xref: /linux/drivers/net/ethernet/google/gve/gve_rx.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/etherdevice.h>
11 #include <linux/filter.h>
12 #include <net/xdp.h>
13 #include <net/xdp_sock_drv.h>
14 
gve_rx_free_buffer(struct device * dev,struct gve_rx_slot_page_info * page_info,union gve_rx_data_slot * data_slot)15 static void gve_rx_free_buffer(struct device *dev,
16 			       struct gve_rx_slot_page_info *page_info,
17 			       union gve_rx_data_slot *data_slot)
18 {
19 	dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) &
20 				      GVE_DATA_SLOT_ADDR_PAGE_MASK);
21 
22 	page_ref_sub(page_info->page, page_info->pagecnt_bias - 1);
23 	gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE);
24 }
25 
gve_rx_unfill_pages(struct gve_priv * priv,struct gve_rx_ring * rx,struct gve_rx_alloc_rings_cfg * cfg)26 static void gve_rx_unfill_pages(struct gve_priv *priv,
27 				struct gve_rx_ring *rx,
28 				struct gve_rx_alloc_rings_cfg *cfg)
29 {
30 	u32 slots = rx->mask + 1;
31 	int i;
32 
33 	if (!rx->data.page_info)
34 		return;
35 
36 	if (rx->data.raw_addressing) {
37 		for (i = 0; i < slots; i++)
38 			gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i],
39 					   &rx->data.data_ring[i]);
40 	} else {
41 		for (i = 0; i < slots; i++)
42 			page_ref_sub(rx->data.page_info[i].page,
43 				     rx->data.page_info[i].pagecnt_bias - 1);
44 
45 		for (i = 0; i < rx->qpl_copy_pool_mask + 1; i++) {
46 			page_ref_sub(rx->qpl_copy_pool[i].page,
47 				     rx->qpl_copy_pool[i].pagecnt_bias - 1);
48 			put_page(rx->qpl_copy_pool[i].page);
49 		}
50 	}
51 	kvfree(rx->data.page_info);
52 	rx->data.page_info = NULL;
53 }
54 
gve_rx_ctx_clear(struct gve_rx_ctx * ctx)55 static void gve_rx_ctx_clear(struct gve_rx_ctx *ctx)
56 {
57 	ctx->skb_head = NULL;
58 	ctx->skb_tail = NULL;
59 	ctx->total_size = 0;
60 	ctx->frag_cnt = 0;
61 	ctx->drop_pkt = false;
62 }
63 
gve_rx_init_ring_state_gqi(struct gve_rx_ring * rx)64 static void gve_rx_init_ring_state_gqi(struct gve_rx_ring *rx)
65 {
66 	rx->desc.seqno = 1;
67 	rx->cnt = 0;
68 	gve_rx_ctx_clear(&rx->ctx);
69 }
70 
gve_rx_reset_ring_gqi(struct gve_priv * priv,int idx)71 static void gve_rx_reset_ring_gqi(struct gve_priv *priv, int idx)
72 {
73 	struct gve_rx_ring *rx = &priv->rx[idx];
74 	const u32 slots = priv->rx_desc_cnt;
75 	size_t size;
76 
77 	/* Reset desc ring */
78 	if (rx->desc.desc_ring) {
79 		size = slots * sizeof(rx->desc.desc_ring[0]);
80 		memset(rx->desc.desc_ring, 0, size);
81 	}
82 
83 	/* Reset q_resources */
84 	if (rx->q_resources)
85 		memset(rx->q_resources, 0, sizeof(*rx->q_resources));
86 
87 	gve_rx_init_ring_state_gqi(rx);
88 }
89 
gve_rx_stop_ring_gqi(struct gve_priv * priv,int idx)90 void gve_rx_stop_ring_gqi(struct gve_priv *priv, int idx)
91 {
92 	int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
93 
94 	if (!gve_rx_was_added_to_block(priv, idx))
95 		return;
96 
97 	gve_remove_napi(priv, ntfy_idx);
98 	gve_rx_remove_from_block(priv, idx);
99 	gve_rx_reset_ring_gqi(priv, idx);
100 }
101 
gve_rx_free_ring_gqi(struct gve_priv * priv,struct gve_rx_ring * rx,struct gve_rx_alloc_rings_cfg * cfg)102 void gve_rx_free_ring_gqi(struct gve_priv *priv, struct gve_rx_ring *rx,
103 			  struct gve_rx_alloc_rings_cfg *cfg)
104 {
105 	struct device *dev = &priv->pdev->dev;
106 	u32 slots = rx->mask + 1;
107 	int idx = rx->q_num;
108 	size_t bytes;
109 	u32 qpl_id;
110 
111 	if (rx->desc.desc_ring) {
112 		bytes = sizeof(struct gve_rx_desc) * cfg->ring_size;
113 		dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
114 		rx->desc.desc_ring = NULL;
115 	}
116 
117 	if (rx->q_resources) {
118 		dma_free_coherent(dev, sizeof(*rx->q_resources),
119 				  rx->q_resources, rx->q_resources_bus);
120 		rx->q_resources = NULL;
121 	}
122 
123 	gve_rx_unfill_pages(priv, rx, cfg);
124 
125 	if (rx->data.data_ring) {
126 		bytes = sizeof(*rx->data.data_ring) * slots;
127 		dma_free_coherent(dev, bytes, rx->data.data_ring,
128 				  rx->data.data_bus);
129 		rx->data.data_ring = NULL;
130 	}
131 
132 	kvfree(rx->qpl_copy_pool);
133 	rx->qpl_copy_pool = NULL;
134 
135 	if (rx->data.qpl) {
136 		qpl_id = gve_get_rx_qpl_id(cfg->qcfg_tx, idx);
137 		gve_free_queue_page_list(priv, rx->data.qpl, qpl_id);
138 		rx->data.qpl = NULL;
139 	}
140 
141 	netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
142 }
143 
gve_setup_rx_buffer(struct gve_rx_ring * rx,struct gve_rx_slot_page_info * page_info,dma_addr_t addr,struct page * page,__be64 * slot_addr)144 static void gve_setup_rx_buffer(struct gve_rx_ring *rx,
145 				struct gve_rx_slot_page_info *page_info,
146 				dma_addr_t addr, struct page *page,
147 				__be64 *slot_addr)
148 {
149 	page_info->page = page;
150 	page_info->page_offset = 0;
151 	page_info->page_address = page_address(page);
152 	page_info->buf_size = rx->packet_buffer_size;
153 	*slot_addr = cpu_to_be64(addr);
154 	/* The page already has 1 ref */
155 	page_ref_add(page, INT_MAX - 1);
156 	page_info->pagecnt_bias = INT_MAX;
157 }
158 
gve_rx_alloc_buffer(struct gve_priv * priv,struct device * dev,struct gve_rx_slot_page_info * page_info,union gve_rx_data_slot * data_slot,struct gve_rx_ring * rx)159 static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev,
160 			       struct gve_rx_slot_page_info *page_info,
161 			       union gve_rx_data_slot *data_slot,
162 			       struct gve_rx_ring *rx)
163 {
164 	struct page *page;
165 	dma_addr_t dma;
166 	int err;
167 
168 	err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE,
169 			     GFP_ATOMIC);
170 	if (err) {
171 		u64_stats_update_begin(&rx->statss);
172 		rx->rx_buf_alloc_fail++;
173 		u64_stats_update_end(&rx->statss);
174 		return err;
175 	}
176 
177 	gve_setup_rx_buffer(rx, page_info, dma, page, &data_slot->addr);
178 	return 0;
179 }
180 
gve_rx_prefill_pages(struct gve_rx_ring * rx,struct gve_rx_alloc_rings_cfg * cfg)181 static int gve_rx_prefill_pages(struct gve_rx_ring *rx,
182 				struct gve_rx_alloc_rings_cfg *cfg)
183 {
184 	struct gve_priv *priv = rx->gve;
185 	u32 slots;
186 	int err;
187 	int i;
188 	int j;
189 
190 	/* Allocate one page per Rx queue slot. Each page is split into two
191 	 * packet buffers, when possible we "page flip" between the two.
192 	 */
193 	slots = rx->mask + 1;
194 
195 	rx->data.page_info = kvzalloc(slots *
196 				      sizeof(*rx->data.page_info), GFP_KERNEL);
197 	if (!rx->data.page_info)
198 		return -ENOMEM;
199 
200 	for (i = 0; i < slots; i++) {
201 		if (!rx->data.raw_addressing) {
202 			struct page *page = rx->data.qpl->pages[i];
203 			dma_addr_t addr = i * PAGE_SIZE;
204 
205 			gve_setup_rx_buffer(rx, &rx->data.page_info[i], addr,
206 					    page,
207 					    &rx->data.data_ring[i].qpl_offset);
208 			continue;
209 		}
210 		err = gve_rx_alloc_buffer(priv, &priv->pdev->dev,
211 					  &rx->data.page_info[i],
212 					  &rx->data.data_ring[i], rx);
213 		if (err)
214 			goto alloc_err_rda;
215 	}
216 
217 	if (!rx->data.raw_addressing) {
218 		for (j = 0; j < rx->qpl_copy_pool_mask + 1; j++) {
219 			struct page *page = alloc_page(GFP_KERNEL);
220 
221 			if (!page) {
222 				err = -ENOMEM;
223 				goto alloc_err_qpl;
224 			}
225 
226 			rx->qpl_copy_pool[j].page = page;
227 			rx->qpl_copy_pool[j].page_offset = 0;
228 			rx->qpl_copy_pool[j].page_address = page_address(page);
229 			rx->qpl_copy_pool[j].buf_size = rx->packet_buffer_size;
230 
231 			/* The page already has 1 ref. */
232 			page_ref_add(page, INT_MAX - 1);
233 			rx->qpl_copy_pool[j].pagecnt_bias = INT_MAX;
234 		}
235 	}
236 
237 	return slots;
238 
239 alloc_err_qpl:
240 	/* Fully free the copy pool pages. */
241 	while (j--) {
242 		page_ref_sub(rx->qpl_copy_pool[j].page,
243 			     rx->qpl_copy_pool[j].pagecnt_bias - 1);
244 		put_page(rx->qpl_copy_pool[j].page);
245 	}
246 
247 	/* Do not fully free QPL pages - only remove the bias added in this
248 	 * function with gve_setup_rx_buffer.
249 	 */
250 	while (i--)
251 		page_ref_sub(rx->data.page_info[i].page,
252 			     rx->data.page_info[i].pagecnt_bias - 1);
253 
254 	return err;
255 
256 alloc_err_rda:
257 	while (i--)
258 		gve_rx_free_buffer(&priv->pdev->dev,
259 				   &rx->data.page_info[i],
260 				   &rx->data.data_ring[i]);
261 	return err;
262 }
263 
gve_rx_start_ring_gqi(struct gve_priv * priv,int idx)264 void gve_rx_start_ring_gqi(struct gve_priv *priv, int idx)
265 {
266 	int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
267 
268 	gve_rx_add_to_block(priv, idx);
269 	gve_add_napi(priv, ntfy_idx, gve_napi_poll);
270 }
271 
gve_rx_alloc_ring_gqi(struct gve_priv * priv,struct gve_rx_alloc_rings_cfg * cfg,struct gve_rx_ring * rx,int idx)272 int gve_rx_alloc_ring_gqi(struct gve_priv *priv,
273 			  struct gve_rx_alloc_rings_cfg *cfg,
274 			  struct gve_rx_ring *rx,
275 			  int idx)
276 {
277 	struct device *hdev = &priv->pdev->dev;
278 	u32 slots = cfg->ring_size;
279 	int filled_pages;
280 	int qpl_page_cnt;
281 	u32 qpl_id = 0;
282 	size_t bytes;
283 	int err;
284 
285 	netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
286 	/* Make sure everything is zeroed to start with */
287 	memset(rx, 0, sizeof(*rx));
288 
289 	rx->gve = priv;
290 	rx->q_num = idx;
291 	rx->packet_buffer_size = cfg->packet_buffer_size;
292 
293 	rx->mask = slots - 1;
294 	rx->data.raw_addressing = cfg->raw_addressing;
295 
296 	/* alloc rx data ring */
297 	bytes = sizeof(*rx->data.data_ring) * slots;
298 	rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
299 						&rx->data.data_bus,
300 						GFP_KERNEL);
301 	if (!rx->data.data_ring)
302 		return -ENOMEM;
303 
304 	rx->qpl_copy_pool_mask = min_t(u32, U32_MAX, slots * 2) - 1;
305 	rx->qpl_copy_pool_head = 0;
306 	rx->qpl_copy_pool = kvcalloc(rx->qpl_copy_pool_mask + 1,
307 				     sizeof(rx->qpl_copy_pool[0]),
308 				     GFP_KERNEL);
309 
310 	if (!rx->qpl_copy_pool) {
311 		err = -ENOMEM;
312 		goto abort_with_slots;
313 	}
314 
315 	if (!rx->data.raw_addressing) {
316 		qpl_id = gve_get_rx_qpl_id(cfg->qcfg_tx, rx->q_num);
317 		qpl_page_cnt = cfg->ring_size;
318 
319 		rx->data.qpl = gve_alloc_queue_page_list(priv, qpl_id,
320 							 qpl_page_cnt);
321 		if (!rx->data.qpl) {
322 			err = -ENOMEM;
323 			goto abort_with_copy_pool;
324 		}
325 	}
326 
327 	filled_pages = gve_rx_prefill_pages(rx, cfg);
328 	if (filled_pages < 0) {
329 		err = -ENOMEM;
330 		goto abort_with_qpl;
331 	}
332 	rx->fill_cnt = filled_pages;
333 	/* Ensure data ring slots (packet buffers) are visible. */
334 	dma_wmb();
335 
336 	/* Alloc gve_queue_resources */
337 	rx->q_resources =
338 		dma_alloc_coherent(hdev,
339 				   sizeof(*rx->q_resources),
340 				   &rx->q_resources_bus,
341 				   GFP_KERNEL);
342 	if (!rx->q_resources) {
343 		err = -ENOMEM;
344 		goto abort_filled;
345 	}
346 	netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
347 		  (unsigned long)rx->data.data_bus);
348 
349 	/* alloc rx desc ring */
350 	bytes = sizeof(struct gve_rx_desc) * cfg->ring_size;
351 	rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
352 						GFP_KERNEL);
353 	if (!rx->desc.desc_ring) {
354 		err = -ENOMEM;
355 		goto abort_with_q_resources;
356 	}
357 	rx->db_threshold = slots / 2;
358 	gve_rx_init_ring_state_gqi(rx);
359 
360 	gve_rx_ctx_clear(&rx->ctx);
361 
362 	return 0;
363 
364 abort_with_q_resources:
365 	dma_free_coherent(hdev, sizeof(*rx->q_resources),
366 			  rx->q_resources, rx->q_resources_bus);
367 	rx->q_resources = NULL;
368 abort_filled:
369 	gve_rx_unfill_pages(priv, rx, cfg);
370 abort_with_qpl:
371 	if (!rx->data.raw_addressing) {
372 		gve_free_queue_page_list(priv, rx->data.qpl, qpl_id);
373 		rx->data.qpl = NULL;
374 	}
375 abort_with_copy_pool:
376 	kvfree(rx->qpl_copy_pool);
377 	rx->qpl_copy_pool = NULL;
378 abort_with_slots:
379 	bytes = sizeof(*rx->data.data_ring) * slots;
380 	dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
381 	rx->data.data_ring = NULL;
382 
383 	return err;
384 }
385 
gve_rx_alloc_rings_gqi(struct gve_priv * priv,struct gve_rx_alloc_rings_cfg * cfg)386 int gve_rx_alloc_rings_gqi(struct gve_priv *priv,
387 			   struct gve_rx_alloc_rings_cfg *cfg)
388 {
389 	struct gve_rx_ring *rx;
390 	int err = 0;
391 	int i, j;
392 
393 	rx = kvcalloc(cfg->qcfg_rx->max_queues, sizeof(struct gve_rx_ring),
394 		      GFP_KERNEL);
395 	if (!rx)
396 		return -ENOMEM;
397 
398 	for (i = 0; i < cfg->qcfg_rx->num_queues; i++) {
399 		err = gve_rx_alloc_ring_gqi(priv, cfg, &rx[i], i);
400 		if (err) {
401 			netif_err(priv, drv, priv->dev,
402 				  "Failed to alloc rx ring=%d: err=%d\n",
403 				  i, err);
404 			goto cleanup;
405 		}
406 	}
407 
408 	cfg->rx = rx;
409 	return 0;
410 
411 cleanup:
412 	for (j = 0; j < i; j++)
413 		gve_rx_free_ring_gqi(priv, &rx[j], cfg);
414 	kvfree(rx);
415 	return err;
416 }
417 
gve_rx_free_rings_gqi(struct gve_priv * priv,struct gve_rx_alloc_rings_cfg * cfg)418 void gve_rx_free_rings_gqi(struct gve_priv *priv,
419 			   struct gve_rx_alloc_rings_cfg *cfg)
420 {
421 	struct gve_rx_ring *rx = cfg->rx;
422 	int i;
423 
424 	if (!rx)
425 		return;
426 
427 	for (i = 0; i < cfg->qcfg_rx->num_queues;  i++)
428 		gve_rx_free_ring_gqi(priv, &rx[i], cfg);
429 
430 	kvfree(rx);
431 	cfg->rx = NULL;
432 }
433 
gve_rx_write_doorbell(struct gve_priv * priv,struct gve_rx_ring * rx)434 void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
435 {
436 	u32 db_idx = be32_to_cpu(rx->q_resources->db_index);
437 
438 	iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]);
439 }
440 
gve_rss_type(__be16 pkt_flags)441 static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
442 {
443 	if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
444 		return PKT_HASH_TYPE_L4;
445 	if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
446 		return PKT_HASH_TYPE_L3;
447 	return PKT_HASH_TYPE_L2;
448 }
449 
gve_rx_add_frags(struct napi_struct * napi,struct gve_rx_slot_page_info * page_info,unsigned int truesize,u16 len,struct gve_rx_ctx * ctx)450 static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi,
451 					struct gve_rx_slot_page_info *page_info,
452 					unsigned int truesize, u16 len,
453 					struct gve_rx_ctx *ctx)
454 {
455 	u32 offset = page_info->page_offset + page_info->pad;
456 	struct sk_buff *skb = ctx->skb_tail;
457 	int num_frags = 0;
458 
459 	if (!skb) {
460 		skb = napi_get_frags(napi);
461 		if (unlikely(!skb))
462 			return NULL;
463 
464 		ctx->skb_head = skb;
465 		ctx->skb_tail = skb;
466 	} else {
467 		num_frags = skb_shinfo(ctx->skb_tail)->nr_frags;
468 		if (num_frags == MAX_SKB_FRAGS) {
469 			skb = napi_alloc_skb(napi, 0);
470 			if (!skb)
471 				return NULL;
472 
473 			// We will never chain more than two SKBs: 2 * 16 * 2k > 64k
474 			// which is why we do not need to chain by using skb->next
475 			skb_shinfo(ctx->skb_tail)->frag_list = skb;
476 
477 			ctx->skb_tail = skb;
478 			num_frags = 0;
479 		}
480 	}
481 
482 	if (skb != ctx->skb_head) {
483 		ctx->skb_head->len += len;
484 		ctx->skb_head->data_len += len;
485 		ctx->skb_head->truesize += truesize;
486 	}
487 	skb_add_rx_frag(skb, num_frags, page_info->page,
488 			offset, len, truesize);
489 
490 	return ctx->skb_head;
491 }
492 
gve_rx_flip_buff(struct gve_rx_slot_page_info * page_info,__be64 * slot_addr)493 static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr)
494 {
495 	const __be64 offset = cpu_to_be64(GVE_DEFAULT_RX_BUFFER_OFFSET);
496 
497 	/* "flip" to other packet buffer on this page */
498 	page_info->page_offset ^= GVE_DEFAULT_RX_BUFFER_OFFSET;
499 	*(slot_addr) ^= offset;
500 }
501 
gve_rx_can_recycle_buffer(struct gve_rx_slot_page_info * page_info)502 static int gve_rx_can_recycle_buffer(struct gve_rx_slot_page_info *page_info)
503 {
504 	int pagecount = page_count(page_info->page);
505 
506 	/* This page is not being used by any SKBs - reuse */
507 	if (pagecount == page_info->pagecnt_bias)
508 		return 1;
509 	/* This page is still being used by an SKB - we can't reuse */
510 	else if (pagecount > page_info->pagecnt_bias)
511 		return 0;
512 	WARN(pagecount < page_info->pagecnt_bias,
513 	     "Pagecount should never be less than the bias.");
514 	return -1;
515 }
516 
517 static struct sk_buff *
gve_rx_raw_addressing(struct device * dev,struct net_device * netdev,struct gve_rx_slot_page_info * page_info,u16 len,struct napi_struct * napi,union gve_rx_data_slot * data_slot,u16 packet_buffer_size,struct gve_rx_ctx * ctx)518 gve_rx_raw_addressing(struct device *dev, struct net_device *netdev,
519 		      struct gve_rx_slot_page_info *page_info, u16 len,
520 		      struct napi_struct *napi,
521 		      union gve_rx_data_slot *data_slot,
522 		      u16 packet_buffer_size, struct gve_rx_ctx *ctx)
523 {
524 	struct sk_buff *skb = gve_rx_add_frags(napi, page_info, packet_buffer_size, len, ctx);
525 
526 	if (!skb)
527 		return NULL;
528 
529 	/* Optimistically stop the kernel from freeing the page.
530 	 * We will check again in refill to determine if we need to alloc a
531 	 * new page.
532 	 */
533 	gve_dec_pagecnt_bias(page_info);
534 
535 	return skb;
536 }
537 
gve_rx_copy_to_pool(struct gve_rx_ring * rx,struct gve_rx_slot_page_info * page_info,u16 len,struct napi_struct * napi)538 static struct sk_buff *gve_rx_copy_to_pool(struct gve_rx_ring *rx,
539 					   struct gve_rx_slot_page_info *page_info,
540 					   u16 len, struct napi_struct *napi)
541 {
542 	u32 pool_idx = rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask;
543 	void *src = page_info->page_address + page_info->page_offset;
544 	struct gve_rx_slot_page_info *copy_page_info;
545 	struct gve_rx_ctx *ctx = &rx->ctx;
546 	bool alloc_page = false;
547 	struct sk_buff *skb;
548 	void *dst;
549 
550 	copy_page_info = &rx->qpl_copy_pool[pool_idx];
551 	if (!copy_page_info->can_flip) {
552 		int recycle = gve_rx_can_recycle_buffer(copy_page_info);
553 
554 		if (unlikely(recycle < 0)) {
555 			gve_schedule_reset(rx->gve);
556 			return NULL;
557 		}
558 		alloc_page = !recycle;
559 	}
560 
561 	if (alloc_page) {
562 		struct gve_rx_slot_page_info alloc_page_info;
563 		struct page *page;
564 
565 		/* The least recently used page turned out to be
566 		 * still in use by the kernel. Ignoring it and moving
567 		 * on alleviates head-of-line blocking.
568 		 */
569 		rx->qpl_copy_pool_head++;
570 
571 		page = alloc_page(GFP_ATOMIC);
572 		if (!page)
573 			return NULL;
574 
575 		alloc_page_info.page = page;
576 		alloc_page_info.page_offset = 0;
577 		alloc_page_info.page_address = page_address(page);
578 		alloc_page_info.pad = page_info->pad;
579 
580 		memcpy(alloc_page_info.page_address, src, page_info->pad + len);
581 		skb = gve_rx_add_frags(napi, &alloc_page_info,
582 				       PAGE_SIZE,
583 				       len, ctx);
584 
585 		u64_stats_update_begin(&rx->statss);
586 		rx->rx_frag_copy_cnt++;
587 		rx->rx_frag_alloc_cnt++;
588 		u64_stats_update_end(&rx->statss);
589 
590 		return skb;
591 	}
592 
593 	dst = copy_page_info->page_address + copy_page_info->page_offset;
594 	memcpy(dst, src, page_info->pad + len);
595 	copy_page_info->pad = page_info->pad;
596 
597 	skb = gve_rx_add_frags(napi, copy_page_info,
598 			       copy_page_info->buf_size, len, ctx);
599 	if (unlikely(!skb))
600 		return NULL;
601 
602 	gve_dec_pagecnt_bias(copy_page_info);
603 	copy_page_info->page_offset ^= GVE_DEFAULT_RX_BUFFER_OFFSET;
604 
605 	if (copy_page_info->can_flip) {
606 		/* We have used both halves of this copy page, it
607 		 * is time for it to go to the back of the queue.
608 		 */
609 		copy_page_info->can_flip = false;
610 		rx->qpl_copy_pool_head++;
611 		prefetch(rx->qpl_copy_pool[rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask].page);
612 	} else {
613 		copy_page_info->can_flip = true;
614 	}
615 
616 	u64_stats_update_begin(&rx->statss);
617 	rx->rx_frag_copy_cnt++;
618 	u64_stats_update_end(&rx->statss);
619 
620 	return skb;
621 }
622 
623 static struct sk_buff *
gve_rx_qpl(struct device * dev,struct net_device * netdev,struct gve_rx_ring * rx,struct gve_rx_slot_page_info * page_info,u16 len,struct napi_struct * napi,union gve_rx_data_slot * data_slot)624 gve_rx_qpl(struct device *dev, struct net_device *netdev,
625 	   struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info,
626 	   u16 len, struct napi_struct *napi,
627 	   union gve_rx_data_slot *data_slot)
628 {
629 	struct gve_rx_ctx *ctx = &rx->ctx;
630 	struct sk_buff *skb;
631 
632 	/* if raw_addressing mode is not enabled gvnic can only receive into
633 	 * registered segments. If the buffer can't be recycled, our only
634 	 * choice is to copy the data out of it so that we can return it to the
635 	 * device.
636 	 */
637 	if (page_info->can_flip) {
638 		skb = gve_rx_add_frags(napi, page_info, page_info->buf_size,
639 				       len, ctx);
640 		/* No point in recycling if we didn't get the skb */
641 		if (skb) {
642 			/* Make sure that the page isn't freed. */
643 			gve_dec_pagecnt_bias(page_info);
644 			gve_rx_flip_buff(page_info, &data_slot->qpl_offset);
645 		}
646 	} else {
647 		skb = gve_rx_copy_to_pool(rx, page_info, len, napi);
648 	}
649 	return skb;
650 }
651 
gve_rx_skb(struct gve_priv * priv,struct gve_rx_ring * rx,struct gve_rx_slot_page_info * page_info,struct napi_struct * napi,u16 len,union gve_rx_data_slot * data_slot,bool is_only_frag)652 static struct sk_buff *gve_rx_skb(struct gve_priv *priv, struct gve_rx_ring *rx,
653 				  struct gve_rx_slot_page_info *page_info, struct napi_struct *napi,
654 				  u16 len, union gve_rx_data_slot *data_slot,
655 				  bool is_only_frag)
656 {
657 	struct net_device *netdev = priv->dev;
658 	struct gve_rx_ctx *ctx = &rx->ctx;
659 	struct sk_buff *skb = NULL;
660 
661 	if (len <= priv->rx_copybreak && is_only_frag)  {
662 		/* Just copy small packets */
663 		skb = gve_rx_copy(netdev, napi, page_info, len);
664 		if (skb) {
665 			u64_stats_update_begin(&rx->statss);
666 			rx->rx_copied_pkt++;
667 			rx->rx_frag_copy_cnt++;
668 			rx->rx_copybreak_pkt++;
669 			u64_stats_update_end(&rx->statss);
670 		}
671 	} else {
672 		int recycle = gve_rx_can_recycle_buffer(page_info);
673 
674 		if (unlikely(recycle < 0)) {
675 			gve_schedule_reset(priv);
676 			return NULL;
677 		}
678 		page_info->can_flip = recycle;
679 		if (page_info->can_flip) {
680 			u64_stats_update_begin(&rx->statss);
681 			rx->rx_frag_flip_cnt++;
682 			u64_stats_update_end(&rx->statss);
683 		}
684 
685 		if (rx->data.raw_addressing) {
686 			skb = gve_rx_raw_addressing(&priv->pdev->dev, netdev,
687 						    page_info, len, napi,
688 						    data_slot,
689 						    page_info->buf_size, ctx);
690 		} else {
691 			skb = gve_rx_qpl(&priv->pdev->dev, netdev, rx,
692 					 page_info, len, napi, data_slot);
693 		}
694 	}
695 	return skb;
696 }
697 
gve_xsk_pool_redirect(struct net_device * dev,struct gve_rx_ring * rx,void * data,int len,struct bpf_prog * xdp_prog)698 static int gve_xsk_pool_redirect(struct net_device *dev,
699 				 struct gve_rx_ring *rx,
700 				 void *data, int len,
701 				 struct bpf_prog *xdp_prog)
702 {
703 	struct xdp_buff *xdp;
704 	int err;
705 
706 	if (rx->xsk_pool->frame_len < len)
707 		return -E2BIG;
708 	xdp = xsk_buff_alloc(rx->xsk_pool);
709 	if (!xdp) {
710 		u64_stats_update_begin(&rx->statss);
711 		rx->xdp_alloc_fails++;
712 		u64_stats_update_end(&rx->statss);
713 		return -ENOMEM;
714 	}
715 	xdp->data_end = xdp->data + len;
716 	memcpy(xdp->data, data, len);
717 	err = xdp_do_redirect(dev, xdp, xdp_prog);
718 	if (err)
719 		xsk_buff_free(xdp);
720 	return err;
721 }
722 
gve_xdp_redirect(struct net_device * dev,struct gve_rx_ring * rx,struct xdp_buff * orig,struct bpf_prog * xdp_prog)723 static int gve_xdp_redirect(struct net_device *dev, struct gve_rx_ring *rx,
724 			    struct xdp_buff *orig, struct bpf_prog *xdp_prog)
725 {
726 	int total_len, len = orig->data_end - orig->data;
727 	int headroom = XDP_PACKET_HEADROOM;
728 	struct xdp_buff new;
729 	void *frame;
730 	int err;
731 
732 	if (rx->xsk_pool)
733 		return gve_xsk_pool_redirect(dev, rx, orig->data,
734 					     len, xdp_prog);
735 
736 	total_len = headroom + SKB_DATA_ALIGN(len) +
737 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
738 	frame = page_frag_alloc(&rx->page_cache, total_len, GFP_ATOMIC);
739 	if (!frame) {
740 		u64_stats_update_begin(&rx->statss);
741 		rx->xdp_alloc_fails++;
742 		u64_stats_update_end(&rx->statss);
743 		return -ENOMEM;
744 	}
745 	xdp_init_buff(&new, total_len, &rx->xdp_rxq);
746 	xdp_prepare_buff(&new, frame, headroom, len, false);
747 	memcpy(new.data, orig->data, len);
748 
749 	err = xdp_do_redirect(dev, &new, xdp_prog);
750 	if (err)
751 		page_frag_free(frame);
752 
753 	return err;
754 }
755 
gve_xdp_done(struct gve_priv * priv,struct gve_rx_ring * rx,struct xdp_buff * xdp,struct bpf_prog * xprog,int xdp_act)756 static void gve_xdp_done(struct gve_priv *priv, struct gve_rx_ring *rx,
757 			 struct xdp_buff *xdp, struct bpf_prog *xprog,
758 			 int xdp_act)
759 {
760 	struct gve_tx_ring *tx;
761 	int tx_qid;
762 	int err;
763 
764 	switch (xdp_act) {
765 	case XDP_ABORTED:
766 	case XDP_DROP:
767 	default:
768 		break;
769 	case XDP_TX:
770 		tx_qid = gve_xdp_tx_queue_id(priv, rx->q_num);
771 		tx = &priv->tx[tx_qid];
772 		spin_lock(&tx->xdp_lock);
773 		err = gve_xdp_xmit_one(priv, tx, xdp->data,
774 				       xdp->data_end - xdp->data, NULL);
775 		spin_unlock(&tx->xdp_lock);
776 
777 		if (unlikely(err)) {
778 			u64_stats_update_begin(&rx->statss);
779 			rx->xdp_tx_errors++;
780 			u64_stats_update_end(&rx->statss);
781 		}
782 		break;
783 	case XDP_REDIRECT:
784 		err = gve_xdp_redirect(priv->dev, rx, xdp, xprog);
785 
786 		if (unlikely(err)) {
787 			u64_stats_update_begin(&rx->statss);
788 			rx->xdp_redirect_errors++;
789 			u64_stats_update_end(&rx->statss);
790 		}
791 		break;
792 	}
793 	u64_stats_update_begin(&rx->statss);
794 	if ((u32)xdp_act < GVE_XDP_ACTIONS)
795 		rx->xdp_actions[xdp_act]++;
796 	u64_stats_update_end(&rx->statss);
797 }
798 
799 #define GVE_PKTCONT_BIT_IS_SET(x) (GVE_RXF_PKT_CONT & (x))
gve_rx(struct gve_rx_ring * rx,netdev_features_t feat,struct gve_rx_desc * desc,u32 idx,struct gve_rx_cnts * cnts)800 static void gve_rx(struct gve_rx_ring *rx, netdev_features_t feat,
801 		   struct gve_rx_desc *desc, u32 idx,
802 		   struct gve_rx_cnts *cnts)
803 {
804 	bool is_last_frag = !GVE_PKTCONT_BIT_IS_SET(desc->flags_seq);
805 	struct gve_rx_slot_page_info *page_info;
806 	u16 frag_size = be16_to_cpu(desc->len);
807 	struct gve_rx_ctx *ctx = &rx->ctx;
808 	union gve_rx_data_slot *data_slot;
809 	struct gve_priv *priv = rx->gve;
810 	struct sk_buff *skb = NULL;
811 	struct bpf_prog *xprog;
812 	struct xdp_buff xdp;
813 	dma_addr_t page_bus;
814 	void *va;
815 
816 	u16 len = frag_size;
817 	struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
818 	bool is_first_frag = ctx->frag_cnt == 0;
819 
820 	bool is_only_frag = is_first_frag && is_last_frag;
821 
822 	if (unlikely(ctx->drop_pkt))
823 		goto finish_frag;
824 
825 	if (desc->flags_seq & GVE_RXF_ERR) {
826 		ctx->drop_pkt = true;
827 		cnts->desc_err_pkt_cnt++;
828 		napi_free_frags(napi);
829 		goto finish_frag;
830 	}
831 
832 	if (unlikely(frag_size > rx->packet_buffer_size)) {
833 		netdev_warn(priv->dev, "Unexpected frag size %d, can't exceed %d, scheduling reset",
834 			    frag_size, rx->packet_buffer_size);
835 		ctx->drop_pkt = true;
836 		napi_free_frags(napi);
837 		gve_schedule_reset(rx->gve);
838 		goto finish_frag;
839 	}
840 
841 	/* Prefetch two packet buffers ahead, we will need it soon. */
842 	page_info = &rx->data.page_info[(idx + 2) & rx->mask];
843 	va = page_info->page_address + page_info->page_offset;
844 	prefetch(page_info->page); /* Kernel page struct. */
845 	prefetch(va);              /* Packet header. */
846 	prefetch(va + 64);         /* Next cacheline too. */
847 
848 	page_info = &rx->data.page_info[idx];
849 	data_slot = &rx->data.data_ring[idx];
850 	page_bus = (rx->data.raw_addressing) ?
851 		be64_to_cpu(data_slot->addr) - page_info->page_offset :
852 		rx->data.qpl->page_buses[idx];
853 	dma_sync_single_for_cpu(&priv->pdev->dev, page_bus,
854 				PAGE_SIZE, DMA_FROM_DEVICE);
855 	page_info->pad = is_first_frag ? GVE_RX_PAD : 0;
856 	len -= page_info->pad;
857 	frag_size -= page_info->pad;
858 
859 	xprog = READ_ONCE(priv->xdp_prog);
860 	if (xprog && is_only_frag) {
861 		void *old_data;
862 		int xdp_act;
863 
864 		xdp_init_buff(&xdp, page_info->buf_size, &rx->xdp_rxq);
865 		xdp_prepare_buff(&xdp, page_info->page_address +
866 				 page_info->page_offset, GVE_RX_PAD,
867 				 len, false);
868 		old_data = xdp.data;
869 		xdp_act = bpf_prog_run_xdp(xprog, &xdp);
870 		if (xdp_act != XDP_PASS) {
871 			gve_xdp_done(priv, rx, &xdp, xprog, xdp_act);
872 			ctx->total_size += frag_size;
873 			goto finish_ok_pkt;
874 		}
875 
876 		page_info->pad += xdp.data - old_data;
877 		len = xdp.data_end - xdp.data;
878 
879 		u64_stats_update_begin(&rx->statss);
880 		rx->xdp_actions[XDP_PASS]++;
881 		u64_stats_update_end(&rx->statss);
882 	}
883 
884 	skb = gve_rx_skb(priv, rx, page_info, napi, len,
885 			 data_slot, is_only_frag);
886 	if (!skb) {
887 		u64_stats_update_begin(&rx->statss);
888 		rx->rx_skb_alloc_fail++;
889 		u64_stats_update_end(&rx->statss);
890 
891 		napi_free_frags(napi);
892 		ctx->drop_pkt = true;
893 		goto finish_frag;
894 	}
895 	ctx->total_size += frag_size;
896 
897 	if (is_first_frag) {
898 		if (likely(feat & NETIF_F_RXCSUM)) {
899 			/* NIC passes up the partial sum */
900 			if (desc->csum)
901 				skb->ip_summed = CHECKSUM_COMPLETE;
902 			else
903 				skb->ip_summed = CHECKSUM_NONE;
904 			skb->csum = csum_unfold(desc->csum);
905 		}
906 
907 		/* parse flags & pass relevant info up */
908 		if (likely(feat & NETIF_F_RXHASH) &&
909 		    gve_needs_rss(desc->flags_seq))
910 			skb_set_hash(skb, be32_to_cpu(desc->rss_hash),
911 				     gve_rss_type(desc->flags_seq));
912 	}
913 
914 	if (is_last_frag) {
915 		skb_record_rx_queue(skb, rx->q_num);
916 		if (skb_is_nonlinear(skb))
917 			napi_gro_frags(napi);
918 		else
919 			napi_gro_receive(napi, skb);
920 		goto finish_ok_pkt;
921 	}
922 
923 	goto finish_frag;
924 
925 finish_ok_pkt:
926 	cnts->ok_pkt_bytes += ctx->total_size;
927 	cnts->ok_pkt_cnt++;
928 finish_frag:
929 	ctx->frag_cnt++;
930 	if (is_last_frag) {
931 		cnts->total_pkt_cnt++;
932 		cnts->cont_pkt_cnt += (ctx->frag_cnt > 1);
933 		gve_rx_ctx_clear(ctx);
934 	}
935 }
936 
gve_rx_work_pending(struct gve_rx_ring * rx)937 bool gve_rx_work_pending(struct gve_rx_ring *rx)
938 {
939 	struct gve_rx_desc *desc;
940 	__be16 flags_seq;
941 	u32 next_idx;
942 
943 	next_idx = rx->cnt & rx->mask;
944 	desc = rx->desc.desc_ring + next_idx;
945 
946 	flags_seq = desc->flags_seq;
947 
948 	return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
949 }
950 
gve_rx_refill_buffers(struct gve_priv * priv,struct gve_rx_ring * rx)951 static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx)
952 {
953 	int refill_target = rx->mask + 1;
954 	u32 fill_cnt = rx->fill_cnt;
955 
956 	while (fill_cnt - rx->cnt < refill_target) {
957 		struct gve_rx_slot_page_info *page_info;
958 		u32 idx = fill_cnt & rx->mask;
959 
960 		page_info = &rx->data.page_info[idx];
961 		if (page_info->can_flip) {
962 			/* The other half of the page is free because it was
963 			 * free when we processed the descriptor. Flip to it.
964 			 */
965 			union gve_rx_data_slot *data_slot =
966 						&rx->data.data_ring[idx];
967 
968 			gve_rx_flip_buff(page_info, &data_slot->addr);
969 			page_info->can_flip = 0;
970 		} else {
971 			/* It is possible that the networking stack has already
972 			 * finished processing all outstanding packets in the buffer
973 			 * and it can be reused.
974 			 * Flipping is unnecessary here - if the networking stack still
975 			 * owns half the page it is impossible to tell which half. Either
976 			 * the whole page is free or it needs to be replaced.
977 			 */
978 			int recycle = gve_rx_can_recycle_buffer(page_info);
979 
980 			if (recycle < 0) {
981 				if (!rx->data.raw_addressing)
982 					gve_schedule_reset(priv);
983 				return false;
984 			}
985 			if (!recycle) {
986 				/* We can't reuse the buffer - alloc a new one*/
987 				union gve_rx_data_slot *data_slot =
988 						&rx->data.data_ring[idx];
989 				struct device *dev = &priv->pdev->dev;
990 				gve_rx_free_buffer(dev, page_info, data_slot);
991 				page_info->page = NULL;
992 				if (gve_rx_alloc_buffer(priv, dev, page_info,
993 							data_slot, rx)) {
994 					break;
995 				}
996 			}
997 		}
998 		fill_cnt++;
999 	}
1000 	rx->fill_cnt = fill_cnt;
1001 	return true;
1002 }
1003 
gve_clean_rx_done(struct gve_rx_ring * rx,int budget,netdev_features_t feat)1004 static int gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
1005 			     netdev_features_t feat)
1006 {
1007 	u64 xdp_redirects = rx->xdp_actions[XDP_REDIRECT];
1008 	u64 xdp_txs = rx->xdp_actions[XDP_TX];
1009 	struct gve_rx_ctx *ctx = &rx->ctx;
1010 	struct gve_priv *priv = rx->gve;
1011 	struct gve_rx_cnts cnts = {0};
1012 	struct gve_rx_desc *next_desc;
1013 	u32 idx = rx->cnt & rx->mask;
1014 	u32 work_done = 0;
1015 
1016 	struct gve_rx_desc *desc = &rx->desc.desc_ring[idx];
1017 
1018 	// Exceed budget only if (and till) the inflight packet is consumed.
1019 	while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
1020 	       (work_done < budget || ctx->frag_cnt)) {
1021 		next_desc = &rx->desc.desc_ring[(idx + 1) & rx->mask];
1022 		prefetch(next_desc);
1023 
1024 		gve_rx(rx, feat, desc, idx, &cnts);
1025 
1026 		rx->cnt++;
1027 		idx = rx->cnt & rx->mask;
1028 		desc = &rx->desc.desc_ring[idx];
1029 		rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
1030 		work_done++;
1031 	}
1032 
1033 	// The device will only send whole packets.
1034 	if (unlikely(ctx->frag_cnt)) {
1035 		struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
1036 
1037 		napi_free_frags(napi);
1038 		gve_rx_ctx_clear(&rx->ctx);
1039 		netdev_warn(priv->dev, "Unexpected seq number %d with incomplete packet, expected %d, scheduling reset",
1040 			    GVE_SEQNO(desc->flags_seq), rx->desc.seqno);
1041 		gve_schedule_reset(rx->gve);
1042 	}
1043 
1044 	if (!work_done && rx->fill_cnt - rx->cnt > rx->db_threshold)
1045 		return 0;
1046 
1047 	if (work_done) {
1048 		u64_stats_update_begin(&rx->statss);
1049 		rx->rpackets += cnts.ok_pkt_cnt;
1050 		rx->rbytes += cnts.ok_pkt_bytes;
1051 		rx->rx_cont_packet_cnt += cnts.cont_pkt_cnt;
1052 		rx->rx_desc_err_dropped_pkt += cnts.desc_err_pkt_cnt;
1053 		u64_stats_update_end(&rx->statss);
1054 	}
1055 
1056 	if (xdp_txs != rx->xdp_actions[XDP_TX])
1057 		gve_xdp_tx_flush(priv, rx->q_num);
1058 
1059 	if (xdp_redirects != rx->xdp_actions[XDP_REDIRECT])
1060 		xdp_do_flush();
1061 
1062 	/* restock ring slots */
1063 	if (!rx->data.raw_addressing) {
1064 		/* In QPL mode buffs are refilled as the desc are processed */
1065 		rx->fill_cnt += work_done;
1066 	} else if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
1067 		/* In raw addressing mode buffs are only refilled if the avail
1068 		 * falls below a threshold.
1069 		 */
1070 		if (!gve_rx_refill_buffers(priv, rx))
1071 			return 0;
1072 
1073 		/* If we were not able to completely refill buffers, we'll want
1074 		 * to schedule this queue for work again to refill buffers.
1075 		 */
1076 		if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
1077 			gve_rx_write_doorbell(priv, rx);
1078 			return budget;
1079 		}
1080 	}
1081 
1082 	gve_rx_write_doorbell(priv, rx);
1083 	return cnts.total_pkt_cnt;
1084 }
1085 
gve_rx_poll(struct gve_notify_block * block,int budget)1086 int gve_rx_poll(struct gve_notify_block *block, int budget)
1087 {
1088 	struct gve_rx_ring *rx = block->rx;
1089 	netdev_features_t feat;
1090 	int work_done = 0;
1091 
1092 	feat = block->napi.dev->features;
1093 
1094 	if (budget > 0)
1095 		work_done = gve_clean_rx_done(rx, budget, feat);
1096 
1097 	return work_done;
1098 }
1099