1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/msr.h>
50 #include <asm/mwait.h>
51 #include <asm/spec-ctrl.h>
52 #include <asm/vmx.h>
53
54 #include <trace/events/ipi.h>
55
56 #include "capabilities.h"
57 #include "common.h"
58 #include "cpuid.h"
59 #include "hyperv.h"
60 #include "kvm_onhyperv.h"
61 #include "irq.h"
62 #include "kvm_cache_regs.h"
63 #include "lapic.h"
64 #include "mmu.h"
65 #include "nested.h"
66 #include "pmu.h"
67 #include "sgx.h"
68 #include "trace.h"
69 #include "vmcs.h"
70 #include "vmcs12.h"
71 #include "vmx.h"
72 #include "x86.h"
73 #include "x86_ops.h"
74 #include "smm.h"
75 #include "vmx_onhyperv.h"
76 #include "posted_intr.h"
77
78 #include "mmu/spte.h"
79
80 MODULE_AUTHOR("Qumranet");
81 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
82 MODULE_LICENSE("GPL");
83
84 #ifdef MODULE
85 static const struct x86_cpu_id vmx_cpu_id[] = {
86 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
87 {}
88 };
89 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
90 #endif
91
92 bool __read_mostly enable_vpid = 1;
93 module_param_named(vpid, enable_vpid, bool, 0444);
94
95 static bool __read_mostly enable_vnmi = 1;
96 module_param_named(vnmi, enable_vnmi, bool, 0444);
97
98 bool __read_mostly flexpriority_enabled = 1;
99 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
100
101 bool __read_mostly enable_ept = 1;
102 module_param_named(ept, enable_ept, bool, 0444);
103
104 bool __read_mostly enable_unrestricted_guest = 1;
105 module_param_named(unrestricted_guest,
106 enable_unrestricted_guest, bool, 0444);
107
108 bool __read_mostly enable_ept_ad_bits = 1;
109 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
110
111 static bool __read_mostly emulate_invalid_guest_state = true;
112 module_param(emulate_invalid_guest_state, bool, 0444);
113
114 static bool __read_mostly fasteoi = 1;
115 module_param(fasteoi, bool, 0444);
116
117 module_param(enable_apicv, bool, 0444);
118 module_param(enable_ipiv, bool, 0444);
119
120 module_param(enable_device_posted_irqs, bool, 0444);
121
122 /*
123 * If nested=1, nested virtualization is supported, i.e., guests may use
124 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
125 * use VMX instructions.
126 */
127 static bool __read_mostly nested = 1;
128 module_param(nested, bool, 0444);
129
130 bool __read_mostly enable_pml = 1;
131 module_param_named(pml, enable_pml, bool, 0444);
132
133 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
134 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
135
136 static bool __read_mostly dump_invalid_vmcs = 0;
137 module_param(dump_invalid_vmcs, bool, 0644);
138
139 #define MSR_BITMAP_MODE_X2APIC 1
140 #define MSR_BITMAP_MODE_X2APIC_APICV 2
141
142 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
143
144 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
145 static int __read_mostly cpu_preemption_timer_multi;
146 static bool __read_mostly enable_preemption_timer = 1;
147 #ifdef CONFIG_X86_64
148 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
149 #endif
150
151 extern bool __read_mostly allow_smaller_maxphyaddr;
152 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
153
154 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
155 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
156 #define KVM_VM_CR0_ALWAYS_ON \
157 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
158
159 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
160 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
161 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
162
163 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
164
165 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
166 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
167 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
168 RTIT_STATUS_BYTECNT))
169
170 /*
171 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
172 * ple_gap: upper bound on the amount of time between two successive
173 * executions of PAUSE in a loop. Also indicate if ple enabled.
174 * According to test, this time is usually smaller than 128 cycles.
175 * ple_window: upper bound on the amount of time a guest is allowed to execute
176 * in a PAUSE loop. Tests indicate that most spinlocks are held for
177 * less than 2^12 cycles
178 * Time is measured based on a counter that runs at the same rate as the TSC,
179 * refer SDM volume 3b section 21.6.13 & 22.1.3.
180 */
181 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
182 module_param(ple_gap, uint, 0444);
183
184 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
185 module_param(ple_window, uint, 0444);
186
187 /* Default doubles per-vcpu window every exit. */
188 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
189 module_param(ple_window_grow, uint, 0444);
190
191 /* Default resets per-vcpu window every exit to ple_window. */
192 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
193 module_param(ple_window_shrink, uint, 0444);
194
195 /* Default is to compute the maximum so we can never overflow. */
196 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
197 module_param(ple_window_max, uint, 0444);
198
199 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
200 int __read_mostly pt_mode = PT_MODE_SYSTEM;
201 #ifdef CONFIG_BROKEN
202 module_param(pt_mode, int, S_IRUGO);
203 #endif
204
205 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
206
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214 static const struct {
215 const char *option;
216 bool for_parse;
217 } vmentry_l1d_param[] = {
218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 struct page *page;
232 unsigned int i;
233
234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 return 0;
237 }
238
239 if (!enable_ept) {
240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 return 0;
242 }
243
244 if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
245 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
246 return 0;
247 }
248
249 /* If set to auto use the default l1tf mitigation method */
250 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
251 switch (l1tf_mitigation) {
252 case L1TF_MITIGATION_OFF:
253 l1tf = VMENTER_L1D_FLUSH_NEVER;
254 break;
255 case L1TF_MITIGATION_AUTO:
256 case L1TF_MITIGATION_FLUSH_NOWARN:
257 case L1TF_MITIGATION_FLUSH:
258 case L1TF_MITIGATION_FLUSH_NOSMT:
259 l1tf = VMENTER_L1D_FLUSH_COND;
260 break;
261 case L1TF_MITIGATION_FULL:
262 case L1TF_MITIGATION_FULL_FORCE:
263 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
264 break;
265 }
266 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
267 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 }
269
270 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
271 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
272 /*
273 * This allocation for vmx_l1d_flush_pages is not tied to a VM
274 * lifetime and so should not be charged to a memcg.
275 */
276 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
277 if (!page)
278 return -ENOMEM;
279 vmx_l1d_flush_pages = page_address(page);
280
281 /*
282 * Initialize each page with a different pattern in
283 * order to protect against KSM in the nested
284 * virtualization case.
285 */
286 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
287 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
288 PAGE_SIZE);
289 }
290 }
291
292 l1tf_vmx_mitigation = l1tf;
293
294 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
295 static_branch_enable(&vmx_l1d_should_flush);
296 else
297 static_branch_disable(&vmx_l1d_should_flush);
298
299 if (l1tf == VMENTER_L1D_FLUSH_COND)
300 static_branch_enable(&vmx_l1d_flush_cond);
301 else
302 static_branch_disable(&vmx_l1d_flush_cond);
303 return 0;
304 }
305
vmentry_l1d_flush_parse(const char * s)306 static int vmentry_l1d_flush_parse(const char *s)
307 {
308 unsigned int i;
309
310 if (s) {
311 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
312 if (vmentry_l1d_param[i].for_parse &&
313 sysfs_streq(s, vmentry_l1d_param[i].option))
314 return i;
315 }
316 }
317 return -EINVAL;
318 }
319
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)320 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
321 {
322 int l1tf, ret;
323
324 l1tf = vmentry_l1d_flush_parse(s);
325 if (l1tf < 0)
326 return l1tf;
327
328 if (!boot_cpu_has(X86_BUG_L1TF))
329 return 0;
330
331 /*
332 * Has vmx_init() run already? If not then this is the pre init
333 * parameter parsing. In that case just store the value and let
334 * vmx_init() do the proper setup after enable_ept has been
335 * established.
336 */
337 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
338 vmentry_l1d_flush_param = l1tf;
339 return 0;
340 }
341
342 mutex_lock(&vmx_l1d_flush_mutex);
343 ret = vmx_setup_l1d_flush(l1tf);
344 mutex_unlock(&vmx_l1d_flush_mutex);
345 return ret;
346 }
347
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)348 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
349 {
350 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
351 return sysfs_emit(s, "???\n");
352
353 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
354 }
355
vmx_disable_fb_clear(struct vcpu_vmx * vmx)356 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
357 {
358 u64 msr;
359
360 if (!vmx->disable_fb_clear)
361 return;
362
363 msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
364 msr |= FB_CLEAR_DIS;
365 native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
366 /* Cache the MSR value to avoid reading it later */
367 vmx->msr_ia32_mcu_opt_ctrl = msr;
368 }
369
vmx_enable_fb_clear(struct vcpu_vmx * vmx)370 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
371 {
372 if (!vmx->disable_fb_clear)
373 return;
374
375 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
376 native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
377 }
378
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)379 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
380 {
381 /*
382 * Disable VERW's behavior of clearing CPU buffers for the guest if the
383 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
384 * the mitigation. Disabling the clearing behavior provides a
385 * performance boost for guests that aren't aware that manually clearing
386 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
387 * and VM-Exit.
388 */
389 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
390 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
391 !boot_cpu_has_bug(X86_BUG_MDS) &&
392 !boot_cpu_has_bug(X86_BUG_TAA);
393
394 /*
395 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
396 * at VMEntry. Skip the MSR read/write when a guest has no use case to
397 * execute VERW.
398 */
399 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
400 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
401 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
402 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
403 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
404 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
405 vmx->disable_fb_clear = false;
406 }
407
408 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
409 .set = vmentry_l1d_flush_set,
410 .get = vmentry_l1d_flush_get,
411 };
412 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
413
414 static u32 vmx_segment_access_rights(struct kvm_segment *var);
415
416 void vmx_vmexit(void);
417
418 #define vmx_insn_failed(fmt...) \
419 do { \
420 WARN_ONCE(1, fmt); \
421 pr_warn_ratelimited(fmt); \
422 } while (0)
423
vmread_error(unsigned long field)424 noinline void vmread_error(unsigned long field)
425 {
426 vmx_insn_failed("vmread failed: field=%lx\n", field);
427 }
428
429 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)430 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
431 {
432 if (fault) {
433 kvm_spurious_fault();
434 } else {
435 instrumentation_begin();
436 vmread_error(field);
437 instrumentation_end();
438 }
439 }
440 #endif
441
vmwrite_error(unsigned long field,unsigned long value)442 noinline void vmwrite_error(unsigned long field, unsigned long value)
443 {
444 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
445 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
446 }
447
vmclear_error(struct vmcs * vmcs,u64 phys_addr)448 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
449 {
450 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
451 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
452 }
453
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455 {
456 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
457 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
458 }
459
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)460 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
461 {
462 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
463 ext, vpid, gva);
464 }
465
invept_error(unsigned long ext,u64 eptp)466 noinline void invept_error(unsigned long ext, u64 eptp)
467 {
468 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
469 }
470
471 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473 /*
474 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476 */
477 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478
479 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480 static DEFINE_SPINLOCK(vmx_vpid_lock);
481
482 struct vmcs_config vmcs_config __ro_after_init;
483 struct vmx_capability vmx_capability __ro_after_init;
484
485 #define VMX_SEGMENT_FIELD(seg) \
486 [VCPU_SREG_##seg] = { \
487 .selector = GUEST_##seg##_SELECTOR, \
488 .base = GUEST_##seg##_BASE, \
489 .limit = GUEST_##seg##_LIMIT, \
490 .ar_bytes = GUEST_##seg##_AR_BYTES, \
491 }
492
493 static const struct kvm_vmx_segment_field {
494 unsigned selector;
495 unsigned base;
496 unsigned limit;
497 unsigned ar_bytes;
498 } kvm_vmx_segment_fields[] = {
499 VMX_SEGMENT_FIELD(CS),
500 VMX_SEGMENT_FIELD(DS),
501 VMX_SEGMENT_FIELD(ES),
502 VMX_SEGMENT_FIELD(FS),
503 VMX_SEGMENT_FIELD(GS),
504 VMX_SEGMENT_FIELD(SS),
505 VMX_SEGMENT_FIELD(TR),
506 VMX_SEGMENT_FIELD(LDTR),
507 };
508
509
510 static unsigned long host_idt_base;
511
512 #if IS_ENABLED(CONFIG_HYPERV)
513 static bool __read_mostly enlightened_vmcs = true;
514 module_param(enlightened_vmcs, bool, 0444);
515
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)516 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
517 {
518 struct hv_enlightened_vmcs *evmcs;
519 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
520
521 if (partition_assist_page == INVALID_PAGE)
522 return -ENOMEM;
523
524 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
525
526 evmcs->partition_assist_page = partition_assist_page;
527 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
528 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
529
530 return 0;
531 }
532
hv_init_evmcs(void)533 static __init void hv_init_evmcs(void)
534 {
535 int cpu;
536
537 if (!enlightened_vmcs)
538 return;
539
540 /*
541 * Enlightened VMCS usage should be recommended and the host needs
542 * to support eVMCS v1 or above.
543 */
544 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
545 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
546 KVM_EVMCS_VERSION) {
547
548 /* Check that we have assist pages on all online CPUs */
549 for_each_online_cpu(cpu) {
550 if (!hv_get_vp_assist_page(cpu)) {
551 enlightened_vmcs = false;
552 break;
553 }
554 }
555
556 if (enlightened_vmcs) {
557 pr_info("Using Hyper-V Enlightened VMCS\n");
558 static_branch_enable(&__kvm_is_using_evmcs);
559 }
560
561 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
562 vt_x86_ops.enable_l2_tlb_flush
563 = hv_enable_l2_tlb_flush;
564 } else {
565 enlightened_vmcs = false;
566 }
567 }
568
hv_reset_evmcs(void)569 static void hv_reset_evmcs(void)
570 {
571 struct hv_vp_assist_page *vp_ap;
572
573 if (!kvm_is_using_evmcs())
574 return;
575
576 /*
577 * KVM should enable eVMCS if and only if all CPUs have a VP assist
578 * page, and should reject CPU onlining if eVMCS is enabled the CPU
579 * doesn't have a VP assist page allocated.
580 */
581 vp_ap = hv_get_vp_assist_page(smp_processor_id());
582 if (WARN_ON_ONCE(!vp_ap))
583 return;
584
585 /*
586 * Reset everything to support using non-enlightened VMCS access later
587 * (e.g. when we reload the module with enlightened_vmcs=0)
588 */
589 vp_ap->nested_control.features.directhypercall = 0;
590 vp_ap->current_nested_vmcs = 0;
591 vp_ap->enlighten_vmentry = 0;
592 }
593
594 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)595 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)596 static void hv_reset_evmcs(void) {}
597 #endif /* IS_ENABLED(CONFIG_HYPERV) */
598
599 /*
600 * Comment's format: document - errata name - stepping - processor name.
601 * Refer from
602 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
603 */
604 static u32 vmx_preemption_cpu_tfms[] = {
605 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
606 0x000206E6,
607 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
608 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
609 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
610 0x00020652,
611 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
612 0x00020655,
613 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
614 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
615 /*
616 * 320767.pdf - AAP86 - B1 -
617 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
618 */
619 0x000106E5,
620 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
621 0x000106A0,
622 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
623 0x000106A1,
624 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
625 0x000106A4,
626 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
627 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
628 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
629 0x000106A5,
630 /* Xeon E3-1220 V2 */
631 0x000306A8,
632 };
633
cpu_has_broken_vmx_preemption_timer(void)634 static inline bool cpu_has_broken_vmx_preemption_timer(void)
635 {
636 u32 eax = cpuid_eax(0x00000001), i;
637
638 /* Clear the reserved bits */
639 eax &= ~(0x3U << 14 | 0xfU << 28);
640 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
641 if (eax == vmx_preemption_cpu_tfms[i])
642 return true;
643
644 return false;
645 }
646
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)647 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
648 {
649 return flexpriority_enabled && lapic_in_kernel(vcpu);
650 }
651
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653 {
654 int i;
655
656 i = kvm_find_user_return_msr(msr);
657 if (i >= 0)
658 return &vmx->guest_uret_msrs[i];
659 return NULL;
660 }
661
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663 struct vmx_uret_msr *msr, u64 data)
664 {
665 unsigned int slot = msr - vmx->guest_uret_msrs;
666 int ret = 0;
667
668 if (msr->load_into_hardware) {
669 preempt_disable();
670 ret = kvm_set_user_return_msr(slot, data, msr->mask);
671 preempt_enable();
672 }
673 if (!ret)
674 msr->data = data;
675 return ret;
676 }
677
678 /*
679 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
680 *
681 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
682 * atomically track post-VMXON state, e.g. this may be called in NMI context.
683 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
684 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
685 * magically in RM, VM86, compat mode, or at CPL>0.
686 */
kvm_cpu_vmxoff(void)687 static int kvm_cpu_vmxoff(void)
688 {
689 asm goto("1: vmxoff\n\t"
690 _ASM_EXTABLE(1b, %l[fault])
691 ::: "cc", "memory" : fault);
692
693 cr4_clear_bits(X86_CR4_VMXE);
694 return 0;
695
696 fault:
697 cr4_clear_bits(X86_CR4_VMXE);
698 return -EIO;
699 }
700
vmx_emergency_disable_virtualization_cpu(void)701 void vmx_emergency_disable_virtualization_cpu(void)
702 {
703 int cpu = raw_smp_processor_id();
704 struct loaded_vmcs *v;
705
706 kvm_rebooting = true;
707
708 /*
709 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
710 * set in task context. If this races with VMX is disabled by an NMI,
711 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
712 * kvm_rebooting set.
713 */
714 if (!(__read_cr4() & X86_CR4_VMXE))
715 return;
716
717 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
718 loaded_vmcss_on_cpu_link) {
719 vmcs_clear(v->vmcs);
720 if (v->shadow_vmcs)
721 vmcs_clear(v->shadow_vmcs);
722 }
723
724 kvm_cpu_vmxoff();
725 }
726
__loaded_vmcs_clear(void * arg)727 static void __loaded_vmcs_clear(void *arg)
728 {
729 struct loaded_vmcs *loaded_vmcs = arg;
730 int cpu = raw_smp_processor_id();
731
732 if (loaded_vmcs->cpu != cpu)
733 return; /* vcpu migration can race with cpu offline */
734 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
735 per_cpu(current_vmcs, cpu) = NULL;
736
737 vmcs_clear(loaded_vmcs->vmcs);
738 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
739 vmcs_clear(loaded_vmcs->shadow_vmcs);
740
741 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
742
743 /*
744 * Ensure all writes to loaded_vmcs, including deleting it from its
745 * current percpu list, complete before setting loaded_vmcs->cpu to
746 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
747 * and add loaded_vmcs to its percpu list before it's deleted from this
748 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
749 */
750 smp_wmb();
751
752 loaded_vmcs->cpu = -1;
753 loaded_vmcs->launched = 0;
754 }
755
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)756 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
757 {
758 int cpu = loaded_vmcs->cpu;
759
760 if (cpu != -1)
761 smp_call_function_single(cpu,
762 __loaded_vmcs_clear, loaded_vmcs, 1);
763 }
764
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)765 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
766 unsigned field)
767 {
768 bool ret;
769 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
770
771 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
772 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
773 vmx->segment_cache.bitmask = 0;
774 }
775 ret = vmx->segment_cache.bitmask & mask;
776 vmx->segment_cache.bitmask |= mask;
777 return ret;
778 }
779
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)780 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
781 {
782 u16 *p = &vmx->segment_cache.seg[seg].selector;
783
784 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
785 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
786 return *p;
787 }
788
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)789 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
790 {
791 ulong *p = &vmx->segment_cache.seg[seg].base;
792
793 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
794 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
795 return *p;
796 }
797
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)798 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
799 {
800 u32 *p = &vmx->segment_cache.seg[seg].limit;
801
802 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
803 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
804 return *p;
805 }
806
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)807 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
808 {
809 u32 *p = &vmx->segment_cache.seg[seg].ar;
810
811 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
812 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
813 return *p;
814 }
815
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)816 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
817 {
818 u32 eb;
819
820 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
821 (1u << DB_VECTOR) | (1u << AC_VECTOR);
822 /*
823 * #VE isn't used for VMX. To test against unexpected changes
824 * related to #VE for VMX, intercept unexpected #VE and warn on it.
825 */
826 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
827 eb |= 1u << VE_VECTOR;
828 /*
829 * Guest access to VMware backdoor ports could legitimately
830 * trigger #GP because of TSS I/O permission bitmap.
831 * We intercept those #GP and allow access to them anyway
832 * as VMware does.
833 */
834 if (enable_vmware_backdoor)
835 eb |= (1u << GP_VECTOR);
836 if ((vcpu->guest_debug &
837 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
838 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
839 eb |= 1u << BP_VECTOR;
840 if (to_vmx(vcpu)->rmode.vm86_active)
841 eb = ~0;
842 if (!vmx_need_pf_intercept(vcpu))
843 eb &= ~(1u << PF_VECTOR);
844
845 /* When we are running a nested L2 guest and L1 specified for it a
846 * certain exception bitmap, we must trap the same exceptions and pass
847 * them to L1. When running L2, we will only handle the exceptions
848 * specified above if L1 did not want them.
849 */
850 if (is_guest_mode(vcpu))
851 eb |= get_vmcs12(vcpu)->exception_bitmap;
852 else {
853 int mask = 0, match = 0;
854
855 if (enable_ept && (eb & (1u << PF_VECTOR))) {
856 /*
857 * If EPT is enabled, #PF is currently only intercepted
858 * if MAXPHYADDR is smaller on the guest than on the
859 * host. In that case we only care about present,
860 * non-reserved faults. For vmcs02, however, PFEC_MASK
861 * and PFEC_MATCH are set in prepare_vmcs02_rare.
862 */
863 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
864 match = PFERR_PRESENT_MASK;
865 }
866 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
867 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
868 }
869
870 /*
871 * Disabling xfd interception indicates that dynamic xfeatures
872 * might be used in the guest. Always trap #NM in this case
873 * to save guest xfd_err timely.
874 */
875 if (vcpu->arch.xfd_no_write_intercept)
876 eb |= (1u << NM_VECTOR);
877
878 vmcs_write32(EXCEPTION_BITMAP, eb);
879 }
880
881 /*
882 * Check if MSR is intercepted for currently loaded MSR bitmap.
883 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)884 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
885 {
886 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
887 return true;
888
889 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
890 }
891
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)892 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
893 {
894 unsigned int flags = 0;
895
896 if (vmx->loaded_vmcs->launched)
897 flags |= VMX_RUN_VMRESUME;
898
899 /*
900 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
901 * to change it directly without causing a vmexit. In that case read
902 * it after vmexit and store it in vmx->spec_ctrl.
903 */
904 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
905 flags |= VMX_RUN_SAVE_SPEC_CTRL;
906
907 if (static_branch_unlikely(&cpu_buf_vm_clear) &&
908 kvm_vcpu_can_access_host_mmio(&vmx->vcpu))
909 flags |= VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO;
910
911 return flags;
912 }
913
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)914 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
915 unsigned long entry, unsigned long exit)
916 {
917 vm_entry_controls_clearbit(vmx, entry);
918 vm_exit_controls_clearbit(vmx, exit);
919 }
920
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)921 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
922 {
923 unsigned int i;
924
925 for (i = 0; i < m->nr; ++i) {
926 if (m->val[i].index == msr)
927 return i;
928 }
929 return -ENOENT;
930 }
931
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)932 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
933 {
934 int i;
935 struct msr_autoload *m = &vmx->msr_autoload;
936
937 switch (msr) {
938 case MSR_EFER:
939 if (cpu_has_load_ia32_efer()) {
940 clear_atomic_switch_msr_special(vmx,
941 VM_ENTRY_LOAD_IA32_EFER,
942 VM_EXIT_LOAD_IA32_EFER);
943 return;
944 }
945 break;
946 case MSR_CORE_PERF_GLOBAL_CTRL:
947 if (cpu_has_load_perf_global_ctrl()) {
948 clear_atomic_switch_msr_special(vmx,
949 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
950 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
951 return;
952 }
953 break;
954 }
955 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
956 if (i < 0)
957 goto skip_guest;
958 --m->guest.nr;
959 m->guest.val[i] = m->guest.val[m->guest.nr];
960 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
961
962 skip_guest:
963 i = vmx_find_loadstore_msr_slot(&m->host, msr);
964 if (i < 0)
965 return;
966
967 --m->host.nr;
968 m->host.val[i] = m->host.val[m->host.nr];
969 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
970 }
971
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)972 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
973 unsigned long entry, unsigned long exit,
974 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
975 u64 guest_val, u64 host_val)
976 {
977 vmcs_write64(guest_val_vmcs, guest_val);
978 if (host_val_vmcs != HOST_IA32_EFER)
979 vmcs_write64(host_val_vmcs, host_val);
980 vm_entry_controls_setbit(vmx, entry);
981 vm_exit_controls_setbit(vmx, exit);
982 }
983
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)984 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
985 u64 guest_val, u64 host_val, bool entry_only)
986 {
987 int i, j = 0;
988 struct msr_autoload *m = &vmx->msr_autoload;
989
990 switch (msr) {
991 case MSR_EFER:
992 if (cpu_has_load_ia32_efer()) {
993 add_atomic_switch_msr_special(vmx,
994 VM_ENTRY_LOAD_IA32_EFER,
995 VM_EXIT_LOAD_IA32_EFER,
996 GUEST_IA32_EFER,
997 HOST_IA32_EFER,
998 guest_val, host_val);
999 return;
1000 }
1001 break;
1002 case MSR_CORE_PERF_GLOBAL_CTRL:
1003 if (cpu_has_load_perf_global_ctrl()) {
1004 add_atomic_switch_msr_special(vmx,
1005 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1006 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1007 GUEST_IA32_PERF_GLOBAL_CTRL,
1008 HOST_IA32_PERF_GLOBAL_CTRL,
1009 guest_val, host_val);
1010 return;
1011 }
1012 break;
1013 case MSR_IA32_PEBS_ENABLE:
1014 /* PEBS needs a quiescent period after being disabled (to write
1015 * a record). Disabling PEBS through VMX MSR swapping doesn't
1016 * provide that period, so a CPU could write host's record into
1017 * guest's memory.
1018 */
1019 wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1020 }
1021
1022 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1023 if (!entry_only)
1024 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1025
1026 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1027 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1028 printk_once(KERN_WARNING "Not enough msr switch entries. "
1029 "Can't add msr %x\n", msr);
1030 return;
1031 }
1032 if (i < 0) {
1033 i = m->guest.nr++;
1034 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1035 }
1036 m->guest.val[i].index = msr;
1037 m->guest.val[i].value = guest_val;
1038
1039 if (entry_only)
1040 return;
1041
1042 if (j < 0) {
1043 j = m->host.nr++;
1044 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1045 }
1046 m->host.val[j].index = msr;
1047 m->host.val[j].value = host_val;
1048 }
1049
update_transition_efer(struct vcpu_vmx * vmx)1050 static bool update_transition_efer(struct vcpu_vmx *vmx)
1051 {
1052 u64 guest_efer = vmx->vcpu.arch.efer;
1053 u64 ignore_bits = 0;
1054 int i;
1055
1056 /* Shadow paging assumes NX to be available. */
1057 if (!enable_ept)
1058 guest_efer |= EFER_NX;
1059
1060 /*
1061 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1062 */
1063 ignore_bits |= EFER_SCE;
1064 #ifdef CONFIG_X86_64
1065 ignore_bits |= EFER_LMA | EFER_LME;
1066 /* SCE is meaningful only in long mode on Intel */
1067 if (guest_efer & EFER_LMA)
1068 ignore_bits &= ~(u64)EFER_SCE;
1069 #endif
1070
1071 /*
1072 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1073 * On CPUs that support "load IA32_EFER", always switch EFER
1074 * atomically, since it's faster than switching it manually.
1075 */
1076 if (cpu_has_load_ia32_efer() ||
1077 (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1078 if (!(guest_efer & EFER_LMA))
1079 guest_efer &= ~EFER_LME;
1080 if (guest_efer != kvm_host.efer)
1081 add_atomic_switch_msr(vmx, MSR_EFER,
1082 guest_efer, kvm_host.efer, false);
1083 else
1084 clear_atomic_switch_msr(vmx, MSR_EFER);
1085 return false;
1086 }
1087
1088 i = kvm_find_user_return_msr(MSR_EFER);
1089 if (i < 0)
1090 return false;
1091
1092 clear_atomic_switch_msr(vmx, MSR_EFER);
1093
1094 guest_efer &= ~ignore_bits;
1095 guest_efer |= kvm_host.efer & ignore_bits;
1096
1097 vmx->guest_uret_msrs[i].data = guest_efer;
1098 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1099
1100 return true;
1101 }
1102
1103 #ifdef CONFIG_X86_32
1104 /*
1105 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1106 * VMCS rather than the segment table. KVM uses this helper to figure
1107 * out the current bases to poke them into the VMCS before entry.
1108 */
segment_base(u16 selector)1109 static unsigned long segment_base(u16 selector)
1110 {
1111 struct desc_struct *table;
1112 unsigned long v;
1113
1114 if (!(selector & ~SEGMENT_RPL_MASK))
1115 return 0;
1116
1117 table = get_current_gdt_ro();
1118
1119 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1120 u16 ldt_selector = kvm_read_ldt();
1121
1122 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1123 return 0;
1124
1125 table = (struct desc_struct *)segment_base(ldt_selector);
1126 }
1127 v = get_desc_base(&table[selector >> 3]);
1128 return v;
1129 }
1130 #endif
1131
pt_can_write_msr(struct vcpu_vmx * vmx)1132 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1133 {
1134 return vmx_pt_mode_is_host_guest() &&
1135 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1136 }
1137
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1138 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1139 {
1140 /* The base must be 128-byte aligned and a legal physical address. */
1141 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1142 }
1143
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1144 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1145 {
1146 u32 i;
1147
1148 wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1149 wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1150 wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1151 wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1152 for (i = 0; i < addr_range; i++) {
1153 wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1154 wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1155 }
1156 }
1157
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1158 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1159 {
1160 u32 i;
1161
1162 rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1163 rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1164 rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1165 rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1166 for (i = 0; i < addr_range; i++) {
1167 rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1168 rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1169 }
1170 }
1171
pt_guest_enter(struct vcpu_vmx * vmx)1172 static void pt_guest_enter(struct vcpu_vmx *vmx)
1173 {
1174 if (vmx_pt_mode_is_system())
1175 return;
1176
1177 /*
1178 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1179 * Save host state before VM entry.
1180 */
1181 rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1182 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1183 wrmsrq(MSR_IA32_RTIT_CTL, 0);
1184 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1185 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1186 }
1187 }
1188
pt_guest_exit(struct vcpu_vmx * vmx)1189 static void pt_guest_exit(struct vcpu_vmx *vmx)
1190 {
1191 if (vmx_pt_mode_is_system())
1192 return;
1193
1194 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1195 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1196 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1197 }
1198
1199 /*
1200 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1201 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1202 */
1203 if (vmx->pt_desc.host.ctl)
1204 wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1205 }
1206
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1207 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1208 unsigned long fs_base, unsigned long gs_base)
1209 {
1210 if (unlikely(fs_sel != host->fs_sel)) {
1211 if (!(fs_sel & 7))
1212 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1213 else
1214 vmcs_write16(HOST_FS_SELECTOR, 0);
1215 host->fs_sel = fs_sel;
1216 }
1217 if (unlikely(gs_sel != host->gs_sel)) {
1218 if (!(gs_sel & 7))
1219 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1220 else
1221 vmcs_write16(HOST_GS_SELECTOR, 0);
1222 host->gs_sel = gs_sel;
1223 }
1224 if (unlikely(fs_base != host->fs_base)) {
1225 vmcs_writel(HOST_FS_BASE, fs_base);
1226 host->fs_base = fs_base;
1227 }
1228 if (unlikely(gs_base != host->gs_base)) {
1229 vmcs_writel(HOST_GS_BASE, gs_base);
1230 host->gs_base = gs_base;
1231 }
1232 }
1233
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1234 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1235 {
1236 struct vcpu_vmx *vmx = to_vmx(vcpu);
1237 struct vcpu_vt *vt = to_vt(vcpu);
1238 struct vmcs_host_state *host_state;
1239 #ifdef CONFIG_X86_64
1240 int cpu = raw_smp_processor_id();
1241 #endif
1242 unsigned long fs_base, gs_base;
1243 u16 fs_sel, gs_sel;
1244 int i;
1245
1246 /*
1247 * Note that guest MSRs to be saved/restored can also be changed
1248 * when guest state is loaded. This happens when guest transitions
1249 * to/from long-mode by setting MSR_EFER.LMA.
1250 */
1251 if (!vmx->guest_uret_msrs_loaded) {
1252 vmx->guest_uret_msrs_loaded = true;
1253 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1254 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1255 continue;
1256
1257 kvm_set_user_return_msr(i,
1258 vmx->guest_uret_msrs[i].data,
1259 vmx->guest_uret_msrs[i].mask);
1260 }
1261 }
1262
1263 if (vmx->nested.need_vmcs12_to_shadow_sync)
1264 nested_sync_vmcs12_to_shadow(vcpu);
1265
1266 if (vt->guest_state_loaded)
1267 return;
1268
1269 host_state = &vmx->loaded_vmcs->host_state;
1270
1271 /*
1272 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1273 * allow segment selectors with cpl > 0 or ti == 1.
1274 */
1275 host_state->ldt_sel = kvm_read_ldt();
1276
1277 #ifdef CONFIG_X86_64
1278 savesegment(ds, host_state->ds_sel);
1279 savesegment(es, host_state->es_sel);
1280
1281 gs_base = cpu_kernelmode_gs_base(cpu);
1282 if (likely(is_64bit_mm(current->mm))) {
1283 current_save_fsgs();
1284 fs_sel = current->thread.fsindex;
1285 gs_sel = current->thread.gsindex;
1286 fs_base = current->thread.fsbase;
1287 vt->msr_host_kernel_gs_base = current->thread.gsbase;
1288 } else {
1289 savesegment(fs, fs_sel);
1290 savesegment(gs, gs_sel);
1291 fs_base = read_msr(MSR_FS_BASE);
1292 vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1293 }
1294
1295 wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1296 #else
1297 savesegment(fs, fs_sel);
1298 savesegment(gs, gs_sel);
1299 fs_base = segment_base(fs_sel);
1300 gs_base = segment_base(gs_sel);
1301 #endif
1302
1303 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1304 vt->guest_state_loaded = true;
1305 }
1306
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1307 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1308 {
1309 struct vmcs_host_state *host_state;
1310
1311 if (!vmx->vt.guest_state_loaded)
1312 return;
1313
1314 host_state = &vmx->loaded_vmcs->host_state;
1315
1316 ++vmx->vcpu.stat.host_state_reload;
1317
1318 #ifdef CONFIG_X86_64
1319 rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1320 #endif
1321 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1322 kvm_load_ldt(host_state->ldt_sel);
1323 #ifdef CONFIG_X86_64
1324 load_gs_index(host_state->gs_sel);
1325 #else
1326 loadsegment(gs, host_state->gs_sel);
1327 #endif
1328 }
1329 if (host_state->fs_sel & 7)
1330 loadsegment(fs, host_state->fs_sel);
1331 #ifdef CONFIG_X86_64
1332 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1333 loadsegment(ds, host_state->ds_sel);
1334 loadsegment(es, host_state->es_sel);
1335 }
1336 #endif
1337 invalidate_tss_limit();
1338 #ifdef CONFIG_X86_64
1339 wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base);
1340 #endif
1341 load_fixmap_gdt(raw_smp_processor_id());
1342 vmx->vt.guest_state_loaded = false;
1343 vmx->guest_uret_msrs_loaded = false;
1344 }
1345
1346 #ifdef CONFIG_X86_64
vmx_read_guest_host_msr(struct vcpu_vmx * vmx,u32 msr,u64 * cache)1347 static u64 vmx_read_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 *cache)
1348 {
1349 preempt_disable();
1350 if (vmx->vt.guest_state_loaded)
1351 *cache = read_msr(msr);
1352 preempt_enable();
1353 return *cache;
1354 }
1355
vmx_write_guest_host_msr(struct vcpu_vmx * vmx,u32 msr,u64 data,u64 * cache)1356 static void vmx_write_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 data,
1357 u64 *cache)
1358 {
1359 preempt_disable();
1360 if (vmx->vt.guest_state_loaded)
1361 wrmsrns(msr, data);
1362 preempt_enable();
1363 *cache = data;
1364 }
1365
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1366 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1367 {
1368 return vmx_read_guest_host_msr(vmx, MSR_KERNEL_GS_BASE,
1369 &vmx->msr_guest_kernel_gs_base);
1370 }
1371
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1372 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1373 {
1374 vmx_write_guest_host_msr(vmx, MSR_KERNEL_GS_BASE, data,
1375 &vmx->msr_guest_kernel_gs_base);
1376 }
1377 #endif
1378
grow_ple_window(struct kvm_vcpu * vcpu)1379 static void grow_ple_window(struct kvm_vcpu *vcpu)
1380 {
1381 struct vcpu_vmx *vmx = to_vmx(vcpu);
1382 unsigned int old = vmx->ple_window;
1383
1384 vmx->ple_window = __grow_ple_window(old, ple_window,
1385 ple_window_grow,
1386 ple_window_max);
1387
1388 if (vmx->ple_window != old) {
1389 vmx->ple_window_dirty = true;
1390 trace_kvm_ple_window_update(vcpu->vcpu_id,
1391 vmx->ple_window, old);
1392 }
1393 }
1394
shrink_ple_window(struct kvm_vcpu * vcpu)1395 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1396 {
1397 struct vcpu_vmx *vmx = to_vmx(vcpu);
1398 unsigned int old = vmx->ple_window;
1399
1400 vmx->ple_window = __shrink_ple_window(old, ple_window,
1401 ple_window_shrink,
1402 ple_window);
1403
1404 if (vmx->ple_window != old) {
1405 vmx->ple_window_dirty = true;
1406 trace_kvm_ple_window_update(vcpu->vcpu_id,
1407 vmx->ple_window, old);
1408 }
1409 }
1410
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu)1411 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1412 {
1413 struct vcpu_vmx *vmx = to_vmx(vcpu);
1414 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1415 struct vmcs *prev;
1416
1417 if (!already_loaded) {
1418 loaded_vmcs_clear(vmx->loaded_vmcs);
1419 local_irq_disable();
1420
1421 /*
1422 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1423 * this cpu's percpu list, otherwise it may not yet be deleted
1424 * from its previous cpu's percpu list. Pairs with the
1425 * smb_wmb() in __loaded_vmcs_clear().
1426 */
1427 smp_rmb();
1428
1429 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1430 &per_cpu(loaded_vmcss_on_cpu, cpu));
1431 local_irq_enable();
1432 }
1433
1434 prev = per_cpu(current_vmcs, cpu);
1435 if (prev != vmx->loaded_vmcs->vmcs) {
1436 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1437 vmcs_load(vmx->loaded_vmcs->vmcs);
1438 }
1439
1440 if (!already_loaded) {
1441 void *gdt = get_current_gdt_ro();
1442
1443 /*
1444 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1445 * TLB entries from its previous association with the vCPU.
1446 */
1447 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1448
1449 /*
1450 * Linux uses per-cpu TSS and GDT, so set these when switching
1451 * processors. See 22.2.4.
1452 */
1453 vmcs_writel(HOST_TR_BASE,
1454 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1455 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1456
1457 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1458 /* 22.2.3 */
1459 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1460 (unsigned long)(cpu_entry_stack(cpu) + 1));
1461 }
1462
1463 vmx->loaded_vmcs->cpu = cpu;
1464 }
1465 }
1466
1467 /*
1468 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1469 * vcpu mutex is already taken.
1470 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1471 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1472 {
1473 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1474 shrink_ple_window(vcpu);
1475
1476 vmx_vcpu_load_vmcs(vcpu, cpu);
1477
1478 vmx_vcpu_pi_load(vcpu, cpu);
1479 }
1480
vmx_vcpu_put(struct kvm_vcpu * vcpu)1481 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1482 {
1483 vmx_vcpu_pi_put(vcpu);
1484
1485 vmx_prepare_switch_to_host(to_vmx(vcpu));
1486 }
1487
vmx_emulation_required(struct kvm_vcpu * vcpu)1488 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1489 {
1490 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1491 }
1492
vmx_get_rflags(struct kvm_vcpu * vcpu)1493 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1494 {
1495 struct vcpu_vmx *vmx = to_vmx(vcpu);
1496 unsigned long rflags, save_rflags;
1497
1498 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1499 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1500 rflags = vmcs_readl(GUEST_RFLAGS);
1501 if (vmx->rmode.vm86_active) {
1502 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1503 save_rflags = vmx->rmode.save_rflags;
1504 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1505 }
1506 vmx->rflags = rflags;
1507 }
1508 return vmx->rflags;
1509 }
1510
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1511 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1512 {
1513 struct vcpu_vmx *vmx = to_vmx(vcpu);
1514 unsigned long old_rflags;
1515
1516 /*
1517 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1518 * is an unrestricted guest in order to mark L2 as needing emulation
1519 * if L1 runs L2 as a restricted guest.
1520 */
1521 if (is_unrestricted_guest(vcpu)) {
1522 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1523 vmx->rflags = rflags;
1524 vmcs_writel(GUEST_RFLAGS, rflags);
1525 return;
1526 }
1527
1528 old_rflags = vmx_get_rflags(vcpu);
1529 vmx->rflags = rflags;
1530 if (vmx->rmode.vm86_active) {
1531 vmx->rmode.save_rflags = rflags;
1532 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1533 }
1534 vmcs_writel(GUEST_RFLAGS, rflags);
1535
1536 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1537 vmx->vt.emulation_required = vmx_emulation_required(vcpu);
1538 }
1539
vmx_get_if_flag(struct kvm_vcpu * vcpu)1540 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1541 {
1542 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1543 }
1544
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1545 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1546 {
1547 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1548 int ret = 0;
1549
1550 if (interruptibility & GUEST_INTR_STATE_STI)
1551 ret |= KVM_X86_SHADOW_INT_STI;
1552 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1553 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1554
1555 return ret;
1556 }
1557
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1558 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1559 {
1560 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1561 u32 interruptibility = interruptibility_old;
1562
1563 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1564
1565 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1566 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1567 else if (mask & KVM_X86_SHADOW_INT_STI)
1568 interruptibility |= GUEST_INTR_STATE_STI;
1569
1570 if ((interruptibility != interruptibility_old))
1571 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1572 }
1573
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1574 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1575 {
1576 struct vcpu_vmx *vmx = to_vmx(vcpu);
1577 unsigned long value;
1578
1579 /*
1580 * Any MSR write that attempts to change bits marked reserved will
1581 * case a #GP fault.
1582 */
1583 if (data & vmx->pt_desc.ctl_bitmask)
1584 return 1;
1585
1586 /*
1587 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1588 * result in a #GP unless the same write also clears TraceEn.
1589 */
1590 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1591 (data & RTIT_CTL_TRACEEN) &&
1592 data != vmx->pt_desc.guest.ctl)
1593 return 1;
1594
1595 /*
1596 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1597 * and FabricEn would cause #GP, if
1598 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1599 */
1600 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1601 !(data & RTIT_CTL_FABRIC_EN) &&
1602 !intel_pt_validate_cap(vmx->pt_desc.caps,
1603 PT_CAP_single_range_output))
1604 return 1;
1605
1606 /*
1607 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1608 * utilize encodings marked reserved will cause a #GP fault.
1609 */
1610 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1611 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1612 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1613 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1614 return 1;
1615 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1616 PT_CAP_cycle_thresholds);
1617 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1618 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1619 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1620 return 1;
1621 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1622 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1623 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1624 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1625 return 1;
1626
1627 /*
1628 * If ADDRx_CFG is reserved or the encodings is >2 will
1629 * cause a #GP fault.
1630 */
1631 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1632 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1633 return 1;
1634 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1635 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1636 return 1;
1637 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1638 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1639 return 1;
1640 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1641 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1642 return 1;
1643
1644 return 0;
1645 }
1646
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1647 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1648 void *insn, int insn_len)
1649 {
1650 /*
1651 * Emulation of instructions in SGX enclaves is impossible as RIP does
1652 * not point at the failing instruction, and even if it did, the code
1653 * stream is inaccessible. Inject #UD instead of exiting to userspace
1654 * so that guest userspace can't DoS the guest simply by triggering
1655 * emulation (enclaves are CPL3 only).
1656 */
1657 if (vmx_get_exit_reason(vcpu).enclave_mode) {
1658 kvm_queue_exception(vcpu, UD_VECTOR);
1659 return X86EMUL_PROPAGATE_FAULT;
1660 }
1661
1662 /* Check that emulation is possible during event vectoring */
1663 if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1664 !kvm_can_emulate_event_vectoring(emul_type))
1665 return X86EMUL_UNHANDLEABLE_VECTORING;
1666
1667 return X86EMUL_CONTINUE;
1668 }
1669
skip_emulated_instruction(struct kvm_vcpu * vcpu)1670 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1671 {
1672 union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
1673 unsigned long rip, orig_rip;
1674 u32 instr_len;
1675
1676 /*
1677 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1678 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1679 * set when EPT misconfig occurs. In practice, real hardware updates
1680 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1681 * (namely Hyper-V) don't set it due to it being undefined behavior,
1682 * i.e. we end up advancing IP with some random value.
1683 */
1684 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1685 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1686 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1687
1688 /*
1689 * Emulating an enclave's instructions isn't supported as KVM
1690 * cannot access the enclave's memory or its true RIP, e.g. the
1691 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1692 * the RIP that actually triggered the VM-Exit. But, because
1693 * most instructions that cause VM-Exit will #UD in an enclave,
1694 * most instruction-based VM-Exits simply do not occur.
1695 *
1696 * There are a few exceptions, notably the debug instructions
1697 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1698 * and generate #DB/#BP as expected, which KVM might intercept.
1699 * But again, the CPU does the dirty work and saves an instr
1700 * length of zero so VMMs don't shoot themselves in the foot.
1701 * WARN if KVM tries to skip a non-zero length instruction on
1702 * a VM-Exit from an enclave.
1703 */
1704 if (!instr_len)
1705 goto rip_updated;
1706
1707 WARN_ONCE(exit_reason.enclave_mode,
1708 "skipping instruction after SGX enclave VM-Exit");
1709
1710 orig_rip = kvm_rip_read(vcpu);
1711 rip = orig_rip + instr_len;
1712 #ifdef CONFIG_X86_64
1713 /*
1714 * We need to mask out the high 32 bits of RIP if not in 64-bit
1715 * mode, but just finding out that we are in 64-bit mode is
1716 * quite expensive. Only do it if there was a carry.
1717 */
1718 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1719 rip = (u32)rip;
1720 #endif
1721 kvm_rip_write(vcpu, rip);
1722 } else {
1723 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1724 return 0;
1725 }
1726
1727 rip_updated:
1728 /* skipping an emulated instruction also counts */
1729 vmx_set_interrupt_shadow(vcpu, 0);
1730
1731 return 1;
1732 }
1733
1734 /*
1735 * Recognizes a pending MTF VM-exit and records the nested state for later
1736 * delivery.
1737 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1738 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1739 {
1740 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1741 struct vcpu_vmx *vmx = to_vmx(vcpu);
1742
1743 if (!is_guest_mode(vcpu))
1744 return;
1745
1746 /*
1747 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1748 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1749 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1750 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1751 * as ICEBP is higher priority than both. As instruction emulation is
1752 * completed at this point (i.e. KVM is at the instruction boundary),
1753 * any #DB exception pending delivery must be a debug-trap of lower
1754 * priority than MTF. Record the pending MTF state to be delivered in
1755 * vmx_check_nested_events().
1756 */
1757 if (nested_cpu_has_mtf(vmcs12) &&
1758 (!vcpu->arch.exception.pending ||
1759 vcpu->arch.exception.vector == DB_VECTOR) &&
1760 (!vcpu->arch.exception_vmexit.pending ||
1761 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1762 vmx->nested.mtf_pending = true;
1763 kvm_make_request(KVM_REQ_EVENT, vcpu);
1764 } else {
1765 vmx->nested.mtf_pending = false;
1766 }
1767 }
1768
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1769 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1770 {
1771 vmx_update_emulated_instruction(vcpu);
1772 return skip_emulated_instruction(vcpu);
1773 }
1774
vmx_clear_hlt(struct kvm_vcpu * vcpu)1775 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1776 {
1777 /*
1778 * Ensure that we clear the HLT state in the VMCS. We don't need to
1779 * explicitly skip the instruction because if the HLT state is set,
1780 * then the instruction is already executing and RIP has already been
1781 * advanced.
1782 */
1783 if (kvm_hlt_in_guest(vcpu->kvm) &&
1784 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1785 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1786 }
1787
vmx_inject_exception(struct kvm_vcpu * vcpu)1788 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1789 {
1790 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1791 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1792 struct vcpu_vmx *vmx = to_vmx(vcpu);
1793
1794 kvm_deliver_exception_payload(vcpu, ex);
1795
1796 if (ex->has_error_code) {
1797 /*
1798 * Despite the error code being architecturally defined as 32
1799 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1800 * VMX don't actually supporting setting bits 31:16. Hardware
1801 * will (should) never provide a bogus error code, but AMD CPUs
1802 * do generate error codes with bits 31:16 set, and so KVM's
1803 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1804 * the upper bits to avoid VM-Fail, losing information that
1805 * doesn't really exist is preferable to killing the VM.
1806 */
1807 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1808 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1809 }
1810
1811 if (vmx->rmode.vm86_active) {
1812 int inc_eip = 0;
1813 if (kvm_exception_is_soft(ex->vector))
1814 inc_eip = vcpu->arch.event_exit_inst_len;
1815 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1816 return;
1817 }
1818
1819 WARN_ON_ONCE(vmx->vt.emulation_required);
1820
1821 if (kvm_exception_is_soft(ex->vector)) {
1822 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1823 vmx->vcpu.arch.event_exit_inst_len);
1824 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1825 } else
1826 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1827
1828 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1829
1830 vmx_clear_hlt(vcpu);
1831 }
1832
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1833 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1834 bool load_into_hardware)
1835 {
1836 struct vmx_uret_msr *uret_msr;
1837
1838 uret_msr = vmx_find_uret_msr(vmx, msr);
1839 if (!uret_msr)
1840 return;
1841
1842 uret_msr->load_into_hardware = load_into_hardware;
1843 }
1844
1845 /*
1846 * Configuring user return MSRs to automatically save, load, and restore MSRs
1847 * that need to be shoved into hardware when running the guest. Note, omitting
1848 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1849 * loaded into hardware when running the guest.
1850 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1851 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1852 {
1853 #ifdef CONFIG_X86_64
1854 bool load_syscall_msrs;
1855
1856 /*
1857 * The SYSCALL MSRs are only needed on long mode guests, and only
1858 * when EFER.SCE is set.
1859 */
1860 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1861 (vmx->vcpu.arch.efer & EFER_SCE);
1862
1863 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1864 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1865 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1866 #endif
1867 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1868
1869 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1870 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1871 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1872
1873 /*
1874 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1875 * kernel and old userspace. If those guests run on a tsx=off host, do
1876 * allow guests to use TSX_CTRL, but don't change the value in hardware
1877 * so that TSX remains always disabled.
1878 */
1879 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1880
1881 /*
1882 * The set of MSRs to load may have changed, reload MSRs before the
1883 * next VM-Enter.
1884 */
1885 vmx->guest_uret_msrs_loaded = false;
1886 }
1887
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1888 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1889 {
1890 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1891
1892 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1893 return vmcs12->tsc_offset;
1894
1895 return 0;
1896 }
1897
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1898 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1899 {
1900 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1901
1902 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1903 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1904 return vmcs12->tsc_multiplier;
1905
1906 return kvm_caps.default_tsc_scaling_ratio;
1907 }
1908
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1909 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1910 {
1911 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1912 }
1913
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1914 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1915 {
1916 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1917 }
1918
1919 /*
1920 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1921 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1922 * backwards compatibility even though KVM doesn't support emulating SMX. And
1923 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1924 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1925 */
1926 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1927 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1928 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1929 FEAT_CTL_SGX_LC_ENABLED | \
1930 FEAT_CTL_SGX_ENABLED | \
1931 FEAT_CTL_LMCE_ENABLED)
1932
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1933 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1934 struct msr_data *msr)
1935 {
1936 uint64_t valid_bits;
1937
1938 /*
1939 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1940 * exposed to the guest.
1941 */
1942 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1943 ~KVM_SUPPORTED_FEATURE_CONTROL);
1944
1945 if (!msr->host_initiated &&
1946 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1947 return false;
1948
1949 if (msr->host_initiated)
1950 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1951 else
1952 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1953
1954 return !(msr->data & ~valid_bits);
1955 }
1956
vmx_get_feature_msr(u32 msr,u64 * data)1957 int vmx_get_feature_msr(u32 msr, u64 *data)
1958 {
1959 switch (msr) {
1960 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1961 if (!nested)
1962 return 1;
1963 return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
1964 default:
1965 return KVM_MSR_RET_UNSUPPORTED;
1966 }
1967 }
1968
1969 /*
1970 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1971 * Returns 0 on success, non-0 otherwise.
1972 * Assumes vcpu_load() was already called.
1973 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1974 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1975 {
1976 struct vcpu_vmx *vmx = to_vmx(vcpu);
1977 struct vmx_uret_msr *msr;
1978 u32 index;
1979
1980 switch (msr_info->index) {
1981 #ifdef CONFIG_X86_64
1982 case MSR_FS_BASE:
1983 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1984 break;
1985 case MSR_GS_BASE:
1986 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1987 break;
1988 case MSR_KERNEL_GS_BASE:
1989 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1990 break;
1991 #endif
1992 case MSR_EFER:
1993 return kvm_get_msr_common(vcpu, msr_info);
1994 case MSR_IA32_TSX_CTRL:
1995 if (!msr_info->host_initiated &&
1996 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1997 return 1;
1998 goto find_uret_msr;
1999 case MSR_IA32_UMWAIT_CONTROL:
2000 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2001 return 1;
2002
2003 msr_info->data = vmx->msr_ia32_umwait_control;
2004 break;
2005 case MSR_IA32_SPEC_CTRL:
2006 if (!msr_info->host_initiated &&
2007 !guest_has_spec_ctrl_msr(vcpu))
2008 return 1;
2009
2010 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2011 break;
2012 case MSR_IA32_SYSENTER_CS:
2013 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2014 break;
2015 case MSR_IA32_SYSENTER_EIP:
2016 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2017 break;
2018 case MSR_IA32_SYSENTER_ESP:
2019 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2020 break;
2021 case MSR_IA32_BNDCFGS:
2022 if (!kvm_mpx_supported() ||
2023 (!msr_info->host_initiated &&
2024 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2025 return 1;
2026 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2027 break;
2028 case MSR_IA32_MCG_EXT_CTL:
2029 if (!msr_info->host_initiated &&
2030 !(vmx->msr_ia32_feature_control &
2031 FEAT_CTL_LMCE_ENABLED))
2032 return 1;
2033 msr_info->data = vcpu->arch.mcg_ext_ctl;
2034 break;
2035 case MSR_IA32_FEAT_CTL:
2036 msr_info->data = vmx->msr_ia32_feature_control;
2037 break;
2038 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2039 if (!msr_info->host_initiated &&
2040 !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2041 return 1;
2042 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2043 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2044 break;
2045 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2046 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2047 return 1;
2048 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2049 &msr_info->data))
2050 return 1;
2051 #ifdef CONFIG_KVM_HYPERV
2052 /*
2053 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2054 * instead of just ignoring the features, different Hyper-V
2055 * versions are either trying to use them and fail or do some
2056 * sanity checking and refuse to boot. Filter all unsupported
2057 * features out.
2058 */
2059 if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2060 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2061 &msr_info->data);
2062 #endif
2063 break;
2064 case MSR_IA32_RTIT_CTL:
2065 if (!vmx_pt_mode_is_host_guest())
2066 return 1;
2067 msr_info->data = vmx->pt_desc.guest.ctl;
2068 break;
2069 case MSR_IA32_RTIT_STATUS:
2070 if (!vmx_pt_mode_is_host_guest())
2071 return 1;
2072 msr_info->data = vmx->pt_desc.guest.status;
2073 break;
2074 case MSR_IA32_RTIT_CR3_MATCH:
2075 if (!vmx_pt_mode_is_host_guest() ||
2076 !intel_pt_validate_cap(vmx->pt_desc.caps,
2077 PT_CAP_cr3_filtering))
2078 return 1;
2079 msr_info->data = vmx->pt_desc.guest.cr3_match;
2080 break;
2081 case MSR_IA32_RTIT_OUTPUT_BASE:
2082 if (!vmx_pt_mode_is_host_guest() ||
2083 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2084 PT_CAP_topa_output) &&
2085 !intel_pt_validate_cap(vmx->pt_desc.caps,
2086 PT_CAP_single_range_output)))
2087 return 1;
2088 msr_info->data = vmx->pt_desc.guest.output_base;
2089 break;
2090 case MSR_IA32_RTIT_OUTPUT_MASK:
2091 if (!vmx_pt_mode_is_host_guest() ||
2092 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2093 PT_CAP_topa_output) &&
2094 !intel_pt_validate_cap(vmx->pt_desc.caps,
2095 PT_CAP_single_range_output)))
2096 return 1;
2097 msr_info->data = vmx->pt_desc.guest.output_mask;
2098 break;
2099 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2100 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2101 if (!vmx_pt_mode_is_host_guest() ||
2102 (index >= 2 * vmx->pt_desc.num_address_ranges))
2103 return 1;
2104 if (index % 2)
2105 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2106 else
2107 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2108 break;
2109 case MSR_IA32_S_CET:
2110 msr_info->data = vmcs_readl(GUEST_S_CET);
2111 break;
2112 case MSR_KVM_INTERNAL_GUEST_SSP:
2113 msr_info->data = vmcs_readl(GUEST_SSP);
2114 break;
2115 case MSR_IA32_INT_SSP_TAB:
2116 msr_info->data = vmcs_readl(GUEST_INTR_SSP_TABLE);
2117 break;
2118 case MSR_IA32_DEBUGCTLMSR:
2119 msr_info->data = vmx_guest_debugctl_read();
2120 break;
2121 default:
2122 find_uret_msr:
2123 msr = vmx_find_uret_msr(vmx, msr_info->index);
2124 if (msr) {
2125 msr_info->data = msr->data;
2126 break;
2127 }
2128 return kvm_get_msr_common(vcpu, msr_info);
2129 }
2130
2131 return 0;
2132 }
2133
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2134 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2135 u64 data)
2136 {
2137 #ifdef CONFIG_X86_64
2138 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2139 return (u32)data;
2140 #endif
2141 return (unsigned long)data;
2142 }
2143
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2144 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2145 {
2146 u64 debugctl = 0;
2147
2148 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2149 (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2150 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2151
2152 if ((kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT) &&
2153 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2154 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2155
2156 if (boot_cpu_has(X86_FEATURE_RTM) &&
2157 (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)))
2158 debugctl |= DEBUGCTLMSR_RTM_DEBUG;
2159
2160 return debugctl;
2161 }
2162
vmx_is_valid_debugctl(struct kvm_vcpu * vcpu,u64 data,bool host_initiated)2163 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated)
2164 {
2165 u64 invalid;
2166
2167 invalid = data & ~vmx_get_supported_debugctl(vcpu, host_initiated);
2168 if (invalid & (DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR)) {
2169 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2170 invalid &= ~(DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR);
2171 }
2172 return !invalid;
2173 }
2174
2175 /*
2176 * Writes msr value into the appropriate "register".
2177 * Returns 0 on success, non-0 otherwise.
2178 * Assumes vcpu_load() was already called.
2179 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2180 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2181 {
2182 struct vcpu_vmx *vmx = to_vmx(vcpu);
2183 struct vmx_uret_msr *msr;
2184 int ret = 0;
2185 u32 msr_index = msr_info->index;
2186 u64 data = msr_info->data;
2187 u32 index;
2188
2189 switch (msr_index) {
2190 case MSR_EFER:
2191 ret = kvm_set_msr_common(vcpu, msr_info);
2192 break;
2193 #ifdef CONFIG_X86_64
2194 case MSR_FS_BASE:
2195 vmx_segment_cache_clear(vmx);
2196 vmcs_writel(GUEST_FS_BASE, data);
2197 break;
2198 case MSR_GS_BASE:
2199 vmx_segment_cache_clear(vmx);
2200 vmcs_writel(GUEST_GS_BASE, data);
2201 break;
2202 case MSR_KERNEL_GS_BASE:
2203 vmx_write_guest_kernel_gs_base(vmx, data);
2204 break;
2205 case MSR_IA32_XFD:
2206 ret = kvm_set_msr_common(vcpu, msr_info);
2207 /*
2208 * Always intercepting WRMSR could incur non-negligible
2209 * overhead given xfd might be changed frequently in
2210 * guest context switch. Disable write interception
2211 * upon the first write with a non-zero value (indicating
2212 * potential usage on dynamic xfeatures). Also update
2213 * exception bitmap to trap #NM for proper virtualization
2214 * of guest xfd_err.
2215 */
2216 if (!ret && data) {
2217 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2218 MSR_TYPE_RW);
2219 vcpu->arch.xfd_no_write_intercept = true;
2220 vmx_update_exception_bitmap(vcpu);
2221 }
2222 break;
2223 #endif
2224 case MSR_IA32_SYSENTER_CS:
2225 if (is_guest_mode(vcpu))
2226 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2227 vmcs_write32(GUEST_SYSENTER_CS, data);
2228 break;
2229 case MSR_IA32_SYSENTER_EIP:
2230 if (is_guest_mode(vcpu)) {
2231 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2232 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2233 }
2234 vmcs_writel(GUEST_SYSENTER_EIP, data);
2235 break;
2236 case MSR_IA32_SYSENTER_ESP:
2237 if (is_guest_mode(vcpu)) {
2238 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2239 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2240 }
2241 vmcs_writel(GUEST_SYSENTER_ESP, data);
2242 break;
2243 case MSR_IA32_DEBUGCTLMSR:
2244 if (!vmx_is_valid_debugctl(vcpu, data, msr_info->host_initiated))
2245 return 1;
2246
2247 data &= vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2248
2249 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2250 VM_EXIT_SAVE_DEBUG_CONTROLS)
2251 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2252
2253 vmx_guest_debugctl_write(vcpu, data);
2254
2255 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2256 (data & DEBUGCTLMSR_LBR))
2257 intel_pmu_create_guest_lbr_event(vcpu);
2258 return 0;
2259 case MSR_IA32_BNDCFGS:
2260 if (!kvm_mpx_supported() ||
2261 (!msr_info->host_initiated &&
2262 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2263 return 1;
2264 if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2265 (data & MSR_IA32_BNDCFGS_RSVD))
2266 return 1;
2267
2268 if (is_guest_mode(vcpu) &&
2269 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2270 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2271 get_vmcs12(vcpu)->guest_bndcfgs = data;
2272
2273 vmcs_write64(GUEST_BNDCFGS, data);
2274 break;
2275 case MSR_IA32_UMWAIT_CONTROL:
2276 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2277 return 1;
2278
2279 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2280 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2281 return 1;
2282
2283 vmx->msr_ia32_umwait_control = data;
2284 break;
2285 case MSR_IA32_SPEC_CTRL:
2286 if (!msr_info->host_initiated &&
2287 !guest_has_spec_ctrl_msr(vcpu))
2288 return 1;
2289
2290 if (kvm_spec_ctrl_test_value(data))
2291 return 1;
2292
2293 vmx->spec_ctrl = data;
2294 if (!data)
2295 break;
2296
2297 /*
2298 * For non-nested:
2299 * When it's written (to non-zero) for the first time, pass
2300 * it through.
2301 *
2302 * For nested:
2303 * The handling of the MSR bitmap for L2 guests is done in
2304 * nested_vmx_prepare_msr_bitmap. We should not touch the
2305 * vmcs02.msr_bitmap here since it gets completely overwritten
2306 * in the merging. We update the vmcs01 here for L1 as well
2307 * since it will end up touching the MSR anyway now.
2308 */
2309 vmx_disable_intercept_for_msr(vcpu,
2310 MSR_IA32_SPEC_CTRL,
2311 MSR_TYPE_RW);
2312 break;
2313 case MSR_IA32_TSX_CTRL:
2314 if (!msr_info->host_initiated &&
2315 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2316 return 1;
2317 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2318 return 1;
2319 goto find_uret_msr;
2320 case MSR_IA32_CR_PAT:
2321 ret = kvm_set_msr_common(vcpu, msr_info);
2322 if (ret)
2323 break;
2324
2325 if (is_guest_mode(vcpu) &&
2326 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2327 get_vmcs12(vcpu)->guest_ia32_pat = data;
2328
2329 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2330 vmcs_write64(GUEST_IA32_PAT, data);
2331 break;
2332 case MSR_IA32_MCG_EXT_CTL:
2333 if ((!msr_info->host_initiated &&
2334 !(to_vmx(vcpu)->msr_ia32_feature_control &
2335 FEAT_CTL_LMCE_ENABLED)) ||
2336 (data & ~MCG_EXT_CTL_LMCE_EN))
2337 return 1;
2338 vcpu->arch.mcg_ext_ctl = data;
2339 break;
2340 case MSR_IA32_FEAT_CTL:
2341 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2342 return 1;
2343
2344 vmx->msr_ia32_feature_control = data;
2345 if (msr_info->host_initiated && data == 0)
2346 vmx_leave_nested(vcpu);
2347
2348 /* SGX may be enabled/disabled by guest's firmware */
2349 vmx_write_encls_bitmap(vcpu, NULL);
2350 break;
2351 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2352 /*
2353 * On real hardware, the LE hash MSRs are writable before
2354 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2355 * at which point SGX related bits in IA32_FEATURE_CONTROL
2356 * become writable.
2357 *
2358 * KVM does not emulate SGX activation for simplicity, so
2359 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2360 * is unlocked. This is technically not architectural
2361 * behavior, but it's close enough.
2362 */
2363 if (!msr_info->host_initiated &&
2364 (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2365 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2366 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2367 return 1;
2368 vmx->msr_ia32_sgxlepubkeyhash
2369 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2370 break;
2371 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2372 if (!msr_info->host_initiated)
2373 return 1; /* they are read-only */
2374 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2375 return 1;
2376 return vmx_set_vmx_msr(vcpu, msr_index, data);
2377 case MSR_IA32_RTIT_CTL:
2378 if (!vmx_pt_mode_is_host_guest() ||
2379 vmx_rtit_ctl_check(vcpu, data) ||
2380 vmx->nested.vmxon)
2381 return 1;
2382 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2383 vmx->pt_desc.guest.ctl = data;
2384 pt_update_intercept_for_msr(vcpu);
2385 break;
2386 case MSR_IA32_RTIT_STATUS:
2387 if (!pt_can_write_msr(vmx))
2388 return 1;
2389 if (data & MSR_IA32_RTIT_STATUS_MASK)
2390 return 1;
2391 vmx->pt_desc.guest.status = data;
2392 break;
2393 case MSR_IA32_RTIT_CR3_MATCH:
2394 if (!pt_can_write_msr(vmx))
2395 return 1;
2396 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2397 PT_CAP_cr3_filtering))
2398 return 1;
2399 vmx->pt_desc.guest.cr3_match = data;
2400 break;
2401 case MSR_IA32_RTIT_OUTPUT_BASE:
2402 if (!pt_can_write_msr(vmx))
2403 return 1;
2404 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2405 PT_CAP_topa_output) &&
2406 !intel_pt_validate_cap(vmx->pt_desc.caps,
2407 PT_CAP_single_range_output))
2408 return 1;
2409 if (!pt_output_base_valid(vcpu, data))
2410 return 1;
2411 vmx->pt_desc.guest.output_base = data;
2412 break;
2413 case MSR_IA32_RTIT_OUTPUT_MASK:
2414 if (!pt_can_write_msr(vmx))
2415 return 1;
2416 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2417 PT_CAP_topa_output) &&
2418 !intel_pt_validate_cap(vmx->pt_desc.caps,
2419 PT_CAP_single_range_output))
2420 return 1;
2421 vmx->pt_desc.guest.output_mask = data;
2422 break;
2423 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2424 if (!pt_can_write_msr(vmx))
2425 return 1;
2426 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2427 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2428 return 1;
2429 if (is_noncanonical_msr_address(data, vcpu))
2430 return 1;
2431 if (index % 2)
2432 vmx->pt_desc.guest.addr_b[index / 2] = data;
2433 else
2434 vmx->pt_desc.guest.addr_a[index / 2] = data;
2435 break;
2436 case MSR_IA32_S_CET:
2437 vmcs_writel(GUEST_S_CET, data);
2438 break;
2439 case MSR_KVM_INTERNAL_GUEST_SSP:
2440 vmcs_writel(GUEST_SSP, data);
2441 break;
2442 case MSR_IA32_INT_SSP_TAB:
2443 vmcs_writel(GUEST_INTR_SSP_TABLE, data);
2444 break;
2445 case MSR_IA32_PERF_CAPABILITIES:
2446 if (data & PERF_CAP_LBR_FMT) {
2447 if ((data & PERF_CAP_LBR_FMT) !=
2448 (kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT))
2449 return 1;
2450 if (!cpuid_model_is_consistent(vcpu))
2451 return 1;
2452 }
2453 if (data & PERF_CAP_PEBS_FORMAT) {
2454 if ((data & PERF_CAP_PEBS_MASK) !=
2455 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2456 return 1;
2457 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2458 return 1;
2459 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2460 return 1;
2461 if (!cpuid_model_is_consistent(vcpu))
2462 return 1;
2463 }
2464 ret = kvm_set_msr_common(vcpu, msr_info);
2465 break;
2466
2467 default:
2468 find_uret_msr:
2469 msr = vmx_find_uret_msr(vmx, msr_index);
2470 if (msr)
2471 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2472 else
2473 ret = kvm_set_msr_common(vcpu, msr_info);
2474 }
2475
2476 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2477 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2478 vmx_update_fb_clear_dis(vcpu, vmx);
2479
2480 return ret;
2481 }
2482
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2483 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2484 {
2485 unsigned long guest_owned_bits;
2486
2487 kvm_register_mark_available(vcpu, reg);
2488
2489 switch (reg) {
2490 case VCPU_REGS_RSP:
2491 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2492 break;
2493 case VCPU_REGS_RIP:
2494 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2495 break;
2496 case VCPU_EXREG_PDPTR:
2497 if (enable_ept)
2498 ept_save_pdptrs(vcpu);
2499 break;
2500 case VCPU_EXREG_CR0:
2501 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2502
2503 vcpu->arch.cr0 &= ~guest_owned_bits;
2504 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2505 break;
2506 case VCPU_EXREG_CR3:
2507 /*
2508 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2509 * CR3 is loaded into hardware, not the guest's CR3.
2510 */
2511 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2512 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2513 break;
2514 case VCPU_EXREG_CR4:
2515 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2516
2517 vcpu->arch.cr4 &= ~guest_owned_bits;
2518 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2519 break;
2520 default:
2521 KVM_BUG_ON(1, vcpu->kvm);
2522 break;
2523 }
2524 }
2525
2526 /*
2527 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2528 * directly instead of going through cpu_has(), to ensure KVM is trapping
2529 * ENCLS whenever it's supported in hardware. It does not matter whether
2530 * the host OS supports or has enabled SGX.
2531 */
cpu_has_sgx(void)2532 static bool cpu_has_sgx(void)
2533 {
2534 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2535 }
2536
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2537 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2538 {
2539 u32 vmx_msr_low, vmx_msr_high;
2540 u32 ctl = ctl_min | ctl_opt;
2541
2542 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2543
2544 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2545 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2546
2547 /* Ensure minimum (required) set of control bits are supported. */
2548 if (ctl_min & ~ctl)
2549 return -EIO;
2550
2551 *result = ctl;
2552 return 0;
2553 }
2554
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2555 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2556 {
2557 u64 allowed;
2558
2559 rdmsrq(msr, allowed);
2560
2561 return ctl_opt & allowed;
2562 }
2563
2564 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls) \
2565 ({ \
2566 int i, r = 0; \
2567 \
2568 BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls)); \
2569 BUILD_BUG_ON(sizeof(pairs[0].exit_control) != sizeof(exit_controls)); \
2570 \
2571 for (i = 0; i < ARRAY_SIZE(pairs); i++) { \
2572 typeof(entry_controls) n_ctrl = pairs[i].entry_control; \
2573 typeof(exit_controls) x_ctrl = pairs[i].exit_control; \
2574 \
2575 if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl)) \
2576 continue; \
2577 \
2578 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, " \
2579 "entry = %llx (%llx), exit = %llx (%llx)\n", \
2580 (u64)(entry_controls & n_ctrl), (u64)n_ctrl, \
2581 (u64)(exit_controls & x_ctrl), (u64)x_ctrl); \
2582 \
2583 if (error_on_inconsistent_vmcs_config) \
2584 r = -EIO; \
2585 \
2586 entry_controls &= ~n_ctrl; \
2587 exit_controls &= ~x_ctrl; \
2588 } \
2589 r; \
2590 })
2591
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2592 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2593 struct vmx_capability *vmx_cap)
2594 {
2595 u32 _pin_based_exec_control = 0;
2596 u32 _cpu_based_exec_control = 0;
2597 u32 _cpu_based_2nd_exec_control = 0;
2598 u64 _cpu_based_3rd_exec_control = 0;
2599 u32 _vmexit_control = 0;
2600 u32 _vmentry_control = 0;
2601 u64 basic_msr;
2602 u64 misc_msr;
2603
2604 /*
2605 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2606 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2607 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2608 */
2609 struct {
2610 u32 entry_control;
2611 u32 exit_control;
2612 } const vmcs_entry_exit_pairs[] = {
2613 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2614 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2615 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2616 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2617 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2618 { VM_ENTRY_LOAD_CET_STATE, VM_EXIT_LOAD_CET_STATE },
2619 };
2620
2621 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2622
2623 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2624 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2625 MSR_IA32_VMX_PROCBASED_CTLS,
2626 &_cpu_based_exec_control))
2627 return -EIO;
2628 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2629 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2630 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2631 MSR_IA32_VMX_PROCBASED_CTLS2,
2632 &_cpu_based_2nd_exec_control))
2633 return -EIO;
2634 }
2635 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2636 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2637
2638 #ifndef CONFIG_X86_64
2639 if (!(_cpu_based_2nd_exec_control &
2640 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2641 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2642 #endif
2643
2644 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2645 _cpu_based_2nd_exec_control &= ~(
2646 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2647 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2648 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2649
2650 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2651 &vmx_cap->ept, &vmx_cap->vpid);
2652
2653 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2654 vmx_cap->ept) {
2655 pr_warn_once("EPT CAP should not exist if not support "
2656 "1-setting enable EPT VM-execution control\n");
2657
2658 if (error_on_inconsistent_vmcs_config)
2659 return -EIO;
2660
2661 vmx_cap->ept = 0;
2662 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2663 }
2664 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2665 vmx_cap->vpid) {
2666 pr_warn_once("VPID CAP should not exist if not support "
2667 "1-setting enable VPID VM-execution control\n");
2668
2669 if (error_on_inconsistent_vmcs_config)
2670 return -EIO;
2671
2672 vmx_cap->vpid = 0;
2673 }
2674
2675 if (!cpu_has_sgx())
2676 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2677
2678 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2679 _cpu_based_3rd_exec_control =
2680 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2681 MSR_IA32_VMX_PROCBASED_CTLS3);
2682
2683 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2684 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2685 MSR_IA32_VMX_EXIT_CTLS,
2686 &_vmexit_control))
2687 return -EIO;
2688
2689 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2690 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2691 MSR_IA32_VMX_PINBASED_CTLS,
2692 &_pin_based_exec_control))
2693 return -EIO;
2694
2695 if (cpu_has_broken_vmx_preemption_timer())
2696 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2697 if (!(_cpu_based_2nd_exec_control &
2698 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2699 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2700
2701 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2702 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2703 MSR_IA32_VMX_ENTRY_CTLS,
2704 &_vmentry_control))
2705 return -EIO;
2706
2707 if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2708 _vmentry_control, _vmexit_control))
2709 return -EIO;
2710
2711 /*
2712 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2713 * can't be used due to an errata where VM Exit may incorrectly clear
2714 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2715 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2716 */
2717 switch (boot_cpu_data.x86_vfm) {
2718 case INTEL_NEHALEM_EP: /* AAK155 */
2719 case INTEL_NEHALEM: /* AAP115 */
2720 case INTEL_WESTMERE: /* AAT100 */
2721 case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */
2722 case INTEL_NEHALEM_EX: /* BA97 */
2723 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2724 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2725 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2726 "does not work properly. Using workaround\n");
2727 break;
2728 default:
2729 break;
2730 }
2731
2732 rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2733
2734 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2735 if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2736 return -EIO;
2737
2738 #ifdef CONFIG_X86_64
2739 /*
2740 * KVM expects to be able to shove all legal physical addresses into
2741 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2742 * 0 for processors that support Intel 64 architecture".
2743 */
2744 if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2745 return -EIO;
2746 #endif
2747
2748 /* Require Write-Back (WB) memory type for VMCS accesses. */
2749 if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2750 return -EIO;
2751
2752 rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2753
2754 vmcs_conf->basic = basic_msr;
2755 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2756 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2757 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2758 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2759 vmcs_conf->vmexit_ctrl = _vmexit_control;
2760 vmcs_conf->vmentry_ctrl = _vmentry_control;
2761 vmcs_conf->misc = misc_msr;
2762
2763 #if IS_ENABLED(CONFIG_HYPERV)
2764 if (enlightened_vmcs)
2765 evmcs_sanitize_exec_ctrls(vmcs_conf);
2766 #endif
2767
2768 return 0;
2769 }
2770
__kvm_is_vmx_supported(void)2771 static bool __kvm_is_vmx_supported(void)
2772 {
2773 int cpu = smp_processor_id();
2774
2775 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2776 pr_err("VMX not supported by CPU %d\n", cpu);
2777 return false;
2778 }
2779
2780 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2781 !this_cpu_has(X86_FEATURE_VMX)) {
2782 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2783 return false;
2784 }
2785
2786 return true;
2787 }
2788
kvm_is_vmx_supported(void)2789 static bool kvm_is_vmx_supported(void)
2790 {
2791 bool supported;
2792
2793 migrate_disable();
2794 supported = __kvm_is_vmx_supported();
2795 migrate_enable();
2796
2797 return supported;
2798 }
2799
vmx_check_processor_compat(void)2800 int vmx_check_processor_compat(void)
2801 {
2802 int cpu = raw_smp_processor_id();
2803 struct vmcs_config vmcs_conf;
2804 struct vmx_capability vmx_cap;
2805
2806 if (!__kvm_is_vmx_supported())
2807 return -EIO;
2808
2809 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2810 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2811 return -EIO;
2812 }
2813 if (nested)
2814 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2815 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2816 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2817 return -EIO;
2818 }
2819 return 0;
2820 }
2821
kvm_cpu_vmxon(u64 vmxon_pointer)2822 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2823 {
2824 u64 msr;
2825
2826 cr4_set_bits(X86_CR4_VMXE);
2827
2828 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2829 _ASM_EXTABLE(1b, %l[fault])
2830 : : [vmxon_pointer] "m"(vmxon_pointer)
2831 : : fault);
2832 return 0;
2833
2834 fault:
2835 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2836 rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2837 cr4_clear_bits(X86_CR4_VMXE);
2838
2839 return -EFAULT;
2840 }
2841
vmx_enable_virtualization_cpu(void)2842 int vmx_enable_virtualization_cpu(void)
2843 {
2844 int cpu = raw_smp_processor_id();
2845 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2846 int r;
2847
2848 if (cr4_read_shadow() & X86_CR4_VMXE)
2849 return -EBUSY;
2850
2851 /*
2852 * This can happen if we hot-added a CPU but failed to allocate
2853 * VP assist page for it.
2854 */
2855 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2856 return -EFAULT;
2857
2858 intel_pt_handle_vmx(1);
2859
2860 r = kvm_cpu_vmxon(phys_addr);
2861 if (r) {
2862 intel_pt_handle_vmx(0);
2863 return r;
2864 }
2865
2866 return 0;
2867 }
2868
vmclear_local_loaded_vmcss(void)2869 static void vmclear_local_loaded_vmcss(void)
2870 {
2871 int cpu = raw_smp_processor_id();
2872 struct loaded_vmcs *v, *n;
2873
2874 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2875 loaded_vmcss_on_cpu_link)
2876 __loaded_vmcs_clear(v);
2877 }
2878
vmx_disable_virtualization_cpu(void)2879 void vmx_disable_virtualization_cpu(void)
2880 {
2881 vmclear_local_loaded_vmcss();
2882
2883 if (kvm_cpu_vmxoff())
2884 kvm_spurious_fault();
2885
2886 hv_reset_evmcs();
2887
2888 intel_pt_handle_vmx(0);
2889 }
2890
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2891 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2892 {
2893 int node = cpu_to_node(cpu);
2894 struct page *pages;
2895 struct vmcs *vmcs;
2896
2897 pages = __alloc_pages_node(node, flags, 0);
2898 if (!pages)
2899 return NULL;
2900 vmcs = page_address(pages);
2901 memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2902
2903 /* KVM supports Enlightened VMCS v1 only */
2904 if (kvm_is_using_evmcs())
2905 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2906 else
2907 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2908
2909 if (shadow)
2910 vmcs->hdr.shadow_vmcs = 1;
2911 return vmcs;
2912 }
2913
free_vmcs(struct vmcs * vmcs)2914 void free_vmcs(struct vmcs *vmcs)
2915 {
2916 free_page((unsigned long)vmcs);
2917 }
2918
2919 /*
2920 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2921 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2922 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2923 {
2924 if (!loaded_vmcs->vmcs)
2925 return;
2926 loaded_vmcs_clear(loaded_vmcs);
2927 free_vmcs(loaded_vmcs->vmcs);
2928 loaded_vmcs->vmcs = NULL;
2929 if (loaded_vmcs->msr_bitmap)
2930 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2931 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2932 }
2933
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2934 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2935 {
2936 loaded_vmcs->vmcs = alloc_vmcs(false);
2937 if (!loaded_vmcs->vmcs)
2938 return -ENOMEM;
2939
2940 vmcs_clear(loaded_vmcs->vmcs);
2941
2942 loaded_vmcs->shadow_vmcs = NULL;
2943 loaded_vmcs->hv_timer_soft_disabled = false;
2944 loaded_vmcs->cpu = -1;
2945 loaded_vmcs->launched = 0;
2946
2947 if (cpu_has_vmx_msr_bitmap()) {
2948 loaded_vmcs->msr_bitmap = (unsigned long *)
2949 __get_free_page(GFP_KERNEL_ACCOUNT);
2950 if (!loaded_vmcs->msr_bitmap)
2951 goto out_vmcs;
2952 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2953 }
2954
2955 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2956 memset(&loaded_vmcs->controls_shadow, 0,
2957 sizeof(struct vmcs_controls_shadow));
2958
2959 return 0;
2960
2961 out_vmcs:
2962 free_loaded_vmcs(loaded_vmcs);
2963 return -ENOMEM;
2964 }
2965
free_kvm_area(void)2966 static void free_kvm_area(void)
2967 {
2968 int cpu;
2969
2970 for_each_possible_cpu(cpu) {
2971 free_vmcs(per_cpu(vmxarea, cpu));
2972 per_cpu(vmxarea, cpu) = NULL;
2973 }
2974 }
2975
alloc_kvm_area(void)2976 static __init int alloc_kvm_area(void)
2977 {
2978 int cpu;
2979
2980 for_each_possible_cpu(cpu) {
2981 struct vmcs *vmcs;
2982
2983 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2984 if (!vmcs) {
2985 free_kvm_area();
2986 return -ENOMEM;
2987 }
2988
2989 /*
2990 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2991 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2992 * revision_id reported by MSR_IA32_VMX_BASIC.
2993 *
2994 * However, even though not explicitly documented by
2995 * TLFS, VMXArea passed as VMXON argument should
2996 * still be marked with revision_id reported by
2997 * physical CPU.
2998 */
2999 if (kvm_is_using_evmcs())
3000 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3001
3002 per_cpu(vmxarea, cpu) = vmcs;
3003 }
3004 return 0;
3005 }
3006
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3007 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3008 struct kvm_segment *save)
3009 {
3010 if (!emulate_invalid_guest_state) {
3011 /*
3012 * CS and SS RPL should be equal during guest entry according
3013 * to VMX spec, but in reality it is not always so. Since vcpu
3014 * is in the middle of the transition from real mode to
3015 * protected mode it is safe to assume that RPL 0 is a good
3016 * default value.
3017 */
3018 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3019 save->selector &= ~SEGMENT_RPL_MASK;
3020 save->dpl = save->selector & SEGMENT_RPL_MASK;
3021 save->s = 1;
3022 }
3023 __vmx_set_segment(vcpu, save, seg);
3024 }
3025
enter_pmode(struct kvm_vcpu * vcpu)3026 static void enter_pmode(struct kvm_vcpu *vcpu)
3027 {
3028 unsigned long flags;
3029 struct vcpu_vmx *vmx = to_vmx(vcpu);
3030
3031 /*
3032 * Update real mode segment cache. It may be not up-to-date if segment
3033 * register was written while vcpu was in a guest mode.
3034 */
3035 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3036 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3037 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3038 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3039 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3040 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3041
3042 vmx->rmode.vm86_active = 0;
3043
3044 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3045
3046 flags = vmcs_readl(GUEST_RFLAGS);
3047 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3048 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3049 vmcs_writel(GUEST_RFLAGS, flags);
3050
3051 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3052 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3053
3054 vmx_update_exception_bitmap(vcpu);
3055
3056 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3057 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3058 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3059 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3060 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3061 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3062 }
3063
fix_rmode_seg(int seg,struct kvm_segment * save)3064 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3065 {
3066 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3067 struct kvm_segment var = *save;
3068
3069 var.dpl = 0x3;
3070 if (seg == VCPU_SREG_CS)
3071 var.type = 0x3;
3072
3073 if (!emulate_invalid_guest_state) {
3074 var.selector = var.base >> 4;
3075 var.base = var.base & 0xffff0;
3076 var.limit = 0xffff;
3077 var.g = 0;
3078 var.db = 0;
3079 var.present = 1;
3080 var.s = 1;
3081 var.l = 0;
3082 var.unusable = 0;
3083 var.type = 0x3;
3084 var.avl = 0;
3085 if (save->base & 0xf)
3086 pr_warn_once("segment base is not paragraph aligned "
3087 "when entering protected mode (seg=%d)", seg);
3088 }
3089
3090 vmcs_write16(sf->selector, var.selector);
3091 vmcs_writel(sf->base, var.base);
3092 vmcs_write32(sf->limit, var.limit);
3093 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3094 }
3095
enter_rmode(struct kvm_vcpu * vcpu)3096 static void enter_rmode(struct kvm_vcpu *vcpu)
3097 {
3098 unsigned long flags;
3099 struct vcpu_vmx *vmx = to_vmx(vcpu);
3100 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3101
3102 /*
3103 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3104 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3105 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3106 * should VM-Fail and KVM should reject userspace attempts to stuff
3107 * CR0.PG=0 when L2 is active.
3108 */
3109 WARN_ON_ONCE(is_guest_mode(vcpu));
3110
3111 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3112 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3113 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3114 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3115 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3116 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3117 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3118
3119 vmx->rmode.vm86_active = 1;
3120
3121 vmx_segment_cache_clear(vmx);
3122
3123 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3124 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3125 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3126
3127 flags = vmcs_readl(GUEST_RFLAGS);
3128 vmx->rmode.save_rflags = flags;
3129
3130 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3131
3132 vmcs_writel(GUEST_RFLAGS, flags);
3133 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3134 vmx_update_exception_bitmap(vcpu);
3135
3136 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3137 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3138 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3139 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3140 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3141 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3142 }
3143
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3144 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3145 {
3146 struct vcpu_vmx *vmx = to_vmx(vcpu);
3147
3148 /* Nothing to do if hardware doesn't support EFER. */
3149 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3150 return 0;
3151
3152 vcpu->arch.efer = efer;
3153 #ifdef CONFIG_X86_64
3154 if (efer & EFER_LMA)
3155 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3156 else
3157 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3158 #else
3159 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3160 return 1;
3161 #endif
3162
3163 vmx_setup_uret_msrs(vmx);
3164 return 0;
3165 }
3166
3167 #ifdef CONFIG_X86_64
3168
enter_lmode(struct kvm_vcpu * vcpu)3169 static void enter_lmode(struct kvm_vcpu *vcpu)
3170 {
3171 u32 guest_tr_ar;
3172
3173 vmx_segment_cache_clear(to_vmx(vcpu));
3174
3175 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3176 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3177 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3178 __func__);
3179 vmcs_write32(GUEST_TR_AR_BYTES,
3180 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3181 | VMX_AR_TYPE_BUSY_64_TSS);
3182 }
3183 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3184 }
3185
exit_lmode(struct kvm_vcpu * vcpu)3186 static void exit_lmode(struct kvm_vcpu *vcpu)
3187 {
3188 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3189 }
3190
3191 #endif
3192
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3193 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3194 {
3195 struct vcpu_vmx *vmx = to_vmx(vcpu);
3196
3197 /*
3198 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3199 * the CPU is not required to invalidate guest-physical mappings on
3200 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3201 * associated with the root EPT structure and not any particular VPID
3202 * (INVVPID also isn't required to invalidate guest-physical mappings).
3203 */
3204 if (enable_ept) {
3205 ept_sync_global();
3206 } else if (enable_vpid) {
3207 if (cpu_has_vmx_invvpid_global()) {
3208 vpid_sync_vcpu_global();
3209 } else {
3210 vpid_sync_vcpu_single(vmx->vpid);
3211 vpid_sync_vcpu_single(vmx->nested.vpid02);
3212 }
3213 }
3214 }
3215
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3216 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3217 {
3218 if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3219 return nested_get_vpid02(vcpu);
3220 return to_vmx(vcpu)->vpid;
3221 }
3222
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3223 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3224 {
3225 struct kvm_mmu *mmu = vcpu->arch.mmu;
3226 u64 root_hpa = mmu->root.hpa;
3227
3228 /* No flush required if the current context is invalid. */
3229 if (!VALID_PAGE(root_hpa))
3230 return;
3231
3232 if (enable_ept)
3233 ept_sync_context(construct_eptp(vcpu, root_hpa,
3234 mmu->root_role.level));
3235 else
3236 vpid_sync_context(vmx_get_current_vpid(vcpu));
3237 }
3238
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3239 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3240 {
3241 /*
3242 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3243 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3244 */
3245 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3246 }
3247
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3248 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3249 {
3250 /*
3251 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3252 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3253 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3254 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3255 * i.e. no explicit INVVPID is necessary.
3256 */
3257 vpid_sync_context(vmx_get_current_vpid(vcpu));
3258 }
3259
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3260 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3261 {
3262 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3263
3264 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3265 return;
3266
3267 if (is_pae_paging(vcpu)) {
3268 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3269 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3270 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3271 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3272 }
3273 }
3274
ept_save_pdptrs(struct kvm_vcpu * vcpu)3275 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3276 {
3277 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3278
3279 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3280 return;
3281
3282 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3283 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3284 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3285 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3286
3287 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3288 }
3289
3290 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3291 CPU_BASED_CR3_STORE_EXITING)
3292
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3293 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3294 {
3295 if (is_guest_mode(vcpu))
3296 return nested_guest_cr0_valid(vcpu, cr0);
3297
3298 if (to_vmx(vcpu)->nested.vmxon)
3299 return nested_host_cr0_valid(vcpu, cr0);
3300
3301 return true;
3302 }
3303
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3304 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3305 {
3306 struct vcpu_vmx *vmx = to_vmx(vcpu);
3307 unsigned long hw_cr0, old_cr0_pg;
3308 u32 tmp;
3309
3310 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3311
3312 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3313 if (enable_unrestricted_guest)
3314 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3315 else {
3316 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3317 if (!enable_ept)
3318 hw_cr0 |= X86_CR0_WP;
3319
3320 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3321 enter_pmode(vcpu);
3322
3323 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3324 enter_rmode(vcpu);
3325 }
3326
3327 vmcs_writel(CR0_READ_SHADOW, cr0);
3328 vmcs_writel(GUEST_CR0, hw_cr0);
3329 vcpu->arch.cr0 = cr0;
3330 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3331
3332 #ifdef CONFIG_X86_64
3333 if (vcpu->arch.efer & EFER_LME) {
3334 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3335 enter_lmode(vcpu);
3336 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3337 exit_lmode(vcpu);
3338 }
3339 #endif
3340
3341 if (enable_ept && !enable_unrestricted_guest) {
3342 /*
3343 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3344 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3345 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3346 * KVM's CR3 is installed.
3347 */
3348 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3349 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3350
3351 /*
3352 * When running with EPT but not unrestricted guest, KVM must
3353 * intercept CR3 accesses when paging is _disabled_. This is
3354 * necessary because restricted guests can't actually run with
3355 * paging disabled, and so KVM stuffs its own CR3 in order to
3356 * run the guest when identity mapped page tables.
3357 *
3358 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3359 * update, it may be stale with respect to CR3 interception,
3360 * e.g. after nested VM-Enter.
3361 *
3362 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3363 * stores to forward them to L1, even if KVM does not need to
3364 * intercept them to preserve its identity mapped page tables.
3365 */
3366 if (!(cr0 & X86_CR0_PG)) {
3367 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3368 } else if (!is_guest_mode(vcpu)) {
3369 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3370 } else {
3371 tmp = exec_controls_get(vmx);
3372 tmp &= ~CR3_EXITING_BITS;
3373 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3374 exec_controls_set(vmx, tmp);
3375 }
3376
3377 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3378 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3379 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3380
3381 /*
3382 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3383 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3384 */
3385 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3386 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3387 }
3388
3389 /* depends on vcpu->arch.cr0 to be set to a new value */
3390 vmx->vt.emulation_required = vmx_emulation_required(vcpu);
3391 }
3392
vmx_get_max_ept_level(void)3393 static int vmx_get_max_ept_level(void)
3394 {
3395 if (cpu_has_vmx_ept_5levels())
3396 return 5;
3397 return 4;
3398 }
3399
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3400 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3401 {
3402 u64 eptp = VMX_EPTP_MT_WB;
3403
3404 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3405
3406 if (enable_ept_ad_bits &&
3407 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3408 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3409 eptp |= root_hpa;
3410
3411 return eptp;
3412 }
3413
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3414 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3415 {
3416 struct kvm *kvm = vcpu->kvm;
3417 bool update_guest_cr3 = true;
3418 unsigned long guest_cr3;
3419 u64 eptp;
3420
3421 if (enable_ept) {
3422 eptp = construct_eptp(vcpu, root_hpa, root_level);
3423 vmcs_write64(EPT_POINTER, eptp);
3424
3425 hv_track_root_tdp(vcpu, root_hpa);
3426
3427 if (!enable_unrestricted_guest && !is_paging(vcpu))
3428 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3429 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3430 guest_cr3 = vcpu->arch.cr3;
3431 else /* vmcs.GUEST_CR3 is already up-to-date. */
3432 update_guest_cr3 = false;
3433 vmx_ept_load_pdptrs(vcpu);
3434 } else {
3435 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3436 kvm_get_active_cr3_lam_bits(vcpu);
3437 }
3438
3439 if (update_guest_cr3)
3440 vmcs_writel(GUEST_CR3, guest_cr3);
3441 }
3442
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3443 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3444 {
3445 /*
3446 * We operate under the default treatment of SMM, so VMX cannot be
3447 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3448 * i.e. is a reserved bit, is handled by common x86 code.
3449 */
3450 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3451 return false;
3452
3453 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3454 return false;
3455
3456 return true;
3457 }
3458
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3459 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3460 {
3461 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3462 struct vcpu_vmx *vmx = to_vmx(vcpu);
3463 unsigned long hw_cr4;
3464
3465 /*
3466 * Pass through host's Machine Check Enable value to hw_cr4, which
3467 * is in force while we are in guest mode. Do not let guests control
3468 * this bit, even if host CR4.MCE == 0.
3469 */
3470 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3471 if (enable_unrestricted_guest)
3472 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3473 else if (vmx->rmode.vm86_active)
3474 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3475 else
3476 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3477
3478 if (vmx_umip_emulated()) {
3479 if (cr4 & X86_CR4_UMIP) {
3480 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3481 hw_cr4 &= ~X86_CR4_UMIP;
3482 } else if (!is_guest_mode(vcpu) ||
3483 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3484 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3485 }
3486 }
3487
3488 vcpu->arch.cr4 = cr4;
3489 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3490
3491 if (!enable_unrestricted_guest) {
3492 if (enable_ept) {
3493 if (!is_paging(vcpu)) {
3494 hw_cr4 &= ~X86_CR4_PAE;
3495 hw_cr4 |= X86_CR4_PSE;
3496 } else if (!(cr4 & X86_CR4_PAE)) {
3497 hw_cr4 &= ~X86_CR4_PAE;
3498 }
3499 }
3500
3501 /*
3502 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3503 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3504 * to be manually disabled when guest switches to non-paging
3505 * mode.
3506 *
3507 * If !enable_unrestricted_guest, the CPU is always running
3508 * with CR0.PG=1 and CR4 needs to be modified.
3509 * If enable_unrestricted_guest, the CPU automatically
3510 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3511 */
3512 if (!is_paging(vcpu))
3513 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3514 }
3515
3516 vmcs_writel(CR4_READ_SHADOW, cr4);
3517 vmcs_writel(GUEST_CR4, hw_cr4);
3518
3519 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3520 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3521 }
3522
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3523 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3524 {
3525 struct vcpu_vmx *vmx = to_vmx(vcpu);
3526 u32 ar;
3527
3528 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3529 *var = vmx->rmode.segs[seg];
3530 if (seg == VCPU_SREG_TR
3531 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3532 return;
3533 var->base = vmx_read_guest_seg_base(vmx, seg);
3534 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3535 return;
3536 }
3537 var->base = vmx_read_guest_seg_base(vmx, seg);
3538 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3539 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3540 ar = vmx_read_guest_seg_ar(vmx, seg);
3541 var->unusable = (ar >> 16) & 1;
3542 var->type = ar & 15;
3543 var->s = (ar >> 4) & 1;
3544 var->dpl = (ar >> 5) & 3;
3545 /*
3546 * Some userspaces do not preserve unusable property. Since usable
3547 * segment has to be present according to VMX spec we can use present
3548 * property to amend userspace bug by making unusable segment always
3549 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3550 * segment as unusable.
3551 */
3552 var->present = !var->unusable;
3553 var->avl = (ar >> 12) & 1;
3554 var->l = (ar >> 13) & 1;
3555 var->db = (ar >> 14) & 1;
3556 var->g = (ar >> 15) & 1;
3557 }
3558
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3559 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3560 {
3561 struct kvm_segment s;
3562
3563 if (to_vmx(vcpu)->rmode.vm86_active) {
3564 vmx_get_segment(vcpu, &s, seg);
3565 return s.base;
3566 }
3567 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3568 }
3569
__vmx_get_cpl(struct kvm_vcpu * vcpu,bool no_cache)3570 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3571 {
3572 struct vcpu_vmx *vmx = to_vmx(vcpu);
3573 int ar;
3574
3575 if (unlikely(vmx->rmode.vm86_active))
3576 return 0;
3577
3578 if (no_cache)
3579 ar = vmcs_read32(GUEST_SS_AR_BYTES);
3580 else
3581 ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3582 return VMX_AR_DPL(ar);
3583 }
3584
vmx_get_cpl(struct kvm_vcpu * vcpu)3585 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3586 {
3587 return __vmx_get_cpl(vcpu, false);
3588 }
3589
vmx_get_cpl_no_cache(struct kvm_vcpu * vcpu)3590 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3591 {
3592 return __vmx_get_cpl(vcpu, true);
3593 }
3594
vmx_segment_access_rights(struct kvm_segment * var)3595 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3596 {
3597 u32 ar;
3598
3599 ar = var->type & 15;
3600 ar |= (var->s & 1) << 4;
3601 ar |= (var->dpl & 3) << 5;
3602 ar |= (var->present & 1) << 7;
3603 ar |= (var->avl & 1) << 12;
3604 ar |= (var->l & 1) << 13;
3605 ar |= (var->db & 1) << 14;
3606 ar |= (var->g & 1) << 15;
3607 ar |= (var->unusable || !var->present) << 16;
3608
3609 return ar;
3610 }
3611
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3612 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3613 {
3614 struct vcpu_vmx *vmx = to_vmx(vcpu);
3615 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3616
3617 vmx_segment_cache_clear(vmx);
3618
3619 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3620 vmx->rmode.segs[seg] = *var;
3621 if (seg == VCPU_SREG_TR)
3622 vmcs_write16(sf->selector, var->selector);
3623 else if (var->s)
3624 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3625 return;
3626 }
3627
3628 vmcs_writel(sf->base, var->base);
3629 vmcs_write32(sf->limit, var->limit);
3630 vmcs_write16(sf->selector, var->selector);
3631
3632 /*
3633 * Fix the "Accessed" bit in AR field of segment registers for older
3634 * qemu binaries.
3635 * IA32 arch specifies that at the time of processor reset the
3636 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3637 * is setting it to 0 in the userland code. This causes invalid guest
3638 * state vmexit when "unrestricted guest" mode is turned on.
3639 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3640 * tree. Newer qemu binaries with that qemu fix would not need this
3641 * kvm hack.
3642 */
3643 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3644 var->type |= 0x1; /* Accessed */
3645
3646 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3647 }
3648
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3649 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3650 {
3651 __vmx_set_segment(vcpu, var, seg);
3652
3653 to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu);
3654 }
3655
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3656 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3657 {
3658 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3659
3660 *db = (ar >> 14) & 1;
3661 *l = (ar >> 13) & 1;
3662 }
3663
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3664 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3665 {
3666 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3667 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3668 }
3669
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3670 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3671 {
3672 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3673 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3674 }
3675
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3676 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3677 {
3678 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3679 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3680 }
3681
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3682 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3683 {
3684 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3685 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3686 }
3687
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3688 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3689 {
3690 struct kvm_segment var;
3691 u32 ar;
3692
3693 vmx_get_segment(vcpu, &var, seg);
3694 var.dpl = 0x3;
3695 if (seg == VCPU_SREG_CS)
3696 var.type = 0x3;
3697 ar = vmx_segment_access_rights(&var);
3698
3699 if (var.base != (var.selector << 4))
3700 return false;
3701 if (var.limit != 0xffff)
3702 return false;
3703 if (ar != 0xf3)
3704 return false;
3705
3706 return true;
3707 }
3708
code_segment_valid(struct kvm_vcpu * vcpu)3709 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3710 {
3711 struct kvm_segment cs;
3712 unsigned int cs_rpl;
3713
3714 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3715 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3716
3717 if (cs.unusable)
3718 return false;
3719 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3720 return false;
3721 if (!cs.s)
3722 return false;
3723 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3724 if (cs.dpl > cs_rpl)
3725 return false;
3726 } else {
3727 if (cs.dpl != cs_rpl)
3728 return false;
3729 }
3730 if (!cs.present)
3731 return false;
3732
3733 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3734 return true;
3735 }
3736
stack_segment_valid(struct kvm_vcpu * vcpu)3737 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3738 {
3739 struct kvm_segment ss;
3740 unsigned int ss_rpl;
3741
3742 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3743 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3744
3745 if (ss.unusable)
3746 return true;
3747 if (ss.type != 3 && ss.type != 7)
3748 return false;
3749 if (!ss.s)
3750 return false;
3751 if (ss.dpl != ss_rpl) /* DPL != RPL */
3752 return false;
3753 if (!ss.present)
3754 return false;
3755
3756 return true;
3757 }
3758
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3759 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3760 {
3761 struct kvm_segment var;
3762 unsigned int rpl;
3763
3764 vmx_get_segment(vcpu, &var, seg);
3765 rpl = var.selector & SEGMENT_RPL_MASK;
3766
3767 if (var.unusable)
3768 return true;
3769 if (!var.s)
3770 return false;
3771 if (!var.present)
3772 return false;
3773 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3774 if (var.dpl < rpl) /* DPL < RPL */
3775 return false;
3776 }
3777
3778 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3779 * rights flags
3780 */
3781 return true;
3782 }
3783
tr_valid(struct kvm_vcpu * vcpu)3784 static bool tr_valid(struct kvm_vcpu *vcpu)
3785 {
3786 struct kvm_segment tr;
3787
3788 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3789
3790 if (tr.unusable)
3791 return false;
3792 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3793 return false;
3794 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3795 return false;
3796 if (!tr.present)
3797 return false;
3798
3799 return true;
3800 }
3801
ldtr_valid(struct kvm_vcpu * vcpu)3802 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3803 {
3804 struct kvm_segment ldtr;
3805
3806 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3807
3808 if (ldtr.unusable)
3809 return true;
3810 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3811 return false;
3812 if (ldtr.type != 2)
3813 return false;
3814 if (!ldtr.present)
3815 return false;
3816
3817 return true;
3818 }
3819
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3820 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3821 {
3822 struct kvm_segment cs, ss;
3823
3824 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3825 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3826
3827 return ((cs.selector & SEGMENT_RPL_MASK) ==
3828 (ss.selector & SEGMENT_RPL_MASK));
3829 }
3830
3831 /*
3832 * Check if guest state is valid. Returns true if valid, false if
3833 * not.
3834 * We assume that registers are always usable
3835 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3836 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3837 {
3838 /* real mode guest state checks */
3839 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3840 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3841 return false;
3842 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3843 return false;
3844 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3845 return false;
3846 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3847 return false;
3848 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3849 return false;
3850 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3851 return false;
3852 } else {
3853 /* protected mode guest state checks */
3854 if (!cs_ss_rpl_check(vcpu))
3855 return false;
3856 if (!code_segment_valid(vcpu))
3857 return false;
3858 if (!stack_segment_valid(vcpu))
3859 return false;
3860 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3861 return false;
3862 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3863 return false;
3864 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3865 return false;
3866 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3867 return false;
3868 if (!tr_valid(vcpu))
3869 return false;
3870 if (!ldtr_valid(vcpu))
3871 return false;
3872 }
3873 /* TODO:
3874 * - Add checks on RIP
3875 * - Add checks on RFLAGS
3876 */
3877
3878 return true;
3879 }
3880
init_rmode_tss(struct kvm * kvm,void __user * ua)3881 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3882 {
3883 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3884 u16 data;
3885 int i;
3886
3887 for (i = 0; i < 3; i++) {
3888 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3889 return -EFAULT;
3890 }
3891
3892 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3893 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3894 return -EFAULT;
3895
3896 data = ~0;
3897 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3898 return -EFAULT;
3899
3900 return 0;
3901 }
3902
init_rmode_identity_map(struct kvm * kvm)3903 static int init_rmode_identity_map(struct kvm *kvm)
3904 {
3905 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3906 int i, r = 0;
3907 void __user *uaddr;
3908 u32 tmp;
3909
3910 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3911 mutex_lock(&kvm->slots_lock);
3912
3913 if (likely(kvm_vmx->ept_identity_pagetable_done))
3914 goto out;
3915
3916 if (!kvm_vmx->ept_identity_map_addr)
3917 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3918
3919 uaddr = __x86_set_memory_region(kvm,
3920 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3921 kvm_vmx->ept_identity_map_addr,
3922 PAGE_SIZE);
3923 if (IS_ERR(uaddr)) {
3924 r = PTR_ERR(uaddr);
3925 goto out;
3926 }
3927
3928 /* Set up identity-mapping pagetable for EPT in real mode */
3929 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3930 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3931 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3932 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3933 r = -EFAULT;
3934 goto out;
3935 }
3936 }
3937 kvm_vmx->ept_identity_pagetable_done = true;
3938
3939 out:
3940 mutex_unlock(&kvm->slots_lock);
3941 return r;
3942 }
3943
seg_setup(int seg)3944 static void seg_setup(int seg)
3945 {
3946 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3947 unsigned int ar;
3948
3949 vmcs_write16(sf->selector, 0);
3950 vmcs_writel(sf->base, 0);
3951 vmcs_write32(sf->limit, 0xffff);
3952 ar = 0x93;
3953 if (seg == VCPU_SREG_CS)
3954 ar |= 0x08; /* code segment */
3955
3956 vmcs_write32(sf->ar_bytes, ar);
3957 }
3958
allocate_vpid(void)3959 int allocate_vpid(void)
3960 {
3961 int vpid;
3962
3963 if (!enable_vpid)
3964 return 0;
3965 spin_lock(&vmx_vpid_lock);
3966 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3967 if (vpid < VMX_NR_VPIDS)
3968 __set_bit(vpid, vmx_vpid_bitmap);
3969 else
3970 vpid = 0;
3971 spin_unlock(&vmx_vpid_lock);
3972 return vpid;
3973 }
3974
free_vpid(int vpid)3975 void free_vpid(int vpid)
3976 {
3977 if (!enable_vpid || vpid == 0)
3978 return;
3979 spin_lock(&vmx_vpid_lock);
3980 __clear_bit(vpid, vmx_vpid_bitmap);
3981 spin_unlock(&vmx_vpid_lock);
3982 }
3983
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3984 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3985 {
3986 /*
3987 * When KVM is a nested hypervisor on top of Hyper-V and uses
3988 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3989 * bitmap has changed.
3990 */
3991 if (kvm_is_using_evmcs()) {
3992 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3993
3994 if (evmcs->hv_enlightenments_control.msr_bitmap)
3995 evmcs->hv_clean_fields &=
3996 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3997 }
3998
3999 vmx->nested.force_msr_bitmap_recalc = true;
4000 }
4001
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)4002 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
4003 {
4004 struct vcpu_vmx *vmx = to_vmx(vcpu);
4005 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4006
4007 if (!cpu_has_vmx_msr_bitmap())
4008 return;
4009
4010 vmx_msr_bitmap_l01_changed(vmx);
4011
4012 if (type & MSR_TYPE_R) {
4013 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
4014 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4015 else
4016 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4017 }
4018
4019 if (type & MSR_TYPE_W) {
4020 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
4021 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4022 else
4023 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4024 }
4025 }
4026
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4027 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4028 {
4029 /*
4030 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4031 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4032 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4033 */
4034 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4035 const int write_idx = read_idx + (0x800 / sizeof(u64));
4036 struct vcpu_vmx *vmx = to_vmx(vcpu);
4037 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4038 u8 mode;
4039
4040 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4041 return;
4042
4043 if (cpu_has_secondary_exec_ctrls() &&
4044 (secondary_exec_controls_get(vmx) &
4045 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4046 mode = MSR_BITMAP_MODE_X2APIC;
4047 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4048 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4049 } else {
4050 mode = 0;
4051 }
4052
4053 if (mode == vmx->x2apic_msr_bitmap_mode)
4054 return;
4055
4056 vmx->x2apic_msr_bitmap_mode = mode;
4057
4058 /*
4059 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4060 * registers (0x840 and above) intercepted, KVM doesn't support them.
4061 * Intercept all writes by default and poke holes as needed. Pass
4062 * through reads for all valid registers by default in x2APIC+APICv
4063 * mode, only the current timer count needs on-demand emulation by KVM.
4064 */
4065 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4066 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4067 else
4068 msr_bitmap[read_idx] = ~0ull;
4069 msr_bitmap[write_idx] = ~0ull;
4070
4071 /*
4072 * TPR reads and writes can be virtualized even if virtual interrupt
4073 * delivery is not in use.
4074 */
4075 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4076 !(mode & MSR_BITMAP_MODE_X2APIC));
4077
4078 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4079 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4080 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4081 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4082 if (enable_ipiv)
4083 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4084 }
4085 }
4086
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4087 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4088 {
4089 struct vcpu_vmx *vmx = to_vmx(vcpu);
4090 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4091 u32 i;
4092
4093 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4094 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4095 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4096 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4097 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4098 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4099 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4100 }
4101 }
4102
vmx_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4103 static void vmx_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4104 {
4105 bool intercept;
4106
4107 if (!cpu_has_vmx_msr_bitmap())
4108 return;
4109
4110 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
4111 #ifdef CONFIG_X86_64
4112 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
4113 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
4114 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
4115 #endif
4116 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
4117 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
4118 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
4119 if (kvm_cstate_in_guest(vcpu->kvm)) {
4120 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
4121 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
4122 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
4123 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
4124 }
4125 if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
4126 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
4127 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
4128 }
4129
4130 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4131 if (vmx_pt_mode_is_host_guest())
4132 pt_update_intercept_for_msr(vcpu);
4133
4134 if (vcpu->arch.xfd_no_write_intercept)
4135 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW);
4136
4137 vmx_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
4138 !to_vmx(vcpu)->spec_ctrl);
4139
4140 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
4141 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
4142 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
4143
4144 if (cpu_feature_enabled(X86_FEATURE_IBPB))
4145 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
4146 !guest_has_pred_cmd_msr(vcpu));
4147
4148 if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
4149 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
4150 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4151
4152 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
4153 intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
4154
4155 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, intercept);
4156 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, intercept);
4157 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, intercept);
4158 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, intercept);
4159 }
4160
4161 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK) || kvm_cpu_cap_has(X86_FEATURE_IBT)) {
4162 intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) &&
4163 !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
4164
4165 vmx_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, intercept);
4166 vmx_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, intercept);
4167 }
4168
4169 /*
4170 * x2APIC and LBR MSR intercepts are modified on-demand and cannot be
4171 * filtered by userspace.
4172 */
4173 }
4174
vmx_recalc_intercepts(struct kvm_vcpu * vcpu)4175 void vmx_recalc_intercepts(struct kvm_vcpu *vcpu)
4176 {
4177 vmx_recalc_msr_intercepts(vcpu);
4178 }
4179
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4180 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4181 int vector)
4182 {
4183 struct vcpu_vmx *vmx = to_vmx(vcpu);
4184
4185 /*
4186 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4187 * and freed, and must not be accessed outside of vcpu->mutex. The
4188 * vCPU's cached PI NV is valid if and only if posted interrupts
4189 * enabled in its vmcs12, i.e. checking the vector also checks that
4190 * L1 has enabled posted interrupts for L2.
4191 */
4192 if (is_guest_mode(vcpu) &&
4193 vector == vmx->nested.posted_intr_nv) {
4194 /*
4195 * If a posted intr is not recognized by hardware,
4196 * we will accomplish it in the next vmentry.
4197 */
4198 vmx->nested.pi_pending = true;
4199 kvm_make_request(KVM_REQ_EVENT, vcpu);
4200
4201 /*
4202 * This pairs with the smp_mb_*() after setting vcpu->mode in
4203 * vcpu_enter_guest() to guarantee the vCPU sees the event
4204 * request if triggering a posted interrupt "fails" because
4205 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4206 * the smb_wmb() in kvm_make_request() only ensures everything
4207 * done before making the request is visible when the request
4208 * is visible, it doesn't ensure ordering between the store to
4209 * vcpu->requests and the load from vcpu->mode.
4210 */
4211 smp_mb__after_atomic();
4212
4213 /* the PIR and ON have been set by L1. */
4214 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4215 return 0;
4216 }
4217 return -1;
4218 }
4219 /*
4220 * Send interrupt to vcpu via posted interrupt way.
4221 * 1. If target vcpu is running(non-root mode), send posted interrupt
4222 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4223 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4224 * interrupt from PIR in next vmentry.
4225 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4226 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4227 {
4228 struct vcpu_vt *vt = to_vt(vcpu);
4229 int r;
4230
4231 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4232 if (!r)
4233 return 0;
4234
4235 /* Note, this is called iff the local APIC is in-kernel. */
4236 if (!vcpu->arch.apic->apicv_active)
4237 return -1;
4238
4239 __vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector);
4240 return 0;
4241 }
4242
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4243 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4244 int trig_mode, int vector)
4245 {
4246 struct kvm_vcpu *vcpu = apic->vcpu;
4247
4248 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4249 kvm_lapic_set_irr(vector, apic);
4250 kvm_make_request(KVM_REQ_EVENT, vcpu);
4251 kvm_vcpu_kick(vcpu);
4252 } else {
4253 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4254 trig_mode, vector);
4255 }
4256 }
4257
4258 /*
4259 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4260 * will not change in the lifetime of the guest.
4261 * Note that host-state that does change is set elsewhere. E.g., host-state
4262 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4263 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4264 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4265 {
4266 u32 low32, high32;
4267 unsigned long tmpl;
4268 unsigned long cr0, cr3, cr4;
4269
4270 cr0 = read_cr0();
4271 WARN_ON(cr0 & X86_CR0_TS);
4272 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4273
4274 /*
4275 * Save the most likely value for this task's CR3 in the VMCS.
4276 * We can't use __get_current_cr3_fast() because we're not atomic.
4277 */
4278 cr3 = __read_cr3();
4279 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4280 vmx->loaded_vmcs->host_state.cr3 = cr3;
4281
4282 /* Save the most likely value for this task's CR4 in the VMCS. */
4283 cr4 = cr4_read_shadow();
4284 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4285 vmx->loaded_vmcs->host_state.cr4 = cr4;
4286
4287 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4288 #ifdef CONFIG_X86_64
4289 /*
4290 * Load null selectors, so we can avoid reloading them in
4291 * vmx_prepare_switch_to_host(), in case userspace uses
4292 * the null selectors too (the expected case).
4293 */
4294 vmcs_write16(HOST_DS_SELECTOR, 0);
4295 vmcs_write16(HOST_ES_SELECTOR, 0);
4296 #else
4297 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4298 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4299 #endif
4300 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4301 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4302
4303 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4304
4305 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4306
4307 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4308 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4309
4310 /*
4311 * SYSENTER is used for 32-bit system calls on either 32-bit or
4312 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4313 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4314 * have already done so!).
4315 */
4316 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4317 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4318
4319 rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4320 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4321
4322 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4323 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4324 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4325 }
4326
4327 if (cpu_has_load_ia32_efer())
4328 vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4329
4330 /*
4331 * Supervisor shadow stack is not enabled on host side, i.e.,
4332 * host IA32_S_CET.SHSTK_EN bit is guaranteed to 0 now, per SDM
4333 * description(RDSSP instruction), SSP is not readable in CPL0,
4334 * so resetting the two registers to 0s at VM-Exit does no harm
4335 * to kernel execution. When execution flow exits to userspace,
4336 * SSP is reloaded from IA32_PL3_SSP. Check SDM Vol.2A/B Chapter
4337 * 3 and 4 for details.
4338 */
4339 if (cpu_has_load_cet_ctrl()) {
4340 vmcs_writel(HOST_S_CET, kvm_host.s_cet);
4341 vmcs_writel(HOST_SSP, 0);
4342 vmcs_writel(HOST_INTR_SSP_TABLE, 0);
4343 }
4344 }
4345
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4346 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4347 {
4348 struct kvm_vcpu *vcpu = &vmx->vcpu;
4349
4350 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4351 ~vcpu->arch.cr4_guest_rsvd_bits;
4352 if (!enable_ept) {
4353 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4354 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4355 }
4356 if (is_guest_mode(&vmx->vcpu))
4357 vcpu->arch.cr4_guest_owned_bits &=
4358 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4359 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4360 }
4361
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4362 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4363 {
4364 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4365
4366 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4367 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4368
4369 if (!enable_vnmi)
4370 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4371
4372 if (!enable_preemption_timer)
4373 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4374
4375 return pin_based_exec_ctrl;
4376 }
4377
vmx_get_initial_vmentry_ctrl(void)4378 static u32 vmx_get_initial_vmentry_ctrl(void)
4379 {
4380 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4381
4382 if (vmx_pt_mode_is_system())
4383 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4384 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4385 /*
4386 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4387 */
4388 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4389 VM_ENTRY_LOAD_IA32_EFER |
4390 VM_ENTRY_IA32E_MODE);
4391
4392 return vmentry_ctrl;
4393 }
4394
vmx_get_initial_vmexit_ctrl(void)4395 static u32 vmx_get_initial_vmexit_ctrl(void)
4396 {
4397 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4398
4399 /*
4400 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4401 * nested virtualization and thus allowed to be set in vmcs12.
4402 */
4403 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4404 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4405
4406 if (vmx_pt_mode_is_system())
4407 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4408 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4409 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4410 return vmexit_ctrl &
4411 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4412 }
4413
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4414 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4415 {
4416 struct vcpu_vmx *vmx = to_vmx(vcpu);
4417
4418 if (is_guest_mode(vcpu)) {
4419 vmx->nested.update_vmcs01_apicv_status = true;
4420 return;
4421 }
4422
4423 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4424
4425 secondary_exec_controls_changebit(vmx,
4426 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4427 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY,
4428 kvm_vcpu_apicv_active(vcpu));
4429 if (enable_ipiv)
4430 tertiary_exec_controls_changebit(vmx, TERTIARY_EXEC_IPI_VIRT,
4431 kvm_vcpu_apicv_active(vcpu));
4432
4433 vmx_update_msr_bitmap_x2apic(vcpu);
4434 }
4435
vmx_exec_control(struct vcpu_vmx * vmx)4436 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4437 {
4438 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4439
4440 /*
4441 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4442 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4443 */
4444 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4445 CPU_BASED_USE_IO_BITMAPS |
4446 CPU_BASED_MONITOR_TRAP_FLAG |
4447 CPU_BASED_PAUSE_EXITING);
4448
4449 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4450 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4451 CPU_BASED_NMI_WINDOW_EXITING);
4452
4453 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4454 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4455
4456 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4457 exec_control &= ~CPU_BASED_TPR_SHADOW;
4458
4459 #ifdef CONFIG_X86_64
4460 if (exec_control & CPU_BASED_TPR_SHADOW)
4461 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4462 CPU_BASED_CR8_STORE_EXITING);
4463 else
4464 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4465 CPU_BASED_CR8_LOAD_EXITING;
4466 #endif
4467 /* No need to intercept CR3 access or INVPLG when using EPT. */
4468 if (enable_ept)
4469 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4470 CPU_BASED_CR3_STORE_EXITING |
4471 CPU_BASED_INVLPG_EXITING);
4472 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4473 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4474 CPU_BASED_MONITOR_EXITING);
4475 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4476 exec_control &= ~CPU_BASED_HLT_EXITING;
4477 return exec_control;
4478 }
4479
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4480 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4481 {
4482 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4483
4484 /*
4485 * IPI virtualization relies on APICv. Disable IPI virtualization if
4486 * APICv is inhibited.
4487 */
4488 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4489 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4490
4491 return exec_control;
4492 }
4493
4494 /*
4495 * Adjust a single secondary execution control bit to intercept/allow an
4496 * instruction in the guest. This is usually done based on whether or not a
4497 * feature has been exposed to the guest in order to correctly emulate faults.
4498 */
4499 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4500 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4501 u32 control, bool enabled, bool exiting)
4502 {
4503 /*
4504 * If the control is for an opt-in feature, clear the control if the
4505 * feature is not exposed to the guest, i.e. not enabled. If the
4506 * control is opt-out, i.e. an exiting control, clear the control if
4507 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4508 * disabled for the associated instruction. Note, the caller is
4509 * responsible presetting exec_control to set all supported bits.
4510 */
4511 if (enabled == exiting)
4512 *exec_control &= ~control;
4513
4514 /*
4515 * Update the nested MSR settings so that a nested VMM can/can't set
4516 * controls for features that are/aren't exposed to the guest.
4517 */
4518 if (nested &&
4519 kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4520 /*
4521 * All features that can be added or removed to VMX MSRs must
4522 * be supported in the first place for nested virtualization.
4523 */
4524 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4525 enabled = false;
4526
4527 if (enabled)
4528 vmx->nested.msrs.secondary_ctls_high |= control;
4529 else
4530 vmx->nested.msrs.secondary_ctls_high &= ~control;
4531 }
4532 }
4533
4534 /*
4535 * Wrapper macro for the common case of adjusting a secondary execution control
4536 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4537 * verifies that the control is actually supported by KVM and hardware.
4538 */
4539 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4540 ({ \
4541 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4542 bool __enabled; \
4543 \
4544 if (cpu_has_vmx_##name()) { \
4545 __enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name); \
4546 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4547 __enabled, exiting); \
4548 } \
4549 })
4550
4551 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4552 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4553 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4554
4555 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4556 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4557
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4558 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4559 {
4560 struct kvm_vcpu *vcpu = &vmx->vcpu;
4561
4562 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4563
4564 if (vmx_pt_mode_is_system())
4565 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4566 if (!cpu_need_virtualize_apic_accesses(vcpu))
4567 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4568 if (vmx->vpid == 0)
4569 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4570 if (!enable_ept) {
4571 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4572 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4573 enable_unrestricted_guest = 0;
4574 }
4575 if (!enable_unrestricted_guest)
4576 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4577 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4578 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4579 if (!kvm_vcpu_apicv_active(vcpu))
4580 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4581 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4582 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4583
4584 /*
4585 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4586 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4587 */
4588 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4589
4590 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4591 * in vmx_set_cr4. */
4592 exec_control &= ~SECONDARY_EXEC_DESC;
4593
4594 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4595 (handle_vmptrld).
4596 We can NOT enable shadow_vmcs here because we don't have yet
4597 a current VMCS12
4598 */
4599 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4600
4601 /*
4602 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4603 * it needs to be set here when dirty logging is already active, e.g.
4604 * if this vCPU was created after dirty logging was enabled.
4605 */
4606 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4607 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4608
4609 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4610
4611 /*
4612 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4613 * feature is exposed to the guest. This creates a virtualization hole
4614 * if both are supported in hardware but only one is exposed to the
4615 * guest, but letting the guest execute RDTSCP or RDPID when either one
4616 * is advertised is preferable to emulating the advertised instruction
4617 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4618 */
4619 if (cpu_has_vmx_rdtscp()) {
4620 bool rdpid_or_rdtscp_enabled =
4621 guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4622 guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4623
4624 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4625 SECONDARY_EXEC_ENABLE_RDTSCP,
4626 rdpid_or_rdtscp_enabled, false);
4627 }
4628
4629 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4630
4631 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4632 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4633
4634 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4635 ENABLE_USR_WAIT_PAUSE, false);
4636
4637 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4638 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4639
4640 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4641 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4642
4643 return exec_control;
4644 }
4645
vmx_get_pid_table_order(struct kvm * kvm)4646 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4647 {
4648 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4649 }
4650
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4651 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4652 {
4653 struct page *pages;
4654 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4655
4656 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4657 return 0;
4658
4659 if (kvm_vmx->pid_table)
4660 return 0;
4661
4662 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4663 vmx_get_pid_table_order(kvm));
4664 if (!pages)
4665 return -ENOMEM;
4666
4667 kvm_vmx->pid_table = (void *)page_address(pages);
4668 return 0;
4669 }
4670
vmx_vcpu_precreate(struct kvm * kvm)4671 int vmx_vcpu_precreate(struct kvm *kvm)
4672 {
4673 return vmx_alloc_ipiv_pid_table(kvm);
4674 }
4675
4676 #define VMX_XSS_EXIT_BITMAP 0
4677
init_vmcs(struct vcpu_vmx * vmx)4678 static void init_vmcs(struct vcpu_vmx *vmx)
4679 {
4680 struct kvm *kvm = vmx->vcpu.kvm;
4681 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4682
4683 if (nested)
4684 nested_vmx_set_vmcs_shadowing_bitmap();
4685
4686 if (cpu_has_vmx_msr_bitmap())
4687 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4688
4689 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4690
4691 /* Control */
4692 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4693
4694 exec_controls_set(vmx, vmx_exec_control(vmx));
4695
4696 if (cpu_has_secondary_exec_ctrls()) {
4697 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4698 if (vmx->ve_info)
4699 vmcs_write64(VE_INFORMATION_ADDRESS,
4700 __pa(vmx->ve_info));
4701 }
4702
4703 if (cpu_has_tertiary_exec_ctrls())
4704 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4705
4706 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4707 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4708 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4709 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4710 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4711
4712 vmcs_write16(GUEST_INTR_STATUS, 0);
4713
4714 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4715 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc)));
4716 }
4717
4718 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4719 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4720 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4721 }
4722
4723 if (!kvm_pause_in_guest(kvm)) {
4724 vmcs_write32(PLE_GAP, ple_gap);
4725 vmx->ple_window = ple_window;
4726 vmx->ple_window_dirty = true;
4727 }
4728
4729 if (kvm_notify_vmexit_enabled(kvm))
4730 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4731
4732 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4733 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4734 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4735
4736 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4737 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4738 vmx_set_constant_host_state(vmx);
4739 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4740 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4741
4742 if (cpu_has_vmx_vmfunc())
4743 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4744
4745 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4746 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4747 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4748 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4749 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4750
4751 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4752 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4753
4754 vm_exit_controls_set(vmx, vmx_get_initial_vmexit_ctrl());
4755
4756 /* 22.2.1, 20.8.1 */
4757 vm_entry_controls_set(vmx, vmx_get_initial_vmentry_ctrl());
4758
4759 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4760 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4761
4762 set_cr4_guest_host_mask(vmx);
4763
4764 if (vmx->vpid != 0)
4765 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4766
4767 if (cpu_has_vmx_xsaves())
4768 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4769
4770 if (enable_pml) {
4771 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4772 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4773 }
4774
4775 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4776
4777 if (vmx_pt_mode_is_host_guest()) {
4778 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4779 /* Bit[6~0] are forced to 1, writes are ignored. */
4780 vmx->pt_desc.guest.output_mask = 0x7F;
4781 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4782 }
4783
4784 vmcs_write32(GUEST_SYSENTER_CS, 0);
4785 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4786 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4787
4788 vmx_guest_debugctl_write(&vmx->vcpu, 0);
4789
4790 if (cpu_has_vmx_tpr_shadow()) {
4791 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4792 if (cpu_need_tpr_shadow(&vmx->vcpu))
4793 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4794 __pa(vmx->vcpu.arch.apic->regs));
4795 vmcs_write32(TPR_THRESHOLD, 0);
4796 }
4797
4798 vmx_setup_uret_msrs(vmx);
4799 }
4800
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4801 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4802 {
4803 struct vcpu_vmx *vmx = to_vmx(vcpu);
4804
4805 init_vmcs(vmx);
4806
4807 if (nested &&
4808 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4809 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4810
4811 vcpu_setup_sgx_lepubkeyhash(vcpu);
4812
4813 vmx->nested.posted_intr_nv = -1;
4814 vmx->nested.vmxon_ptr = INVALID_GPA;
4815 vmx->nested.current_vmptr = INVALID_GPA;
4816
4817 #ifdef CONFIG_KVM_HYPERV
4818 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4819 #endif
4820
4821 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4822 vcpu->arch.microcode_version = 0x100000000ULL;
4823 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4824
4825 /*
4826 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4827 * or POSTED_INTR_WAKEUP_VECTOR.
4828 */
4829 vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
4830 __pi_set_sn(&vmx->vt.pi_desc);
4831 }
4832
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4833 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4834 {
4835 struct vcpu_vmx *vmx = to_vmx(vcpu);
4836
4837 if (!init_event)
4838 __vmx_vcpu_reset(vcpu);
4839
4840 vmx->rmode.vm86_active = 0;
4841 vmx->spec_ctrl = 0;
4842
4843 vmx->msr_ia32_umwait_control = 0;
4844
4845 vmx->hv_deadline_tsc = -1;
4846 kvm_set_cr8(vcpu, 0);
4847
4848 seg_setup(VCPU_SREG_CS);
4849 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4850 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4851
4852 seg_setup(VCPU_SREG_DS);
4853 seg_setup(VCPU_SREG_ES);
4854 seg_setup(VCPU_SREG_FS);
4855 seg_setup(VCPU_SREG_GS);
4856 seg_setup(VCPU_SREG_SS);
4857
4858 vmcs_write16(GUEST_TR_SELECTOR, 0);
4859 vmcs_writel(GUEST_TR_BASE, 0);
4860 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4861 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4862
4863 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4864 vmcs_writel(GUEST_LDTR_BASE, 0);
4865 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4866 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4867
4868 vmcs_writel(GUEST_GDTR_BASE, 0);
4869 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4870
4871 vmcs_writel(GUEST_IDTR_BASE, 0);
4872 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4873
4874 vmx_segment_cache_clear(vmx);
4875 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4876
4877 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4878 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4879 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4880 if (kvm_mpx_supported())
4881 vmcs_write64(GUEST_BNDCFGS, 0);
4882
4883 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4884
4885 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
4886 vmcs_writel(GUEST_SSP, 0);
4887 vmcs_writel(GUEST_INTR_SSP_TABLE, 0);
4888 }
4889 if (kvm_cpu_cap_has(X86_FEATURE_IBT) ||
4890 kvm_cpu_cap_has(X86_FEATURE_SHSTK))
4891 vmcs_writel(GUEST_S_CET, 0);
4892
4893 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4894
4895 vpid_sync_context(vmx->vpid);
4896
4897 vmx_update_fb_clear_dis(vcpu, vmx);
4898 }
4899
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4900 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4901 {
4902 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4903 }
4904
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4905 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4906 {
4907 if (!enable_vnmi ||
4908 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4909 vmx_enable_irq_window(vcpu);
4910 return;
4911 }
4912
4913 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4914 }
4915
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4916 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4917 {
4918 struct vcpu_vmx *vmx = to_vmx(vcpu);
4919 uint32_t intr;
4920 int irq = vcpu->arch.interrupt.nr;
4921
4922 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4923
4924 ++vcpu->stat.irq_injections;
4925 if (vmx->rmode.vm86_active) {
4926 int inc_eip = 0;
4927 if (vcpu->arch.interrupt.soft)
4928 inc_eip = vcpu->arch.event_exit_inst_len;
4929 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4930 return;
4931 }
4932 intr = irq | INTR_INFO_VALID_MASK;
4933 if (vcpu->arch.interrupt.soft) {
4934 intr |= INTR_TYPE_SOFT_INTR;
4935 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4936 vmx->vcpu.arch.event_exit_inst_len);
4937 } else
4938 intr |= INTR_TYPE_EXT_INTR;
4939 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4940
4941 vmx_clear_hlt(vcpu);
4942 }
4943
vmx_inject_nmi(struct kvm_vcpu * vcpu)4944 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4945 {
4946 struct vcpu_vmx *vmx = to_vmx(vcpu);
4947
4948 if (!enable_vnmi) {
4949 /*
4950 * Tracking the NMI-blocked state in software is built upon
4951 * finding the next open IRQ window. This, in turn, depends on
4952 * well-behaving guests: They have to keep IRQs disabled at
4953 * least as long as the NMI handler runs. Otherwise we may
4954 * cause NMI nesting, maybe breaking the guest. But as this is
4955 * highly unlikely, we can live with the residual risk.
4956 */
4957 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4958 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4959 }
4960
4961 ++vcpu->stat.nmi_injections;
4962 vmx->loaded_vmcs->nmi_known_unmasked = false;
4963
4964 if (vmx->rmode.vm86_active) {
4965 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4966 return;
4967 }
4968
4969 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4970 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4971
4972 vmx_clear_hlt(vcpu);
4973 }
4974
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4975 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4976 {
4977 struct vcpu_vmx *vmx = to_vmx(vcpu);
4978 bool masked;
4979
4980 if (!enable_vnmi)
4981 return vmx->loaded_vmcs->soft_vnmi_blocked;
4982 if (vmx->loaded_vmcs->nmi_known_unmasked)
4983 return false;
4984 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4985 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4986 return masked;
4987 }
4988
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4989 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4990 {
4991 struct vcpu_vmx *vmx = to_vmx(vcpu);
4992
4993 if (!enable_vnmi) {
4994 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4995 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4996 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4997 }
4998 } else {
4999 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5000 if (masked)
5001 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5002 GUEST_INTR_STATE_NMI);
5003 else
5004 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5005 GUEST_INTR_STATE_NMI);
5006 }
5007 }
5008
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5009 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5010 {
5011 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5012 return false;
5013
5014 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5015 return true;
5016
5017 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5018 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5019 GUEST_INTR_STATE_NMI));
5020 }
5021
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5022 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5023 {
5024 if (to_vmx(vcpu)->nested.nested_run_pending)
5025 return -EBUSY;
5026
5027 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5028 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5029 return -EBUSY;
5030
5031 return !vmx_nmi_blocked(vcpu);
5032 }
5033
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5034 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5035 {
5036 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5037 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5038 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5039 }
5040
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5041 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5042 {
5043 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5044 return false;
5045
5046 return __vmx_interrupt_blocked(vcpu);
5047 }
5048
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5049 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5050 {
5051 if (to_vmx(vcpu)->nested.nested_run_pending)
5052 return -EBUSY;
5053
5054 /*
5055 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5056 * e.g. if the IRQ arrived asynchronously after checking nested events.
5057 */
5058 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5059 return -EBUSY;
5060
5061 return !vmx_interrupt_blocked(vcpu);
5062 }
5063
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5064 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5065 {
5066 void __user *ret;
5067
5068 if (enable_unrestricted_guest)
5069 return 0;
5070
5071 mutex_lock(&kvm->slots_lock);
5072 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5073 PAGE_SIZE * 3);
5074 mutex_unlock(&kvm->slots_lock);
5075
5076 if (IS_ERR(ret))
5077 return PTR_ERR(ret);
5078
5079 to_kvm_vmx(kvm)->tss_addr = addr;
5080
5081 return init_rmode_tss(kvm, ret);
5082 }
5083
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5084 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5085 {
5086 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5087 return 0;
5088 }
5089
rmode_exception(struct kvm_vcpu * vcpu,int vec)5090 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5091 {
5092 switch (vec) {
5093 case BP_VECTOR:
5094 /*
5095 * Update instruction length as we may reinject the exception
5096 * from user space while in guest debugging mode.
5097 */
5098 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5099 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5100 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5101 return false;
5102 fallthrough;
5103 case DB_VECTOR:
5104 return !(vcpu->guest_debug &
5105 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5106 case DE_VECTOR:
5107 case OF_VECTOR:
5108 case BR_VECTOR:
5109 case UD_VECTOR:
5110 case DF_VECTOR:
5111 case SS_VECTOR:
5112 case GP_VECTOR:
5113 case MF_VECTOR:
5114 return true;
5115 }
5116 return false;
5117 }
5118
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5119 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5120 int vec, u32 err_code)
5121 {
5122 /*
5123 * Instruction with address size override prefix opcode 0x67
5124 * Cause the #SS fault with 0 error code in VM86 mode.
5125 */
5126 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5127 if (kvm_emulate_instruction(vcpu, 0)) {
5128 if (vcpu->arch.halt_request) {
5129 vcpu->arch.halt_request = 0;
5130 return kvm_emulate_halt_noskip(vcpu);
5131 }
5132 return 1;
5133 }
5134 return 0;
5135 }
5136
5137 /*
5138 * Forward all other exceptions that are valid in real mode.
5139 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5140 * the required debugging infrastructure rework.
5141 */
5142 kvm_queue_exception(vcpu, vec);
5143 return 1;
5144 }
5145
handle_machine_check(struct kvm_vcpu * vcpu)5146 static int handle_machine_check(struct kvm_vcpu *vcpu)
5147 {
5148 /* handled by vmx_vcpu_run() */
5149 return 1;
5150 }
5151
5152 /*
5153 * If the host has split lock detection disabled, then #AC is
5154 * unconditionally injected into the guest, which is the pre split lock
5155 * detection behaviour.
5156 *
5157 * If the host has split lock detection enabled then #AC is
5158 * only injected into the guest when:
5159 * - Guest CPL == 3 (user mode)
5160 * - Guest has #AC detection enabled in CR0
5161 * - Guest EFLAGS has AC bit set
5162 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5163 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5164 {
5165 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5166 return true;
5167
5168 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5169 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5170 }
5171
is_xfd_nm_fault(struct kvm_vcpu * vcpu)5172 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5173 {
5174 return vcpu->arch.guest_fpu.fpstate->xfd &&
5175 !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5176 }
5177
handle_exception_nmi(struct kvm_vcpu * vcpu)5178 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5179 {
5180 struct vcpu_vmx *vmx = to_vmx(vcpu);
5181 struct kvm_run *kvm_run = vcpu->run;
5182 u32 intr_info, ex_no, error_code;
5183 unsigned long cr2, dr6;
5184 u32 vect_info;
5185
5186 vect_info = vmx->idt_vectoring_info;
5187 intr_info = vmx_get_intr_info(vcpu);
5188
5189 /*
5190 * Machine checks are handled by handle_exception_irqoff(), or by
5191 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5192 * vmx_vcpu_enter_exit().
5193 */
5194 if (is_machine_check(intr_info) || is_nmi(intr_info))
5195 return 1;
5196
5197 /*
5198 * Queue the exception here instead of in handle_nm_fault_irqoff().
5199 * This ensures the nested_vmx check is not skipped so vmexit can
5200 * be reflected to L1 (when it intercepts #NM) before reaching this
5201 * point.
5202 */
5203 if (is_nm_fault(intr_info)) {
5204 kvm_queue_exception_p(vcpu, NM_VECTOR,
5205 is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5206 return 1;
5207 }
5208
5209 if (is_invalid_opcode(intr_info))
5210 return handle_ud(vcpu);
5211
5212 if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5213 struct vmx_ve_information *ve_info = vmx->ve_info;
5214
5215 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5216 "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5217 dump_vmcs(vcpu);
5218 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5219 return 1;
5220 }
5221
5222 error_code = 0;
5223 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5224 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5225
5226 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5227 WARN_ON_ONCE(!enable_vmware_backdoor);
5228
5229 /*
5230 * VMware backdoor emulation on #GP interception only handles
5231 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5232 * error code on #GP.
5233 */
5234 if (error_code) {
5235 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5236 return 1;
5237 }
5238 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5239 }
5240
5241 /*
5242 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5243 * MMIO, it is better to report an internal error.
5244 * See the comments in vmx_handle_exit.
5245 */
5246 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5247 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5248 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5249 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5250 vcpu->run->internal.ndata = 4;
5251 vcpu->run->internal.data[0] = vect_info;
5252 vcpu->run->internal.data[1] = intr_info;
5253 vcpu->run->internal.data[2] = error_code;
5254 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5255 return 0;
5256 }
5257
5258 if (is_page_fault(intr_info)) {
5259 cr2 = vmx_get_exit_qual(vcpu);
5260 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5261 /*
5262 * EPT will cause page fault only if we need to
5263 * detect illegal GPAs.
5264 */
5265 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5266 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5267 return 1;
5268 } else
5269 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5270 }
5271
5272 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5273
5274 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5275 return handle_rmode_exception(vcpu, ex_no, error_code);
5276
5277 switch (ex_no) {
5278 case DB_VECTOR:
5279 dr6 = vmx_get_exit_qual(vcpu);
5280 if (!(vcpu->guest_debug &
5281 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5282 /*
5283 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5284 * instruction. ICEBP generates a trap-like #DB, but
5285 * despite its interception control being tied to #DB,
5286 * is an instruction intercept, i.e. the VM-Exit occurs
5287 * on the ICEBP itself. Use the inner "skip" helper to
5288 * avoid single-step #DB and MTF updates, as ICEBP is
5289 * higher priority. Note, skipping ICEBP still clears
5290 * STI and MOVSS blocking.
5291 *
5292 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5293 * if single-step is enabled in RFLAGS and STI or MOVSS
5294 * blocking is active, as the CPU doesn't set the bit
5295 * on VM-Exit due to #DB interception. VM-Entry has a
5296 * consistency check that a single-step #DB is pending
5297 * in this scenario as the previous instruction cannot
5298 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5299 * don't modify RFLAGS), therefore the one instruction
5300 * delay when activating single-step breakpoints must
5301 * have already expired. Note, the CPU sets/clears BS
5302 * as appropriate for all other VM-Exits types.
5303 */
5304 if (is_icebp(intr_info))
5305 WARN_ON(!skip_emulated_instruction(vcpu));
5306 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5307 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5308 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5309 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5310 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5311
5312 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5313 return 1;
5314 }
5315 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5316 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5317 fallthrough;
5318 case BP_VECTOR:
5319 /*
5320 * Update instruction length as we may reinject #BP from
5321 * user space while in guest debugging mode. Reading it for
5322 * #DB as well causes no harm, it is not used in that case.
5323 */
5324 vmx->vcpu.arch.event_exit_inst_len =
5325 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5326 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5327 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5328 kvm_run->debug.arch.exception = ex_no;
5329 break;
5330 case AC_VECTOR:
5331 if (vmx_guest_inject_ac(vcpu)) {
5332 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5333 return 1;
5334 }
5335
5336 /*
5337 * Handle split lock. Depending on detection mode this will
5338 * either warn and disable split lock detection for this
5339 * task or force SIGBUS on it.
5340 */
5341 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5342 return 1;
5343 fallthrough;
5344 default:
5345 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5346 kvm_run->ex.exception = ex_no;
5347 kvm_run->ex.error_code = error_code;
5348 break;
5349 }
5350 return 0;
5351 }
5352
handle_external_interrupt(struct kvm_vcpu * vcpu)5353 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5354 {
5355 ++vcpu->stat.irq_exits;
5356 return 1;
5357 }
5358
handle_triple_fault(struct kvm_vcpu * vcpu)5359 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5360 {
5361 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5362 vcpu->mmio_needed = 0;
5363 return 0;
5364 }
5365
handle_io(struct kvm_vcpu * vcpu)5366 static int handle_io(struct kvm_vcpu *vcpu)
5367 {
5368 unsigned long exit_qualification;
5369 int size, in, string;
5370 unsigned port;
5371
5372 exit_qualification = vmx_get_exit_qual(vcpu);
5373 string = (exit_qualification & 16) != 0;
5374
5375 ++vcpu->stat.io_exits;
5376
5377 if (string)
5378 return kvm_emulate_instruction(vcpu, 0);
5379
5380 port = exit_qualification >> 16;
5381 size = (exit_qualification & 7) + 1;
5382 in = (exit_qualification & 8) != 0;
5383
5384 return kvm_fast_pio(vcpu, size, port, in);
5385 }
5386
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5387 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5388 {
5389 /*
5390 * Patch in the VMCALL instruction:
5391 */
5392 hypercall[0] = 0x0f;
5393 hypercall[1] = 0x01;
5394 hypercall[2] = 0xc1;
5395 }
5396
5397 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5398 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5399 {
5400 if (is_guest_mode(vcpu)) {
5401 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5402 unsigned long orig_val = val;
5403
5404 /*
5405 * We get here when L2 changed cr0 in a way that did not change
5406 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5407 * but did change L0 shadowed bits. So we first calculate the
5408 * effective cr0 value that L1 would like to write into the
5409 * hardware. It consists of the L2-owned bits from the new
5410 * value combined with the L1-owned bits from L1's guest_cr0.
5411 */
5412 val = (val & ~vmcs12->cr0_guest_host_mask) |
5413 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5414
5415 if (kvm_set_cr0(vcpu, val))
5416 return 1;
5417 vmcs_writel(CR0_READ_SHADOW, orig_val);
5418 return 0;
5419 } else {
5420 return kvm_set_cr0(vcpu, val);
5421 }
5422 }
5423
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5424 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5425 {
5426 if (is_guest_mode(vcpu)) {
5427 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5428 unsigned long orig_val = val;
5429
5430 /* analogously to handle_set_cr0 */
5431 val = (val & ~vmcs12->cr4_guest_host_mask) |
5432 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5433 if (kvm_set_cr4(vcpu, val))
5434 return 1;
5435 vmcs_writel(CR4_READ_SHADOW, orig_val);
5436 return 0;
5437 } else
5438 return kvm_set_cr4(vcpu, val);
5439 }
5440
handle_desc(struct kvm_vcpu * vcpu)5441 static int handle_desc(struct kvm_vcpu *vcpu)
5442 {
5443 /*
5444 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5445 * and other code needs to be updated if UMIP can be guest owned.
5446 */
5447 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5448
5449 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5450 return kvm_emulate_instruction(vcpu, 0);
5451 }
5452
handle_cr(struct kvm_vcpu * vcpu)5453 static int handle_cr(struct kvm_vcpu *vcpu)
5454 {
5455 unsigned long exit_qualification, val;
5456 int cr;
5457 int reg;
5458 int err;
5459 int ret;
5460
5461 exit_qualification = vmx_get_exit_qual(vcpu);
5462 cr = exit_qualification & 15;
5463 reg = (exit_qualification >> 8) & 15;
5464 switch ((exit_qualification >> 4) & 3) {
5465 case 0: /* mov to cr */
5466 val = kvm_register_read(vcpu, reg);
5467 trace_kvm_cr_write(cr, val);
5468 switch (cr) {
5469 case 0:
5470 err = handle_set_cr0(vcpu, val);
5471 return kvm_complete_insn_gp(vcpu, err);
5472 case 3:
5473 WARN_ON_ONCE(enable_unrestricted_guest);
5474
5475 err = kvm_set_cr3(vcpu, val);
5476 return kvm_complete_insn_gp(vcpu, err);
5477 case 4:
5478 err = handle_set_cr4(vcpu, val);
5479 return kvm_complete_insn_gp(vcpu, err);
5480 case 8: {
5481 u8 cr8_prev = kvm_get_cr8(vcpu);
5482 u8 cr8 = (u8)val;
5483 err = kvm_set_cr8(vcpu, cr8);
5484 ret = kvm_complete_insn_gp(vcpu, err);
5485 if (lapic_in_kernel(vcpu))
5486 return ret;
5487 if (cr8_prev <= cr8)
5488 return ret;
5489 /*
5490 * TODO: we might be squashing a
5491 * KVM_GUESTDBG_SINGLESTEP-triggered
5492 * KVM_EXIT_DEBUG here.
5493 */
5494 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5495 return 0;
5496 }
5497 }
5498 break;
5499 case 2: /* clts */
5500 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5501 return -EIO;
5502 case 1: /*mov from cr*/
5503 switch (cr) {
5504 case 3:
5505 WARN_ON_ONCE(enable_unrestricted_guest);
5506
5507 val = kvm_read_cr3(vcpu);
5508 kvm_register_write(vcpu, reg, val);
5509 trace_kvm_cr_read(cr, val);
5510 return kvm_skip_emulated_instruction(vcpu);
5511 case 8:
5512 val = kvm_get_cr8(vcpu);
5513 kvm_register_write(vcpu, reg, val);
5514 trace_kvm_cr_read(cr, val);
5515 return kvm_skip_emulated_instruction(vcpu);
5516 }
5517 break;
5518 case 3: /* lmsw */
5519 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5520 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5521 kvm_lmsw(vcpu, val);
5522
5523 return kvm_skip_emulated_instruction(vcpu);
5524 default:
5525 break;
5526 }
5527 vcpu->run->exit_reason = 0;
5528 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5529 (int)(exit_qualification >> 4) & 3, cr);
5530 return 0;
5531 }
5532
handle_dr(struct kvm_vcpu * vcpu)5533 static int handle_dr(struct kvm_vcpu *vcpu)
5534 {
5535 unsigned long exit_qualification;
5536 int dr, dr7, reg;
5537 int err = 1;
5538
5539 exit_qualification = vmx_get_exit_qual(vcpu);
5540 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5541
5542 /* First, if DR does not exist, trigger UD */
5543 if (!kvm_require_dr(vcpu, dr))
5544 return 1;
5545
5546 if (vmx_get_cpl(vcpu) > 0)
5547 goto out;
5548
5549 dr7 = vmcs_readl(GUEST_DR7);
5550 if (dr7 & DR7_GD) {
5551 /*
5552 * As the vm-exit takes precedence over the debug trap, we
5553 * need to emulate the latter, either for the host or the
5554 * guest debugging itself.
5555 */
5556 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5557 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5558 vcpu->run->debug.arch.dr7 = dr7;
5559 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5560 vcpu->run->debug.arch.exception = DB_VECTOR;
5561 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5562 return 0;
5563 } else {
5564 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5565 return 1;
5566 }
5567 }
5568
5569 if (vcpu->guest_debug == 0) {
5570 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5571
5572 /*
5573 * No more DR vmexits; force a reload of the debug registers
5574 * and reenter on this instruction. The next vmexit will
5575 * retrieve the full state of the debug registers.
5576 */
5577 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5578 return 1;
5579 }
5580
5581 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5582 if (exit_qualification & TYPE_MOV_FROM_DR) {
5583 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5584 err = 0;
5585 } else {
5586 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5587 }
5588
5589 out:
5590 return kvm_complete_insn_gp(vcpu, err);
5591 }
5592
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5593 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5594 {
5595 get_debugreg(vcpu->arch.db[0], 0);
5596 get_debugreg(vcpu->arch.db[1], 1);
5597 get_debugreg(vcpu->arch.db[2], 2);
5598 get_debugreg(vcpu->arch.db[3], 3);
5599 get_debugreg(vcpu->arch.dr6, 6);
5600 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5601
5602 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5603 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5604
5605 /*
5606 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5607 * a stale dr6 from the guest.
5608 */
5609 set_debugreg(DR6_RESERVED, 6);
5610 }
5611
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5612 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5613 {
5614 vmcs_writel(GUEST_DR7, val);
5615 }
5616
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5617 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5618 {
5619 kvm_apic_update_ppr(vcpu);
5620 return 1;
5621 }
5622
handle_interrupt_window(struct kvm_vcpu * vcpu)5623 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5624 {
5625 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5626
5627 kvm_make_request(KVM_REQ_EVENT, vcpu);
5628
5629 ++vcpu->stat.irq_window_exits;
5630 return 1;
5631 }
5632
handle_invlpg(struct kvm_vcpu * vcpu)5633 static int handle_invlpg(struct kvm_vcpu *vcpu)
5634 {
5635 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5636
5637 kvm_mmu_invlpg(vcpu, exit_qualification);
5638 return kvm_skip_emulated_instruction(vcpu);
5639 }
5640
handle_apic_access(struct kvm_vcpu * vcpu)5641 static int handle_apic_access(struct kvm_vcpu *vcpu)
5642 {
5643 if (likely(fasteoi)) {
5644 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5645 int access_type, offset;
5646
5647 access_type = exit_qualification & APIC_ACCESS_TYPE;
5648 offset = exit_qualification & APIC_ACCESS_OFFSET;
5649 /*
5650 * Sane guest uses MOV to write EOI, with written value
5651 * not cared. So make a short-circuit here by avoiding
5652 * heavy instruction emulation.
5653 */
5654 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5655 (offset == APIC_EOI)) {
5656 kvm_lapic_set_eoi(vcpu);
5657 return kvm_skip_emulated_instruction(vcpu);
5658 }
5659 }
5660 return kvm_emulate_instruction(vcpu, 0);
5661 }
5662
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5663 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5664 {
5665 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5666 int vector = exit_qualification & 0xff;
5667
5668 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5669 kvm_apic_set_eoi_accelerated(vcpu, vector);
5670 return 1;
5671 }
5672
handle_apic_write(struct kvm_vcpu * vcpu)5673 static int handle_apic_write(struct kvm_vcpu *vcpu)
5674 {
5675 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5676
5677 /*
5678 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5679 * hardware has done any necessary aliasing, offset adjustments, etc...
5680 * for the access. I.e. the correct value has already been written to
5681 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5682 * retrieve the register value and emulate the access.
5683 */
5684 u32 offset = exit_qualification & 0xff0;
5685
5686 kvm_apic_write_nodecode(vcpu, offset);
5687 return 1;
5688 }
5689
handle_task_switch(struct kvm_vcpu * vcpu)5690 static int handle_task_switch(struct kvm_vcpu *vcpu)
5691 {
5692 struct vcpu_vmx *vmx = to_vmx(vcpu);
5693 unsigned long exit_qualification;
5694 bool has_error_code = false;
5695 u32 error_code = 0;
5696 u16 tss_selector;
5697 int reason, type, idt_v, idt_index;
5698
5699 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5700 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5701 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5702
5703 exit_qualification = vmx_get_exit_qual(vcpu);
5704
5705 reason = (u32)exit_qualification >> 30;
5706 if (reason == TASK_SWITCH_GATE && idt_v) {
5707 switch (type) {
5708 case INTR_TYPE_NMI_INTR:
5709 vcpu->arch.nmi_injected = false;
5710 vmx_set_nmi_mask(vcpu, true);
5711 break;
5712 case INTR_TYPE_EXT_INTR:
5713 case INTR_TYPE_SOFT_INTR:
5714 kvm_clear_interrupt_queue(vcpu);
5715 break;
5716 case INTR_TYPE_HARD_EXCEPTION:
5717 if (vmx->idt_vectoring_info &
5718 VECTORING_INFO_DELIVER_CODE_MASK) {
5719 has_error_code = true;
5720 error_code =
5721 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5722 }
5723 fallthrough;
5724 case INTR_TYPE_SOFT_EXCEPTION:
5725 kvm_clear_exception_queue(vcpu);
5726 break;
5727 default:
5728 break;
5729 }
5730 }
5731 tss_selector = exit_qualification;
5732
5733 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5734 type != INTR_TYPE_EXT_INTR &&
5735 type != INTR_TYPE_NMI_INTR))
5736 WARN_ON(!skip_emulated_instruction(vcpu));
5737
5738 /*
5739 * TODO: What about debug traps on tss switch?
5740 * Are we supposed to inject them and update dr6?
5741 */
5742 return kvm_task_switch(vcpu, tss_selector,
5743 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5744 reason, has_error_code, error_code);
5745 }
5746
handle_ept_violation(struct kvm_vcpu * vcpu)5747 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5748 {
5749 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5750 gpa_t gpa;
5751
5752 /*
5753 * EPT violation happened while executing iret from NMI,
5754 * "blocked by NMI" bit has to be set before next VM entry.
5755 * There are errata that may cause this bit to not be set:
5756 * AAK134, BY25.
5757 */
5758 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5759 enable_vnmi &&
5760 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5761 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5762
5763 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5764 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5765
5766 /*
5767 * Check that the GPA doesn't exceed physical memory limits, as that is
5768 * a guest page fault. We have to emulate the instruction here, because
5769 * if the illegal address is that of a paging structure, then
5770 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5771 * would also use advanced VM-exit information for EPT violations to
5772 * reconstruct the page fault error code.
5773 */
5774 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5775 return kvm_emulate_instruction(vcpu, 0);
5776
5777 return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification);
5778 }
5779
handle_ept_misconfig(struct kvm_vcpu * vcpu)5780 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5781 {
5782 gpa_t gpa;
5783
5784 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5785 return 1;
5786
5787 /*
5788 * A nested guest cannot optimize MMIO vmexits, because we have an
5789 * nGPA here instead of the required GPA.
5790 */
5791 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5792 if (!is_guest_mode(vcpu) &&
5793 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5794 trace_kvm_fast_mmio(gpa);
5795 return kvm_skip_emulated_instruction(vcpu);
5796 }
5797
5798 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5799 }
5800
handle_nmi_window(struct kvm_vcpu * vcpu)5801 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5802 {
5803 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5804 return -EIO;
5805
5806 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5807 ++vcpu->stat.nmi_window_exits;
5808 kvm_make_request(KVM_REQ_EVENT, vcpu);
5809
5810 return 1;
5811 }
5812
5813 /*
5814 * Returns true if emulation is required (due to the vCPU having invalid state
5815 * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5816 * current vCPU state.
5817 */
vmx_unhandleable_emulation_required(struct kvm_vcpu * vcpu)5818 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5819 {
5820 struct vcpu_vmx *vmx = to_vmx(vcpu);
5821
5822 if (!vmx->vt.emulation_required)
5823 return false;
5824
5825 /*
5826 * It is architecturally impossible for emulation to be required when a
5827 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5828 * guest state is invalid and unrestricted guest is disabled, i.e. KVM
5829 * should synthesize VM-Fail instead emulation L2 code. This path is
5830 * only reachable if userspace modifies L2 guest state after KVM has
5831 * performed the nested VM-Enter consistency checks.
5832 */
5833 if (vmx->nested.nested_run_pending)
5834 return true;
5835
5836 /*
5837 * KVM only supports emulating exceptions if the vCPU is in Real Mode.
5838 * If emulation is required, KVM can't perform a successful VM-Enter to
5839 * inject the exception.
5840 */
5841 return !vmx->rmode.vm86_active &&
5842 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5843 }
5844
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5845 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5846 {
5847 struct vcpu_vmx *vmx = to_vmx(vcpu);
5848 bool intr_window_requested;
5849 unsigned count = 130;
5850
5851 intr_window_requested = exec_controls_get(vmx) &
5852 CPU_BASED_INTR_WINDOW_EXITING;
5853
5854 while (vmx->vt.emulation_required && count-- != 0) {
5855 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5856 return handle_interrupt_window(&vmx->vcpu);
5857
5858 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5859 return 1;
5860
5861 /*
5862 * Ensure that any updates to kvm->buses[] observed by the
5863 * previous instruction (emulated or otherwise) are also
5864 * visible to the instruction KVM is about to emulate.
5865 */
5866 smp_rmb();
5867
5868 if (!kvm_emulate_instruction(vcpu, 0))
5869 return 0;
5870
5871 if (vmx_unhandleable_emulation_required(vcpu)) {
5872 kvm_prepare_emulation_failure_exit(vcpu);
5873 return 0;
5874 }
5875
5876 if (vcpu->arch.halt_request) {
5877 vcpu->arch.halt_request = 0;
5878 return kvm_emulate_halt_noskip(vcpu);
5879 }
5880
5881 /*
5882 * Note, return 1 and not 0, vcpu_run() will invoke
5883 * xfer_to_guest_mode() which will create a proper return
5884 * code.
5885 */
5886 if (__xfer_to_guest_mode_work_pending())
5887 return 1;
5888 }
5889
5890 return 1;
5891 }
5892
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5893 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5894 {
5895 if (vmx_unhandleable_emulation_required(vcpu)) {
5896 kvm_prepare_emulation_failure_exit(vcpu);
5897 return 0;
5898 }
5899
5900 return 1;
5901 }
5902
5903 /*
5904 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5905 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5906 */
handle_pause(struct kvm_vcpu * vcpu)5907 static int handle_pause(struct kvm_vcpu *vcpu)
5908 {
5909 if (!kvm_pause_in_guest(vcpu->kvm))
5910 grow_ple_window(vcpu);
5911
5912 /*
5913 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5914 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5915 * never set PAUSE_EXITING and just set PLE if supported,
5916 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5917 */
5918 kvm_vcpu_on_spin(vcpu, true);
5919 return kvm_skip_emulated_instruction(vcpu);
5920 }
5921
handle_monitor_trap(struct kvm_vcpu * vcpu)5922 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5923 {
5924 return 1;
5925 }
5926
handle_invpcid(struct kvm_vcpu * vcpu)5927 static int handle_invpcid(struct kvm_vcpu *vcpu)
5928 {
5929 u32 vmx_instruction_info;
5930 unsigned long type;
5931 gva_t gva;
5932 struct {
5933 u64 pcid;
5934 u64 gla;
5935 } operand;
5936 int gpr_index;
5937
5938 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
5939 kvm_queue_exception(vcpu, UD_VECTOR);
5940 return 1;
5941 }
5942
5943 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5944 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5945 type = kvm_register_read(vcpu, gpr_index);
5946
5947 /* According to the Intel instruction reference, the memory operand
5948 * is read even if it isn't needed (e.g., for type==all)
5949 */
5950 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5951 vmx_instruction_info, false,
5952 sizeof(operand), &gva))
5953 return 1;
5954
5955 return kvm_handle_invpcid(vcpu, type, gva);
5956 }
5957
handle_pml_full(struct kvm_vcpu * vcpu)5958 static int handle_pml_full(struct kvm_vcpu *vcpu)
5959 {
5960 unsigned long exit_qualification;
5961
5962 trace_kvm_pml_full(vcpu->vcpu_id);
5963
5964 exit_qualification = vmx_get_exit_qual(vcpu);
5965
5966 /*
5967 * PML buffer FULL happened while executing iret from NMI,
5968 * "blocked by NMI" bit has to be set before next VM entry.
5969 */
5970 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5971 enable_vnmi &&
5972 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5973 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5974 GUEST_INTR_STATE_NMI);
5975
5976 /*
5977 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5978 * here.., and there's no userspace involvement needed for PML.
5979 */
5980 return 1;
5981 }
5982
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)5983 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5984 bool force_immediate_exit)
5985 {
5986 struct vcpu_vmx *vmx = to_vmx(vcpu);
5987
5988 /*
5989 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
5990 * due to the timer expiring while it was "soft" disabled, just eat the
5991 * exit and re-enter the guest.
5992 */
5993 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5994 return EXIT_FASTPATH_REENTER_GUEST;
5995
5996 /*
5997 * If the timer expired because KVM used it to force an immediate exit,
5998 * then mission accomplished.
5999 */
6000 if (force_immediate_exit)
6001 return EXIT_FASTPATH_EXIT_HANDLED;
6002
6003 /*
6004 * If L2 is active, go down the slow path as emulating the guest timer
6005 * expiration likely requires synthesizing a nested VM-Exit.
6006 */
6007 if (is_guest_mode(vcpu))
6008 return EXIT_FASTPATH_NONE;
6009
6010 kvm_lapic_expired_hv_timer(vcpu);
6011 return EXIT_FASTPATH_REENTER_GUEST;
6012 }
6013
handle_preemption_timer(struct kvm_vcpu * vcpu)6014 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6015 {
6016 /*
6017 * This non-fastpath handler is reached if and only if the preemption
6018 * timer was being used to emulate a guest timer while L2 is active.
6019 * All other scenarios are supposed to be handled in the fastpath.
6020 */
6021 WARN_ON_ONCE(!is_guest_mode(vcpu));
6022 kvm_lapic_expired_hv_timer(vcpu);
6023 return 1;
6024 }
6025
6026 /*
6027 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6028 * are overwritten by nested_vmx_hardware_setup() when nested=1.
6029 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6030 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6031 {
6032 kvm_queue_exception(vcpu, UD_VECTOR);
6033 return 1;
6034 }
6035
6036 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6037 static int handle_encls(struct kvm_vcpu *vcpu)
6038 {
6039 /*
6040 * SGX virtualization is disabled. There is no software enable bit for
6041 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6042 * the guest from executing ENCLS (when SGX is supported by hardware).
6043 */
6044 kvm_queue_exception(vcpu, UD_VECTOR);
6045 return 1;
6046 }
6047 #endif /* CONFIG_X86_SGX_KVM */
6048
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6049 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6050 {
6051 /*
6052 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6053 * VM-Exits. Unconditionally set the flag here and leave the handling to
6054 * vmx_handle_exit().
6055 */
6056 to_vt(vcpu)->exit_reason.bus_lock_detected = true;
6057 return 1;
6058 }
6059
handle_notify(struct kvm_vcpu * vcpu)6060 static int handle_notify(struct kvm_vcpu *vcpu)
6061 {
6062 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6063 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6064
6065 ++vcpu->stat.notify_window_exits;
6066
6067 /*
6068 * Notify VM exit happened while executing iret from NMI,
6069 * "blocked by NMI" bit has to be set before next VM entry.
6070 */
6071 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6072 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6073 GUEST_INTR_STATE_NMI);
6074
6075 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6076 context_invalid) {
6077 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6078 vcpu->run->notify.flags = context_invalid ?
6079 KVM_NOTIFY_CONTEXT_INVALID : 0;
6080 return 0;
6081 }
6082
6083 return 1;
6084 }
6085
vmx_get_msr_imm_reg(struct kvm_vcpu * vcpu)6086 static int vmx_get_msr_imm_reg(struct kvm_vcpu *vcpu)
6087 {
6088 return vmx_get_instr_info_reg(vmcs_read32(VMX_INSTRUCTION_INFO));
6089 }
6090
handle_rdmsr_imm(struct kvm_vcpu * vcpu)6091 static int handle_rdmsr_imm(struct kvm_vcpu *vcpu)
6092 {
6093 return kvm_emulate_rdmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
6094 vmx_get_msr_imm_reg(vcpu));
6095 }
6096
handle_wrmsr_imm(struct kvm_vcpu * vcpu)6097 static int handle_wrmsr_imm(struct kvm_vcpu *vcpu)
6098 {
6099 return kvm_emulate_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
6100 vmx_get_msr_imm_reg(vcpu));
6101 }
6102
6103 /*
6104 * The exit handlers return 1 if the exit was handled fully and guest execution
6105 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6106 * to be done to userspace and return 0.
6107 */
6108 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6109 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6110 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6111 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6112 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6113 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6114 [EXIT_REASON_CR_ACCESS] = handle_cr,
6115 [EXIT_REASON_DR_ACCESS] = handle_dr,
6116 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6117 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6118 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6119 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6120 [EXIT_REASON_HLT] = kvm_emulate_halt,
6121 [EXIT_REASON_INVD] = kvm_emulate_invd,
6122 [EXIT_REASON_INVLPG] = handle_invlpg,
6123 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6124 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6125 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6126 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6127 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6128 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6129 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6130 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6131 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6132 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6133 [EXIT_REASON_VMON] = handle_vmx_instruction,
6134 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6135 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6136 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6137 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6138 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6139 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6140 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6141 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6142 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6143 [EXIT_REASON_LDTR_TR] = handle_desc,
6144 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6145 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6146 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6147 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6148 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6149 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6150 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6151 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6152 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6153 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6154 [EXIT_REASON_PML_FULL] = handle_pml_full,
6155 [EXIT_REASON_INVPCID] = handle_invpcid,
6156 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6157 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6158 [EXIT_REASON_ENCLS] = handle_encls,
6159 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6160 [EXIT_REASON_NOTIFY] = handle_notify,
6161 [EXIT_REASON_MSR_READ_IMM] = handle_rdmsr_imm,
6162 [EXIT_REASON_MSR_WRITE_IMM] = handle_wrmsr_imm,
6163 };
6164
6165 static const int kvm_vmx_max_exit_handlers =
6166 ARRAY_SIZE(kvm_vmx_exit_handlers);
6167
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6168 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6169 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6170 {
6171 struct vcpu_vmx *vmx = to_vmx(vcpu);
6172
6173 *reason = vmx->vt.exit_reason.full;
6174 *info1 = vmx_get_exit_qual(vcpu);
6175 if (!(vmx->vt.exit_reason.failed_vmentry)) {
6176 *info2 = vmx->idt_vectoring_info;
6177 *intr_info = vmx_get_intr_info(vcpu);
6178 if (is_exception_with_error_code(*intr_info))
6179 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6180 else
6181 *error_code = 0;
6182 } else {
6183 *info2 = 0;
6184 *intr_info = 0;
6185 *error_code = 0;
6186 }
6187 }
6188
vmx_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)6189 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6190 {
6191 *intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6192 if (is_exception_with_error_code(*intr_info))
6193 *error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6194 else
6195 *error_code = 0;
6196 }
6197
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6198 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6199 {
6200 if (vmx->pml_pg) {
6201 __free_page(vmx->pml_pg);
6202 vmx->pml_pg = NULL;
6203 }
6204 }
6205
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6206 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6207 {
6208 struct vcpu_vmx *vmx = to_vmx(vcpu);
6209 u16 pml_idx, pml_tail_index;
6210 u64 *pml_buf;
6211 int i;
6212
6213 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6214
6215 /* Do nothing if PML buffer is empty */
6216 if (pml_idx == PML_HEAD_INDEX)
6217 return;
6218 /*
6219 * PML index always points to the next available PML buffer entity
6220 * unless PML log has just overflowed.
6221 */
6222 pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6223
6224 /*
6225 * PML log is written backwards: the CPU first writes the entry 511
6226 * then the entry 510, and so on.
6227 *
6228 * Read the entries in the same order they were written, to ensure that
6229 * the dirty ring is filled in the same order the CPU wrote them.
6230 */
6231 pml_buf = page_address(vmx->pml_pg);
6232
6233 for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6234 u64 gpa;
6235
6236 gpa = pml_buf[i];
6237 WARN_ON(gpa & (PAGE_SIZE - 1));
6238 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6239 }
6240
6241 /* reset PML index */
6242 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6243 }
6244
vmx_dump_sel(char * name,uint32_t sel)6245 static void vmx_dump_sel(char *name, uint32_t sel)
6246 {
6247 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6248 name, vmcs_read16(sel),
6249 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6250 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6251 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6252 }
6253
vmx_dump_dtsel(char * name,uint32_t limit)6254 static void vmx_dump_dtsel(char *name, uint32_t limit)
6255 {
6256 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6257 name, vmcs_read32(limit),
6258 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6259 }
6260
vmx_dump_msrs(char * name,struct vmx_msrs * m)6261 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6262 {
6263 unsigned int i;
6264 struct vmx_msr_entry *e;
6265
6266 pr_err("MSR %s:\n", name);
6267 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6268 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6269 }
6270
dump_vmcs(struct kvm_vcpu * vcpu)6271 void dump_vmcs(struct kvm_vcpu *vcpu)
6272 {
6273 struct vcpu_vmx *vmx = to_vmx(vcpu);
6274 u32 vmentry_ctl, vmexit_ctl;
6275 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6276 u64 tertiary_exec_control;
6277 unsigned long cr4;
6278 int efer_slot;
6279
6280 if (!dump_invalid_vmcs) {
6281 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6282 return;
6283 }
6284
6285 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6286 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6287 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6288 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6289 cr4 = vmcs_readl(GUEST_CR4);
6290
6291 if (cpu_has_secondary_exec_ctrls())
6292 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6293 else
6294 secondary_exec_control = 0;
6295
6296 if (cpu_has_tertiary_exec_ctrls())
6297 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6298 else
6299 tertiary_exec_control = 0;
6300
6301 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6302 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6303 pr_err("*** Guest State ***\n");
6304 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6305 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6306 vmcs_readl(CR0_GUEST_HOST_MASK));
6307 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6308 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6309 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6310 if (cpu_has_vmx_ept()) {
6311 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6312 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6313 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6314 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6315 }
6316 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6317 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6318 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6319 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6320 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6321 vmcs_readl(GUEST_SYSENTER_ESP),
6322 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6323 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6324 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6325 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6326 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6327 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6328 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6329 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6330 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6331 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6332 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6333 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6334 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6335 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6336 else if (efer_slot >= 0)
6337 pr_err("EFER= 0x%016llx (autoload)\n",
6338 vmx->msr_autoload.guest.val[efer_slot].value);
6339 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6340 pr_err("EFER= 0x%016llx (effective)\n",
6341 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6342 else
6343 pr_err("EFER= 0x%016llx (effective)\n",
6344 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6345 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6346 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6347 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6348 vmcs_read64(GUEST_IA32_DEBUGCTL),
6349 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6350 if (cpu_has_load_perf_global_ctrl() &&
6351 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6352 pr_err("PerfGlobCtl = 0x%016llx\n",
6353 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6354 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6355 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6356 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6357 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6358 vmcs_read32(GUEST_ACTIVITY_STATE));
6359 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6360 pr_err("InterruptStatus = %04x\n",
6361 vmcs_read16(GUEST_INTR_STATUS));
6362 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6363 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6364 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6365 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6366
6367 if (vmentry_ctl & VM_ENTRY_LOAD_CET_STATE)
6368 pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n",
6369 vmcs_readl(GUEST_S_CET), vmcs_readl(GUEST_SSP),
6370 vmcs_readl(GUEST_INTR_SSP_TABLE));
6371 pr_err("*** Host State ***\n");
6372 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6373 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6374 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6375 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6376 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6377 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6378 vmcs_read16(HOST_TR_SELECTOR));
6379 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6380 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6381 vmcs_readl(HOST_TR_BASE));
6382 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6383 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6384 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6385 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6386 vmcs_readl(HOST_CR4));
6387 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6388 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6389 vmcs_read32(HOST_IA32_SYSENTER_CS),
6390 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6391 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6392 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6393 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6394 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6395 if (cpu_has_load_perf_global_ctrl() &&
6396 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6397 pr_err("PerfGlobCtl = 0x%016llx\n",
6398 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6399 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6400 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6401 if (vmexit_ctl & VM_EXIT_LOAD_CET_STATE)
6402 pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n",
6403 vmcs_readl(HOST_S_CET), vmcs_readl(HOST_SSP),
6404 vmcs_readl(HOST_INTR_SSP_TABLE));
6405
6406 pr_err("*** Control State ***\n");
6407 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6408 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6409 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6410 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6411 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6412 vmcs_read32(EXCEPTION_BITMAP),
6413 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6414 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6415 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6416 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6417 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6418 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6419 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6420 vmcs_read32(VM_EXIT_INTR_INFO),
6421 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6422 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6423 pr_err(" reason=%08x qualification=%016lx\n",
6424 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6425 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6426 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6427 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6428 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6429 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6430 pr_err("TSC Multiplier = 0x%016llx\n",
6431 vmcs_read64(TSC_MULTIPLIER));
6432 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6433 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6434 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6435 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6436 }
6437 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6438 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6439 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6440 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6441 }
6442 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6443 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6444 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6445 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6446 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6447 pr_err("PLE Gap=%08x Window=%08x\n",
6448 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6449 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6450 pr_err("Virtual processor ID = 0x%04x\n",
6451 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6452 if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6453 struct vmx_ve_information *ve_info = vmx->ve_info;
6454 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6455
6456 /*
6457 * If KVM is dumping the VMCS, then something has gone wrong
6458 * already. Derefencing an address from the VMCS, which could
6459 * very well be corrupted, is a terrible idea. The virtual
6460 * address is known so use it.
6461 */
6462 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6463 ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6464 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6465 ve_info->exit_reason, ve_info->delivery,
6466 ve_info->exit_qualification,
6467 ve_info->guest_linear_address,
6468 ve_info->guest_physical_address, ve_info->eptp_index);
6469 }
6470 }
6471
6472 /*
6473 * The guest has exited. See if we can fix it or if we need userspace
6474 * assistance.
6475 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6476 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6477 {
6478 struct vcpu_vmx *vmx = to_vmx(vcpu);
6479 union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
6480 u32 vectoring_info = vmx->idt_vectoring_info;
6481 u16 exit_handler_index;
6482
6483 /*
6484 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6485 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6486 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6487 * mode as if vcpus is in root mode, the PML buffer must has been
6488 * flushed already. Note, PML is never enabled in hardware while
6489 * running L2.
6490 */
6491 if (enable_pml && !is_guest_mode(vcpu))
6492 vmx_flush_pml_buffer(vcpu);
6493
6494 /*
6495 * KVM should never reach this point with a pending nested VM-Enter.
6496 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6497 * invalid guest state should never happen as that means KVM knowingly
6498 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6499 */
6500 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6501 return -EIO;
6502
6503 if (is_guest_mode(vcpu)) {
6504 /*
6505 * PML is never enabled when running L2, bail immediately if a
6506 * PML full exit occurs as something is horribly wrong.
6507 */
6508 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6509 goto unexpected_vmexit;
6510
6511 /*
6512 * The host physical addresses of some pages of guest memory
6513 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6514 * Page). The CPU may write to these pages via their host
6515 * physical address while L2 is running, bypassing any
6516 * address-translation-based dirty tracking (e.g. EPT write
6517 * protection).
6518 *
6519 * Mark them dirty on every exit from L2 to prevent them from
6520 * getting out of sync with dirty tracking.
6521 */
6522 nested_mark_vmcs12_pages_dirty(vcpu);
6523
6524 /*
6525 * Synthesize a triple fault if L2 state is invalid. In normal
6526 * operation, nested VM-Enter rejects any attempt to enter L2
6527 * with invalid state. However, those checks are skipped if
6528 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6529 * L2 state is invalid, it means either L1 modified SMRAM state
6530 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6531 * doing so is architecturally allowed in the RSM case, and is
6532 * the least awful solution for the userspace case without
6533 * risking false positives.
6534 */
6535 if (vmx->vt.emulation_required) {
6536 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6537 return 1;
6538 }
6539
6540 if (nested_vmx_reflect_vmexit(vcpu))
6541 return 1;
6542 }
6543
6544 /* If guest state is invalid, start emulating. L2 is handled above. */
6545 if (vmx->vt.emulation_required)
6546 return handle_invalid_guest_state(vcpu);
6547
6548 if (exit_reason.failed_vmentry) {
6549 dump_vmcs(vcpu);
6550 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6551 vcpu->run->fail_entry.hardware_entry_failure_reason
6552 = exit_reason.full;
6553 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6554 return 0;
6555 }
6556
6557 if (unlikely(vmx->fail)) {
6558 dump_vmcs(vcpu);
6559 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6560 vcpu->run->fail_entry.hardware_entry_failure_reason
6561 = vmcs_read32(VM_INSTRUCTION_ERROR);
6562 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6563 return 0;
6564 }
6565
6566 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6567 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6568 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6569 exit_reason.basic != EXIT_REASON_PML_FULL &&
6570 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6571 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6572 exit_reason.basic != EXIT_REASON_NOTIFY &&
6573 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6574 kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6575 return 0;
6576 }
6577
6578 if (unlikely(!enable_vnmi &&
6579 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6580 if (!vmx_interrupt_blocked(vcpu)) {
6581 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6582 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6583 vcpu->arch.nmi_pending) {
6584 /*
6585 * This CPU don't support us in finding the end of an
6586 * NMI-blocked window if the guest runs with IRQs
6587 * disabled. So we pull the trigger after 1 s of
6588 * futile waiting, but inform the user about this.
6589 */
6590 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6591 "state on VCPU %d after 1 s timeout\n",
6592 __func__, vcpu->vcpu_id);
6593 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6594 }
6595 }
6596
6597 if (exit_fastpath != EXIT_FASTPATH_NONE)
6598 return 1;
6599
6600 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6601 goto unexpected_vmexit;
6602 #ifdef CONFIG_MITIGATION_RETPOLINE
6603 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6604 return kvm_emulate_wrmsr(vcpu);
6605 else if (exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6606 return handle_wrmsr_imm(vcpu);
6607 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6608 return handle_preemption_timer(vcpu);
6609 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6610 return handle_interrupt_window(vcpu);
6611 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6612 return handle_external_interrupt(vcpu);
6613 else if (exit_reason.basic == EXIT_REASON_HLT)
6614 return kvm_emulate_halt(vcpu);
6615 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6616 return handle_ept_misconfig(vcpu);
6617 #endif
6618
6619 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6620 kvm_vmx_max_exit_handlers);
6621 if (!kvm_vmx_exit_handlers[exit_handler_index])
6622 goto unexpected_vmexit;
6623
6624 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6625
6626 unexpected_vmexit:
6627 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6628 exit_reason.full);
6629 dump_vmcs(vcpu);
6630 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6631 vcpu->run->internal.suberror =
6632 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6633 vcpu->run->internal.ndata = 2;
6634 vcpu->run->internal.data[0] = exit_reason.full;
6635 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6636 return 0;
6637 }
6638
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6639 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6640 {
6641 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6642
6643 /*
6644 * Exit to user space when bus lock detected to inform that there is
6645 * a bus lock in guest.
6646 */
6647 if (vmx_get_exit_reason(vcpu).bus_lock_detected) {
6648 if (ret > 0)
6649 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6650
6651 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6652 return 0;
6653 }
6654 return ret;
6655 }
6656
6657 /*
6658 * Software based L1D cache flush which is used when microcode providing
6659 * the cache control MSR is not loaded.
6660 *
6661 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6662 * flush it is required to read in 64 KiB because the replacement algorithm
6663 * is not exactly LRU. This could be sized at runtime via topology
6664 * information but as all relevant affected CPUs have 32KiB L1D cache size
6665 * there is no point in doing so.
6666 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6667 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6668 {
6669 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6670
6671 /*
6672 * This code is only executed when the flush mode is 'cond' or
6673 * 'always'
6674 */
6675 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6676 bool flush_l1d;
6677
6678 /*
6679 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6680 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6681 * exits to userspace, or if KVM reaches one of the unsafe
6682 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6683 */
6684 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6685 vcpu->arch.l1tf_flush_l1d = false;
6686
6687 /*
6688 * Clear the per-cpu flush bit, it gets set again from
6689 * the interrupt handlers.
6690 */
6691 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6692 kvm_clear_cpu_l1tf_flush_l1d();
6693
6694 if (!flush_l1d)
6695 return;
6696 }
6697
6698 vcpu->stat.l1d_flush++;
6699
6700 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6701 native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6702 return;
6703 }
6704
6705 asm volatile(
6706 /* First ensure the pages are in the TLB */
6707 "xorl %%eax, %%eax\n"
6708 ".Lpopulate_tlb:\n\t"
6709 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6710 "addl $4096, %%eax\n\t"
6711 "cmpl %%eax, %[size]\n\t"
6712 "jne .Lpopulate_tlb\n\t"
6713 "xorl %%eax, %%eax\n\t"
6714 "cpuid\n\t"
6715 /* Now fill the cache */
6716 "xorl %%eax, %%eax\n"
6717 ".Lfill_cache:\n"
6718 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6719 "addl $64, %%eax\n\t"
6720 "cmpl %%eax, %[size]\n\t"
6721 "jne .Lfill_cache\n\t"
6722 "lfence\n"
6723 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6724 [size] "r" (size)
6725 : "eax", "ebx", "ecx", "edx");
6726 }
6727
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6728 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6729 {
6730 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6731 int tpr_threshold;
6732
6733 if (is_guest_mode(vcpu) &&
6734 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6735 return;
6736
6737 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6738 if (is_guest_mode(vcpu))
6739 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6740 else
6741 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6742 }
6743
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6744 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6745 {
6746 struct vcpu_vmx *vmx = to_vmx(vcpu);
6747 u32 sec_exec_control;
6748
6749 if (!lapic_in_kernel(vcpu))
6750 return;
6751
6752 if (!flexpriority_enabled &&
6753 !cpu_has_vmx_virtualize_x2apic_mode())
6754 return;
6755
6756 /* Postpone execution until vmcs01 is the current VMCS. */
6757 if (is_guest_mode(vcpu)) {
6758 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6759 return;
6760 }
6761
6762 sec_exec_control = secondary_exec_controls_get(vmx);
6763 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6764 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6765
6766 switch (kvm_get_apic_mode(vcpu)) {
6767 case LAPIC_MODE_INVALID:
6768 WARN_ONCE(true, "Invalid local APIC state");
6769 break;
6770 case LAPIC_MODE_DISABLED:
6771 break;
6772 case LAPIC_MODE_XAPIC:
6773 if (flexpriority_enabled) {
6774 sec_exec_control |=
6775 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6776 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6777
6778 /*
6779 * Flush the TLB, reloading the APIC access page will
6780 * only do so if its physical address has changed, but
6781 * the guest may have inserted a non-APIC mapping into
6782 * the TLB while the APIC access page was disabled.
6783 */
6784 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6785 }
6786 break;
6787 case LAPIC_MODE_X2APIC:
6788 if (cpu_has_vmx_virtualize_x2apic_mode())
6789 sec_exec_control |=
6790 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6791 break;
6792 }
6793 secondary_exec_controls_set(vmx, sec_exec_control);
6794
6795 vmx_update_msr_bitmap_x2apic(vcpu);
6796 }
6797
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6798 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6799 {
6800 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6801 struct kvm *kvm = vcpu->kvm;
6802 struct kvm_memslots *slots = kvm_memslots(kvm);
6803 struct kvm_memory_slot *slot;
6804 struct page *refcounted_page;
6805 unsigned long mmu_seq;
6806 kvm_pfn_t pfn;
6807 bool writable;
6808
6809 /* Defer reload until vmcs01 is the current VMCS. */
6810 if (is_guest_mode(vcpu)) {
6811 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6812 return;
6813 }
6814
6815 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6816 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6817 return;
6818
6819 /*
6820 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6821 * KVM doesn't unintentionally grab a userspace memslot. It _should_
6822 * be impossible for userspace to create a memslot for the APIC when
6823 * APICv is enabled, but paranoia won't hurt in this case.
6824 */
6825 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6826 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6827 return;
6828
6829 /*
6830 * Ensure that the mmu_notifier sequence count is read before KVM
6831 * retrieves the pfn from the primary MMU. Note, the memslot is
6832 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6833 * in kvm_mmu_invalidate_end().
6834 */
6835 mmu_seq = kvm->mmu_invalidate_seq;
6836 smp_rmb();
6837
6838 /*
6839 * No need to retry if the memslot does not exist or is invalid. KVM
6840 * controls the APIC-access page memslot, and only deletes the memslot
6841 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6842 */
6843 pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6844 if (is_error_noslot_pfn(pfn))
6845 return;
6846
6847 read_lock(&vcpu->kvm->mmu_lock);
6848 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6849 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6850 else
6851 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6852
6853 /*
6854 * Do not pin the APIC access page in memory so that it can be freely
6855 * migrated, the MMU notifier will call us again if it is migrated or
6856 * swapped out. KVM backs the memslot with anonymous memory, the pfn
6857 * should always point at a refcounted page (if the pfn is valid).
6858 */
6859 if (!WARN_ON_ONCE(!refcounted_page))
6860 kvm_release_page_clean(refcounted_page);
6861
6862 /*
6863 * No need for a manual TLB flush at this point, KVM has already done a
6864 * flush if there were SPTEs pointing at the previous page.
6865 */
6866 read_unlock(&vcpu->kvm->mmu_lock);
6867 }
6868
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6869 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6870 {
6871 u16 status;
6872 u8 old;
6873
6874 /*
6875 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6876 * is only relevant for if and only if Virtual Interrupt Delivery is
6877 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6878 * vAPIC, not L1's vAPIC. KVM must update vmcs01 on the next nested
6879 * VM-Exit, otherwise L1 with run with a stale SVI.
6880 */
6881 if (is_guest_mode(vcpu)) {
6882 /*
6883 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6884 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6885 * Note, userspace can stuff state while L2 is active; assert
6886 * that VID is disabled if and only if the vCPU is in KVM_RUN
6887 * to avoid false positives if userspace is setting APIC state.
6888 */
6889 WARN_ON_ONCE(vcpu->wants_to_run &&
6890 nested_cpu_has_vid(get_vmcs12(vcpu)));
6891 to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6892 return;
6893 }
6894
6895 if (max_isr == -1)
6896 max_isr = 0;
6897
6898 status = vmcs_read16(GUEST_INTR_STATUS);
6899 old = status >> 8;
6900 if (max_isr != old) {
6901 status &= 0xff;
6902 status |= max_isr << 8;
6903 vmcs_write16(GUEST_INTR_STATUS, status);
6904 }
6905 }
6906
vmx_set_rvi(int vector)6907 static void vmx_set_rvi(int vector)
6908 {
6909 u16 status;
6910 u8 old;
6911
6912 if (vector == -1)
6913 vector = 0;
6914
6915 status = vmcs_read16(GUEST_INTR_STATUS);
6916 old = (u8)status & 0xff;
6917 if ((u8)vector != old) {
6918 status &= ~0xff;
6919 status |= (u8)vector;
6920 vmcs_write16(GUEST_INTR_STATUS, status);
6921 }
6922 }
6923
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6924 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6925 {
6926 struct vcpu_vt *vt = to_vt(vcpu);
6927 int max_irr;
6928 bool got_posted_interrupt;
6929
6930 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6931 return -EIO;
6932
6933 if (pi_test_on(&vt->pi_desc)) {
6934 pi_clear_on(&vt->pi_desc);
6935 /*
6936 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6937 * But on x86 this is just a compiler barrier anyway.
6938 */
6939 smp_mb__after_atomic();
6940 got_posted_interrupt =
6941 kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr);
6942 } else {
6943 max_irr = kvm_lapic_find_highest_irr(vcpu);
6944 got_posted_interrupt = false;
6945 }
6946
6947 /*
6948 * Newly recognized interrupts are injected via either virtual interrupt
6949 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6950 * disabled in two cases:
6951 *
6952 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6953 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6954 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6955 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6956 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6957 *
6958 * 2) If APICv is disabled for this vCPU, assigned devices may still
6959 * attempt to post interrupts. The posted interrupt vector will cause
6960 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6961 */
6962 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6963 vmx_set_rvi(max_irr);
6964 else if (got_posted_interrupt)
6965 kvm_make_request(KVM_REQ_EVENT, vcpu);
6966
6967 return max_irr;
6968 }
6969
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6970 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6971 {
6972 if (!kvm_vcpu_apicv_active(vcpu))
6973 return;
6974
6975 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6976 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6977 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6978 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6979 }
6980
6981 void vmx_do_interrupt_irqoff(unsigned long entry);
6982 void vmx_do_nmi_irqoff(void);
6983
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6984 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6985 {
6986 /*
6987 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6988 * MSR value is not clobbered by the host activity before the guest
6989 * has chance to consume it.
6990 *
6991 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
6992 * interception may have been caused by L1 interception. Per the SDM,
6993 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
6994 *
6995 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
6996 * unlike CR2 and DR6, the value is not a payload that is attached to
6997 * the #NM exception.
6998 */
6999 if (is_xfd_nm_fault(vcpu))
7000 rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
7001 }
7002
handle_exception_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7003 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
7004 {
7005 /* if exit due to PF check for async PF */
7006 if (is_page_fault(intr_info))
7007 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7008 /* if exit due to NM, handle before interrupts are enabled */
7009 else if (is_nm_fault(intr_info))
7010 handle_nm_fault_irqoff(vcpu);
7011 /* Handle machine checks before interrupts are enabled */
7012 else if (is_machine_check(intr_info))
7013 kvm_machine_check();
7014 }
7015
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7016 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7017 u32 intr_info)
7018 {
7019 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7020
7021 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7022 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7023 return;
7024
7025 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7026 if (cpu_feature_enabled(X86_FEATURE_FRED))
7027 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7028 else
7029 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7030 kvm_after_interrupt(vcpu);
7031
7032 vcpu->arch.at_instruction_boundary = true;
7033 }
7034
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)7035 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7036 {
7037 if (to_vt(vcpu)->emulation_required)
7038 return;
7039
7040 if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7041 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7042 else if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXCEPTION_NMI)
7043 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7044 }
7045
7046 /*
7047 * The kvm parameter can be NULL (module initialization, or invocation before
7048 * VM creation). Be sure to check the kvm parameter before using it.
7049 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7050 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7051 {
7052 switch (index) {
7053 case MSR_IA32_SMBASE:
7054 if (!IS_ENABLED(CONFIG_KVM_SMM))
7055 return false;
7056 /*
7057 * We cannot do SMM unless we can run the guest in big
7058 * real mode.
7059 */
7060 return enable_unrestricted_guest || emulate_invalid_guest_state;
7061 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7062 return nested;
7063 case MSR_AMD64_VIRT_SPEC_CTRL:
7064 case MSR_AMD64_TSC_RATIO:
7065 /* This is AMD only. */
7066 return false;
7067 default:
7068 return true;
7069 }
7070 }
7071
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7072 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7073 {
7074 u32 exit_intr_info;
7075 bool unblock_nmi;
7076 u8 vector;
7077 bool idtv_info_valid;
7078
7079 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7080
7081 if (enable_vnmi) {
7082 if (vmx->loaded_vmcs->nmi_known_unmasked)
7083 return;
7084
7085 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7086 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7087 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7088 /*
7089 * SDM 3: 27.7.1.2 (September 2008)
7090 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7091 * a guest IRET fault.
7092 * SDM 3: 23.2.2 (September 2008)
7093 * Bit 12 is undefined in any of the following cases:
7094 * If the VM exit sets the valid bit in the IDT-vectoring
7095 * information field.
7096 * If the VM exit is due to a double fault.
7097 */
7098 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7099 vector != DF_VECTOR && !idtv_info_valid)
7100 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7101 GUEST_INTR_STATE_NMI);
7102 else
7103 vmx->loaded_vmcs->nmi_known_unmasked =
7104 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7105 & GUEST_INTR_STATE_NMI);
7106 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7107 vmx->loaded_vmcs->vnmi_blocked_time +=
7108 ktime_to_ns(ktime_sub(ktime_get(),
7109 vmx->loaded_vmcs->entry_time));
7110 }
7111
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7112 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7113 u32 idt_vectoring_info,
7114 int instr_len_field,
7115 int error_code_field)
7116 {
7117 u8 vector;
7118 int type;
7119 bool idtv_info_valid;
7120
7121 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7122
7123 vcpu->arch.nmi_injected = false;
7124 kvm_clear_exception_queue(vcpu);
7125 kvm_clear_interrupt_queue(vcpu);
7126
7127 if (!idtv_info_valid)
7128 return;
7129
7130 kvm_make_request(KVM_REQ_EVENT, vcpu);
7131
7132 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7133 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7134
7135 switch (type) {
7136 case INTR_TYPE_NMI_INTR:
7137 vcpu->arch.nmi_injected = true;
7138 /*
7139 * SDM 3: 27.7.1.2 (September 2008)
7140 * Clear bit "block by NMI" before VM entry if a NMI
7141 * delivery faulted.
7142 */
7143 vmx_set_nmi_mask(vcpu, false);
7144 break;
7145 case INTR_TYPE_SOFT_EXCEPTION:
7146 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7147 fallthrough;
7148 case INTR_TYPE_HARD_EXCEPTION: {
7149 u32 error_code = 0;
7150
7151 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7152 error_code = vmcs_read32(error_code_field);
7153
7154 kvm_requeue_exception(vcpu, vector,
7155 idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7156 error_code);
7157 break;
7158 }
7159 case INTR_TYPE_SOFT_INTR:
7160 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7161 fallthrough;
7162 case INTR_TYPE_EXT_INTR:
7163 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7164 break;
7165 default:
7166 break;
7167 }
7168 }
7169
vmx_complete_interrupts(struct vcpu_vmx * vmx)7170 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7171 {
7172 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7173 VM_EXIT_INSTRUCTION_LEN,
7174 IDT_VECTORING_ERROR_CODE);
7175 }
7176
vmx_cancel_injection(struct kvm_vcpu * vcpu)7177 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7178 {
7179 __vmx_complete_interrupts(vcpu,
7180 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7181 VM_ENTRY_INSTRUCTION_LEN,
7182 VM_ENTRY_EXCEPTION_ERROR_CODE);
7183
7184 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7185 }
7186
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7187 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7188 {
7189 int i, nr_msrs;
7190 struct perf_guest_switch_msr *msrs;
7191 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7192
7193 pmu->host_cross_mapped_mask = 0;
7194 if (pmu->pebs_enable & pmu->global_ctrl)
7195 intel_pmu_cross_mapped_check(pmu);
7196
7197 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7198 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7199 if (!msrs)
7200 return;
7201
7202 for (i = 0; i < nr_msrs; i++)
7203 if (msrs[i].host == msrs[i].guest)
7204 clear_atomic_switch_msr(vmx, msrs[i].msr);
7205 else
7206 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7207 msrs[i].host, false);
7208 }
7209
vmx_update_hv_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)7210 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7211 {
7212 struct vcpu_vmx *vmx = to_vmx(vcpu);
7213 u64 tscl;
7214 u32 delta_tsc;
7215
7216 if (force_immediate_exit) {
7217 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7218 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7219 } else if (vmx->hv_deadline_tsc != -1) {
7220 tscl = rdtsc();
7221 if (vmx->hv_deadline_tsc > tscl)
7222 /* set_hv_timer ensures the delta fits in 32-bits */
7223 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7224 cpu_preemption_timer_multi);
7225 else
7226 delta_tsc = 0;
7227
7228 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7229 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7230 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7231 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7232 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7233 }
7234 }
7235
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7236 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7237 {
7238 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7239 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7240 vmcs_writel(HOST_RSP, host_rsp);
7241 }
7242 }
7243
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7244 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7245 unsigned int flags)
7246 {
7247 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7248
7249 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7250 return;
7251
7252 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7253 vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7254
7255 /*
7256 * If the guest/host SPEC_CTRL values differ, restore the host value.
7257 *
7258 * For legacy IBRS, the IBRS bit always needs to be written after
7259 * transitioning from a less privileged predictor mode, regardless of
7260 * whether the guest/host values differ.
7261 */
7262 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7263 vmx->spec_ctrl != hostval)
7264 native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7265
7266 barrier_nospec();
7267 }
7268
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu,bool force_immediate_exit)7269 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7270 bool force_immediate_exit)
7271 {
7272 /*
7273 * If L2 is active, some VMX preemption timer exits can be handled in
7274 * the fastpath even, all other exits must use the slow path.
7275 */
7276 if (is_guest_mode(vcpu) &&
7277 vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER)
7278 return EXIT_FASTPATH_NONE;
7279
7280 switch (vmx_get_exit_reason(vcpu).basic) {
7281 case EXIT_REASON_MSR_WRITE:
7282 return handle_fastpath_wrmsr(vcpu);
7283 case EXIT_REASON_MSR_WRITE_IMM:
7284 return handle_fastpath_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
7285 vmx_get_msr_imm_reg(vcpu));
7286 case EXIT_REASON_PREEMPTION_TIMER:
7287 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7288 case EXIT_REASON_HLT:
7289 return handle_fastpath_hlt(vcpu);
7290 case EXIT_REASON_INVD:
7291 return handle_fastpath_invd(vcpu);
7292 default:
7293 return EXIT_FASTPATH_NONE;
7294 }
7295 }
7296
vmx_handle_nmi(struct kvm_vcpu * vcpu)7297 noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu)
7298 {
7299 if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI ||
7300 !is_nmi(vmx_get_intr_info(vcpu)))
7301 return;
7302
7303 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7304 if (cpu_feature_enabled(X86_FEATURE_FRED))
7305 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7306 else
7307 vmx_do_nmi_irqoff();
7308 kvm_after_interrupt(vcpu);
7309 }
7310
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7311 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7312 unsigned int flags)
7313 {
7314 struct vcpu_vmx *vmx = to_vmx(vcpu);
7315
7316 guest_state_enter_irqoff();
7317
7318 /*
7319 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7320 * mitigation for MDS is done late in VMentry and is still
7321 * executed in spite of L1D Flush. This is because an extra VERW
7322 * should not matter much after the big hammer L1D Flush.
7323 *
7324 * cpu_buf_vm_clear is used when system is not vulnerable to MDS/TAA,
7325 * and is affected by MMIO Stale Data. In such cases mitigation in only
7326 * needed against an MMIO capable guest.
7327 */
7328 if (static_branch_unlikely(&vmx_l1d_should_flush))
7329 vmx_l1d_flush(vcpu);
7330 else if (static_branch_unlikely(&cpu_buf_vm_clear) &&
7331 (flags & VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO))
7332 x86_clear_cpu_buffers();
7333
7334 vmx_disable_fb_clear(vmx);
7335
7336 if (vcpu->arch.cr2 != native_read_cr2())
7337 native_write_cr2(vcpu->arch.cr2);
7338
7339 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7340 flags);
7341
7342 vcpu->arch.cr2 = native_read_cr2();
7343 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7344
7345 vmx->idt_vectoring_info = 0;
7346
7347 vmx_enable_fb_clear(vmx);
7348
7349 if (unlikely(vmx->fail)) {
7350 vmx->vt.exit_reason.full = 0xdead;
7351 goto out;
7352 }
7353
7354 vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7355 if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry))
7356 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7357
7358 vmx_handle_nmi(vcpu);
7359
7360 out:
7361 guest_state_exit_irqoff();
7362 }
7363
vmx_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)7364 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
7365 {
7366 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
7367 struct vcpu_vmx *vmx = to_vmx(vcpu);
7368 unsigned long cr3, cr4;
7369
7370 /* Record the guest's net vcpu time for enforced NMI injections. */
7371 if (unlikely(!enable_vnmi &&
7372 vmx->loaded_vmcs->soft_vnmi_blocked))
7373 vmx->loaded_vmcs->entry_time = ktime_get();
7374
7375 /*
7376 * Don't enter VMX if guest state is invalid, let the exit handler
7377 * start emulation until we arrive back to a valid state. Synthesize a
7378 * consistency check VM-Exit due to invalid guest state and bail.
7379 */
7380 if (unlikely(vmx->vt.emulation_required)) {
7381 vmx->fail = 0;
7382
7383 vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE;
7384 vmx->vt.exit_reason.failed_vmentry = 1;
7385 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7386 vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT;
7387 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7388 vmx->vt.exit_intr_info = 0;
7389 return EXIT_FASTPATH_NONE;
7390 }
7391
7392 trace_kvm_entry(vcpu, force_immediate_exit);
7393
7394 if (vmx->ple_window_dirty) {
7395 vmx->ple_window_dirty = false;
7396 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7397 }
7398
7399 /*
7400 * We did this in prepare_switch_to_guest, because it needs to
7401 * be within srcu_read_lock.
7402 */
7403 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7404
7405 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7406 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7407 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7408 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7409 vcpu->arch.regs_dirty = 0;
7410
7411 if (run_flags & KVM_RUN_LOAD_GUEST_DR6)
7412 set_debugreg(vcpu->arch.dr6, 6);
7413
7414 if (run_flags & KVM_RUN_LOAD_DEBUGCTL)
7415 vmx_reload_guest_debugctl(vcpu);
7416
7417 /*
7418 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7419 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7420 * it switches back to the current->mm, which can occur in KVM context
7421 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7422 * toggles a static key while handling a VM-Exit.
7423 */
7424 cr3 = __get_current_cr3_fast();
7425 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7426 vmcs_writel(HOST_CR3, cr3);
7427 vmx->loaded_vmcs->host_state.cr3 = cr3;
7428 }
7429
7430 cr4 = cr4_read_shadow();
7431 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7432 vmcs_writel(HOST_CR4, cr4);
7433 vmx->loaded_vmcs->host_state.cr4 = cr4;
7434 }
7435
7436 /* When single-stepping over STI and MOV SS, we must clear the
7437 * corresponding interruptibility bits in the guest state. Otherwise
7438 * vmentry fails as it then expects bit 14 (BS) in pending debug
7439 * exceptions being set, but that's not correct for the guest debugging
7440 * case. */
7441 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7442 vmx_set_interrupt_shadow(vcpu, 0);
7443
7444 kvm_load_guest_xsave_state(vcpu);
7445
7446 pt_guest_enter(vmx);
7447
7448 atomic_switch_perf_msrs(vmx);
7449 if (intel_pmu_lbr_is_enabled(vcpu))
7450 vmx_passthrough_lbr_msrs(vcpu);
7451
7452 if (enable_preemption_timer)
7453 vmx_update_hv_timer(vcpu, force_immediate_exit);
7454 else if (force_immediate_exit)
7455 smp_send_reschedule(vcpu->cpu);
7456
7457 kvm_wait_lapic_expire(vcpu);
7458
7459 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7460 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7461
7462 /* All fields are clean at this point */
7463 if (kvm_is_using_evmcs()) {
7464 current_evmcs->hv_clean_fields |=
7465 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7466
7467 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7468 }
7469
7470 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7471 if (vcpu->arch.host_debugctl)
7472 update_debugctlmsr(vcpu->arch.host_debugctl);
7473
7474 #ifndef CONFIG_X86_64
7475 /*
7476 * The sysexit path does not restore ds/es, so we must set them to
7477 * a reasonable value ourselves.
7478 *
7479 * We can't defer this to vmx_prepare_switch_to_host() since that
7480 * function may be executed in interrupt context, which saves and
7481 * restore segments around it, nullifying its effect.
7482 */
7483 loadsegment(ds, __USER_DS);
7484 loadsegment(es, __USER_DS);
7485 #endif
7486
7487 pt_guest_exit(vmx);
7488
7489 kvm_load_host_xsave_state(vcpu);
7490
7491 if (is_guest_mode(vcpu)) {
7492 /*
7493 * Track VMLAUNCH/VMRESUME that have made past guest state
7494 * checking.
7495 */
7496 if (vmx->nested.nested_run_pending &&
7497 !vmx_get_exit_reason(vcpu).failed_vmentry)
7498 ++vcpu->stat.nested_run;
7499
7500 vmx->nested.nested_run_pending = 0;
7501 }
7502
7503 if (unlikely(vmx->fail))
7504 return EXIT_FASTPATH_NONE;
7505
7506 if (unlikely((u16)vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
7507 kvm_machine_check();
7508
7509 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7510
7511 if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
7512 return EXIT_FASTPATH_NONE;
7513
7514 vmx->loaded_vmcs->launched = 1;
7515
7516 vmx_recover_nmi_blocking(vmx);
7517 vmx_complete_interrupts(vmx);
7518
7519 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7520 }
7521
vmx_vcpu_free(struct kvm_vcpu * vcpu)7522 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7523 {
7524 struct vcpu_vmx *vmx = to_vmx(vcpu);
7525
7526 if (enable_pml)
7527 vmx_destroy_pml_buffer(vmx);
7528 free_vpid(vmx->vpid);
7529 nested_vmx_free_vcpu(vcpu);
7530 free_loaded_vmcs(vmx->loaded_vmcs);
7531 free_page((unsigned long)vmx->ve_info);
7532 }
7533
vmx_vcpu_create(struct kvm_vcpu * vcpu)7534 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7535 {
7536 struct vmx_uret_msr *tsx_ctrl;
7537 struct vcpu_vmx *vmx;
7538 int i, err;
7539
7540 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7541 vmx = to_vmx(vcpu);
7542
7543 INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list);
7544
7545 err = -ENOMEM;
7546
7547 vmx->vpid = allocate_vpid();
7548
7549 /*
7550 * If PML is turned on, failure on enabling PML just results in failure
7551 * of creating the vcpu, therefore we can simplify PML logic (by
7552 * avoiding dealing with cases, such as enabling PML partially on vcpus
7553 * for the guest), etc.
7554 */
7555 if (enable_pml) {
7556 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7557 if (!vmx->pml_pg)
7558 goto free_vpid;
7559 }
7560
7561 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7562 vmx->guest_uret_msrs[i].mask = -1ull;
7563 if (boot_cpu_has(X86_FEATURE_RTM)) {
7564 /*
7565 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7566 * Keep the host value unchanged to avoid changing CPUID bits
7567 * under the host kernel's feet.
7568 */
7569 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7570 if (tsx_ctrl)
7571 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7572 }
7573
7574 err = alloc_loaded_vmcs(&vmx->vmcs01);
7575 if (err < 0)
7576 goto free_pml;
7577
7578 /*
7579 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7580 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7581 * feature only for vmcs01, KVM currently isn't equipped to realize any
7582 * performance benefits from enabling it for vmcs02.
7583 */
7584 if (kvm_is_using_evmcs() &&
7585 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7586 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7587
7588 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7589 }
7590
7591 vmx->loaded_vmcs = &vmx->vmcs01;
7592
7593 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7594 err = kvm_alloc_apic_access_page(vcpu->kvm);
7595 if (err)
7596 goto free_vmcs;
7597 }
7598
7599 if (enable_ept && !enable_unrestricted_guest) {
7600 err = init_rmode_identity_map(vcpu->kvm);
7601 if (err)
7602 goto free_vmcs;
7603 }
7604
7605 err = -ENOMEM;
7606 if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7607 struct page *page;
7608
7609 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7610
7611 /* ve_info must be page aligned. */
7612 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7613 if (!page)
7614 goto free_vmcs;
7615
7616 vmx->ve_info = page_to_virt(page);
7617 }
7618
7619 if (vmx_can_use_ipiv(vcpu))
7620 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7621 __pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID);
7622
7623 return 0;
7624
7625 free_vmcs:
7626 free_loaded_vmcs(vmx->loaded_vmcs);
7627 free_pml:
7628 vmx_destroy_pml_buffer(vmx);
7629 free_vpid:
7630 free_vpid(vmx->vpid);
7631 return err;
7632 }
7633
7634 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7635 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7636
vmx_vm_init(struct kvm * kvm)7637 int vmx_vm_init(struct kvm *kvm)
7638 {
7639 if (!ple_gap)
7640 kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
7641
7642 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7643 switch (l1tf_mitigation) {
7644 case L1TF_MITIGATION_OFF:
7645 case L1TF_MITIGATION_FLUSH_NOWARN:
7646 /* 'I explicitly don't care' is set */
7647 break;
7648 case L1TF_MITIGATION_AUTO:
7649 case L1TF_MITIGATION_FLUSH:
7650 case L1TF_MITIGATION_FLUSH_NOSMT:
7651 case L1TF_MITIGATION_FULL:
7652 /*
7653 * Warn upon starting the first VM in a potentially
7654 * insecure environment.
7655 */
7656 if (sched_smt_active())
7657 pr_warn_once(L1TF_MSG_SMT);
7658 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7659 pr_warn_once(L1TF_MSG_L1D);
7660 break;
7661 case L1TF_MITIGATION_FULL_FORCE:
7662 /* Flush is enforced */
7663 break;
7664 }
7665 }
7666
7667 if (enable_pml)
7668 kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES;
7669 return 0;
7670 }
7671
vmx_ignore_guest_pat(struct kvm * kvm)7672 static inline bool vmx_ignore_guest_pat(struct kvm *kvm)
7673 {
7674 /*
7675 * Non-coherent DMA devices need the guest to flush CPU properly.
7676 * In that case it is not possible to map all guest RAM as WB, so
7677 * always trust guest PAT.
7678 */
7679 return !kvm_arch_has_noncoherent_dma(kvm) &&
7680 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT);
7681 }
7682
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7683 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7684 {
7685 /*
7686 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7687 * with cacheable accesses will result in Machine Checks.
7688 */
7689 if (is_mmio)
7690 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7691
7692 /* Force WB if ignoring guest PAT */
7693 if (vmx_ignore_guest_pat(vcpu->kvm))
7694 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7695
7696 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7697 }
7698
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7699 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7700 {
7701 /*
7702 * These bits in the secondary execution controls field
7703 * are dynamic, the others are mostly based on the hypervisor
7704 * architecture and the guest's CPUID. Do not touch the
7705 * dynamic bits.
7706 */
7707 u32 mask =
7708 SECONDARY_EXEC_SHADOW_VMCS |
7709 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7710 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7711 SECONDARY_EXEC_DESC;
7712
7713 u32 cur_ctl = secondary_exec_controls_get(vmx);
7714
7715 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7716 }
7717
7718 /*
7719 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7720 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7721 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7722 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7723 {
7724 struct vcpu_vmx *vmx = to_vmx(vcpu);
7725 struct kvm_cpuid_entry2 *entry;
7726
7727 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7728 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7729
7730 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7731 if (entry && (entry->_reg & (_cpuid_mask))) \
7732 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7733 } while (0)
7734
7735 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7736 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7737 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7738 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7739 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7740 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7741 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7742 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7743 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7744 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7745 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7746 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7747 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7748 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7749 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7750
7751 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7752 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7753 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7754 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7755 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7756 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7757 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7758 cr4_fixed1_update(X86_CR4_CET, ecx, feature_bit(SHSTK));
7759 cr4_fixed1_update(X86_CR4_CET, edx, feature_bit(IBT));
7760
7761 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7762 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM));
7763
7764 #undef cr4_fixed1_update
7765 }
7766
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7767 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7768 {
7769 struct vcpu_vmx *vmx = to_vmx(vcpu);
7770 struct kvm_cpuid_entry2 *best = NULL;
7771 int i;
7772
7773 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7774 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7775 if (!best)
7776 return;
7777 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7778 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7779 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7780 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7781 }
7782
7783 /* Get the number of configurable Address Ranges for filtering */
7784 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7785 PT_CAP_num_address_ranges);
7786
7787 /* Initialize and clear the no dependency bits */
7788 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7789 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7790 RTIT_CTL_BRANCH_EN);
7791
7792 /*
7793 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7794 * will inject an #GP
7795 */
7796 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7797 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7798
7799 /*
7800 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7801 * PSBFreq can be set
7802 */
7803 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7804 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7805 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7806
7807 /*
7808 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7809 */
7810 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7811 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7812 RTIT_CTL_MTC_RANGE);
7813
7814 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7815 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7816 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7817 RTIT_CTL_PTW_EN);
7818
7819 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7820 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7821 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7822
7823 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7824 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7825 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7826
7827 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7828 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7829 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7830
7831 /* unmask address range configure area */
7832 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7833 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7834 }
7835
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7836 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7837 {
7838 struct vcpu_vmx *vmx = to_vmx(vcpu);
7839
7840 /*
7841 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7842 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7843 * set if and only if XSAVE is supported.
7844 */
7845 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7846 guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7847
7848 vmx_setup_uret_msrs(vmx);
7849
7850 if (cpu_has_secondary_exec_ctrls())
7851 vmcs_set_secondary_exec_control(vmx,
7852 vmx_secondary_exec_control(vmx));
7853
7854 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7855 vmx->msr_ia32_feature_control_valid_bits |=
7856 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7857 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7858 else
7859 vmx->msr_ia32_feature_control_valid_bits &=
7860 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7861 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7862
7863 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7864 nested_vmx_cr_fixed1_bits_update(vcpu);
7865
7866 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7867 guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7868 update_intel_pt_cfg(vcpu);
7869
7870 if (boot_cpu_has(X86_FEATURE_RTM)) {
7871 struct vmx_uret_msr *msr;
7872 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7873 if (msr) {
7874 bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7875 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7876 }
7877 }
7878
7879 set_cr4_guest_host_mask(vmx);
7880
7881 vmx_write_encls_bitmap(vcpu, NULL);
7882 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7883 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7884 else
7885 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7886
7887 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7888 vmx->msr_ia32_feature_control_valid_bits |=
7889 FEAT_CTL_SGX_LC_ENABLED;
7890 else
7891 vmx->msr_ia32_feature_control_valid_bits &=
7892 ~FEAT_CTL_SGX_LC_ENABLED;
7893
7894 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7895 vmx_update_exception_bitmap(vcpu);
7896 }
7897
vmx_get_perf_capabilities(void)7898 static __init u64 vmx_get_perf_capabilities(void)
7899 {
7900 u64 perf_cap = PERF_CAP_FW_WRITES;
7901 u64 host_perf_cap = 0;
7902
7903 if (!enable_pmu)
7904 return 0;
7905
7906 if (boot_cpu_has(X86_FEATURE_PDCM))
7907 rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7908
7909 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7910 x86_perf_get_lbr(&vmx_lbr_caps);
7911
7912 /*
7913 * KVM requires LBR callstack support, as the overhead due to
7914 * context switching LBRs without said support is too high.
7915 * See intel_pmu_create_guest_lbr_event() for more info.
7916 */
7917 if (!vmx_lbr_caps.has_callstack)
7918 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7919 else if (vmx_lbr_caps.nr)
7920 perf_cap |= host_perf_cap & PERF_CAP_LBR_FMT;
7921 }
7922
7923 if (vmx_pebs_supported()) {
7924 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7925
7926 /*
7927 * Disallow adaptive PEBS as it is functionally broken, can be
7928 * used by the guest to read *host* LBRs, and can be used to
7929 * bypass userspace event filters. To correctly and safely
7930 * support adaptive PEBS, KVM needs to:
7931 *
7932 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7933 * counters.
7934 *
7935 * 2. Gain support from perf (or take direct control of counter
7936 * programming) to support events without adaptive PEBS
7937 * enabled for the hardware counter.
7938 *
7939 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7940 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7941 *
7942 * 4. Document which PMU events are effectively exposed to the
7943 * guest via adaptive PEBS, and make adaptive PEBS mutually
7944 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7945 */
7946 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7947 }
7948
7949 return perf_cap;
7950 }
7951
vmx_set_cpu_caps(void)7952 static __init void vmx_set_cpu_caps(void)
7953 {
7954 kvm_set_cpu_caps();
7955
7956 /* CPUID 0x1 */
7957 if (nested)
7958 kvm_cpu_cap_set(X86_FEATURE_VMX);
7959
7960 /* CPUID 0x7 */
7961 if (kvm_mpx_supported())
7962 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7963 if (!cpu_has_vmx_invpcid())
7964 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7965 if (vmx_pt_mode_is_host_guest())
7966 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7967 if (vmx_pebs_supported()) {
7968 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7969 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7970 }
7971
7972 if (!enable_pmu)
7973 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7974 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7975
7976 if (!enable_sgx) {
7977 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7978 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7979 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7980 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7981 kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7982 }
7983
7984 if (vmx_umip_emulated())
7985 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7986
7987 /* CPUID 0xD.1 */
7988 if (!cpu_has_vmx_xsaves())
7989 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7990
7991 /* CPUID 0x80000001 and 0x7 (RDPID) */
7992 if (!cpu_has_vmx_rdtscp()) {
7993 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7994 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7995 }
7996
7997 if (cpu_has_vmx_waitpkg())
7998 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7999
8000 /*
8001 * Disable CET if unrestricted_guest is unsupported as KVM doesn't
8002 * enforce CET HW behaviors in emulator. On platforms with
8003 * VMX_BASIC[bit56] == 0, inject #CP at VMX entry with error code
8004 * fails, so disable CET in this case too.
8005 */
8006 if (!cpu_has_load_cet_ctrl() || !enable_unrestricted_guest ||
8007 !cpu_has_vmx_basic_no_hw_errcode_cc()) {
8008 kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
8009 kvm_cpu_cap_clear(X86_FEATURE_IBT);
8010 }
8011 }
8012
vmx_is_io_intercepted(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,unsigned long * exit_qualification)8013 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
8014 struct x86_instruction_info *info,
8015 unsigned long *exit_qualification)
8016 {
8017 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8018 unsigned short port;
8019 int size;
8020 bool imm;
8021
8022 /*
8023 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8024 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8025 * control.
8026 *
8027 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8028 */
8029 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8030 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8031
8032 if (info->intercept == x86_intercept_in ||
8033 info->intercept == x86_intercept_ins) {
8034 port = info->src_val;
8035 size = info->dst_bytes;
8036 imm = info->src_type == OP_IMM;
8037 } else {
8038 port = info->dst_val;
8039 size = info->src_bytes;
8040 imm = info->dst_type == OP_IMM;
8041 }
8042
8043
8044 *exit_qualification = ((unsigned long)port << 16) | (size - 1);
8045
8046 if (info->intercept == x86_intercept_ins ||
8047 info->intercept == x86_intercept_outs)
8048 *exit_qualification |= BIT(4);
8049
8050 if (info->rep_prefix)
8051 *exit_qualification |= BIT(5);
8052
8053 if (imm)
8054 *exit_qualification |= BIT(6);
8055
8056 return nested_vmx_check_io_bitmaps(vcpu, port, size);
8057 }
8058
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)8059 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8060 struct x86_instruction_info *info,
8061 enum x86_intercept_stage stage,
8062 struct x86_exception *exception)
8063 {
8064 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8065 unsigned long exit_qualification = 0;
8066 u32 vm_exit_reason;
8067 u64 exit_insn_len;
8068
8069 switch (info->intercept) {
8070 case x86_intercept_rdpid:
8071 /*
8072 * RDPID causes #UD if not enabled through secondary execution
8073 * controls (ENABLE_RDTSCP). Note, the implicit MSR access to
8074 * TSC_AUX is NOT subject to interception, i.e. checking only
8075 * the dedicated execution control is architecturally correct.
8076 */
8077 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8078 exception->vector = UD_VECTOR;
8079 exception->error_code_valid = false;
8080 return X86EMUL_PROPAGATE_FAULT;
8081 }
8082 return X86EMUL_CONTINUE;
8083
8084 case x86_intercept_in:
8085 case x86_intercept_ins:
8086 case x86_intercept_out:
8087 case x86_intercept_outs:
8088 if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
8089 return X86EMUL_CONTINUE;
8090
8091 vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
8092 break;
8093
8094 case x86_intercept_lgdt:
8095 case x86_intercept_lidt:
8096 case x86_intercept_lldt:
8097 case x86_intercept_ltr:
8098 case x86_intercept_sgdt:
8099 case x86_intercept_sidt:
8100 case x86_intercept_sldt:
8101 case x86_intercept_str:
8102 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8103 return X86EMUL_CONTINUE;
8104
8105 if (info->intercept == x86_intercept_lldt ||
8106 info->intercept == x86_intercept_ltr ||
8107 info->intercept == x86_intercept_sldt ||
8108 info->intercept == x86_intercept_str)
8109 vm_exit_reason = EXIT_REASON_LDTR_TR;
8110 else
8111 vm_exit_reason = EXIT_REASON_GDTR_IDTR;
8112 /*
8113 * FIXME: Decode the ModR/M to generate the correct exit
8114 * qualification for memory operands.
8115 */
8116 break;
8117
8118 case x86_intercept_hlt:
8119 if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
8120 return X86EMUL_CONTINUE;
8121
8122 vm_exit_reason = EXIT_REASON_HLT;
8123 break;
8124
8125 case x86_intercept_pause:
8126 /*
8127 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8128 * with vanilla NOPs in the emulator. Apply the interception
8129 * check only to actual PAUSE instructions. Don't check
8130 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8131 * exit, i.e. KVM is within its rights to allow L2 to execute
8132 * the PAUSE.
8133 */
8134 if ((info->rep_prefix != REPE_PREFIX) ||
8135 !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8136 return X86EMUL_CONTINUE;
8137
8138 vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8139 break;
8140
8141 /* TODO: check more intercepts... */
8142 default:
8143 return X86EMUL_UNHANDLEABLE;
8144 }
8145
8146 exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8147 if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8148 return X86EMUL_UNHANDLEABLE;
8149
8150 __nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8151 exit_insn_len);
8152 return X86EMUL_INTERCEPTED;
8153 }
8154
8155 #ifdef CONFIG_X86_64
8156 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8157 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8158 u64 divisor, u64 *result)
8159 {
8160 u64 low = a << shift, high = a >> (64 - shift);
8161
8162 /* To avoid the overflow on divq */
8163 if (high >= divisor)
8164 return 1;
8165
8166 /* Low hold the result, high hold rem which is discarded */
8167 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8168 "rm" (divisor), "0" (low), "1" (high));
8169 *result = low;
8170
8171 return 0;
8172 }
8173
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8174 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8175 bool *expired)
8176 {
8177 struct vcpu_vmx *vmx;
8178 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8179 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8180
8181 vmx = to_vmx(vcpu);
8182 tscl = rdtsc();
8183 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8184 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8185 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8186 ktimer->timer_advance_ns);
8187
8188 if (delta_tsc > lapic_timer_advance_cycles)
8189 delta_tsc -= lapic_timer_advance_cycles;
8190 else
8191 delta_tsc = 0;
8192
8193 /* Convert to host delta tsc if tsc scaling is enabled */
8194 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8195 delta_tsc && u64_shl_div_u64(delta_tsc,
8196 kvm_caps.tsc_scaling_ratio_frac_bits,
8197 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8198 return -ERANGE;
8199
8200 /*
8201 * If the delta tsc can't fit in the 32 bit after the multi shift,
8202 * we can't use the preemption timer.
8203 * It's possible that it fits on later vmentries, but checking
8204 * on every vmentry is costly so we just use an hrtimer.
8205 */
8206 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8207 return -ERANGE;
8208
8209 vmx->hv_deadline_tsc = tscl + delta_tsc;
8210 *expired = !delta_tsc;
8211 return 0;
8212 }
8213
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8214 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8215 {
8216 to_vmx(vcpu)->hv_deadline_tsc = -1;
8217 }
8218 #endif
8219
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8220 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8221 {
8222 struct vcpu_vmx *vmx = to_vmx(vcpu);
8223
8224 if (WARN_ON_ONCE(!enable_pml))
8225 return;
8226
8227 if (is_guest_mode(vcpu)) {
8228 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8229 return;
8230 }
8231
8232 /*
8233 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8234 * code, but in that case another update request will be made and so
8235 * the guest will never run with a stale PML value.
8236 */
8237 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8238 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8239 else
8240 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8241 }
8242
vmx_setup_mce(struct kvm_vcpu * vcpu)8243 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8244 {
8245 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8246 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8247 FEAT_CTL_LMCE_ENABLED;
8248 else
8249 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8250 ~FEAT_CTL_LMCE_ENABLED;
8251 }
8252
8253 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8254 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8255 {
8256 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8257 if (to_vmx(vcpu)->nested.nested_run_pending)
8258 return -EBUSY;
8259 return !is_smm(vcpu);
8260 }
8261
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8262 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8263 {
8264 struct vcpu_vmx *vmx = to_vmx(vcpu);
8265
8266 /*
8267 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8268 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8269 * SMI and RSM only modify state that is saved and restored via SMRAM.
8270 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8271 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8272 */
8273 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8274 if (vmx->nested.smm.guest_mode)
8275 nested_vmx_vmexit(vcpu, -1, 0, 0);
8276
8277 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8278 vmx->nested.vmxon = false;
8279 vmx_clear_hlt(vcpu);
8280 return 0;
8281 }
8282
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8283 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8284 {
8285 struct vcpu_vmx *vmx = to_vmx(vcpu);
8286 int ret;
8287
8288 if (vmx->nested.smm.vmxon) {
8289 vmx->nested.vmxon = true;
8290 vmx->nested.smm.vmxon = false;
8291 }
8292
8293 if (vmx->nested.smm.guest_mode) {
8294 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8295 if (ret)
8296 return ret;
8297
8298 vmx->nested.nested_run_pending = 1;
8299 vmx->nested.smm.guest_mode = false;
8300 }
8301 return 0;
8302 }
8303
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8304 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8305 {
8306 /* RSM will cause a vmexit anyway. */
8307 }
8308 #endif
8309
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8310 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8311 {
8312 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8313 }
8314
vmx_migrate_timers(struct kvm_vcpu * vcpu)8315 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8316 {
8317 if (is_guest_mode(vcpu)) {
8318 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8319
8320 if (hrtimer_try_to_cancel(timer) == 1)
8321 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8322 }
8323 }
8324
vmx_hardware_unsetup(void)8325 void vmx_hardware_unsetup(void)
8326 {
8327 kvm_set_posted_intr_wakeup_handler(NULL);
8328
8329 if (nested)
8330 nested_vmx_hardware_unsetup();
8331
8332 free_kvm_area();
8333 }
8334
vmx_vm_destroy(struct kvm * kvm)8335 void vmx_vm_destroy(struct kvm *kvm)
8336 {
8337 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8338
8339 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8340 }
8341
8342 /*
8343 * Note, the SDM states that the linear address is masked *after* the modified
8344 * canonicality check, whereas KVM masks (untags) the address and then performs
8345 * a "normal" canonicality check. Functionally, the two methods are identical,
8346 * and when the masking occurs relative to the canonicality check isn't visible
8347 * to software, i.e. KVM's behavior doesn't violate the SDM.
8348 */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8349 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8350 {
8351 int lam_bit;
8352 unsigned long cr3_bits;
8353
8354 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8355 return gva;
8356
8357 if (!is_64_bit_mode(vcpu))
8358 return gva;
8359
8360 /*
8361 * Bit 63 determines if the address should be treated as user address
8362 * or a supervisor address.
8363 */
8364 if (!(gva & BIT_ULL(63))) {
8365 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8366 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8367 return gva;
8368
8369 /* LAM_U48 is ignored if LAM_U57 is set. */
8370 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8371 } else {
8372 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8373 return gva;
8374
8375 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8376 }
8377
8378 /*
8379 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8380 * Bit 63 is retained from the raw virtual address so that untagging
8381 * doesn't change a user access to a supervisor access, and vice versa.
8382 */
8383 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8384 }
8385
vmx_handle_intel_pt_intr(void)8386 static unsigned int vmx_handle_intel_pt_intr(void)
8387 {
8388 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8389
8390 /* '0' on failure so that the !PT case can use a RET0 static call. */
8391 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8392 return 0;
8393
8394 kvm_make_request(KVM_REQ_PMI, vcpu);
8395 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8396 (unsigned long *)&vcpu->arch.pmu.global_status);
8397 return 1;
8398 }
8399
vmx_setup_user_return_msrs(void)8400 static __init void vmx_setup_user_return_msrs(void)
8401 {
8402
8403 /*
8404 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8405 * will emulate SYSCALL in legacy mode if the vendor string in guest
8406 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8407 * support this emulation, MSR_STAR is included in the list for i386,
8408 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8409 * into hardware and is here purely for emulation purposes.
8410 */
8411 const u32 vmx_uret_msrs_list[] = {
8412 #ifdef CONFIG_X86_64
8413 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8414 #endif
8415 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8416 MSR_IA32_TSX_CTRL,
8417 };
8418 int i;
8419
8420 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8421
8422 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8423 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8424 }
8425
vmx_setup_me_spte_mask(void)8426 static void __init vmx_setup_me_spte_mask(void)
8427 {
8428 u64 me_mask = 0;
8429
8430 /*
8431 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8432 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems,
8433 * boot_cpu_data.x86_phys_bits holds the actual physical address
8434 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8435 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits.
8436 */
8437 if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8438 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8439 kvm_host.maxphyaddr - 1);
8440
8441 /*
8442 * Unlike SME, host kernel doesn't support setting up any
8443 * MKTME KeyID on Intel platforms. No memory encryption
8444 * bits should be included into the SPTE.
8445 */
8446 kvm_mmu_set_me_spte_mask(0, me_mask);
8447 }
8448
vmx_hardware_setup(void)8449 __init int vmx_hardware_setup(void)
8450 {
8451 unsigned long host_bndcfgs;
8452 struct desc_ptr dt;
8453 int r;
8454
8455 store_idt(&dt);
8456 host_idt_base = dt.address;
8457
8458 vmx_setup_user_return_msrs();
8459
8460
8461 if (boot_cpu_has(X86_FEATURE_NX))
8462 kvm_enable_efer_bits(EFER_NX);
8463
8464 if (boot_cpu_has(X86_FEATURE_MPX)) {
8465 rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8466 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8467 }
8468
8469 if (!cpu_has_vmx_mpx())
8470 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8471 XFEATURE_MASK_BNDCSR);
8472
8473 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8474 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8475 enable_vpid = 0;
8476
8477 if (!cpu_has_vmx_ept() ||
8478 !cpu_has_vmx_ept_4levels() ||
8479 !cpu_has_vmx_ept_mt_wb() ||
8480 !cpu_has_vmx_invept_global())
8481 enable_ept = 0;
8482
8483 /* NX support is required for shadow paging. */
8484 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8485 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8486 return -EOPNOTSUPP;
8487 }
8488
8489 /*
8490 * Shadow paging doesn't have a (further) performance penalty
8491 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8492 * by default
8493 */
8494 if (!enable_ept)
8495 allow_smaller_maxphyaddr = true;
8496
8497 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8498 enable_ept_ad_bits = 0;
8499
8500 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8501 enable_unrestricted_guest = 0;
8502
8503 if (!cpu_has_vmx_flexpriority())
8504 flexpriority_enabled = 0;
8505
8506 if (!cpu_has_virtual_nmis())
8507 enable_vnmi = 0;
8508
8509 #ifdef CONFIG_X86_SGX_KVM
8510 if (!cpu_has_vmx_encls_vmexit())
8511 enable_sgx = false;
8512 #endif
8513
8514 /*
8515 * set_apic_access_page_addr() is used to reload apic access
8516 * page upon invalidation. No need to do anything if not
8517 * using the APIC_ACCESS_ADDR VMCS field.
8518 */
8519 if (!flexpriority_enabled)
8520 vt_x86_ops.set_apic_access_page_addr = NULL;
8521
8522 if (!cpu_has_vmx_tpr_shadow())
8523 vt_x86_ops.update_cr8_intercept = NULL;
8524
8525 #if IS_ENABLED(CONFIG_HYPERV)
8526 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8527 && enable_ept) {
8528 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8529 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8530 }
8531 #endif
8532
8533 if (!cpu_has_vmx_ple()) {
8534 ple_gap = 0;
8535 ple_window = 0;
8536 ple_window_grow = 0;
8537 ple_window_max = 0;
8538 ple_window_shrink = 0;
8539 }
8540
8541 if (!cpu_has_vmx_apicv())
8542 enable_apicv = 0;
8543 if (!enable_apicv)
8544 vt_x86_ops.sync_pir_to_irr = NULL;
8545
8546 if (!enable_apicv || !cpu_has_vmx_ipiv())
8547 enable_ipiv = false;
8548
8549 if (cpu_has_vmx_tsc_scaling())
8550 kvm_caps.has_tsc_control = true;
8551
8552 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8553 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8554 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8555 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8556
8557 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8558
8559 if (enable_ept)
8560 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8561 cpu_has_vmx_ept_execute_only());
8562 else
8563 vt_x86_ops.get_mt_mask = NULL;
8564
8565 /*
8566 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8567 * bits to shadow_zero_check.
8568 */
8569 vmx_setup_me_spte_mask();
8570
8571 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8572 ept_caps_to_lpage_level(vmx_capability.ept));
8573
8574 /*
8575 * Only enable PML when hardware supports PML feature, and both EPT
8576 * and EPT A/D bit features are enabled -- PML depends on them to work.
8577 */
8578 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8579 enable_pml = 0;
8580
8581 if (!cpu_has_vmx_preemption_timer())
8582 enable_preemption_timer = false;
8583
8584 if (enable_preemption_timer) {
8585 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8586
8587 cpu_preemption_timer_multi =
8588 vmx_misc_preemption_timer_rate(vmcs_config.misc);
8589
8590 if (tsc_khz)
8591 use_timer_freq = (u64)tsc_khz * 1000;
8592 use_timer_freq >>= cpu_preemption_timer_multi;
8593
8594 /*
8595 * KVM "disables" the preemption timer by setting it to its max
8596 * value. Don't use the timer if it might cause spurious exits
8597 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8598 */
8599 if (use_timer_freq > 0xffffffffu / 10)
8600 enable_preemption_timer = false;
8601 }
8602
8603 if (!enable_preemption_timer) {
8604 vt_x86_ops.set_hv_timer = NULL;
8605 vt_x86_ops.cancel_hv_timer = NULL;
8606 }
8607
8608 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8609 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8610
8611 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8612 return -EINVAL;
8613 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8614 pt_mode = PT_MODE_SYSTEM;
8615 if (pt_mode == PT_MODE_HOST_GUEST)
8616 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8617 else
8618 vt_init_ops.handle_intel_pt_intr = NULL;
8619
8620 setup_default_sgx_lepubkeyhash();
8621
8622 vmx_set_cpu_caps();
8623
8624 /*
8625 * Configure nested capabilities after core CPU capabilities so that
8626 * nested support can be conditional on base support, e.g. so that KVM
8627 * can hide/show features based on kvm_cpu_cap_has().
8628 */
8629 if (nested) {
8630 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8631
8632 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8633 if (r)
8634 return r;
8635 }
8636
8637 r = alloc_kvm_area();
8638 if (r && nested)
8639 nested_vmx_hardware_unsetup();
8640
8641 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8642
8643 /*
8644 * On Intel CPUs that lack self-snoop feature, letting the guest control
8645 * memory types may result in unexpected behavior. So always ignore guest
8646 * PAT on those CPUs and map VM as writeback, not allowing userspace to
8647 * disable the quirk.
8648 *
8649 * On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is
8650 * supported, UC is slow enough to cause issues with some older guests (e.g.
8651 * an old version of bochs driver uses ioremap() instead of ioremap_wc() to
8652 * map the video RAM, causing wayland desktop to fail to get started
8653 * correctly). To avoid breaking those older guests that rely on KVM to force
8654 * memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the
8655 * safer (for performance) default behavior.
8656 *
8657 * On top of this, non-coherent DMA devices need the guest to flush CPU
8658 * caches properly. This also requires honoring guest PAT, and is forced
8659 * independent of the quirk in vmx_ignore_guest_pat().
8660 */
8661 if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
8662 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8663
8664 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8665
8666 return r;
8667 }
8668
vmx_cleanup_l1d_flush(void)8669 static void vmx_cleanup_l1d_flush(void)
8670 {
8671 if (vmx_l1d_flush_pages) {
8672 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8673 vmx_l1d_flush_pages = NULL;
8674 }
8675 /* Restore state so sysfs ignores VMX */
8676 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8677 }
8678
vmx_exit(void)8679 void vmx_exit(void)
8680 {
8681 allow_smaller_maxphyaddr = false;
8682
8683 vmx_cleanup_l1d_flush();
8684
8685 kvm_x86_vendor_exit();
8686 }
8687
vmx_init(void)8688 int __init vmx_init(void)
8689 {
8690 int r, cpu;
8691
8692 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_vmx);
8693
8694 if (!kvm_is_vmx_supported())
8695 return -EOPNOTSUPP;
8696
8697 /*
8698 * Note, VMCS and eVMCS configuration only touch VMX knobs/variables,
8699 * i.e. there's nothing to unwind if a later step fails.
8700 */
8701 hv_init_evmcs();
8702
8703 /*
8704 * Parse the VMCS config and VMX capabilities before anything else, so
8705 * that the information is available to all setup flows.
8706 */
8707 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8708 return -EIO;
8709
8710 r = kvm_x86_vendor_init(&vt_init_ops);
8711 if (r)
8712 return r;
8713
8714 /*
8715 * Must be called after common x86 init so enable_ept is properly set
8716 * up. Hand the parameter mitigation value in which was stored in
8717 * the pre module init parser. If no parameter was given, it will
8718 * contain 'auto' which will be turned into the default 'cond'
8719 * mitigation mode.
8720 */
8721 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8722 if (r)
8723 goto err_l1d_flush;
8724
8725 for_each_possible_cpu(cpu) {
8726 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8727
8728 pi_init_cpu(cpu);
8729 }
8730
8731 vmx_check_vmcs12_offsets();
8732
8733 return 0;
8734
8735 err_l1d_flush:
8736 kvm_x86_vendor_exit();
8737 return r;
8738 }
8739