1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3 *
4 * Copyright (C) 2015-2021 Google, Inc.
5 */
6
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include "gve_dqo.h"
11 #include <net/ip.h>
12 #include <linux/bpf.h>
13 #include <linux/tcp.h>
14 #include <linux/slab.h>
15 #include <linux/skbuff.h>
16 #include <net/xdp_sock_drv.h>
17
18 /* Returns true if tx_bufs are available. */
gve_has_free_tx_qpl_bufs(struct gve_tx_ring * tx,int count)19 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count)
20 {
21 int num_avail;
22
23 if (!tx->dqo.qpl)
24 return true;
25
26 num_avail = tx->dqo.num_tx_qpl_bufs -
27 (tx->dqo_tx.alloc_tx_qpl_buf_cnt -
28 tx->dqo_tx.free_tx_qpl_buf_cnt);
29
30 if (count <= num_avail)
31 return true;
32
33 /* Update cached value from dqo_compl. */
34 tx->dqo_tx.free_tx_qpl_buf_cnt =
35 atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt);
36
37 num_avail = tx->dqo.num_tx_qpl_bufs -
38 (tx->dqo_tx.alloc_tx_qpl_buf_cnt -
39 tx->dqo_tx.free_tx_qpl_buf_cnt);
40
41 return count <= num_avail;
42 }
43
44 static s16
gve_alloc_tx_qpl_buf(struct gve_tx_ring * tx)45 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx)
46 {
47 s16 index;
48
49 index = tx->dqo_tx.free_tx_qpl_buf_head;
50
51 /* No TX buffers available, try to steal the list from the
52 * completion handler.
53 */
54 if (unlikely(index == -1)) {
55 tx->dqo_tx.free_tx_qpl_buf_head =
56 atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
57 index = tx->dqo_tx.free_tx_qpl_buf_head;
58
59 if (unlikely(index == -1))
60 return index;
61 }
62
63 /* Remove TX buf from free list */
64 tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index];
65
66 return index;
67 }
68
69 static void
gve_free_tx_qpl_bufs(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pkt)70 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx,
71 struct gve_tx_pending_packet_dqo *pkt)
72 {
73 s16 index;
74 int i;
75
76 if (!pkt->num_bufs)
77 return;
78
79 index = pkt->tx_qpl_buf_ids[0];
80 /* Create a linked list of buffers to be added to the free list */
81 for (i = 1; i < pkt->num_bufs; i++) {
82 tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i];
83 index = pkt->tx_qpl_buf_ids[i];
84 }
85
86 while (true) {
87 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head);
88
89 tx->dqo.tx_qpl_buf_next[index] = old_head;
90 if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head,
91 old_head,
92 pkt->tx_qpl_buf_ids[0]) == old_head) {
93 break;
94 }
95 }
96
97 atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt);
98 pkt->num_bufs = 0;
99 }
100
101 /* Returns true if a gve_tx_pending_packet_dqo object is available. */
gve_has_pending_packet(struct gve_tx_ring * tx)102 static bool gve_has_pending_packet(struct gve_tx_ring *tx)
103 {
104 /* Check TX path's list. */
105 if (tx->dqo_tx.free_pending_packets != -1)
106 return true;
107
108 /* Check completion handler's list. */
109 if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1)
110 return true;
111
112 return false;
113 }
114
gve_xdp_tx_flush_dqo(struct gve_priv * priv,u32 xdp_qid)115 void gve_xdp_tx_flush_dqo(struct gve_priv *priv, u32 xdp_qid)
116 {
117 u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid);
118 struct gve_tx_ring *tx = &priv->tx[tx_qid];
119
120 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
121 }
122
123 static struct gve_tx_pending_packet_dqo *
gve_alloc_pending_packet(struct gve_tx_ring * tx)124 gve_alloc_pending_packet(struct gve_tx_ring *tx)
125 {
126 struct gve_tx_pending_packet_dqo *pending_packet;
127 s16 index;
128
129 index = tx->dqo_tx.free_pending_packets;
130
131 /* No pending_packets available, try to steal the list from the
132 * completion handler.
133 */
134 if (unlikely(index == -1)) {
135 tx->dqo_tx.free_pending_packets =
136 atomic_xchg(&tx->dqo_compl.free_pending_packets, -1);
137 index = tx->dqo_tx.free_pending_packets;
138
139 if (unlikely(index == -1))
140 return NULL;
141 }
142
143 pending_packet = &tx->dqo.pending_packets[index];
144
145 /* Remove pending_packet from free list */
146 tx->dqo_tx.free_pending_packets = pending_packet->next;
147 pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL;
148
149 return pending_packet;
150 }
151
152 static void
gve_free_pending_packet(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pending_packet)153 gve_free_pending_packet(struct gve_tx_ring *tx,
154 struct gve_tx_pending_packet_dqo *pending_packet)
155 {
156 s16 index = pending_packet - tx->dqo.pending_packets;
157
158 pending_packet->state = GVE_PACKET_STATE_UNALLOCATED;
159 while (true) {
160 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets);
161
162 pending_packet->next = old_head;
163 if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets,
164 old_head, index) == old_head) {
165 break;
166 }
167 }
168 }
169
170 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers.
171 */
gve_tx_clean_pending_packets(struct gve_tx_ring * tx)172 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx)
173 {
174 int i;
175
176 for (i = 0; i < tx->dqo.num_pending_packets; i++) {
177 struct gve_tx_pending_packet_dqo *cur_state =
178 &tx->dqo.pending_packets[i];
179 int j;
180
181 for (j = 0; j < cur_state->num_bufs; j++) {
182 if (j == 0) {
183 dma_unmap_single(tx->dev,
184 dma_unmap_addr(cur_state, dma[j]),
185 dma_unmap_len(cur_state, len[j]),
186 DMA_TO_DEVICE);
187 } else {
188 dma_unmap_page(tx->dev,
189 dma_unmap_addr(cur_state, dma[j]),
190 dma_unmap_len(cur_state, len[j]),
191 DMA_TO_DEVICE);
192 }
193 }
194 if (cur_state->skb) {
195 dev_consume_skb_any(cur_state->skb);
196 cur_state->skb = NULL;
197 }
198 }
199 }
200
gve_tx_stop_ring_dqo(struct gve_priv * priv,int idx)201 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx)
202 {
203 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
204 struct gve_tx_ring *tx = &priv->tx[idx];
205
206 if (!gve_tx_was_added_to_block(priv, idx))
207 return;
208
209 gve_remove_napi(priv, ntfy_idx);
210 gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL);
211 if (tx->netdev_txq)
212 netdev_tx_reset_queue(tx->netdev_txq);
213 gve_tx_clean_pending_packets(tx);
214 gve_tx_remove_from_block(priv, idx);
215 }
216
gve_tx_free_ring_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct gve_tx_alloc_rings_cfg * cfg)217 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
218 struct gve_tx_alloc_rings_cfg *cfg)
219 {
220 struct device *hdev = &priv->pdev->dev;
221 int idx = tx->q_num;
222 size_t bytes;
223 u32 qpl_id;
224
225 if (tx->q_resources) {
226 dma_free_coherent(hdev, sizeof(*tx->q_resources),
227 tx->q_resources, tx->q_resources_bus);
228 tx->q_resources = NULL;
229 }
230
231 if (tx->dqo.compl_ring) {
232 bytes = sizeof(tx->dqo.compl_ring[0]) *
233 (tx->dqo.complq_mask + 1);
234 dma_free_coherent(hdev, bytes, tx->dqo.compl_ring,
235 tx->complq_bus_dqo);
236 tx->dqo.compl_ring = NULL;
237 }
238
239 if (tx->dqo.tx_ring) {
240 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
241 dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus);
242 tx->dqo.tx_ring = NULL;
243 }
244
245 kvfree(tx->dqo.xsk_reorder_queue);
246 tx->dqo.xsk_reorder_queue = NULL;
247
248 kvfree(tx->dqo.pending_packets);
249 tx->dqo.pending_packets = NULL;
250
251 kvfree(tx->dqo.tx_qpl_buf_next);
252 tx->dqo.tx_qpl_buf_next = NULL;
253
254 if (tx->dqo.qpl) {
255 qpl_id = gve_tx_qpl_id(priv, tx->q_num);
256 gve_free_queue_page_list(priv, tx->dqo.qpl, qpl_id);
257 tx->dqo.qpl = NULL;
258 }
259
260 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
261 }
262
gve_tx_qpl_buf_init(struct gve_tx_ring * tx)263 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx)
264 {
265 int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO *
266 tx->dqo.qpl->num_entries;
267 int i;
268
269 tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs,
270 sizeof(tx->dqo.tx_qpl_buf_next[0]),
271 GFP_KERNEL);
272 if (!tx->dqo.tx_qpl_buf_next)
273 return -ENOMEM;
274
275 tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs;
276
277 /* Generate free TX buf list */
278 for (i = 0; i < num_tx_qpl_bufs - 1; i++)
279 tx->dqo.tx_qpl_buf_next[i] = i + 1;
280 tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1;
281
282 atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
283 return 0;
284 }
285
gve_tx_start_ring_dqo(struct gve_priv * priv,int idx)286 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx)
287 {
288 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
289 struct gve_tx_ring *tx = &priv->tx[idx];
290
291 gve_tx_add_to_block(priv, idx);
292
293 if (idx < priv->tx_cfg.num_queues)
294 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
295 gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo);
296 }
297
gve_tx_alloc_ring_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg,struct gve_tx_ring * tx,int idx)298 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv,
299 struct gve_tx_alloc_rings_cfg *cfg,
300 struct gve_tx_ring *tx,
301 int idx)
302 {
303 struct device *hdev = &priv->pdev->dev;
304 int num_pending_packets;
305 int qpl_page_cnt;
306 size_t bytes;
307 u32 qpl_id;
308 int i;
309
310 memset(tx, 0, sizeof(*tx));
311 tx->q_num = idx;
312 tx->dev = hdev;
313 spin_lock_init(&tx->dqo_tx.xdp_lock);
314 atomic_set_release(&tx->dqo_compl.hw_tx_head, 0);
315
316 /* Queue sizes must be a power of 2 */
317 tx->mask = cfg->ring_size - 1;
318 tx->dqo.complq_mask = tx->mask;
319
320 /* The max number of pending packets determines the maximum number of
321 * descriptors which maybe written to the completion queue.
322 *
323 * We must set the number small enough to make sure we never overrun the
324 * completion queue.
325 */
326 num_pending_packets = tx->dqo.complq_mask + 1;
327
328 /* Reserve space for descriptor completions, which will be reported at
329 * most every GVE_TX_MIN_RE_INTERVAL packets.
330 */
331 num_pending_packets -=
332 (tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL;
333
334 /* Each packet may have at most 2 buffer completions if it receives both
335 * a miss and reinjection completion.
336 */
337 num_pending_packets /= 2;
338
339 tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX);
340 tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets,
341 sizeof(tx->dqo.pending_packets[0]),
342 GFP_KERNEL);
343 if (!tx->dqo.pending_packets)
344 goto err;
345
346 /* Set up linked list of pending packets */
347 for (i = 0; i < tx->dqo.num_pending_packets - 1; i++)
348 tx->dqo.pending_packets[i].next = i + 1;
349
350 tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1;
351 atomic_set_release(&tx->dqo_compl.free_pending_packets, -1);
352
353 /* Only alloc xsk pool for XDP queues */
354 if (idx >= cfg->qcfg->num_queues && cfg->num_xdp_rings) {
355 tx->dqo.xsk_reorder_queue =
356 kvcalloc(tx->dqo.complq_mask + 1,
357 sizeof(tx->dqo.xsk_reorder_queue[0]),
358 GFP_KERNEL);
359 if (!tx->dqo.xsk_reorder_queue)
360 goto err;
361 }
362
363 tx->dqo_compl.miss_completions.head = -1;
364 tx->dqo_compl.miss_completions.tail = -1;
365 tx->dqo_compl.timed_out_completions.head = -1;
366 tx->dqo_compl.timed_out_completions.tail = -1;
367
368 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
369 tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
370 if (!tx->dqo.tx_ring)
371 goto err;
372
373 bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1);
374 tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes,
375 &tx->complq_bus_dqo,
376 GFP_KERNEL);
377 if (!tx->dqo.compl_ring)
378 goto err;
379
380 tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources),
381 &tx->q_resources_bus, GFP_KERNEL);
382 if (!tx->q_resources)
383 goto err;
384
385 if (!cfg->raw_addressing) {
386 qpl_id = gve_tx_qpl_id(priv, tx->q_num);
387 qpl_page_cnt = priv->tx_pages_per_qpl;
388
389 tx->dqo.qpl = gve_alloc_queue_page_list(priv, qpl_id,
390 qpl_page_cnt);
391 if (!tx->dqo.qpl)
392 goto err;
393
394 if (gve_tx_qpl_buf_init(tx))
395 goto err;
396 }
397
398 return 0;
399
400 err:
401 gve_tx_free_ring_dqo(priv, tx, cfg);
402 return -ENOMEM;
403 }
404
gve_tx_alloc_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)405 int gve_tx_alloc_rings_dqo(struct gve_priv *priv,
406 struct gve_tx_alloc_rings_cfg *cfg)
407 {
408 struct gve_tx_ring *tx = cfg->tx;
409 int total_queues;
410 int err = 0;
411 int i, j;
412
413 total_queues = cfg->qcfg->num_queues + cfg->num_xdp_rings;
414 if (total_queues > cfg->qcfg->max_queues) {
415 netif_err(priv, drv, priv->dev,
416 "Cannot alloc more than the max num of Tx rings\n");
417 return -EINVAL;
418 }
419
420 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
421 GFP_KERNEL);
422 if (!tx)
423 return -ENOMEM;
424
425 for (i = 0; i < total_queues; i++) {
426 err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i);
427 if (err) {
428 netif_err(priv, drv, priv->dev,
429 "Failed to alloc tx ring=%d: err=%d\n",
430 i, err);
431 goto err;
432 }
433 }
434
435 cfg->tx = tx;
436 return 0;
437
438 err:
439 for (j = 0; j < i; j++)
440 gve_tx_free_ring_dqo(priv, &tx[j], cfg);
441 kvfree(tx);
442 return err;
443 }
444
gve_tx_free_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)445 void gve_tx_free_rings_dqo(struct gve_priv *priv,
446 struct gve_tx_alloc_rings_cfg *cfg)
447 {
448 struct gve_tx_ring *tx = cfg->tx;
449 int i;
450
451 if (!tx)
452 return;
453
454 for (i = 0; i < cfg->qcfg->num_queues + cfg->qcfg->num_xdp_queues; i++)
455 gve_tx_free_ring_dqo(priv, &tx[i], cfg);
456
457 kvfree(tx);
458 cfg->tx = NULL;
459 }
460
461 /* Returns the number of slots available in the ring */
num_avail_tx_slots(const struct gve_tx_ring * tx)462 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx)
463 {
464 u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask;
465
466 return tx->mask - num_used;
467 }
468
469 /* Checks if the requested number of slots are available in the ring */
gve_has_tx_slots_available(struct gve_tx_ring * tx,u32 slots_req)470 static bool gve_has_tx_slots_available(struct gve_tx_ring *tx, u32 slots_req)
471 {
472 u32 num_avail = num_avail_tx_slots(tx);
473
474 slots_req += GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP;
475
476 if (num_avail >= slots_req)
477 return true;
478
479 /* Update cached TX head pointer */
480 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
481
482 return num_avail_tx_slots(tx) >= slots_req;
483 }
484
gve_has_avail_slots_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)485 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx,
486 int desc_count, int buf_count)
487 {
488 return gve_has_pending_packet(tx) &&
489 gve_has_tx_slots_available(tx, desc_count) &&
490 gve_has_free_tx_qpl_bufs(tx, buf_count);
491 }
492
493 /* Stops the queue if available descriptors is less than 'count'.
494 * Return: 0 if stop is not required.
495 */
gve_maybe_stop_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)496 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx,
497 int desc_count, int buf_count)
498 {
499 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
500 return 0;
501
502 /* No space, so stop the queue */
503 tx->stop_queue++;
504 netif_tx_stop_queue(tx->netdev_txq);
505
506 /* Sync with restarting queue in `gve_tx_poll_dqo()` */
507 mb();
508
509 /* After stopping queue, check if we can transmit again in order to
510 * avoid TOCTOU bug.
511 */
512 if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
513 return -EBUSY;
514
515 netif_tx_start_queue(tx->netdev_txq);
516 tx->wake_queue++;
517 return 0;
518 }
519
gve_extract_tx_metadata_dqo(const struct sk_buff * skb,struct gve_tx_metadata_dqo * metadata)520 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb,
521 struct gve_tx_metadata_dqo *metadata)
522 {
523 memset(metadata, 0, sizeof(*metadata));
524 metadata->version = GVE_TX_METADATA_VERSION_DQO;
525
526 if (skb->l4_hash) {
527 u16 path_hash = skb->hash ^ (skb->hash >> 16);
528
529 path_hash &= (1 << 15) - 1;
530 if (unlikely(path_hash == 0))
531 path_hash = ~path_hash;
532
533 metadata->path_hash = path_hash;
534 }
535 }
536
gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring * tx,u32 * desc_idx,bool enable_csum,u32 len,u64 addr,s16 compl_tag,bool eop,bool is_gso)537 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx,
538 bool enable_csum, u32 len, u64 addr,
539 s16 compl_tag, bool eop, bool is_gso)
540 {
541 while (len > 0) {
542 struct gve_tx_pkt_desc_dqo *desc =
543 &tx->dqo.tx_ring[*desc_idx].pkt;
544 u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO);
545 bool cur_eop = eop && cur_len == len;
546
547 *desc = (struct gve_tx_pkt_desc_dqo){
548 .buf_addr = cpu_to_le64(addr),
549 .dtype = GVE_TX_PKT_DESC_DTYPE_DQO,
550 .end_of_packet = cur_eop,
551 .checksum_offload_enable = enable_csum,
552 .compl_tag = cpu_to_le16(compl_tag),
553 .buf_size = cur_len,
554 };
555
556 addr += cur_len;
557 len -= cur_len;
558 *desc_idx = (*desc_idx + 1) & tx->mask;
559 }
560 }
561
562 /* Validates and prepares `skb` for TSO.
563 *
564 * Returns header length, or < 0 if invalid.
565 */
gve_prep_tso(struct sk_buff * skb)566 static int gve_prep_tso(struct sk_buff *skb)
567 {
568 struct tcphdr *tcp;
569 int header_len;
570 u32 paylen;
571 int err;
572
573 /* Note: HW requires MSS (gso_size) to be <= 9728 and the total length
574 * of the TSO to be <= 262143.
575 *
576 * However, we don't validate these because:
577 * - Hypervisor enforces a limit of 9K MTU
578 * - Kernel will not produce a TSO larger than 64k
579 */
580
581 if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO))
582 return -1;
583
584 if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
585 return -EINVAL;
586
587 /* Needed because we will modify header. */
588 err = skb_cow_head(skb, 0);
589 if (err < 0)
590 return err;
591
592 tcp = tcp_hdr(skb);
593 paylen = skb->len - skb_transport_offset(skb);
594 csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen));
595 header_len = skb_tcp_all_headers(skb);
596
597 if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO))
598 return -EINVAL;
599
600 return header_len;
601 }
602
gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo * desc,const struct sk_buff * skb,const struct gve_tx_metadata_dqo * metadata,int header_len)603 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc,
604 const struct sk_buff *skb,
605 const struct gve_tx_metadata_dqo *metadata,
606 int header_len)
607 {
608 *desc = (struct gve_tx_tso_context_desc_dqo){
609 .header_len = header_len,
610 .cmd_dtype = {
611 .dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO,
612 .tso = 1,
613 },
614 .flex0 = metadata->bytes[0],
615 .flex5 = metadata->bytes[5],
616 .flex6 = metadata->bytes[6],
617 .flex7 = metadata->bytes[7],
618 .flex8 = metadata->bytes[8],
619 .flex9 = metadata->bytes[9],
620 .flex10 = metadata->bytes[10],
621 .flex11 = metadata->bytes[11],
622 };
623 desc->tso_total_len = skb->len - header_len;
624 desc->mss = skb_shinfo(skb)->gso_size;
625 }
626
627 static void
gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo * desc,const struct gve_tx_metadata_dqo * metadata)628 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc,
629 const struct gve_tx_metadata_dqo *metadata)
630 {
631 *desc = (struct gve_tx_general_context_desc_dqo){
632 .flex0 = metadata->bytes[0],
633 .flex1 = metadata->bytes[1],
634 .flex2 = metadata->bytes[2],
635 .flex3 = metadata->bytes[3],
636 .flex4 = metadata->bytes[4],
637 .flex5 = metadata->bytes[5],
638 .flex6 = metadata->bytes[6],
639 .flex7 = metadata->bytes[7],
640 .flex8 = metadata->bytes[8],
641 .flex9 = metadata->bytes[9],
642 .flex10 = metadata->bytes[10],
643 .flex11 = metadata->bytes[11],
644 .cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO},
645 };
646 }
647
gve_tx_update_tail(struct gve_tx_ring * tx,u32 desc_idx)648 static void gve_tx_update_tail(struct gve_tx_ring *tx, u32 desc_idx)
649 {
650 u32 last_desc_idx = (desc_idx - 1) & tx->mask;
651 u32 last_report_event_interval =
652 (last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask;
653
654 /* Commit the changes to our state */
655 tx->dqo_tx.tail = desc_idx;
656
657 /* Request a descriptor completion on the last descriptor of the
658 * packet if we are allowed to by the HW enforced interval.
659 */
660
661 if (unlikely(last_report_event_interval >= GVE_TX_MIN_RE_INTERVAL)) {
662 tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true;
663 tx->dqo_tx.last_re_idx = last_desc_idx;
664 }
665 }
666
gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)667 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx,
668 struct sk_buff *skb,
669 struct gve_tx_pending_packet_dqo *pkt,
670 s16 completion_tag,
671 u32 *desc_idx,
672 bool is_gso)
673 {
674 bool enable_csum = skb->ip_summed == CHECKSUM_PARTIAL;
675 const struct skb_shared_info *shinfo = skb_shinfo(skb);
676 int i;
677
678 /* Note: HW requires that the size of a non-TSO packet be within the
679 * range of [17, 9728].
680 *
681 * We don't double check because
682 * - We limited `netdev->min_mtu` to ETH_MIN_MTU.
683 * - Hypervisor won't allow MTU larger than 9216.
684 */
685
686 pkt->num_bufs = 0;
687 /* Map the linear portion of skb */
688 {
689 u32 len = skb_headlen(skb);
690 dma_addr_t addr;
691
692 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
693 if (unlikely(dma_mapping_error(tx->dev, addr)))
694 goto err;
695
696 dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
697 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
698 ++pkt->num_bufs;
699
700 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, enable_csum, len, addr,
701 completion_tag,
702 /*eop=*/shinfo->nr_frags == 0, is_gso);
703 }
704
705 for (i = 0; i < shinfo->nr_frags; i++) {
706 const skb_frag_t *frag = &shinfo->frags[i];
707 bool is_eop = i == (shinfo->nr_frags - 1);
708 u32 len = skb_frag_size(frag);
709 dma_addr_t addr;
710
711 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
712 if (unlikely(dma_mapping_error(tx->dev, addr)))
713 goto err;
714
715 dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
716 netmem_dma_unmap_addr_set(skb_frag_netmem(frag), pkt,
717 dma[pkt->num_bufs], addr);
718 ++pkt->num_bufs;
719
720 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, enable_csum, len, addr,
721 completion_tag, is_eop, is_gso);
722 }
723
724 return 0;
725 err:
726 for (i = 0; i < pkt->num_bufs; i++) {
727 if (i == 0) {
728 dma_unmap_single(tx->dev,
729 dma_unmap_addr(pkt, dma[i]),
730 dma_unmap_len(pkt, len[i]),
731 DMA_TO_DEVICE);
732 } else {
733 dma_unmap_page(tx->dev,
734 dma_unmap_addr(pkt, dma[i]),
735 dma_unmap_len(pkt, len[i]),
736 DMA_TO_DEVICE);
737 }
738 }
739 pkt->num_bufs = 0;
740 return -1;
741 }
742
743 /* Tx buffer i corresponds to
744 * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO
745 * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO
746 */
gve_tx_buf_get_addr(struct gve_tx_ring * tx,s16 index,void ** va,dma_addr_t * dma_addr)747 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx,
748 s16 index,
749 void **va, dma_addr_t *dma_addr)
750 {
751 int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO);
752 int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO;
753
754 *va = page_address(tx->dqo.qpl->pages[page_id]) + offset;
755 *dma_addr = tx->dqo.qpl->page_buses[page_id] + offset;
756 }
757
gve_tx_add_skb_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)758 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx,
759 struct sk_buff *skb,
760 struct gve_tx_pending_packet_dqo *pkt,
761 s16 completion_tag,
762 u32 *desc_idx,
763 bool is_gso)
764 {
765 bool enable_csum = skb->ip_summed == CHECKSUM_PARTIAL;
766 u32 copy_offset = 0;
767 dma_addr_t dma_addr;
768 u32 copy_len;
769 s16 index;
770 void *va;
771
772 /* Break the packet into buffer size chunks */
773 pkt->num_bufs = 0;
774 while (copy_offset < skb->len) {
775 index = gve_alloc_tx_qpl_buf(tx);
776 if (unlikely(index == -1))
777 goto err;
778
779 gve_tx_buf_get_addr(tx, index, &va, &dma_addr);
780 copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO,
781 skb->len - copy_offset);
782 skb_copy_bits(skb, copy_offset, va, copy_len);
783
784 copy_offset += copy_len;
785 dma_sync_single_for_device(tx->dev, dma_addr,
786 copy_len, DMA_TO_DEVICE);
787 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, enable_csum,
788 copy_len,
789 dma_addr,
790 completion_tag,
791 copy_offset == skb->len,
792 is_gso);
793
794 pkt->tx_qpl_buf_ids[pkt->num_bufs] = index;
795 ++tx->dqo_tx.alloc_tx_qpl_buf_cnt;
796 ++pkt->num_bufs;
797 }
798
799 return 0;
800 err:
801 /* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */
802 gve_free_tx_qpl_bufs(tx, pkt);
803 return -ENOMEM;
804 }
805
806 /* Returns 0 on success, or < 0 on error.
807 *
808 * Before this function is called, the caller must ensure
809 * gve_has_pending_packet(tx) returns true.
810 */
gve_tx_add_skb_dqo(struct gve_tx_ring * tx,struct sk_buff * skb)811 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx,
812 struct sk_buff *skb)
813 {
814 const bool is_gso = skb_is_gso(skb);
815 u32 desc_idx = tx->dqo_tx.tail;
816 struct gve_tx_pending_packet_dqo *pkt;
817 struct gve_tx_metadata_dqo metadata;
818 s16 completion_tag;
819
820 pkt = gve_alloc_pending_packet(tx);
821 if (!pkt)
822 return -ENOMEM;
823
824 pkt->skb = skb;
825 pkt->type = GVE_TX_PENDING_PACKET_DQO_SKB;
826 completion_tag = pkt - tx->dqo.pending_packets;
827
828 gve_extract_tx_metadata_dqo(skb, &metadata);
829 if (is_gso) {
830 int header_len = gve_prep_tso(skb);
831
832 if (unlikely(header_len < 0))
833 goto err;
834
835 gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx,
836 skb, &metadata, header_len);
837 desc_idx = (desc_idx + 1) & tx->mask;
838 }
839
840 gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx,
841 &metadata);
842 desc_idx = (desc_idx + 1) & tx->mask;
843
844 if (tx->dqo.qpl) {
845 if (gve_tx_add_skb_copy_dqo(tx, skb, pkt,
846 completion_tag,
847 &desc_idx, is_gso))
848 goto err;
849 } else {
850 if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt,
851 completion_tag,
852 &desc_idx, is_gso))
853 goto err;
854 }
855
856 tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs;
857
858 gve_tx_update_tail(tx, desc_idx);
859 return 0;
860
861 err:
862 pkt->skb = NULL;
863 gve_free_pending_packet(tx, pkt);
864
865 return -1;
866 }
867
gve_num_descs_per_buf(size_t size)868 static int gve_num_descs_per_buf(size_t size)
869 {
870 return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO);
871 }
872
gve_num_buffer_descs_needed(const struct sk_buff * skb)873 static int gve_num_buffer_descs_needed(const struct sk_buff *skb)
874 {
875 const struct skb_shared_info *shinfo = skb_shinfo(skb);
876 int num_descs;
877 int i;
878
879 num_descs = gve_num_descs_per_buf(skb_headlen(skb));
880
881 for (i = 0; i < shinfo->nr_frags; i++) {
882 unsigned int frag_size = skb_frag_size(&shinfo->frags[i]);
883
884 num_descs += gve_num_descs_per_buf(frag_size);
885 }
886
887 return num_descs;
888 }
889
890 /* Returns true if HW is capable of sending TSO represented by `skb`.
891 *
892 * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers.
893 * - The header is counted as one buffer for every single segment.
894 * - A buffer which is split between two segments is counted for both.
895 * - If a buffer contains both header and payload, it is counted as two buffers.
896 */
gve_can_send_tso(const struct sk_buff * skb)897 static bool gve_can_send_tso(const struct sk_buff *skb)
898 {
899 const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1;
900 const struct skb_shared_info *shinfo = skb_shinfo(skb);
901 const int header_len = skb_tcp_all_headers(skb);
902 const int gso_size = shinfo->gso_size;
903 int cur_seg_num_bufs;
904 int prev_frag_size;
905 int cur_seg_size;
906 int i;
907
908 cur_seg_size = skb_headlen(skb) - header_len;
909 prev_frag_size = skb_headlen(skb);
910 cur_seg_num_bufs = cur_seg_size > 0;
911
912 for (i = 0; i < shinfo->nr_frags; i++) {
913 if (cur_seg_size >= gso_size) {
914 cur_seg_size %= gso_size;
915 cur_seg_num_bufs = cur_seg_size > 0;
916
917 if (prev_frag_size > GVE_TX_MAX_BUF_SIZE_DQO) {
918 int prev_frag_remain = prev_frag_size %
919 GVE_TX_MAX_BUF_SIZE_DQO;
920
921 /* If the last descriptor of the previous frag
922 * is less than cur_seg_size, the segment will
923 * span two descriptors in the previous frag.
924 * Since max gso size (9728) is less than
925 * GVE_TX_MAX_BUF_SIZE_DQO, it is impossible
926 * for the segment to span more than two
927 * descriptors.
928 */
929 if (prev_frag_remain &&
930 cur_seg_size > prev_frag_remain)
931 cur_seg_num_bufs++;
932 }
933 }
934
935 if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg))
936 return false;
937
938 prev_frag_size = skb_frag_size(&shinfo->frags[i]);
939 cur_seg_size += prev_frag_size;
940 }
941
942 return true;
943 }
944
gve_features_check_dqo(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)945 netdev_features_t gve_features_check_dqo(struct sk_buff *skb,
946 struct net_device *dev,
947 netdev_features_t features)
948 {
949 if (skb_is_gso(skb) && !gve_can_send_tso(skb))
950 return features & ~NETIF_F_GSO_MASK;
951
952 return features;
953 }
954
955 /* Attempt to transmit specified SKB.
956 *
957 * Returns 0 if the SKB was transmitted or dropped.
958 * Returns -1 if there is not currently enough space to transmit the SKB.
959 */
gve_try_tx_skb(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)960 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx,
961 struct sk_buff *skb)
962 {
963 int num_buffer_descs;
964 int total_num_descs;
965
966 if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb)))
967 goto drop;
968
969 if (tx->dqo.qpl) {
970 /* We do not need to verify the number of buffers used per
971 * packet or per segment in case of TSO as with 2K size buffers
972 * none of the TX packet rules would be violated.
973 *
974 * gve_can_send_tso() checks that each TCP segment of gso_size is
975 * not distributed over more than 9 SKB frags..
976 */
977 num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO);
978 } else {
979 num_buffer_descs = gve_num_buffer_descs_needed(skb);
980 if (!skb_is_gso(skb)) {
981 if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) {
982 if (unlikely(skb_linearize(skb) < 0))
983 goto drop;
984
985 num_buffer_descs = 1;
986 }
987 }
988 }
989
990 /* Metadata + (optional TSO) + data descriptors. */
991 total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs;
992 if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs,
993 num_buffer_descs))) {
994 return -1;
995 }
996
997 if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0))
998 goto drop;
999
1000 netdev_tx_sent_queue(tx->netdev_txq, skb->len);
1001 skb_tx_timestamp(skb);
1002 return 0;
1003
1004 drop:
1005 tx->dropped_pkt++;
1006 dev_kfree_skb_any(skb);
1007 return 0;
1008 }
1009
gve_xsk_reorder_queue_push_dqo(struct gve_tx_ring * tx,u16 completion_tag)1010 static void gve_xsk_reorder_queue_push_dqo(struct gve_tx_ring *tx,
1011 u16 completion_tag)
1012 {
1013 u32 tail = atomic_read(&tx->dqo_tx.xsk_reorder_queue_tail);
1014
1015 tx->dqo.xsk_reorder_queue[tail] = completion_tag;
1016 tail = (tail + 1) & tx->dqo.complq_mask;
1017 atomic_set_release(&tx->dqo_tx.xsk_reorder_queue_tail, tail);
1018 }
1019
1020 static struct gve_tx_pending_packet_dqo *
gve_xsk_reorder_queue_head(struct gve_tx_ring * tx)1021 gve_xsk_reorder_queue_head(struct gve_tx_ring *tx)
1022 {
1023 u32 head = tx->dqo_compl.xsk_reorder_queue_head;
1024
1025 if (head == tx->dqo_compl.xsk_reorder_queue_tail) {
1026 tx->dqo_compl.xsk_reorder_queue_tail =
1027 atomic_read_acquire(&tx->dqo_tx.xsk_reorder_queue_tail);
1028
1029 if (head == tx->dqo_compl.xsk_reorder_queue_tail)
1030 return NULL;
1031 }
1032
1033 return &tx->dqo.pending_packets[tx->dqo.xsk_reorder_queue[head]];
1034 }
1035
gve_xsk_reorder_queue_pop_dqo(struct gve_tx_ring * tx)1036 static void gve_xsk_reorder_queue_pop_dqo(struct gve_tx_ring *tx)
1037 {
1038 tx->dqo_compl.xsk_reorder_queue_head++;
1039 tx->dqo_compl.xsk_reorder_queue_head &= tx->dqo.complq_mask;
1040 }
1041
1042 /* Transmit a given skb and ring the doorbell. */
gve_tx_dqo(struct sk_buff * skb,struct net_device * dev)1043 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev)
1044 {
1045 struct gve_priv *priv = netdev_priv(dev);
1046 struct gve_tx_ring *tx;
1047
1048 tx = &priv->tx[skb_get_queue_mapping(skb)];
1049 if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) {
1050 /* We need to ring the txq doorbell -- we have stopped the Tx
1051 * queue for want of resources, but prior calls to gve_tx()
1052 * may have added descriptors without ringing the doorbell.
1053 */
1054 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
1055 return NETDEV_TX_BUSY;
1056 }
1057
1058 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
1059 return NETDEV_TX_OK;
1060
1061 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
1062 return NETDEV_TX_OK;
1063 }
1064
gve_xsk_tx_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,int budget)1065 static bool gve_xsk_tx_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1066 int budget)
1067 {
1068 struct xsk_buff_pool *pool = tx->xsk_pool;
1069 struct xdp_desc desc;
1070 bool repoll = false;
1071 int sent = 0;
1072
1073 spin_lock(&tx->dqo_tx.xdp_lock);
1074 for (; sent < budget; sent++) {
1075 struct gve_tx_pending_packet_dqo *pkt;
1076 s16 completion_tag;
1077 dma_addr_t addr;
1078 u32 desc_idx;
1079
1080 if (unlikely(!gve_has_avail_slots_tx_dqo(tx, 1, 1))) {
1081 repoll = true;
1082 break;
1083 }
1084
1085 if (!xsk_tx_peek_desc(pool, &desc))
1086 break;
1087
1088 pkt = gve_alloc_pending_packet(tx);
1089 pkt->type = GVE_TX_PENDING_PACKET_DQO_XSK;
1090 pkt->num_bufs = 0;
1091 completion_tag = pkt - tx->dqo.pending_packets;
1092
1093 addr = xsk_buff_raw_get_dma(pool, desc.addr);
1094 xsk_buff_raw_dma_sync_for_device(pool, addr, desc.len);
1095
1096 desc_idx = tx->dqo_tx.tail;
1097 gve_tx_fill_pkt_desc_dqo(tx, &desc_idx,
1098 true, desc.len,
1099 addr, completion_tag, true,
1100 false);
1101 ++pkt->num_bufs;
1102 gve_tx_update_tail(tx, desc_idx);
1103 tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs;
1104 gve_xsk_reorder_queue_push_dqo(tx, completion_tag);
1105 }
1106
1107 if (sent) {
1108 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
1109 xsk_tx_release(pool);
1110 }
1111
1112 spin_unlock(&tx->dqo_tx.xdp_lock);
1113
1114 u64_stats_update_begin(&tx->statss);
1115 tx->xdp_xsk_sent += sent;
1116 u64_stats_update_end(&tx->statss);
1117
1118 return (sent == budget) || repoll;
1119 }
1120
add_to_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pending_packet)1121 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list,
1122 struct gve_tx_pending_packet_dqo *pending_packet)
1123 {
1124 s16 old_tail, index;
1125
1126 index = pending_packet - tx->dqo.pending_packets;
1127 old_tail = list->tail;
1128 list->tail = index;
1129 if (old_tail == -1)
1130 list->head = index;
1131 else
1132 tx->dqo.pending_packets[old_tail].next = index;
1133
1134 pending_packet->next = -1;
1135 pending_packet->prev = old_tail;
1136 }
1137
remove_from_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pkt)1138 static void remove_from_list(struct gve_tx_ring *tx,
1139 struct gve_index_list *list,
1140 struct gve_tx_pending_packet_dqo *pkt)
1141 {
1142 s16 prev_index, next_index;
1143
1144 prev_index = pkt->prev;
1145 next_index = pkt->next;
1146
1147 if (prev_index == -1) {
1148 /* Node is head */
1149 list->head = next_index;
1150 } else {
1151 tx->dqo.pending_packets[prev_index].next = next_index;
1152 }
1153 if (next_index == -1) {
1154 /* Node is tail */
1155 list->tail = prev_index;
1156 } else {
1157 tx->dqo.pending_packets[next_index].prev = prev_index;
1158 }
1159 }
1160
gve_unmap_packet(struct device * dev,struct gve_tx_pending_packet_dqo * pkt)1161 static void gve_unmap_packet(struct device *dev,
1162 struct gve_tx_pending_packet_dqo *pkt)
1163 {
1164 int i;
1165
1166 /* SKB linear portion is guaranteed to be mapped */
1167 dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]),
1168 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE);
1169 for (i = 1; i < pkt->num_bufs; i++) {
1170 netmem_dma_unmap_page_attrs(dev, dma_unmap_addr(pkt, dma[i]),
1171 dma_unmap_len(pkt, len[i]),
1172 DMA_TO_DEVICE, 0);
1173 }
1174 pkt->num_bufs = 0;
1175 }
1176
1177 /* Completion types and expected behavior:
1178 * No Miss compl + Packet compl = Packet completed normally.
1179 * Miss compl + Re-inject compl = Packet completed normally.
1180 * No Miss compl + Re-inject compl = Skipped i.e. packet not completed.
1181 * Miss compl + Packet compl = Skipped i.e. packet not completed.
1182 */
gve_handle_packet_completion(struct gve_priv * priv,struct gve_tx_ring * tx,bool is_napi,u16 compl_tag,u64 * bytes,u64 * pkts,bool is_reinjection)1183 static void gve_handle_packet_completion(struct gve_priv *priv,
1184 struct gve_tx_ring *tx, bool is_napi,
1185 u16 compl_tag, u64 *bytes, u64 *pkts,
1186 bool is_reinjection)
1187 {
1188 struct gve_tx_pending_packet_dqo *pending_packet;
1189
1190 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1191 net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1192 priv->dev->name, (int)compl_tag);
1193 return;
1194 }
1195
1196 pending_packet = &tx->dqo.pending_packets[compl_tag];
1197
1198 if (unlikely(is_reinjection)) {
1199 if (unlikely(pending_packet->state ==
1200 GVE_PACKET_STATE_TIMED_OUT_COMPL)) {
1201 net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n",
1202 priv->dev->name, (int)compl_tag);
1203 /* Packet was already completed as a result of timeout,
1204 * so just remove from list and free pending packet.
1205 */
1206 remove_from_list(tx,
1207 &tx->dqo_compl.timed_out_completions,
1208 pending_packet);
1209 gve_free_pending_packet(tx, pending_packet);
1210 return;
1211 }
1212 if (unlikely(pending_packet->state !=
1213 GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) {
1214 /* No outstanding miss completion but packet allocated
1215 * implies packet receives a re-injection completion
1216 * without a prior miss completion. Return without
1217 * completing the packet.
1218 */
1219 net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n",
1220 priv->dev->name, (int)compl_tag);
1221 return;
1222 }
1223 remove_from_list(tx, &tx->dqo_compl.miss_completions,
1224 pending_packet);
1225 } else {
1226 /* Packet is allocated but not a pending data completion. */
1227 if (unlikely(pending_packet->state !=
1228 GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1229 net_err_ratelimited("%s: No pending data completion: %d\n",
1230 priv->dev->name, (int)compl_tag);
1231 return;
1232 }
1233 }
1234 tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs;
1235
1236 switch (pending_packet->type) {
1237 case GVE_TX_PENDING_PACKET_DQO_SKB:
1238 if (tx->dqo.qpl)
1239 gve_free_tx_qpl_bufs(tx, pending_packet);
1240 else
1241 gve_unmap_packet(tx->dev, pending_packet);
1242 (*pkts)++;
1243 *bytes += pending_packet->skb->len;
1244
1245 napi_consume_skb(pending_packet->skb, is_napi);
1246 pending_packet->skb = NULL;
1247 gve_free_pending_packet(tx, pending_packet);
1248 break;
1249 case GVE_TX_PENDING_PACKET_DQO_XDP_FRAME:
1250 gve_unmap_packet(tx->dev, pending_packet);
1251 (*pkts)++;
1252 *bytes += pending_packet->xdpf->len;
1253
1254 xdp_return_frame(pending_packet->xdpf);
1255 pending_packet->xdpf = NULL;
1256 gve_free_pending_packet(tx, pending_packet);
1257 break;
1258 case GVE_TX_PENDING_PACKET_DQO_XSK:
1259 pending_packet->state = GVE_PACKET_STATE_XSK_COMPLETE;
1260 break;
1261 default:
1262 WARN_ON_ONCE(1);
1263 }
1264 }
1265
gve_handle_miss_completion(struct gve_priv * priv,struct gve_tx_ring * tx,u16 compl_tag,u64 * bytes,u64 * pkts)1266 static void gve_handle_miss_completion(struct gve_priv *priv,
1267 struct gve_tx_ring *tx, u16 compl_tag,
1268 u64 *bytes, u64 *pkts)
1269 {
1270 struct gve_tx_pending_packet_dqo *pending_packet;
1271
1272 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1273 net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1274 priv->dev->name, (int)compl_tag);
1275 return;
1276 }
1277
1278 pending_packet = &tx->dqo.pending_packets[compl_tag];
1279 if (unlikely(pending_packet->state !=
1280 GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1281 net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n",
1282 priv->dev->name, (int)pending_packet->state,
1283 (int)compl_tag);
1284 return;
1285 }
1286
1287 pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL;
1288 /* jiffies can wraparound but time comparisons can handle overflows. */
1289 pending_packet->timeout_jiffies =
1290 jiffies +
1291 secs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT);
1292 add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet);
1293
1294 *bytes += pending_packet->skb->len;
1295 (*pkts)++;
1296 }
1297
remove_miss_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1298 static void remove_miss_completions(struct gve_priv *priv,
1299 struct gve_tx_ring *tx)
1300 {
1301 struct gve_tx_pending_packet_dqo *pending_packet;
1302 s16 next_index;
1303
1304 next_index = tx->dqo_compl.miss_completions.head;
1305 while (next_index != -1) {
1306 pending_packet = &tx->dqo.pending_packets[next_index];
1307 next_index = pending_packet->next;
1308 /* Break early because packets should timeout in order. */
1309 if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1310 break;
1311
1312 remove_from_list(tx, &tx->dqo_compl.miss_completions,
1313 pending_packet);
1314 /* Unmap/free TX buffers and free skb but do not unallocate packet i.e.
1315 * the completion tag is not freed to ensure that the driver
1316 * can take appropriate action if a corresponding valid
1317 * completion is received later.
1318 */
1319 if (tx->dqo.qpl)
1320 gve_free_tx_qpl_bufs(tx, pending_packet);
1321 else
1322 gve_unmap_packet(tx->dev, pending_packet);
1323
1324 /* This indicates the packet was dropped. */
1325 dev_kfree_skb_any(pending_packet->skb);
1326 pending_packet->skb = NULL;
1327 tx->dropped_pkt++;
1328 net_err_ratelimited("%s: No reinjection completion was received for: %d.\n",
1329 priv->dev->name,
1330 (int)(pending_packet - tx->dqo.pending_packets));
1331
1332 pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL;
1333 pending_packet->timeout_jiffies =
1334 jiffies +
1335 secs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT);
1336 /* Maintain pending packet in another list so the packet can be
1337 * unallocated at a later time.
1338 */
1339 add_to_list(tx, &tx->dqo_compl.timed_out_completions,
1340 pending_packet);
1341 }
1342 }
1343
remove_timed_out_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1344 static void remove_timed_out_completions(struct gve_priv *priv,
1345 struct gve_tx_ring *tx)
1346 {
1347 struct gve_tx_pending_packet_dqo *pending_packet;
1348 s16 next_index;
1349
1350 next_index = tx->dqo_compl.timed_out_completions.head;
1351 while (next_index != -1) {
1352 pending_packet = &tx->dqo.pending_packets[next_index];
1353 next_index = pending_packet->next;
1354 /* Break early because packets should timeout in order. */
1355 if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1356 break;
1357
1358 remove_from_list(tx, &tx->dqo_compl.timed_out_completions,
1359 pending_packet);
1360
1361 /* Need to count XSK packets in xsk_tx_completed. */
1362 if (pending_packet->type == GVE_TX_PENDING_PACKET_DQO_XSK)
1363 pending_packet->state = GVE_PACKET_STATE_XSK_COMPLETE;
1364 else
1365 gve_free_pending_packet(tx, pending_packet);
1366 }
1367 }
1368
gve_tx_process_xsk_completions(struct gve_tx_ring * tx)1369 static void gve_tx_process_xsk_completions(struct gve_tx_ring *tx)
1370 {
1371 u32 num_xsks = 0;
1372
1373 while (true) {
1374 struct gve_tx_pending_packet_dqo *pending_packet =
1375 gve_xsk_reorder_queue_head(tx);
1376
1377 if (!pending_packet ||
1378 pending_packet->state != GVE_PACKET_STATE_XSK_COMPLETE)
1379 break;
1380
1381 num_xsks++;
1382 gve_xsk_reorder_queue_pop_dqo(tx);
1383 gve_free_pending_packet(tx, pending_packet);
1384 }
1385
1386 if (num_xsks)
1387 xsk_tx_completed(tx->xsk_pool, num_xsks);
1388 }
1389
gve_clean_tx_done_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct napi_struct * napi)1390 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1391 struct napi_struct *napi)
1392 {
1393 u64 reinject_compl_bytes = 0;
1394 u64 reinject_compl_pkts = 0;
1395 int num_descs_cleaned = 0;
1396 u64 miss_compl_bytes = 0;
1397 u64 miss_compl_pkts = 0;
1398 u64 pkt_compl_bytes = 0;
1399 u64 pkt_compl_pkts = 0;
1400
1401 /* Limit in order to avoid blocking for too long */
1402 while (!napi || pkt_compl_pkts < napi->weight) {
1403 struct gve_tx_compl_desc *compl_desc =
1404 &tx->dqo.compl_ring[tx->dqo_compl.head];
1405 u16 type;
1406
1407 if (compl_desc->generation == tx->dqo_compl.cur_gen_bit)
1408 break;
1409
1410 /* Prefetch the next descriptor. */
1411 prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) &
1412 tx->dqo.complq_mask]);
1413
1414 /* Do not read data until we own the descriptor */
1415 dma_rmb();
1416 type = compl_desc->type;
1417
1418 if (type == GVE_COMPL_TYPE_DQO_DESC) {
1419 /* This is the last descriptor fetched by HW plus one */
1420 u16 tx_head = le16_to_cpu(compl_desc->tx_head);
1421
1422 atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head);
1423 } else if (type == GVE_COMPL_TYPE_DQO_PKT) {
1424 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1425 if (compl_tag & GVE_ALT_MISS_COMPL_BIT) {
1426 compl_tag &= ~GVE_ALT_MISS_COMPL_BIT;
1427 gve_handle_miss_completion(priv, tx, compl_tag,
1428 &miss_compl_bytes,
1429 &miss_compl_pkts);
1430 } else {
1431 gve_handle_packet_completion(priv, tx, !!napi,
1432 compl_tag,
1433 &pkt_compl_bytes,
1434 &pkt_compl_pkts,
1435 false);
1436 }
1437 } else if (type == GVE_COMPL_TYPE_DQO_MISS) {
1438 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1439
1440 gve_handle_miss_completion(priv, tx, compl_tag,
1441 &miss_compl_bytes,
1442 &miss_compl_pkts);
1443 } else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) {
1444 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1445
1446 gve_handle_packet_completion(priv, tx, !!napi,
1447 compl_tag,
1448 &reinject_compl_bytes,
1449 &reinject_compl_pkts,
1450 true);
1451 }
1452
1453 tx->dqo_compl.head =
1454 (tx->dqo_compl.head + 1) & tx->dqo.complq_mask;
1455 /* Flip the generation bit when we wrap around */
1456 tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0;
1457 num_descs_cleaned++;
1458 }
1459
1460 if (tx->netdev_txq)
1461 netdev_tx_completed_queue(tx->netdev_txq,
1462 pkt_compl_pkts + miss_compl_pkts,
1463 pkt_compl_bytes + miss_compl_bytes);
1464
1465 remove_miss_completions(priv, tx);
1466 remove_timed_out_completions(priv, tx);
1467
1468 if (tx->xsk_pool)
1469 gve_tx_process_xsk_completions(tx);
1470
1471 u64_stats_update_begin(&tx->statss);
1472 tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes;
1473 tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts;
1474 u64_stats_update_end(&tx->statss);
1475 return num_descs_cleaned;
1476 }
1477
gve_tx_poll_dqo(struct gve_notify_block * block,bool do_clean)1478 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean)
1479 {
1480 struct gve_tx_compl_desc *compl_desc;
1481 struct gve_tx_ring *tx = block->tx;
1482 struct gve_priv *priv = block->priv;
1483
1484 if (do_clean) {
1485 int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx,
1486 &block->napi);
1487
1488 /* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */
1489 mb();
1490
1491 if (netif_tx_queue_stopped(tx->netdev_txq) &&
1492 num_descs_cleaned > 0) {
1493 tx->wake_queue++;
1494 netif_tx_wake_queue(tx->netdev_txq);
1495 }
1496 }
1497
1498 /* Return true if we still have work. */
1499 compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head];
1500 return compl_desc->generation != tx->dqo_compl.cur_gen_bit;
1501 }
1502
gve_xsk_tx_poll_dqo(struct gve_notify_block * rx_block,int budget)1503 bool gve_xsk_tx_poll_dqo(struct gve_notify_block *rx_block, int budget)
1504 {
1505 struct gve_rx_ring *rx = rx_block->rx;
1506 struct gve_priv *priv = rx->gve;
1507 struct gve_tx_ring *tx;
1508
1509 tx = &priv->tx[gve_xdp_tx_queue_id(priv, rx->q_num)];
1510 if (tx->xsk_pool)
1511 return gve_xsk_tx_dqo(priv, tx, budget);
1512
1513 return 0;
1514 }
1515
gve_xdp_poll_dqo(struct gve_notify_block * block)1516 bool gve_xdp_poll_dqo(struct gve_notify_block *block)
1517 {
1518 struct gve_tx_compl_desc *compl_desc;
1519 struct gve_tx_ring *tx = block->tx;
1520 struct gve_priv *priv = block->priv;
1521
1522 gve_clean_tx_done_dqo(priv, tx, &block->napi);
1523
1524 /* Return true if we still have work. */
1525 compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head];
1526 return compl_desc->generation != tx->dqo_compl.cur_gen_bit;
1527 }
1528
gve_xdp_xmit_one_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct xdp_frame * xdpf)1529 int gve_xdp_xmit_one_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1530 struct xdp_frame *xdpf)
1531 {
1532 struct gve_tx_pending_packet_dqo *pkt;
1533 u32 desc_idx = tx->dqo_tx.tail;
1534 s16 completion_tag;
1535 int num_descs = 1;
1536 dma_addr_t addr;
1537 int err;
1538
1539 if (unlikely(!gve_has_tx_slots_available(tx, num_descs)))
1540 return -EBUSY;
1541
1542 pkt = gve_alloc_pending_packet(tx);
1543 if (unlikely(!pkt))
1544 return -EBUSY;
1545
1546 pkt->type = GVE_TX_PENDING_PACKET_DQO_XDP_FRAME;
1547 pkt->num_bufs = 0;
1548 pkt->xdpf = xdpf;
1549 completion_tag = pkt - tx->dqo.pending_packets;
1550
1551 /* Generate Packet Descriptor */
1552 addr = dma_map_single(tx->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
1553 err = dma_mapping_error(tx->dev, addr);
1554 if (unlikely(err))
1555 goto err;
1556
1557 dma_unmap_len_set(pkt, len[pkt->num_bufs], xdpf->len);
1558 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
1559 pkt->num_bufs++;
1560
1561 gve_tx_fill_pkt_desc_dqo(tx, &desc_idx,
1562 false, xdpf->len,
1563 addr, completion_tag, true,
1564 false);
1565
1566 gve_tx_update_tail(tx, desc_idx);
1567 return 0;
1568
1569 err:
1570 pkt->xdpf = NULL;
1571 pkt->num_bufs = 0;
1572 gve_free_pending_packet(tx, pkt);
1573 return err;
1574 }
1575
gve_xdp_xmit_dqo(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)1576 int gve_xdp_xmit_dqo(struct net_device *dev, int n, struct xdp_frame **frames,
1577 u32 flags)
1578 {
1579 struct gve_priv *priv = netdev_priv(dev);
1580 struct gve_tx_ring *tx;
1581 int i, err = 0, qid;
1582
1583 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
1584 return -EINVAL;
1585
1586 qid = gve_xdp_tx_queue_id(priv,
1587 smp_processor_id() % priv->tx_cfg.num_xdp_queues);
1588
1589 tx = &priv->tx[qid];
1590
1591 spin_lock(&tx->dqo_tx.xdp_lock);
1592 for (i = 0; i < n; i++) {
1593 err = gve_xdp_xmit_one_dqo(priv, tx, frames[i]);
1594 if (err)
1595 break;
1596 }
1597
1598 if (flags & XDP_XMIT_FLUSH)
1599 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
1600
1601 spin_unlock(&tx->dqo_tx.xdp_lock);
1602
1603 u64_stats_update_begin(&tx->statss);
1604 tx->xdp_xmit += n;
1605 tx->xdp_xmit_errors += n - i;
1606 u64_stats_update_end(&tx->statss);
1607
1608 return i ? i : err;
1609 }
1610