xref: /linux/drivers/net/ethernet/google/gve/gve_tx_dqo.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include "gve_dqo.h"
11 #include <net/ip.h>
12 #include <linux/bpf.h>
13 #include <linux/tcp.h>
14 #include <linux/slab.h>
15 #include <linux/skbuff.h>
16 #include <net/xdp_sock_drv.h>
17 
18 /* Returns true if tx_bufs are available. */
gve_has_free_tx_qpl_bufs(struct gve_tx_ring * tx,int count)19 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count)
20 {
21 	int num_avail;
22 
23 	if (!tx->dqo.qpl)
24 		return true;
25 
26 	num_avail = tx->dqo.num_tx_qpl_bufs -
27 		(tx->dqo_tx.alloc_tx_qpl_buf_cnt -
28 		 tx->dqo_tx.free_tx_qpl_buf_cnt);
29 
30 	if (count <= num_avail)
31 		return true;
32 
33 	/* Update cached value from dqo_compl. */
34 	tx->dqo_tx.free_tx_qpl_buf_cnt =
35 		atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt);
36 
37 	num_avail = tx->dqo.num_tx_qpl_bufs -
38 		(tx->dqo_tx.alloc_tx_qpl_buf_cnt -
39 		 tx->dqo_tx.free_tx_qpl_buf_cnt);
40 
41 	return count <= num_avail;
42 }
43 
44 static s16
gve_alloc_tx_qpl_buf(struct gve_tx_ring * tx)45 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx)
46 {
47 	s16 index;
48 
49 	index = tx->dqo_tx.free_tx_qpl_buf_head;
50 
51 	/* No TX buffers available, try to steal the list from the
52 	 * completion handler.
53 	 */
54 	if (unlikely(index == -1)) {
55 		tx->dqo_tx.free_tx_qpl_buf_head =
56 			atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
57 		index = tx->dqo_tx.free_tx_qpl_buf_head;
58 
59 		if (unlikely(index == -1))
60 			return index;
61 	}
62 
63 	/* Remove TX buf from free list */
64 	tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index];
65 
66 	return index;
67 }
68 
69 static void
gve_free_tx_qpl_bufs(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pkt)70 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx,
71 		     struct gve_tx_pending_packet_dqo *pkt)
72 {
73 	s16 index;
74 	int i;
75 
76 	if (!pkt->num_bufs)
77 		return;
78 
79 	index = pkt->tx_qpl_buf_ids[0];
80 	/* Create a linked list of buffers to be added to the free list */
81 	for (i = 1; i < pkt->num_bufs; i++) {
82 		tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i];
83 		index = pkt->tx_qpl_buf_ids[i];
84 	}
85 
86 	while (true) {
87 		s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head);
88 
89 		tx->dqo.tx_qpl_buf_next[index] = old_head;
90 		if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head,
91 				   old_head,
92 				   pkt->tx_qpl_buf_ids[0]) == old_head) {
93 			break;
94 		}
95 	}
96 
97 	atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt);
98 	pkt->num_bufs = 0;
99 }
100 
101 /* Returns true if a gve_tx_pending_packet_dqo object is available. */
gve_has_pending_packet(struct gve_tx_ring * tx)102 static bool gve_has_pending_packet(struct gve_tx_ring *tx)
103 {
104 	/* Check TX path's list. */
105 	if (tx->dqo_tx.free_pending_packets != -1)
106 		return true;
107 
108 	/* Check completion handler's list. */
109 	if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1)
110 		return true;
111 
112 	return false;
113 }
114 
gve_xdp_tx_flush_dqo(struct gve_priv * priv,u32 xdp_qid)115 void gve_xdp_tx_flush_dqo(struct gve_priv *priv, u32 xdp_qid)
116 {
117 	u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid);
118 	struct gve_tx_ring *tx = &priv->tx[tx_qid];
119 
120 	gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
121 }
122 
123 static struct gve_tx_pending_packet_dqo *
gve_alloc_pending_packet(struct gve_tx_ring * tx)124 gve_alloc_pending_packet(struct gve_tx_ring *tx)
125 {
126 	struct gve_tx_pending_packet_dqo *pending_packet;
127 	s16 index;
128 
129 	index = tx->dqo_tx.free_pending_packets;
130 
131 	/* No pending_packets available, try to steal the list from the
132 	 * completion handler.
133 	 */
134 	if (unlikely(index == -1)) {
135 		tx->dqo_tx.free_pending_packets =
136 			atomic_xchg(&tx->dqo_compl.free_pending_packets, -1);
137 		index = tx->dqo_tx.free_pending_packets;
138 
139 		if (unlikely(index == -1))
140 			return NULL;
141 	}
142 
143 	pending_packet = &tx->dqo.pending_packets[index];
144 
145 	/* Remove pending_packet from free list */
146 	tx->dqo_tx.free_pending_packets = pending_packet->next;
147 	pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL;
148 
149 	return pending_packet;
150 }
151 
152 static void
gve_free_pending_packet(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pending_packet)153 gve_free_pending_packet(struct gve_tx_ring *tx,
154 			struct gve_tx_pending_packet_dqo *pending_packet)
155 {
156 	s16 index = pending_packet - tx->dqo.pending_packets;
157 
158 	pending_packet->state = GVE_PACKET_STATE_UNALLOCATED;
159 	while (true) {
160 		s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets);
161 
162 		pending_packet->next = old_head;
163 		if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets,
164 				   old_head, index) == old_head) {
165 			break;
166 		}
167 	}
168 }
169 
170 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers.
171  */
gve_tx_clean_pending_packets(struct gve_tx_ring * tx)172 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx)
173 {
174 	int i;
175 
176 	for (i = 0; i < tx->dqo.num_pending_packets; i++) {
177 		struct gve_tx_pending_packet_dqo *cur_state =
178 			&tx->dqo.pending_packets[i];
179 		int j;
180 
181 		for (j = 0; j < cur_state->num_bufs; j++) {
182 			if (j == 0) {
183 				dma_unmap_single(tx->dev,
184 					dma_unmap_addr(cur_state, dma[j]),
185 					dma_unmap_len(cur_state, len[j]),
186 					DMA_TO_DEVICE);
187 			} else {
188 				dma_unmap_page(tx->dev,
189 					dma_unmap_addr(cur_state, dma[j]),
190 					dma_unmap_len(cur_state, len[j]),
191 					DMA_TO_DEVICE);
192 			}
193 		}
194 		if (cur_state->skb) {
195 			dev_consume_skb_any(cur_state->skb);
196 			cur_state->skb = NULL;
197 		}
198 	}
199 }
200 
gve_tx_stop_ring_dqo(struct gve_priv * priv,int idx)201 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx)
202 {
203 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
204 	struct gve_tx_ring *tx = &priv->tx[idx];
205 
206 	if (!gve_tx_was_added_to_block(priv, idx))
207 		return;
208 
209 	gve_remove_napi(priv, ntfy_idx);
210 	gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL);
211 	if (tx->netdev_txq)
212 		netdev_tx_reset_queue(tx->netdev_txq);
213 	gve_tx_clean_pending_packets(tx);
214 	gve_tx_remove_from_block(priv, idx);
215 }
216 
gve_tx_free_ring_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct gve_tx_alloc_rings_cfg * cfg)217 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
218 				 struct gve_tx_alloc_rings_cfg *cfg)
219 {
220 	struct device *hdev = &priv->pdev->dev;
221 	int idx = tx->q_num;
222 	size_t bytes;
223 	u32 qpl_id;
224 
225 	if (tx->q_resources) {
226 		dma_free_coherent(hdev, sizeof(*tx->q_resources),
227 				  tx->q_resources, tx->q_resources_bus);
228 		tx->q_resources = NULL;
229 	}
230 
231 	if (tx->dqo.compl_ring) {
232 		bytes = sizeof(tx->dqo.compl_ring[0]) *
233 			(tx->dqo.complq_mask + 1);
234 		dma_free_coherent(hdev, bytes, tx->dqo.compl_ring,
235 				  tx->complq_bus_dqo);
236 		tx->dqo.compl_ring = NULL;
237 	}
238 
239 	if (tx->dqo.tx_ring) {
240 		bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
241 		dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus);
242 		tx->dqo.tx_ring = NULL;
243 	}
244 
245 	kvfree(tx->dqo.xsk_reorder_queue);
246 	tx->dqo.xsk_reorder_queue = NULL;
247 
248 	kvfree(tx->dqo.pending_packets);
249 	tx->dqo.pending_packets = NULL;
250 
251 	kvfree(tx->dqo.tx_qpl_buf_next);
252 	tx->dqo.tx_qpl_buf_next = NULL;
253 
254 	if (tx->dqo.qpl) {
255 		qpl_id = gve_tx_qpl_id(priv, tx->q_num);
256 		gve_free_queue_page_list(priv, tx->dqo.qpl, qpl_id);
257 		tx->dqo.qpl = NULL;
258 	}
259 
260 	netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
261 }
262 
gve_tx_qpl_buf_init(struct gve_tx_ring * tx)263 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx)
264 {
265 	int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO *
266 		tx->dqo.qpl->num_entries;
267 	int i;
268 
269 	tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs,
270 					   sizeof(tx->dqo.tx_qpl_buf_next[0]),
271 					   GFP_KERNEL);
272 	if (!tx->dqo.tx_qpl_buf_next)
273 		return -ENOMEM;
274 
275 	tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs;
276 
277 	/* Generate free TX buf list */
278 	for (i = 0; i < num_tx_qpl_bufs - 1; i++)
279 		tx->dqo.tx_qpl_buf_next[i] = i + 1;
280 	tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1;
281 
282 	atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
283 	return 0;
284 }
285 
gve_tx_start_ring_dqo(struct gve_priv * priv,int idx)286 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx)
287 {
288 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
289 	struct gve_tx_ring *tx = &priv->tx[idx];
290 
291 	gve_tx_add_to_block(priv, idx);
292 
293 	if (idx < priv->tx_cfg.num_queues)
294 		tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
295 	gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo);
296 }
297 
gve_tx_alloc_ring_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg,struct gve_tx_ring * tx,int idx)298 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv,
299 				 struct gve_tx_alloc_rings_cfg *cfg,
300 				 struct gve_tx_ring *tx,
301 				 int idx)
302 {
303 	struct device *hdev = &priv->pdev->dev;
304 	int num_pending_packets;
305 	int qpl_page_cnt;
306 	size_t bytes;
307 	u32 qpl_id;
308 	int i;
309 
310 	memset(tx, 0, sizeof(*tx));
311 	tx->q_num = idx;
312 	tx->dev = hdev;
313 	spin_lock_init(&tx->dqo_tx.xdp_lock);
314 	atomic_set_release(&tx->dqo_compl.hw_tx_head, 0);
315 
316 	/* Queue sizes must be a power of 2 */
317 	tx->mask = cfg->ring_size - 1;
318 	tx->dqo.complq_mask = tx->mask;
319 
320 	/* The max number of pending packets determines the maximum number of
321 	 * descriptors which maybe written to the completion queue.
322 	 *
323 	 * We must set the number small enough to make sure we never overrun the
324 	 * completion queue.
325 	 */
326 	num_pending_packets = tx->dqo.complq_mask + 1;
327 
328 	/* Reserve space for descriptor completions, which will be reported at
329 	 * most every GVE_TX_MIN_RE_INTERVAL packets.
330 	 */
331 	num_pending_packets -=
332 		(tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL;
333 
334 	/* Each packet may have at most 2 buffer completions if it receives both
335 	 * a miss and reinjection completion.
336 	 */
337 	num_pending_packets /= 2;
338 
339 	tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX);
340 	tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets,
341 					   sizeof(tx->dqo.pending_packets[0]),
342 					   GFP_KERNEL);
343 	if (!tx->dqo.pending_packets)
344 		goto err;
345 
346 	/* Set up linked list of pending packets */
347 	for (i = 0; i < tx->dqo.num_pending_packets - 1; i++)
348 		tx->dqo.pending_packets[i].next = i + 1;
349 
350 	tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1;
351 	atomic_set_release(&tx->dqo_compl.free_pending_packets, -1);
352 
353 	/* Only alloc xsk pool for XDP queues */
354 	if (idx >= cfg->qcfg->num_queues && cfg->num_xdp_rings) {
355 		tx->dqo.xsk_reorder_queue =
356 			kvcalloc(tx->dqo.complq_mask + 1,
357 				 sizeof(tx->dqo.xsk_reorder_queue[0]),
358 				 GFP_KERNEL);
359 		if (!tx->dqo.xsk_reorder_queue)
360 			goto err;
361 	}
362 
363 	tx->dqo_compl.miss_completions.head = -1;
364 	tx->dqo_compl.miss_completions.tail = -1;
365 	tx->dqo_compl.timed_out_completions.head = -1;
366 	tx->dqo_compl.timed_out_completions.tail = -1;
367 
368 	bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
369 	tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
370 	if (!tx->dqo.tx_ring)
371 		goto err;
372 
373 	bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1);
374 	tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes,
375 						&tx->complq_bus_dqo,
376 						GFP_KERNEL);
377 	if (!tx->dqo.compl_ring)
378 		goto err;
379 
380 	tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources),
381 					     &tx->q_resources_bus, GFP_KERNEL);
382 	if (!tx->q_resources)
383 		goto err;
384 
385 	if (!cfg->raw_addressing) {
386 		qpl_id = gve_tx_qpl_id(priv, tx->q_num);
387 		qpl_page_cnt = priv->tx_pages_per_qpl;
388 
389 		tx->dqo.qpl = gve_alloc_queue_page_list(priv, qpl_id,
390 							qpl_page_cnt);
391 		if (!tx->dqo.qpl)
392 			goto err;
393 
394 		if (gve_tx_qpl_buf_init(tx))
395 			goto err;
396 	}
397 
398 	return 0;
399 
400 err:
401 	gve_tx_free_ring_dqo(priv, tx, cfg);
402 	return -ENOMEM;
403 }
404 
gve_tx_alloc_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)405 int gve_tx_alloc_rings_dqo(struct gve_priv *priv,
406 			   struct gve_tx_alloc_rings_cfg *cfg)
407 {
408 	struct gve_tx_ring *tx = cfg->tx;
409 	int total_queues;
410 	int err = 0;
411 	int i, j;
412 
413 	total_queues = cfg->qcfg->num_queues + cfg->num_xdp_rings;
414 	if (total_queues > cfg->qcfg->max_queues) {
415 		netif_err(priv, drv, priv->dev,
416 			  "Cannot alloc more than the max num of Tx rings\n");
417 		return -EINVAL;
418 	}
419 
420 	tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
421 		      GFP_KERNEL);
422 	if (!tx)
423 		return -ENOMEM;
424 
425 	for (i = 0; i < total_queues; i++) {
426 		err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i);
427 		if (err) {
428 			netif_err(priv, drv, priv->dev,
429 				  "Failed to alloc tx ring=%d: err=%d\n",
430 				  i, err);
431 			goto err;
432 		}
433 	}
434 
435 	cfg->tx = tx;
436 	return 0;
437 
438 err:
439 	for (j = 0; j < i; j++)
440 		gve_tx_free_ring_dqo(priv, &tx[j], cfg);
441 	kvfree(tx);
442 	return err;
443 }
444 
gve_tx_free_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)445 void gve_tx_free_rings_dqo(struct gve_priv *priv,
446 			   struct gve_tx_alloc_rings_cfg *cfg)
447 {
448 	struct gve_tx_ring *tx = cfg->tx;
449 	int i;
450 
451 	if (!tx)
452 		return;
453 
454 	for (i = 0; i < cfg->qcfg->num_queues + cfg->qcfg->num_xdp_queues; i++)
455 		gve_tx_free_ring_dqo(priv, &tx[i], cfg);
456 
457 	kvfree(tx);
458 	cfg->tx = NULL;
459 }
460 
461 /* Returns the number of slots available in the ring */
num_avail_tx_slots(const struct gve_tx_ring * tx)462 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx)
463 {
464 	u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask;
465 
466 	return tx->mask - num_used;
467 }
468 
469 /* Checks if the requested number of slots are available in the ring */
gve_has_tx_slots_available(struct gve_tx_ring * tx,u32 slots_req)470 static bool gve_has_tx_slots_available(struct gve_tx_ring *tx, u32 slots_req)
471 {
472 	u32 num_avail = num_avail_tx_slots(tx);
473 
474 	slots_req += GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP;
475 
476 	if (num_avail >= slots_req)
477 		return true;
478 
479 	/* Update cached TX head pointer */
480 	tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
481 
482 	return num_avail_tx_slots(tx) >= slots_req;
483 }
484 
gve_has_avail_slots_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)485 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx,
486 				       int desc_count, int buf_count)
487 {
488 	return gve_has_pending_packet(tx) &&
489 		gve_has_tx_slots_available(tx, desc_count) &&
490 		gve_has_free_tx_qpl_bufs(tx, buf_count);
491 }
492 
493 /* Stops the queue if available descriptors is less than 'count'.
494  * Return: 0 if stop is not required.
495  */
gve_maybe_stop_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)496 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx,
497 				 int desc_count, int buf_count)
498 {
499 	if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
500 		return 0;
501 
502 	/* No space, so stop the queue */
503 	tx->stop_queue++;
504 	netif_tx_stop_queue(tx->netdev_txq);
505 
506 	/* Sync with restarting queue in `gve_tx_poll_dqo()` */
507 	mb();
508 
509 	/* After stopping queue, check if we can transmit again in order to
510 	 * avoid TOCTOU bug.
511 	 */
512 	if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
513 		return -EBUSY;
514 
515 	netif_tx_start_queue(tx->netdev_txq);
516 	tx->wake_queue++;
517 	return 0;
518 }
519 
gve_extract_tx_metadata_dqo(const struct sk_buff * skb,struct gve_tx_metadata_dqo * metadata)520 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb,
521 					struct gve_tx_metadata_dqo *metadata)
522 {
523 	memset(metadata, 0, sizeof(*metadata));
524 	metadata->version = GVE_TX_METADATA_VERSION_DQO;
525 
526 	if (skb->l4_hash) {
527 		u16 path_hash = skb->hash ^ (skb->hash >> 16);
528 
529 		path_hash &= (1 << 15) - 1;
530 		if (unlikely(path_hash == 0))
531 			path_hash = ~path_hash;
532 
533 		metadata->path_hash = path_hash;
534 	}
535 }
536 
gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring * tx,u32 * desc_idx,bool enable_csum,u32 len,u64 addr,s16 compl_tag,bool eop,bool is_gso)537 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx,
538 				     bool enable_csum, u32 len, u64 addr,
539 				     s16 compl_tag, bool eop, bool is_gso)
540 {
541 	while (len > 0) {
542 		struct gve_tx_pkt_desc_dqo *desc =
543 			&tx->dqo.tx_ring[*desc_idx].pkt;
544 		u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO);
545 		bool cur_eop = eop && cur_len == len;
546 
547 		*desc = (struct gve_tx_pkt_desc_dqo){
548 			.buf_addr = cpu_to_le64(addr),
549 			.dtype = GVE_TX_PKT_DESC_DTYPE_DQO,
550 			.end_of_packet = cur_eop,
551 			.checksum_offload_enable = enable_csum,
552 			.compl_tag = cpu_to_le16(compl_tag),
553 			.buf_size = cur_len,
554 		};
555 
556 		addr += cur_len;
557 		len -= cur_len;
558 		*desc_idx = (*desc_idx + 1) & tx->mask;
559 	}
560 }
561 
562 /* Validates and prepares `skb` for TSO.
563  *
564  * Returns header length, or < 0 if invalid.
565  */
gve_prep_tso(struct sk_buff * skb)566 static int gve_prep_tso(struct sk_buff *skb)
567 {
568 	struct tcphdr *tcp;
569 	int header_len;
570 	u32 paylen;
571 	int err;
572 
573 	/* Note: HW requires MSS (gso_size) to be <= 9728 and the total length
574 	 * of the TSO to be <= 262143.
575 	 *
576 	 * However, we don't validate these because:
577 	 * - Hypervisor enforces a limit of 9K MTU
578 	 * - Kernel will not produce a TSO larger than 64k
579 	 */
580 
581 	if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO))
582 		return -1;
583 
584 	if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
585 		return -EINVAL;
586 
587 	/* Needed because we will modify header. */
588 	err = skb_cow_head(skb, 0);
589 	if (err < 0)
590 		return err;
591 
592 	tcp = tcp_hdr(skb);
593 	paylen = skb->len - skb_transport_offset(skb);
594 	csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen));
595 	header_len = skb_tcp_all_headers(skb);
596 
597 	if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO))
598 		return -EINVAL;
599 
600 	return header_len;
601 }
602 
gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo * desc,const struct sk_buff * skb,const struct gve_tx_metadata_dqo * metadata,int header_len)603 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc,
604 				     const struct sk_buff *skb,
605 				     const struct gve_tx_metadata_dqo *metadata,
606 				     int header_len)
607 {
608 	*desc = (struct gve_tx_tso_context_desc_dqo){
609 		.header_len = header_len,
610 		.cmd_dtype = {
611 			.dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO,
612 			.tso = 1,
613 		},
614 		.flex0 = metadata->bytes[0],
615 		.flex5 = metadata->bytes[5],
616 		.flex6 = metadata->bytes[6],
617 		.flex7 = metadata->bytes[7],
618 		.flex8 = metadata->bytes[8],
619 		.flex9 = metadata->bytes[9],
620 		.flex10 = metadata->bytes[10],
621 		.flex11 = metadata->bytes[11],
622 	};
623 	desc->tso_total_len = skb->len - header_len;
624 	desc->mss = skb_shinfo(skb)->gso_size;
625 }
626 
627 static void
gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo * desc,const struct gve_tx_metadata_dqo * metadata)628 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc,
629 			     const struct gve_tx_metadata_dqo *metadata)
630 {
631 	*desc = (struct gve_tx_general_context_desc_dqo){
632 		.flex0 = metadata->bytes[0],
633 		.flex1 = metadata->bytes[1],
634 		.flex2 = metadata->bytes[2],
635 		.flex3 = metadata->bytes[3],
636 		.flex4 = metadata->bytes[4],
637 		.flex5 = metadata->bytes[5],
638 		.flex6 = metadata->bytes[6],
639 		.flex7 = metadata->bytes[7],
640 		.flex8 = metadata->bytes[8],
641 		.flex9 = metadata->bytes[9],
642 		.flex10 = metadata->bytes[10],
643 		.flex11 = metadata->bytes[11],
644 		.cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO},
645 	};
646 }
647 
gve_tx_update_tail(struct gve_tx_ring * tx,u32 desc_idx)648 static void gve_tx_update_tail(struct gve_tx_ring *tx, u32 desc_idx)
649 {
650 	u32 last_desc_idx = (desc_idx - 1) & tx->mask;
651 	u32 last_report_event_interval =
652 			(last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask;
653 
654 	/* Commit the changes to our state */
655 	tx->dqo_tx.tail = desc_idx;
656 
657 	/* Request a descriptor completion on the last descriptor of the
658 	 * packet if we are allowed to by the HW enforced interval.
659 	 */
660 
661 	if (unlikely(last_report_event_interval >= GVE_TX_MIN_RE_INTERVAL)) {
662 		tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true;
663 		tx->dqo_tx.last_re_idx = last_desc_idx;
664 	}
665 }
666 
gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)667 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx,
668 				      struct sk_buff *skb,
669 				      struct gve_tx_pending_packet_dqo *pkt,
670 				      s16 completion_tag,
671 				      u32 *desc_idx,
672 				      bool is_gso)
673 {
674 	bool enable_csum = skb->ip_summed == CHECKSUM_PARTIAL;
675 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
676 	int i;
677 
678 	/* Note: HW requires that the size of a non-TSO packet be within the
679 	 * range of [17, 9728].
680 	 *
681 	 * We don't double check because
682 	 * - We limited `netdev->min_mtu` to ETH_MIN_MTU.
683 	 * - Hypervisor won't allow MTU larger than 9216.
684 	 */
685 
686 	pkt->num_bufs = 0;
687 	/* Map the linear portion of skb */
688 	{
689 		u32 len = skb_headlen(skb);
690 		dma_addr_t addr;
691 
692 		addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
693 		if (unlikely(dma_mapping_error(tx->dev, addr)))
694 			goto err;
695 
696 		dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
697 		dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
698 		++pkt->num_bufs;
699 
700 		gve_tx_fill_pkt_desc_dqo(tx, desc_idx, enable_csum, len, addr,
701 					 completion_tag,
702 					 /*eop=*/shinfo->nr_frags == 0, is_gso);
703 	}
704 
705 	for (i = 0; i < shinfo->nr_frags; i++) {
706 		const skb_frag_t *frag = &shinfo->frags[i];
707 		bool is_eop = i == (shinfo->nr_frags - 1);
708 		u32 len = skb_frag_size(frag);
709 		dma_addr_t addr;
710 
711 		addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
712 		if (unlikely(dma_mapping_error(tx->dev, addr)))
713 			goto err;
714 
715 		dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
716 		netmem_dma_unmap_addr_set(skb_frag_netmem(frag), pkt,
717 					  dma[pkt->num_bufs], addr);
718 		++pkt->num_bufs;
719 
720 		gve_tx_fill_pkt_desc_dqo(tx, desc_idx, enable_csum, len, addr,
721 					 completion_tag, is_eop, is_gso);
722 	}
723 
724 	return 0;
725 err:
726 	for (i = 0; i < pkt->num_bufs; i++) {
727 		if (i == 0) {
728 			dma_unmap_single(tx->dev,
729 					 dma_unmap_addr(pkt, dma[i]),
730 					 dma_unmap_len(pkt, len[i]),
731 					 DMA_TO_DEVICE);
732 		} else {
733 			dma_unmap_page(tx->dev,
734 				       dma_unmap_addr(pkt, dma[i]),
735 				       dma_unmap_len(pkt, len[i]),
736 				       DMA_TO_DEVICE);
737 		}
738 	}
739 	pkt->num_bufs = 0;
740 	return -1;
741 }
742 
743 /* Tx buffer i corresponds to
744  * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO
745  * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO
746  */
gve_tx_buf_get_addr(struct gve_tx_ring * tx,s16 index,void ** va,dma_addr_t * dma_addr)747 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx,
748 				s16 index,
749 				void **va, dma_addr_t *dma_addr)
750 {
751 	int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO);
752 	int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO;
753 
754 	*va = page_address(tx->dqo.qpl->pages[page_id]) + offset;
755 	*dma_addr = tx->dqo.qpl->page_buses[page_id] + offset;
756 }
757 
gve_tx_add_skb_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)758 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx,
759 				   struct sk_buff *skb,
760 				   struct gve_tx_pending_packet_dqo *pkt,
761 				   s16 completion_tag,
762 				   u32 *desc_idx,
763 				   bool is_gso)
764 {
765 	bool enable_csum = skb->ip_summed == CHECKSUM_PARTIAL;
766 	u32 copy_offset = 0;
767 	dma_addr_t dma_addr;
768 	u32 copy_len;
769 	s16 index;
770 	void *va;
771 
772 	/* Break the packet into buffer size chunks */
773 	pkt->num_bufs = 0;
774 	while (copy_offset < skb->len) {
775 		index = gve_alloc_tx_qpl_buf(tx);
776 		if (unlikely(index == -1))
777 			goto err;
778 
779 		gve_tx_buf_get_addr(tx, index, &va, &dma_addr);
780 		copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO,
781 				 skb->len - copy_offset);
782 		skb_copy_bits(skb, copy_offset, va, copy_len);
783 
784 		copy_offset += copy_len;
785 		dma_sync_single_for_device(tx->dev, dma_addr,
786 					   copy_len, DMA_TO_DEVICE);
787 		gve_tx_fill_pkt_desc_dqo(tx, desc_idx, enable_csum,
788 					 copy_len,
789 					 dma_addr,
790 					 completion_tag,
791 					 copy_offset == skb->len,
792 					 is_gso);
793 
794 		pkt->tx_qpl_buf_ids[pkt->num_bufs] = index;
795 		++tx->dqo_tx.alloc_tx_qpl_buf_cnt;
796 		++pkt->num_bufs;
797 	}
798 
799 	return 0;
800 err:
801 	/* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */
802 	gve_free_tx_qpl_bufs(tx, pkt);
803 	return -ENOMEM;
804 }
805 
806 /* Returns 0 on success, or < 0 on error.
807  *
808  * Before this function is called, the caller must ensure
809  * gve_has_pending_packet(tx) returns true.
810  */
gve_tx_add_skb_dqo(struct gve_tx_ring * tx,struct sk_buff * skb)811 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx,
812 			      struct sk_buff *skb)
813 {
814 	const bool is_gso = skb_is_gso(skb);
815 	u32 desc_idx = tx->dqo_tx.tail;
816 	struct gve_tx_pending_packet_dqo *pkt;
817 	struct gve_tx_metadata_dqo metadata;
818 	s16 completion_tag;
819 
820 	pkt = gve_alloc_pending_packet(tx);
821 	if (!pkt)
822 		return -ENOMEM;
823 
824 	pkt->skb = skb;
825 	pkt->type = GVE_TX_PENDING_PACKET_DQO_SKB;
826 	completion_tag = pkt - tx->dqo.pending_packets;
827 
828 	gve_extract_tx_metadata_dqo(skb, &metadata);
829 	if (is_gso) {
830 		int header_len = gve_prep_tso(skb);
831 
832 		if (unlikely(header_len < 0))
833 			goto err;
834 
835 		gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx,
836 					 skb, &metadata, header_len);
837 		desc_idx = (desc_idx + 1) & tx->mask;
838 	}
839 
840 	gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx,
841 				     &metadata);
842 	desc_idx = (desc_idx + 1) & tx->mask;
843 
844 	if (tx->dqo.qpl) {
845 		if (gve_tx_add_skb_copy_dqo(tx, skb, pkt,
846 					    completion_tag,
847 					    &desc_idx, is_gso))
848 			goto err;
849 	}  else {
850 		if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt,
851 					       completion_tag,
852 					       &desc_idx, is_gso))
853 			goto err;
854 	}
855 
856 	tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs;
857 
858 	gve_tx_update_tail(tx, desc_idx);
859 	return 0;
860 
861 err:
862 	pkt->skb = NULL;
863 	gve_free_pending_packet(tx, pkt);
864 
865 	return -1;
866 }
867 
gve_num_descs_per_buf(size_t size)868 static int gve_num_descs_per_buf(size_t size)
869 {
870 	return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO);
871 }
872 
gve_num_buffer_descs_needed(const struct sk_buff * skb)873 static int gve_num_buffer_descs_needed(const struct sk_buff *skb)
874 {
875 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
876 	int num_descs;
877 	int i;
878 
879 	num_descs = gve_num_descs_per_buf(skb_headlen(skb));
880 
881 	for (i = 0; i < shinfo->nr_frags; i++) {
882 		unsigned int frag_size = skb_frag_size(&shinfo->frags[i]);
883 
884 		num_descs += gve_num_descs_per_buf(frag_size);
885 	}
886 
887 	return num_descs;
888 }
889 
890 /* Returns true if HW is capable of sending TSO represented by `skb`.
891  *
892  * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers.
893  * - The header is counted as one buffer for every single segment.
894  * - A buffer which is split between two segments is counted for both.
895  * - If a buffer contains both header and payload, it is counted as two buffers.
896  */
gve_can_send_tso(const struct sk_buff * skb)897 static bool gve_can_send_tso(const struct sk_buff *skb)
898 {
899 	const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1;
900 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
901 	const int header_len = skb_tcp_all_headers(skb);
902 	const int gso_size = shinfo->gso_size;
903 	int cur_seg_num_bufs;
904 	int prev_frag_size;
905 	int cur_seg_size;
906 	int i;
907 
908 	cur_seg_size = skb_headlen(skb) - header_len;
909 	prev_frag_size = skb_headlen(skb);
910 	cur_seg_num_bufs = cur_seg_size > 0;
911 
912 	for (i = 0; i < shinfo->nr_frags; i++) {
913 		if (cur_seg_size >= gso_size) {
914 			cur_seg_size %= gso_size;
915 			cur_seg_num_bufs = cur_seg_size > 0;
916 
917 			if (prev_frag_size > GVE_TX_MAX_BUF_SIZE_DQO) {
918 				int prev_frag_remain = prev_frag_size %
919 					GVE_TX_MAX_BUF_SIZE_DQO;
920 
921 				/* If the last descriptor of the previous frag
922 				 * is less than cur_seg_size, the segment will
923 				 * span two descriptors in the previous frag.
924 				 * Since max gso size (9728) is less than
925 				 * GVE_TX_MAX_BUF_SIZE_DQO, it is impossible
926 				 * for the segment to span more than two
927 				 * descriptors.
928 				 */
929 				if (prev_frag_remain &&
930 				    cur_seg_size > prev_frag_remain)
931 					cur_seg_num_bufs++;
932 			}
933 		}
934 
935 		if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg))
936 			return false;
937 
938 		prev_frag_size = skb_frag_size(&shinfo->frags[i]);
939 		cur_seg_size += prev_frag_size;
940 	}
941 
942 	return true;
943 }
944 
gve_features_check_dqo(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)945 netdev_features_t gve_features_check_dqo(struct sk_buff *skb,
946 					 struct net_device *dev,
947 					 netdev_features_t features)
948 {
949 	if (skb_is_gso(skb) && !gve_can_send_tso(skb))
950 		return features & ~NETIF_F_GSO_MASK;
951 
952 	return features;
953 }
954 
955 /* Attempt to transmit specified SKB.
956  *
957  * Returns 0 if the SKB was transmitted or dropped.
958  * Returns -1 if there is not currently enough space to transmit the SKB.
959  */
gve_try_tx_skb(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)960 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx,
961 			  struct sk_buff *skb)
962 {
963 	int num_buffer_descs;
964 	int total_num_descs;
965 
966 	if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb)))
967 		goto drop;
968 
969 	if (tx->dqo.qpl) {
970 		/* We do not need to verify the number of buffers used per
971 		 * packet or per segment in case of TSO as with 2K size buffers
972 		 * none of the TX packet rules would be violated.
973 		 *
974 		 * gve_can_send_tso() checks that each TCP segment of gso_size is
975 		 * not distributed over more than 9 SKB frags..
976 		 */
977 		num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO);
978 	} else {
979 		num_buffer_descs = gve_num_buffer_descs_needed(skb);
980 		if (!skb_is_gso(skb)) {
981 			if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) {
982 				if (unlikely(skb_linearize(skb) < 0))
983 					goto drop;
984 
985 				num_buffer_descs = 1;
986 			}
987 		}
988 	}
989 
990 	/* Metadata + (optional TSO) + data descriptors. */
991 	total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs;
992 	if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs,
993 					   num_buffer_descs))) {
994 		return -1;
995 	}
996 
997 	if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0))
998 		goto drop;
999 
1000 	netdev_tx_sent_queue(tx->netdev_txq, skb->len);
1001 	skb_tx_timestamp(skb);
1002 	return 0;
1003 
1004 drop:
1005 	tx->dropped_pkt++;
1006 	dev_kfree_skb_any(skb);
1007 	return 0;
1008 }
1009 
gve_xsk_reorder_queue_push_dqo(struct gve_tx_ring * tx,u16 completion_tag)1010 static void gve_xsk_reorder_queue_push_dqo(struct gve_tx_ring *tx,
1011 					   u16 completion_tag)
1012 {
1013 	u32 tail = atomic_read(&tx->dqo_tx.xsk_reorder_queue_tail);
1014 
1015 	tx->dqo.xsk_reorder_queue[tail] = completion_tag;
1016 	tail = (tail + 1) & tx->dqo.complq_mask;
1017 	atomic_set_release(&tx->dqo_tx.xsk_reorder_queue_tail, tail);
1018 }
1019 
1020 static struct gve_tx_pending_packet_dqo *
gve_xsk_reorder_queue_head(struct gve_tx_ring * tx)1021 gve_xsk_reorder_queue_head(struct gve_tx_ring *tx)
1022 {
1023 	u32 head = tx->dqo_compl.xsk_reorder_queue_head;
1024 
1025 	if (head == tx->dqo_compl.xsk_reorder_queue_tail) {
1026 		tx->dqo_compl.xsk_reorder_queue_tail =
1027 			atomic_read_acquire(&tx->dqo_tx.xsk_reorder_queue_tail);
1028 
1029 		if (head == tx->dqo_compl.xsk_reorder_queue_tail)
1030 			return NULL;
1031 	}
1032 
1033 	return &tx->dqo.pending_packets[tx->dqo.xsk_reorder_queue[head]];
1034 }
1035 
gve_xsk_reorder_queue_pop_dqo(struct gve_tx_ring * tx)1036 static void gve_xsk_reorder_queue_pop_dqo(struct gve_tx_ring *tx)
1037 {
1038 	tx->dqo_compl.xsk_reorder_queue_head++;
1039 	tx->dqo_compl.xsk_reorder_queue_head &= tx->dqo.complq_mask;
1040 }
1041 
1042 /* Transmit a given skb and ring the doorbell. */
gve_tx_dqo(struct sk_buff * skb,struct net_device * dev)1043 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev)
1044 {
1045 	struct gve_priv *priv = netdev_priv(dev);
1046 	struct gve_tx_ring *tx;
1047 
1048 	tx = &priv->tx[skb_get_queue_mapping(skb)];
1049 	if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) {
1050 		/* We need to ring the txq doorbell -- we have stopped the Tx
1051 		 * queue for want of resources, but prior calls to gve_tx()
1052 		 * may have added descriptors without ringing the doorbell.
1053 		 */
1054 		gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
1055 		return NETDEV_TX_BUSY;
1056 	}
1057 
1058 	if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
1059 		return NETDEV_TX_OK;
1060 
1061 	gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
1062 	return NETDEV_TX_OK;
1063 }
1064 
gve_xsk_tx_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,int budget)1065 static bool gve_xsk_tx_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1066 			   int budget)
1067 {
1068 	struct xsk_buff_pool *pool = tx->xsk_pool;
1069 	struct xdp_desc desc;
1070 	bool repoll = false;
1071 	int sent = 0;
1072 
1073 	spin_lock(&tx->dqo_tx.xdp_lock);
1074 	for (; sent < budget; sent++) {
1075 		struct gve_tx_pending_packet_dqo *pkt;
1076 		s16 completion_tag;
1077 		dma_addr_t addr;
1078 		u32 desc_idx;
1079 
1080 		if (unlikely(!gve_has_avail_slots_tx_dqo(tx, 1, 1))) {
1081 			repoll = true;
1082 			break;
1083 		}
1084 
1085 		if (!xsk_tx_peek_desc(pool, &desc))
1086 			break;
1087 
1088 		pkt = gve_alloc_pending_packet(tx);
1089 		pkt->type = GVE_TX_PENDING_PACKET_DQO_XSK;
1090 		pkt->num_bufs = 0;
1091 		completion_tag = pkt - tx->dqo.pending_packets;
1092 
1093 		addr = xsk_buff_raw_get_dma(pool, desc.addr);
1094 		xsk_buff_raw_dma_sync_for_device(pool, addr, desc.len);
1095 
1096 		desc_idx = tx->dqo_tx.tail;
1097 		gve_tx_fill_pkt_desc_dqo(tx, &desc_idx,
1098 					 true, desc.len,
1099 					 addr, completion_tag, true,
1100 					 false);
1101 		++pkt->num_bufs;
1102 		gve_tx_update_tail(tx, desc_idx);
1103 		tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs;
1104 		gve_xsk_reorder_queue_push_dqo(tx, completion_tag);
1105 	}
1106 
1107 	if (sent) {
1108 		gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
1109 		xsk_tx_release(pool);
1110 	}
1111 
1112 	spin_unlock(&tx->dqo_tx.xdp_lock);
1113 
1114 	u64_stats_update_begin(&tx->statss);
1115 	tx->xdp_xsk_sent += sent;
1116 	u64_stats_update_end(&tx->statss);
1117 
1118 	return (sent == budget) || repoll;
1119 }
1120 
add_to_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pending_packet)1121 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list,
1122 			struct gve_tx_pending_packet_dqo *pending_packet)
1123 {
1124 	s16 old_tail, index;
1125 
1126 	index = pending_packet - tx->dqo.pending_packets;
1127 	old_tail = list->tail;
1128 	list->tail = index;
1129 	if (old_tail == -1)
1130 		list->head = index;
1131 	else
1132 		tx->dqo.pending_packets[old_tail].next = index;
1133 
1134 	pending_packet->next = -1;
1135 	pending_packet->prev = old_tail;
1136 }
1137 
remove_from_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pkt)1138 static void remove_from_list(struct gve_tx_ring *tx,
1139 			     struct gve_index_list *list,
1140 			     struct gve_tx_pending_packet_dqo *pkt)
1141 {
1142 	s16 prev_index, next_index;
1143 
1144 	prev_index = pkt->prev;
1145 	next_index = pkt->next;
1146 
1147 	if (prev_index == -1) {
1148 		/* Node is head */
1149 		list->head = next_index;
1150 	} else {
1151 		tx->dqo.pending_packets[prev_index].next = next_index;
1152 	}
1153 	if (next_index == -1) {
1154 		/* Node is tail */
1155 		list->tail = prev_index;
1156 	} else {
1157 		tx->dqo.pending_packets[next_index].prev = prev_index;
1158 	}
1159 }
1160 
gve_unmap_packet(struct device * dev,struct gve_tx_pending_packet_dqo * pkt)1161 static void gve_unmap_packet(struct device *dev,
1162 			     struct gve_tx_pending_packet_dqo *pkt)
1163 {
1164 	int i;
1165 
1166 	/* SKB linear portion is guaranteed to be mapped */
1167 	dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]),
1168 			 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE);
1169 	for (i = 1; i < pkt->num_bufs; i++) {
1170 		netmem_dma_unmap_page_attrs(dev, dma_unmap_addr(pkt, dma[i]),
1171 					    dma_unmap_len(pkt, len[i]),
1172 					    DMA_TO_DEVICE, 0);
1173 	}
1174 	pkt->num_bufs = 0;
1175 }
1176 
1177 /* Completion types and expected behavior:
1178  * No Miss compl + Packet compl = Packet completed normally.
1179  * Miss compl + Re-inject compl = Packet completed normally.
1180  * No Miss compl + Re-inject compl = Skipped i.e. packet not completed.
1181  * Miss compl + Packet compl = Skipped i.e. packet not completed.
1182  */
gve_handle_packet_completion(struct gve_priv * priv,struct gve_tx_ring * tx,bool is_napi,u16 compl_tag,u64 * bytes,u64 * pkts,bool is_reinjection)1183 static void gve_handle_packet_completion(struct gve_priv *priv,
1184 					 struct gve_tx_ring *tx, bool is_napi,
1185 					 u16 compl_tag, u64 *bytes, u64 *pkts,
1186 					 bool is_reinjection)
1187 {
1188 	struct gve_tx_pending_packet_dqo *pending_packet;
1189 
1190 	if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1191 		net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1192 				    priv->dev->name, (int)compl_tag);
1193 		return;
1194 	}
1195 
1196 	pending_packet = &tx->dqo.pending_packets[compl_tag];
1197 
1198 	if (unlikely(is_reinjection)) {
1199 		if (unlikely(pending_packet->state ==
1200 			     GVE_PACKET_STATE_TIMED_OUT_COMPL)) {
1201 			net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n",
1202 					    priv->dev->name, (int)compl_tag);
1203 			/* Packet was already completed as a result of timeout,
1204 			 * so just remove from list and free pending packet.
1205 			 */
1206 			remove_from_list(tx,
1207 					 &tx->dqo_compl.timed_out_completions,
1208 					 pending_packet);
1209 			gve_free_pending_packet(tx, pending_packet);
1210 			return;
1211 		}
1212 		if (unlikely(pending_packet->state !=
1213 			     GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) {
1214 			/* No outstanding miss completion but packet allocated
1215 			 * implies packet receives a re-injection completion
1216 			 * without a prior miss completion. Return without
1217 			 * completing the packet.
1218 			 */
1219 			net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n",
1220 					    priv->dev->name, (int)compl_tag);
1221 			return;
1222 		}
1223 		remove_from_list(tx, &tx->dqo_compl.miss_completions,
1224 				 pending_packet);
1225 	} else {
1226 		/* Packet is allocated but not a pending data completion. */
1227 		if (unlikely(pending_packet->state !=
1228 			     GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1229 			net_err_ratelimited("%s: No pending data completion: %d\n",
1230 					    priv->dev->name, (int)compl_tag);
1231 			return;
1232 		}
1233 	}
1234 	tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs;
1235 
1236 	switch (pending_packet->type) {
1237 	case GVE_TX_PENDING_PACKET_DQO_SKB:
1238 		if (tx->dqo.qpl)
1239 			gve_free_tx_qpl_bufs(tx, pending_packet);
1240 		else
1241 			gve_unmap_packet(tx->dev, pending_packet);
1242 		(*pkts)++;
1243 		*bytes += pending_packet->skb->len;
1244 
1245 		napi_consume_skb(pending_packet->skb, is_napi);
1246 		pending_packet->skb = NULL;
1247 		gve_free_pending_packet(tx, pending_packet);
1248 		break;
1249 	case GVE_TX_PENDING_PACKET_DQO_XDP_FRAME:
1250 		gve_unmap_packet(tx->dev, pending_packet);
1251 		(*pkts)++;
1252 		*bytes += pending_packet->xdpf->len;
1253 
1254 		xdp_return_frame(pending_packet->xdpf);
1255 		pending_packet->xdpf = NULL;
1256 		gve_free_pending_packet(tx, pending_packet);
1257 		break;
1258 	case GVE_TX_PENDING_PACKET_DQO_XSK:
1259 		pending_packet->state = GVE_PACKET_STATE_XSK_COMPLETE;
1260 		break;
1261 	default:
1262 		WARN_ON_ONCE(1);
1263 	}
1264 }
1265 
gve_handle_miss_completion(struct gve_priv * priv,struct gve_tx_ring * tx,u16 compl_tag,u64 * bytes,u64 * pkts)1266 static void gve_handle_miss_completion(struct gve_priv *priv,
1267 				       struct gve_tx_ring *tx, u16 compl_tag,
1268 				       u64 *bytes, u64 *pkts)
1269 {
1270 	struct gve_tx_pending_packet_dqo *pending_packet;
1271 
1272 	if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1273 		net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1274 				    priv->dev->name, (int)compl_tag);
1275 		return;
1276 	}
1277 
1278 	pending_packet = &tx->dqo.pending_packets[compl_tag];
1279 	if (unlikely(pending_packet->state !=
1280 				GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1281 		net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n",
1282 				    priv->dev->name, (int)pending_packet->state,
1283 				    (int)compl_tag);
1284 		return;
1285 	}
1286 
1287 	pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL;
1288 	/* jiffies can wraparound but time comparisons can handle overflows. */
1289 	pending_packet->timeout_jiffies =
1290 			jiffies +
1291 			secs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT);
1292 	add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet);
1293 
1294 	*bytes += pending_packet->skb->len;
1295 	(*pkts)++;
1296 }
1297 
remove_miss_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1298 static void remove_miss_completions(struct gve_priv *priv,
1299 				    struct gve_tx_ring *tx)
1300 {
1301 	struct gve_tx_pending_packet_dqo *pending_packet;
1302 	s16 next_index;
1303 
1304 	next_index = tx->dqo_compl.miss_completions.head;
1305 	while (next_index != -1) {
1306 		pending_packet = &tx->dqo.pending_packets[next_index];
1307 		next_index = pending_packet->next;
1308 		/* Break early because packets should timeout in order. */
1309 		if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1310 			break;
1311 
1312 		remove_from_list(tx, &tx->dqo_compl.miss_completions,
1313 				 pending_packet);
1314 		/* Unmap/free TX buffers and free skb but do not unallocate packet i.e.
1315 		 * the completion tag is not freed to ensure that the driver
1316 		 * can take appropriate action if a corresponding valid
1317 		 * completion is received later.
1318 		 */
1319 		if (tx->dqo.qpl)
1320 			gve_free_tx_qpl_bufs(tx, pending_packet);
1321 		else
1322 			gve_unmap_packet(tx->dev, pending_packet);
1323 
1324 		/* This indicates the packet was dropped. */
1325 		dev_kfree_skb_any(pending_packet->skb);
1326 		pending_packet->skb = NULL;
1327 		tx->dropped_pkt++;
1328 		net_err_ratelimited("%s: No reinjection completion was received for: %d.\n",
1329 				    priv->dev->name,
1330 				    (int)(pending_packet - tx->dqo.pending_packets));
1331 
1332 		pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL;
1333 		pending_packet->timeout_jiffies =
1334 				jiffies +
1335 				secs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT);
1336 		/* Maintain pending packet in another list so the packet can be
1337 		 * unallocated at a later time.
1338 		 */
1339 		add_to_list(tx, &tx->dqo_compl.timed_out_completions,
1340 			    pending_packet);
1341 	}
1342 }
1343 
remove_timed_out_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1344 static void remove_timed_out_completions(struct gve_priv *priv,
1345 					 struct gve_tx_ring *tx)
1346 {
1347 	struct gve_tx_pending_packet_dqo *pending_packet;
1348 	s16 next_index;
1349 
1350 	next_index = tx->dqo_compl.timed_out_completions.head;
1351 	while (next_index != -1) {
1352 		pending_packet = &tx->dqo.pending_packets[next_index];
1353 		next_index = pending_packet->next;
1354 		/* Break early because packets should timeout in order. */
1355 		if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1356 			break;
1357 
1358 		remove_from_list(tx, &tx->dqo_compl.timed_out_completions,
1359 				 pending_packet);
1360 
1361 		/* Need to count XSK packets in xsk_tx_completed. */
1362 		if (pending_packet->type == GVE_TX_PENDING_PACKET_DQO_XSK)
1363 			pending_packet->state = GVE_PACKET_STATE_XSK_COMPLETE;
1364 		else
1365 			gve_free_pending_packet(tx, pending_packet);
1366 	}
1367 }
1368 
gve_tx_process_xsk_completions(struct gve_tx_ring * tx)1369 static void gve_tx_process_xsk_completions(struct gve_tx_ring *tx)
1370 {
1371 	u32 num_xsks = 0;
1372 
1373 	while (true) {
1374 		struct gve_tx_pending_packet_dqo *pending_packet =
1375 			gve_xsk_reorder_queue_head(tx);
1376 
1377 		if (!pending_packet ||
1378 		    pending_packet->state != GVE_PACKET_STATE_XSK_COMPLETE)
1379 			break;
1380 
1381 		num_xsks++;
1382 		gve_xsk_reorder_queue_pop_dqo(tx);
1383 		gve_free_pending_packet(tx, pending_packet);
1384 	}
1385 
1386 	if (num_xsks)
1387 		xsk_tx_completed(tx->xsk_pool, num_xsks);
1388 }
1389 
gve_clean_tx_done_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct napi_struct * napi)1390 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1391 			  struct napi_struct *napi)
1392 {
1393 	u64 reinject_compl_bytes = 0;
1394 	u64 reinject_compl_pkts = 0;
1395 	int num_descs_cleaned = 0;
1396 	u64 miss_compl_bytes = 0;
1397 	u64 miss_compl_pkts = 0;
1398 	u64 pkt_compl_bytes = 0;
1399 	u64 pkt_compl_pkts = 0;
1400 
1401 	/* Limit in order to avoid blocking for too long */
1402 	while (!napi || pkt_compl_pkts < napi->weight) {
1403 		struct gve_tx_compl_desc *compl_desc =
1404 			&tx->dqo.compl_ring[tx->dqo_compl.head];
1405 		u16 type;
1406 
1407 		if (compl_desc->generation == tx->dqo_compl.cur_gen_bit)
1408 			break;
1409 
1410 		/* Prefetch the next descriptor. */
1411 		prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) &
1412 				tx->dqo.complq_mask]);
1413 
1414 		/* Do not read data until we own the descriptor */
1415 		dma_rmb();
1416 		type = compl_desc->type;
1417 
1418 		if (type == GVE_COMPL_TYPE_DQO_DESC) {
1419 			/* This is the last descriptor fetched by HW plus one */
1420 			u16 tx_head = le16_to_cpu(compl_desc->tx_head);
1421 
1422 			atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head);
1423 		} else if (type == GVE_COMPL_TYPE_DQO_PKT) {
1424 			u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1425 			if (compl_tag & GVE_ALT_MISS_COMPL_BIT) {
1426 				compl_tag &= ~GVE_ALT_MISS_COMPL_BIT;
1427 				gve_handle_miss_completion(priv, tx, compl_tag,
1428 							   &miss_compl_bytes,
1429 							   &miss_compl_pkts);
1430 			} else {
1431 				gve_handle_packet_completion(priv, tx, !!napi,
1432 							     compl_tag,
1433 							     &pkt_compl_bytes,
1434 							     &pkt_compl_pkts,
1435 							     false);
1436 			}
1437 		} else if (type == GVE_COMPL_TYPE_DQO_MISS) {
1438 			u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1439 
1440 			gve_handle_miss_completion(priv, tx, compl_tag,
1441 						   &miss_compl_bytes,
1442 						   &miss_compl_pkts);
1443 		} else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) {
1444 			u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1445 
1446 			gve_handle_packet_completion(priv, tx, !!napi,
1447 						     compl_tag,
1448 						     &reinject_compl_bytes,
1449 						     &reinject_compl_pkts,
1450 						     true);
1451 		}
1452 
1453 		tx->dqo_compl.head =
1454 			(tx->dqo_compl.head + 1) & tx->dqo.complq_mask;
1455 		/* Flip the generation bit when we wrap around */
1456 		tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0;
1457 		num_descs_cleaned++;
1458 	}
1459 
1460 	if (tx->netdev_txq)
1461 		netdev_tx_completed_queue(tx->netdev_txq,
1462 					  pkt_compl_pkts + miss_compl_pkts,
1463 					  pkt_compl_bytes + miss_compl_bytes);
1464 
1465 	remove_miss_completions(priv, tx);
1466 	remove_timed_out_completions(priv, tx);
1467 
1468 	if (tx->xsk_pool)
1469 		gve_tx_process_xsk_completions(tx);
1470 
1471 	u64_stats_update_begin(&tx->statss);
1472 	tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes;
1473 	tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts;
1474 	u64_stats_update_end(&tx->statss);
1475 	return num_descs_cleaned;
1476 }
1477 
gve_tx_poll_dqo(struct gve_notify_block * block,bool do_clean)1478 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean)
1479 {
1480 	struct gve_tx_compl_desc *compl_desc;
1481 	struct gve_tx_ring *tx = block->tx;
1482 	struct gve_priv *priv = block->priv;
1483 
1484 	if (do_clean) {
1485 		int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx,
1486 							      &block->napi);
1487 
1488 		/* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */
1489 		mb();
1490 
1491 		if (netif_tx_queue_stopped(tx->netdev_txq) &&
1492 		    num_descs_cleaned > 0) {
1493 			tx->wake_queue++;
1494 			netif_tx_wake_queue(tx->netdev_txq);
1495 		}
1496 	}
1497 
1498 	/* Return true if we still have work. */
1499 	compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head];
1500 	return compl_desc->generation != tx->dqo_compl.cur_gen_bit;
1501 }
1502 
gve_xsk_tx_poll_dqo(struct gve_notify_block * rx_block,int budget)1503 bool gve_xsk_tx_poll_dqo(struct gve_notify_block *rx_block, int budget)
1504 {
1505 	struct gve_rx_ring *rx = rx_block->rx;
1506 	struct gve_priv *priv = rx->gve;
1507 	struct gve_tx_ring *tx;
1508 
1509 	tx = &priv->tx[gve_xdp_tx_queue_id(priv, rx->q_num)];
1510 	if (tx->xsk_pool)
1511 		return gve_xsk_tx_dqo(priv, tx, budget);
1512 
1513 	return 0;
1514 }
1515 
gve_xdp_poll_dqo(struct gve_notify_block * block)1516 bool gve_xdp_poll_dqo(struct gve_notify_block *block)
1517 {
1518 	struct gve_tx_compl_desc *compl_desc;
1519 	struct gve_tx_ring *tx = block->tx;
1520 	struct gve_priv *priv = block->priv;
1521 
1522 	gve_clean_tx_done_dqo(priv, tx, &block->napi);
1523 
1524 	/* Return true if we still have work. */
1525 	compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head];
1526 	return compl_desc->generation != tx->dqo_compl.cur_gen_bit;
1527 }
1528 
gve_xdp_xmit_one_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct xdp_frame * xdpf)1529 int gve_xdp_xmit_one_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1530 			 struct xdp_frame *xdpf)
1531 {
1532 	struct gve_tx_pending_packet_dqo *pkt;
1533 	u32 desc_idx = tx->dqo_tx.tail;
1534 	s16 completion_tag;
1535 	int num_descs = 1;
1536 	dma_addr_t addr;
1537 	int err;
1538 
1539 	if (unlikely(!gve_has_tx_slots_available(tx, num_descs)))
1540 		return -EBUSY;
1541 
1542 	pkt = gve_alloc_pending_packet(tx);
1543 	if (unlikely(!pkt))
1544 		return -EBUSY;
1545 
1546 	pkt->type = GVE_TX_PENDING_PACKET_DQO_XDP_FRAME;
1547 	pkt->num_bufs = 0;
1548 	pkt->xdpf = xdpf;
1549 	completion_tag = pkt - tx->dqo.pending_packets;
1550 
1551 	/* Generate Packet Descriptor */
1552 	addr = dma_map_single(tx->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
1553 	err = dma_mapping_error(tx->dev, addr);
1554 	if (unlikely(err))
1555 		goto err;
1556 
1557 	dma_unmap_len_set(pkt, len[pkt->num_bufs], xdpf->len);
1558 	dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
1559 	pkt->num_bufs++;
1560 
1561 	gve_tx_fill_pkt_desc_dqo(tx, &desc_idx,
1562 				 false, xdpf->len,
1563 				 addr, completion_tag, true,
1564 				 false);
1565 
1566 	gve_tx_update_tail(tx, desc_idx);
1567 	return 0;
1568 
1569 err:
1570 	pkt->xdpf = NULL;
1571 	pkt->num_bufs = 0;
1572 	gve_free_pending_packet(tx, pkt);
1573 	return err;
1574 }
1575 
gve_xdp_xmit_dqo(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)1576 int gve_xdp_xmit_dqo(struct net_device *dev, int n, struct xdp_frame **frames,
1577 		     u32 flags)
1578 {
1579 	struct gve_priv *priv = netdev_priv(dev);
1580 	struct gve_tx_ring *tx;
1581 	int i, err = 0, qid;
1582 
1583 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
1584 		return -EINVAL;
1585 
1586 	qid = gve_xdp_tx_queue_id(priv,
1587 				  smp_processor_id() % priv->tx_cfg.num_xdp_queues);
1588 
1589 	tx = &priv->tx[qid];
1590 
1591 	spin_lock(&tx->dqo_tx.xdp_lock);
1592 	for (i = 0; i < n; i++) {
1593 		err = gve_xdp_xmit_one_dqo(priv, tx, frames[i]);
1594 		if (err)
1595 			break;
1596 	}
1597 
1598 	if (flags & XDP_XMIT_FLUSH)
1599 		gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
1600 
1601 	spin_unlock(&tx->dqo_tx.xdp_lock);
1602 
1603 	u64_stats_update_begin(&tx->statss);
1604 	tx->xdp_xmit += n;
1605 	tx->xdp_xmit_errors += n - i;
1606 	u64_stats_update_end(&tx->statss);
1607 
1608 	return i ? i : err;
1609 }
1610