct gve_tx_compl_desc *compl_desc;
1307 struct gve_tx_ring *tx = block->tx;
1308 struct gve_priv *priv = block->priv;
1309
1310 if (do_clean) {
1311 int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx,
1312 &block->napi);
1313
1314 /* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */
1315 mb();
1316
1317 if (netif_tx_queue_stopped(tx->netdev_txq) &&
1318 num_descs_cleaned > 0) {
1319 tx->wake_queue++;
1320 netif_tx_wake_queue(tx->netdev_txq);
1321 }
1322 }
1323
1324 /* Return true if we still have work. */
1325 compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head];
1326 return compl_desc->generation != tx->dqo_compl.cur_gen_bit;
1327 }
1328