xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision 7abdafd2343ab199367c8243d6a5f06a9aa6976b)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 #include <linux/fault-inject.h>
12 
13 #include <kunit/static_stub.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_sriov_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "xe_bo.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_gt.h"
24 #include "xe_gt_pagefault.h"
25 #include "xe_gt_printk.h"
26 #include "xe_gt_sriov_pf_control.h"
27 #include "xe_gt_sriov_pf_monitor.h"
28 #include "xe_gt_tlb_invalidation.h"
29 #include "xe_guc.h"
30 #include "xe_guc_log.h"
31 #include "xe_guc_relay.h"
32 #include "xe_guc_submit.h"
33 #include "xe_map.h"
34 #include "xe_pm.h"
35 #include "xe_trace_guc.h"
36 
37 static void receive_g2h(struct xe_guc_ct *ct);
38 static void g2h_worker_func(struct work_struct *w);
39 static void safe_mode_worker_func(struct work_struct *w);
40 static void ct_exit_safe_mode(struct xe_guc_ct *ct);
41 
42 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
43 enum {
44 	/* Internal states, not error conditions */
45 	CT_DEAD_STATE_REARM,			/* 0x0001 */
46 	CT_DEAD_STATE_CAPTURE,			/* 0x0002 */
47 
48 	/* Error conditions */
49 	CT_DEAD_SETUP,				/* 0x0004 */
50 	CT_DEAD_H2G_WRITE,			/* 0x0008 */
51 	CT_DEAD_H2G_HAS_ROOM,			/* 0x0010 */
52 	CT_DEAD_G2H_READ,			/* 0x0020 */
53 	CT_DEAD_G2H_RECV,			/* 0x0040 */
54 	CT_DEAD_G2H_RELEASE,			/* 0x0080 */
55 	CT_DEAD_DEADLOCK,			/* 0x0100 */
56 	CT_DEAD_PROCESS_FAILED,			/* 0x0200 */
57 	CT_DEAD_FAST_G2H,			/* 0x0400 */
58 	CT_DEAD_PARSE_G2H_RESPONSE,		/* 0x0800 */
59 	CT_DEAD_PARSE_G2H_UNKNOWN,		/* 0x1000 */
60 	CT_DEAD_PARSE_G2H_ORIGIN,		/* 0x2000 */
61 	CT_DEAD_PARSE_G2H_TYPE,			/* 0x4000 */
62 	CT_DEAD_CRASH,				/* 0x8000 */
63 };
64 
65 static void ct_dead_worker_func(struct work_struct *w);
66 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code);
67 
68 #define CT_DEAD(ct, ctb, reason_code)		ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code)
69 #else
70 #define CT_DEAD(ct, ctb, reason)			\
71 	do {						\
72 		struct guc_ctb *_ctb = (ctb);		\
73 		if (_ctb)				\
74 			_ctb->info.broken = true;	\
75 	} while (0)
76 #endif
77 
78 /* Used when a CT send wants to block and / or receive data */
79 struct g2h_fence {
80 	u32 *response_buffer;
81 	u32 seqno;
82 	u32 response_data;
83 	u16 response_len;
84 	u16 error;
85 	u16 hint;
86 	u16 reason;
87 	bool retry;
88 	bool fail;
89 	bool done;
90 };
91 
g2h_fence_init(struct g2h_fence * g2h_fence,u32 * response_buffer)92 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
93 {
94 	g2h_fence->response_buffer = response_buffer;
95 	g2h_fence->response_data = 0;
96 	g2h_fence->response_len = 0;
97 	g2h_fence->fail = false;
98 	g2h_fence->retry = false;
99 	g2h_fence->done = false;
100 	g2h_fence->seqno = ~0x0;
101 }
102 
g2h_fence_needs_alloc(struct g2h_fence * g2h_fence)103 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
104 {
105 	return g2h_fence->seqno == ~0x0;
106 }
107 
108 static struct xe_guc *
ct_to_guc(struct xe_guc_ct * ct)109 ct_to_guc(struct xe_guc_ct *ct)
110 {
111 	return container_of(ct, struct xe_guc, ct);
112 }
113 
114 static struct xe_gt *
ct_to_gt(struct xe_guc_ct * ct)115 ct_to_gt(struct xe_guc_ct *ct)
116 {
117 	return container_of(ct, struct xe_gt, uc.guc.ct);
118 }
119 
120 static struct xe_device *
ct_to_xe(struct xe_guc_ct * ct)121 ct_to_xe(struct xe_guc_ct *ct)
122 {
123 	return gt_to_xe(ct_to_gt(ct));
124 }
125 
126 /**
127  * DOC: GuC CTB Blob
128  *
129  * We allocate single blob to hold both CTB descriptors and buffers:
130  *
131  *      +--------+-----------------------------------------------+------+
132  *      | offset | contents                                      | size |
133  *      +========+===============================================+======+
134  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
135  *      +--------+-----------------------------------------------+  4K  |
136  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
137  *      +--------+-----------------------------------------------+------+
138  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
139  *      |        |                                               |      |
140  *      +--------+-----------------------------------------------+------+
141  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
142  *      | + n*4K |                                               |      |
143  *      +--------+-----------------------------------------------+------+
144  *
145  * Size of each ``CT Buffer`` must be multiple of 4K.
146  * We don't expect too many messages in flight at any time, unless we are
147  * using the GuC submission. In that case each request requires a minimum
148  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
149  * enough space to avoid backpressure on the driver. We increase the size
150  * of the receive buffer (relative to the send) to ensure a G2H response
151  * CTB has a landing spot.
152  *
153  * In addition to submissions, the G2H buffer needs to be able to hold
154  * enough space for recoverable page fault notifications. The number of
155  * page faults is interrupt driven and can be as much as the number of
156  * compute resources available. However, most of the actual work for these
157  * is in a separate page fault worker thread. Therefore we only need to
158  * make sure the queue has enough space to handle all of the submissions
159  * and responses and an extra buffer for incoming page faults.
160  */
161 
162 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
163 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
164 #define CTB_G2H_BUFFER_SIZE	(SZ_128K)
165 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 2)
166 
167 /**
168  * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
169  * CT command queue
170  * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
171  *
172  * Observation is that a 4KiB buffer full of commands takes a little over a
173  * second to process. Use that to calculate maximum time to process a full CT
174  * command queue.
175  *
176  * Return: Maximum time to process a full CT queue in jiffies.
177  */
xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct * ct)178 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
179 {
180 	BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
181 	return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
182 }
183 
guc_ct_size(void)184 static size_t guc_ct_size(void)
185 {
186 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
187 		CTB_G2H_BUFFER_SIZE;
188 }
189 
guc_ct_fini(struct drm_device * drm,void * arg)190 static void guc_ct_fini(struct drm_device *drm, void *arg)
191 {
192 	struct xe_guc_ct *ct = arg;
193 
194 	ct_exit_safe_mode(ct);
195 	destroy_workqueue(ct->g2h_wq);
196 	xa_destroy(&ct->fence_lookup);
197 }
198 
primelockdep(struct xe_guc_ct * ct)199 static void primelockdep(struct xe_guc_ct *ct)
200 {
201 	if (!IS_ENABLED(CONFIG_LOCKDEP))
202 		return;
203 
204 	fs_reclaim_acquire(GFP_KERNEL);
205 	might_lock(&ct->lock);
206 	fs_reclaim_release(GFP_KERNEL);
207 }
208 
xe_guc_ct_init(struct xe_guc_ct * ct)209 int xe_guc_ct_init(struct xe_guc_ct *ct)
210 {
211 	struct xe_device *xe = ct_to_xe(ct);
212 	struct xe_gt *gt = ct_to_gt(ct);
213 	struct xe_tile *tile = gt_to_tile(gt);
214 	struct xe_bo *bo;
215 	int err;
216 
217 	xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
218 
219 	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", WQ_MEM_RECLAIM);
220 	if (!ct->g2h_wq)
221 		return -ENOMEM;
222 
223 	spin_lock_init(&ct->fast_lock);
224 	xa_init(&ct->fence_lookup);
225 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
226 	INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func);
227 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
228 	spin_lock_init(&ct->dead.lock);
229 	INIT_WORK(&ct->dead.worker, ct_dead_worker_func);
230 #endif
231 	init_waitqueue_head(&ct->wq);
232 	init_waitqueue_head(&ct->g2h_fence_wq);
233 
234 	err = drmm_mutex_init(&xe->drm, &ct->lock);
235 	if (err)
236 		return err;
237 
238 	primelockdep(ct);
239 
240 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
241 					  XE_BO_FLAG_SYSTEM |
242 					  XE_BO_FLAG_GGTT |
243 					  XE_BO_FLAG_GGTT_INVALIDATE |
244 					  XE_BO_FLAG_PINNED_NORESTORE);
245 	if (IS_ERR(bo))
246 		return PTR_ERR(bo);
247 
248 	ct->bo = bo;
249 
250 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
251 	if (err)
252 		return err;
253 
254 	xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
255 	ct->state = XE_GUC_CT_STATE_DISABLED;
256 	return 0;
257 }
258 ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */
259 
260 #define desc_read(xe_, guc_ctb__, field_)			\
261 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
262 			struct guc_ct_buffer_desc, field_)
263 
264 #define desc_write(xe_, guc_ctb__, field_, val_)		\
265 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
266 			struct guc_ct_buffer_desc, field_, val_)
267 
guc_ct_ctb_h2g_init(struct xe_device * xe,struct guc_ctb * h2g,struct iosys_map * map)268 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
269 				struct iosys_map *map)
270 {
271 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
272 	h2g->info.resv_space = 0;
273 	h2g->info.tail = 0;
274 	h2g->info.head = 0;
275 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
276 				     h2g->info.size) -
277 			  h2g->info.resv_space;
278 	h2g->info.broken = false;
279 
280 	h2g->desc = *map;
281 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
282 
283 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
284 }
285 
guc_ct_ctb_g2h_init(struct xe_device * xe,struct guc_ctb * g2h,struct iosys_map * map)286 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
287 				struct iosys_map *map)
288 {
289 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
290 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
291 	g2h->info.head = 0;
292 	g2h->info.tail = 0;
293 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
294 				     g2h->info.size) -
295 			  g2h->info.resv_space;
296 	g2h->info.broken = false;
297 
298 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
299 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
300 
301 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
302 					    CTB_H2G_BUFFER_SIZE);
303 }
304 
guc_ct_ctb_h2g_register(struct xe_guc_ct * ct)305 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
306 {
307 	struct xe_guc *guc = ct_to_guc(ct);
308 	u32 desc_addr, ctb_addr, size;
309 	int err;
310 
311 	desc_addr = xe_bo_ggtt_addr(ct->bo);
312 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
313 	size = ct->ctbs.h2g.info.size * sizeof(u32);
314 
315 	err = xe_guc_self_cfg64(guc,
316 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
317 				desc_addr);
318 	if (err)
319 		return err;
320 
321 	err = xe_guc_self_cfg64(guc,
322 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
323 				ctb_addr);
324 	if (err)
325 		return err;
326 
327 	return xe_guc_self_cfg32(guc,
328 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
329 				 size);
330 }
331 
guc_ct_ctb_g2h_register(struct xe_guc_ct * ct)332 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
333 {
334 	struct xe_guc *guc = ct_to_guc(ct);
335 	u32 desc_addr, ctb_addr, size;
336 	int err;
337 
338 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
339 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
340 		CTB_H2G_BUFFER_SIZE;
341 	size = ct->ctbs.g2h.info.size * sizeof(u32);
342 
343 	err = xe_guc_self_cfg64(guc,
344 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
345 				desc_addr);
346 	if (err)
347 		return err;
348 
349 	err = xe_guc_self_cfg64(guc,
350 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
351 				ctb_addr);
352 	if (err)
353 		return err;
354 
355 	return xe_guc_self_cfg32(guc,
356 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
357 				 size);
358 }
359 
guc_ct_control_toggle(struct xe_guc_ct * ct,bool enable)360 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
361 {
362 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
363 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
364 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
365 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
366 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
367 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
368 			   enable ? GUC_CTB_CONTROL_ENABLE :
369 			   GUC_CTB_CONTROL_DISABLE),
370 	};
371 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
372 
373 	return ret > 0 ? -EPROTO : ret;
374 }
375 
xe_guc_ct_set_state(struct xe_guc_ct * ct,enum xe_guc_ct_state state)376 static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
377 				enum xe_guc_ct_state state)
378 {
379 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
380 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
381 
382 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
383 		     state == XE_GUC_CT_STATE_STOPPED);
384 
385 	if (ct->g2h_outstanding)
386 		xe_pm_runtime_put(ct_to_xe(ct));
387 	ct->g2h_outstanding = 0;
388 	ct->state = state;
389 
390 	spin_unlock_irq(&ct->fast_lock);
391 
392 	/*
393 	 * Lockdep doesn't like this under the fast lock and he destroy only
394 	 * needs to be serialized with the send path which ct lock provides.
395 	 */
396 	xa_destroy(&ct->fence_lookup);
397 
398 	mutex_unlock(&ct->lock);
399 }
400 
ct_needs_safe_mode(struct xe_guc_ct * ct)401 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
402 {
403 	return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
404 }
405 
ct_restart_safe_mode_worker(struct xe_guc_ct * ct)406 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
407 {
408 	if (!ct_needs_safe_mode(ct))
409 		return false;
410 
411 	queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
412 	return true;
413 }
414 
safe_mode_worker_func(struct work_struct * w)415 static void safe_mode_worker_func(struct work_struct *w)
416 {
417 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
418 
419 	receive_g2h(ct);
420 
421 	if (!ct_restart_safe_mode_worker(ct))
422 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
423 }
424 
ct_enter_safe_mode(struct xe_guc_ct * ct)425 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
426 {
427 	if (ct_restart_safe_mode_worker(ct))
428 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
429 }
430 
ct_exit_safe_mode(struct xe_guc_ct * ct)431 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
432 {
433 	if (cancel_delayed_work_sync(&ct->safe_mode_worker))
434 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
435 }
436 
xe_guc_ct_enable(struct xe_guc_ct * ct)437 int xe_guc_ct_enable(struct xe_guc_ct *ct)
438 {
439 	struct xe_device *xe = ct_to_xe(ct);
440 	struct xe_gt *gt = ct_to_gt(ct);
441 	int err;
442 
443 	xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
444 
445 	xe_map_memset(xe, &ct->bo->vmap, 0, 0, ct->bo->size);
446 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
447 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
448 
449 	err = guc_ct_ctb_h2g_register(ct);
450 	if (err)
451 		goto err_out;
452 
453 	err = guc_ct_ctb_g2h_register(ct);
454 	if (err)
455 		goto err_out;
456 
457 	err = guc_ct_control_toggle(ct, true);
458 	if (err)
459 		goto err_out;
460 
461 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
462 
463 	smp_mb();
464 	wake_up_all(&ct->wq);
465 	xe_gt_dbg(gt, "GuC CT communication channel enabled\n");
466 
467 	if (ct_needs_safe_mode(ct))
468 		ct_enter_safe_mode(ct);
469 
470 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
471 	/*
472 	 * The CT has now been reset so the dumper can be re-armed
473 	 * after any existing dead state has been dumped.
474 	 */
475 	spin_lock_irq(&ct->dead.lock);
476 	if (ct->dead.reason) {
477 		ct->dead.reason |= (1 << CT_DEAD_STATE_REARM);
478 		queue_work(system_unbound_wq, &ct->dead.worker);
479 	}
480 	spin_unlock_irq(&ct->dead.lock);
481 #endif
482 
483 	return 0;
484 
485 err_out:
486 	xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
487 	CT_DEAD(ct, NULL, SETUP);
488 
489 	return err;
490 }
491 
stop_g2h_handler(struct xe_guc_ct * ct)492 static void stop_g2h_handler(struct xe_guc_ct *ct)
493 {
494 	cancel_work_sync(&ct->g2h_worker);
495 }
496 
497 /**
498  * xe_guc_ct_disable - Set GuC to disabled state
499  * @ct: the &xe_guc_ct
500  *
501  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
502  * in this transition.
503  */
xe_guc_ct_disable(struct xe_guc_ct * ct)504 void xe_guc_ct_disable(struct xe_guc_ct *ct)
505 {
506 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
507 	ct_exit_safe_mode(ct);
508 	stop_g2h_handler(ct);
509 }
510 
511 /**
512  * xe_guc_ct_stop - Set GuC to stopped state
513  * @ct: the &xe_guc_ct
514  *
515  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
516  */
xe_guc_ct_stop(struct xe_guc_ct * ct)517 void xe_guc_ct_stop(struct xe_guc_ct *ct)
518 {
519 	if (!xe_guc_ct_initialized(ct))
520 		return;
521 
522 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
523 	stop_g2h_handler(ct);
524 }
525 
h2g_has_room(struct xe_guc_ct * ct,u32 cmd_len)526 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
527 {
528 	struct guc_ctb *h2g = &ct->ctbs.h2g;
529 
530 	lockdep_assert_held(&ct->lock);
531 
532 	if (cmd_len > h2g->info.space) {
533 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
534 
535 		if (h2g->info.head > h2g->info.size) {
536 			struct xe_device *xe = ct_to_xe(ct);
537 			u32 desc_status = desc_read(xe, h2g, status);
538 
539 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
540 
541 			xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n",
542 				  h2g->info.head, h2g->info.size);
543 			CT_DEAD(ct, h2g, H2G_HAS_ROOM);
544 			return false;
545 		}
546 
547 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
548 					     h2g->info.size) -
549 				  h2g->info.resv_space;
550 		if (cmd_len > h2g->info.space)
551 			return false;
552 	}
553 
554 	return true;
555 }
556 
g2h_has_room(struct xe_guc_ct * ct,u32 g2h_len)557 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
558 {
559 	if (!g2h_len)
560 		return true;
561 
562 	lockdep_assert_held(&ct->fast_lock);
563 
564 	return ct->ctbs.g2h.info.space > g2h_len;
565 }
566 
has_room(struct xe_guc_ct * ct,u32 cmd_len,u32 g2h_len)567 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
568 {
569 	lockdep_assert_held(&ct->lock);
570 
571 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
572 		return -EBUSY;
573 
574 	return 0;
575 }
576 
h2g_reserve_space(struct xe_guc_ct * ct,u32 cmd_len)577 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
578 {
579 	lockdep_assert_held(&ct->lock);
580 	ct->ctbs.h2g.info.space -= cmd_len;
581 }
582 
__g2h_reserve_space(struct xe_guc_ct * ct,u32 g2h_len,u32 num_g2h)583 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
584 {
585 	xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
586 	xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
587 		     (g2h_len && num_g2h));
588 
589 	if (g2h_len) {
590 		lockdep_assert_held(&ct->fast_lock);
591 
592 		if (!ct->g2h_outstanding)
593 			xe_pm_runtime_get_noresume(ct_to_xe(ct));
594 
595 		ct->ctbs.g2h.info.space -= g2h_len;
596 		ct->g2h_outstanding += num_g2h;
597 	}
598 }
599 
__g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)600 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
601 {
602 	bool bad = false;
603 
604 	lockdep_assert_held(&ct->fast_lock);
605 
606 	bad = ct->ctbs.g2h.info.space + g2h_len >
607 		     ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space;
608 	bad |= !ct->g2h_outstanding;
609 
610 	if (bad) {
611 		xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n",
612 			  ct->ctbs.g2h.info.space, g2h_len,
613 			  ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space,
614 			  ct->ctbs.g2h.info.space + g2h_len,
615 			  ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space,
616 			  ct->g2h_outstanding);
617 		CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE);
618 		return;
619 	}
620 
621 	ct->ctbs.g2h.info.space += g2h_len;
622 	if (!--ct->g2h_outstanding)
623 		xe_pm_runtime_put(ct_to_xe(ct));
624 }
625 
g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)626 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
627 {
628 	spin_lock_irq(&ct->fast_lock);
629 	__g2h_release_space(ct, g2h_len);
630 	spin_unlock_irq(&ct->fast_lock);
631 }
632 
633 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
634 
h2g_write(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 ct_fence_value,bool want_response)635 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
636 		     u32 ct_fence_value, bool want_response)
637 {
638 	struct xe_device *xe = ct_to_xe(ct);
639 	struct xe_gt *gt = ct_to_gt(ct);
640 	struct guc_ctb *h2g = &ct->ctbs.h2g;
641 	u32 cmd[H2G_CT_HEADERS];
642 	u32 tail = h2g->info.tail;
643 	u32 full_len;
644 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
645 							 tail * sizeof(u32));
646 	u32 desc_status;
647 
648 	full_len = len + GUC_CTB_HDR_LEN;
649 
650 	lockdep_assert_held(&ct->lock);
651 	xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
652 
653 	desc_status = desc_read(xe, h2g, status);
654 	if (desc_status) {
655 		xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status);
656 		goto corrupted;
657 	}
658 
659 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
660 		u32 desc_tail = desc_read(xe, h2g, tail);
661 		u32 desc_head = desc_read(xe, h2g, head);
662 
663 		if (tail != desc_tail) {
664 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH);
665 			xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail);
666 			goto corrupted;
667 		}
668 
669 		if (tail > h2g->info.size) {
670 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
671 			xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n",
672 				  tail, h2g->info.size);
673 			goto corrupted;
674 		}
675 
676 		if (desc_head >= h2g->info.size) {
677 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
678 			xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n",
679 				  desc_head, h2g->info.size);
680 			goto corrupted;
681 		}
682 	}
683 
684 	/* Command will wrap, zero fill (NOPs), return and check credits again */
685 	if (tail + full_len > h2g->info.size) {
686 		xe_map_memset(xe, &map, 0, 0,
687 			      (h2g->info.size - tail) * sizeof(u32));
688 		h2g_reserve_space(ct, (h2g->info.size - tail));
689 		h2g->info.tail = 0;
690 		desc_write(xe, h2g, tail, h2g->info.tail);
691 
692 		return -EAGAIN;
693 	}
694 
695 	/*
696 	 * dw0: CT header (including fence)
697 	 * dw1: HXG header (including action code)
698 	 * dw2+: action data
699 	 */
700 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
701 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
702 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
703 	if (want_response) {
704 		cmd[1] =
705 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
706 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
707 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
708 	} else {
709 		cmd[1] =
710 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
711 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
712 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
713 	}
714 
715 	/* H2G header in cmd[1] replaces action[0] so: */
716 	--len;
717 	++action;
718 
719 	/* Write H2G ensuring visible before descriptor update */
720 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
721 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
722 	xe_device_wmb(xe);
723 
724 	/* Update local copies */
725 	h2g->info.tail = (tail + full_len) % h2g->info.size;
726 	h2g_reserve_space(ct, full_len);
727 
728 	/* Update descriptor */
729 	desc_write(xe, h2g, tail, h2g->info.tail);
730 
731 	trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
732 			     desc_read(xe, h2g, head), h2g->info.tail);
733 
734 	return 0;
735 
736 corrupted:
737 	CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE);
738 	return -EPIPE;
739 }
740 
741 /*
742  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
743  * driver, the GuC will just copy it to the reply message. Since we need to
744  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
745  * we use one bit of the seqno as an indicator for that and a rolling counter
746  * for the remaining 15 bits.
747  */
748 #define CT_SEQNO_MASK GENMASK(14, 0)
749 #define CT_SEQNO_UNTRACKED BIT(15)
next_ct_seqno(struct xe_guc_ct * ct,bool is_g2h_fence)750 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
751 {
752 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
753 
754 	if (!is_g2h_fence)
755 		seqno |= CT_SEQNO_UNTRACKED;
756 
757 	return seqno;
758 }
759 
__guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)760 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
761 				u32 len, u32 g2h_len, u32 num_g2h,
762 				struct g2h_fence *g2h_fence)
763 {
764 	struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
765 	u16 seqno;
766 	int ret;
767 
768 	xe_gt_assert(gt, xe_guc_ct_initialized(ct));
769 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
770 	xe_gt_assert(gt, !num_g2h || !g2h_fence);
771 	xe_gt_assert(gt, !g2h_len || num_g2h);
772 	xe_gt_assert(gt, g2h_len || !num_g2h);
773 	lockdep_assert_held(&ct->lock);
774 
775 	if (unlikely(ct->ctbs.h2g.info.broken)) {
776 		ret = -EPIPE;
777 		goto out;
778 	}
779 
780 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
781 		ret = -ENODEV;
782 		goto out;
783 	}
784 
785 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
786 		ret = -ECANCELED;
787 		goto out;
788 	}
789 
790 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
791 
792 	if (g2h_fence) {
793 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
794 		num_g2h = 1;
795 
796 		if (g2h_fence_needs_alloc(g2h_fence)) {
797 			g2h_fence->seqno = next_ct_seqno(ct, true);
798 			ret = xa_err(xa_store(&ct->fence_lookup,
799 					      g2h_fence->seqno, g2h_fence,
800 					      GFP_ATOMIC));
801 			if (ret)
802 				goto out;
803 		}
804 
805 		seqno = g2h_fence->seqno;
806 	} else {
807 		seqno = next_ct_seqno(ct, false);
808 	}
809 
810 	if (g2h_len)
811 		spin_lock_irq(&ct->fast_lock);
812 retry:
813 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
814 	if (unlikely(ret))
815 		goto out_unlock;
816 
817 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
818 	if (unlikely(ret)) {
819 		if (ret == -EAGAIN)
820 			goto retry;
821 		goto out_unlock;
822 	}
823 
824 	__g2h_reserve_space(ct, g2h_len, num_g2h);
825 	xe_guc_notify(ct_to_guc(ct));
826 out_unlock:
827 	if (g2h_len)
828 		spin_unlock_irq(&ct->fast_lock);
829 out:
830 	return ret;
831 }
832 
kick_reset(struct xe_guc_ct * ct)833 static void kick_reset(struct xe_guc_ct *ct)
834 {
835 	xe_gt_reset_async(ct_to_gt(ct));
836 }
837 
838 static int dequeue_one_g2h(struct xe_guc_ct *ct);
839 
guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)840 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
841 			      u32 g2h_len, u32 num_g2h,
842 			      struct g2h_fence *g2h_fence)
843 {
844 	struct xe_device *xe = ct_to_xe(ct);
845 	struct xe_gt *gt = ct_to_gt(ct);
846 	unsigned int sleep_period_ms = 1;
847 	int ret;
848 
849 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
850 	lockdep_assert_held(&ct->lock);
851 	xe_device_assert_mem_access(ct_to_xe(ct));
852 
853 try_again:
854 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
855 				   g2h_fence);
856 
857 	/*
858 	 * We wait to try to restore credits for about 1 second before bailing.
859 	 * In the case of H2G credits we have no choice but just to wait for the
860 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
861 	 * the case of G2H we process any G2H in the channel, hopefully freeing
862 	 * credits as we consume the G2H messages.
863 	 */
864 	if (unlikely(ret == -EBUSY &&
865 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
866 		struct guc_ctb *h2g = &ct->ctbs.h2g;
867 
868 		if (sleep_period_ms == 1024)
869 			goto broken;
870 
871 		trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
872 						 h2g->info.size,
873 						 h2g->info.space,
874 						 len + GUC_CTB_HDR_LEN);
875 		msleep(sleep_period_ms);
876 		sleep_period_ms <<= 1;
877 
878 		goto try_again;
879 	} else if (unlikely(ret == -EBUSY)) {
880 		struct xe_device *xe = ct_to_xe(ct);
881 		struct guc_ctb *g2h = &ct->ctbs.g2h;
882 
883 		trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
884 						 desc_read(xe, g2h, tail),
885 						 g2h->info.size,
886 						 g2h->info.space,
887 						 g2h_fence ?
888 						 GUC_CTB_HXG_MSG_MAX_LEN :
889 						 g2h_len);
890 
891 #define g2h_avail(ct)	\
892 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
893 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
894 					g2h_avail(ct), HZ))
895 			goto broken;
896 #undef g2h_avail
897 
898 		ret = dequeue_one_g2h(ct);
899 		if (ret < 0) {
900 			if (ret != -ECANCELED)
901 				xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)",
902 					  ERR_PTR(ret));
903 			goto broken;
904 		}
905 
906 		goto try_again;
907 	}
908 
909 	return ret;
910 
911 broken:
912 	xe_gt_err(gt, "No forward process on H2G, reset required\n");
913 	CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK);
914 
915 	return -EDEADLK;
916 }
917 
guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)918 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
919 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
920 {
921 	int ret;
922 
923 	xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
924 
925 	mutex_lock(&ct->lock);
926 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
927 	mutex_unlock(&ct->lock);
928 
929 	return ret;
930 }
931 
xe_guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)932 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
933 		   u32 g2h_len, u32 num_g2h)
934 {
935 	int ret;
936 
937 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
938 	if (ret == -EDEADLK)
939 		kick_reset(ct);
940 
941 	return ret;
942 }
943 
xe_guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)944 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
945 			  u32 g2h_len, u32 num_g2h)
946 {
947 	int ret;
948 
949 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
950 	if (ret == -EDEADLK)
951 		kick_reset(ct);
952 
953 	return ret;
954 }
955 
xe_guc_ct_send_g2h_handler(struct xe_guc_ct * ct,const u32 * action,u32 len)956 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
957 {
958 	int ret;
959 
960 	lockdep_assert_held(&ct->lock);
961 
962 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
963 	if (ret == -EDEADLK)
964 		kick_reset(ct);
965 
966 	return ret;
967 }
968 
969 /*
970  * Check if a GT reset is in progress or will occur and if GT reset brought the
971  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
972  */
retry_failure(struct xe_guc_ct * ct,int ret)973 static bool retry_failure(struct xe_guc_ct *ct, int ret)
974 {
975 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
976 		return false;
977 
978 #define ct_alive(ct)	\
979 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
980 	 !ct->ctbs.g2h.info.broken)
981 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5))
982 		return false;
983 #undef ct_alive
984 
985 	return true;
986 }
987 
guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer,bool no_fail)988 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
989 			    u32 *response_buffer, bool no_fail)
990 {
991 	struct xe_gt *gt = ct_to_gt(ct);
992 	struct g2h_fence g2h_fence;
993 	int ret = 0;
994 
995 	/*
996 	 * We use a fence to implement blocking sends / receiving response data.
997 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
998 	 * an xarray is used as storage media with the seqno being to key.
999 	 * Fields in the fence hold success, failure, retry status and the
1000 	 * response data. Safe to allocate on the stack as the xarray is the
1001 	 * only reference and it cannot be present after this function exits.
1002 	 */
1003 retry:
1004 	g2h_fence_init(&g2h_fence, response_buffer);
1005 retry_same_fence:
1006 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
1007 	if (unlikely(ret == -ENOMEM)) {
1008 		/* Retry allocation /w GFP_KERNEL */
1009 		ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno,
1010 				      &g2h_fence, GFP_KERNEL));
1011 		if (ret)
1012 			return ret;
1013 
1014 		goto retry_same_fence;
1015 	} else if (unlikely(ret)) {
1016 		if (ret == -EDEADLK)
1017 			kick_reset(ct);
1018 
1019 		if (no_fail && retry_failure(ct, ret))
1020 			goto retry_same_fence;
1021 
1022 		if (!g2h_fence_needs_alloc(&g2h_fence))
1023 			xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1024 
1025 		return ret;
1026 	}
1027 
1028 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
1029 	if (!ret) {
1030 		LNL_FLUSH_WORK(&ct->g2h_worker);
1031 		if (g2h_fence.done) {
1032 			xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
1033 				   g2h_fence.seqno, action[0]);
1034 			ret = 1;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * Ensure we serialize with completion side to prevent UAF with fence going out of scope on
1040 	 * the stack, since we have no clue if it will fire after the timeout before we can erase
1041 	 * from the xa. Also we have some dependent loads and stores below for which we need the
1042 	 * correct ordering, and we lack the needed barriers.
1043 	 */
1044 	mutex_lock(&ct->lock);
1045 	if (!ret) {
1046 		xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s",
1047 			  g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done));
1048 		xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1049 		mutex_unlock(&ct->lock);
1050 		return -ETIME;
1051 	}
1052 
1053 	if (g2h_fence.retry) {
1054 		xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
1055 			  action[0], g2h_fence.reason);
1056 		mutex_unlock(&ct->lock);
1057 		goto retry;
1058 	}
1059 	if (g2h_fence.fail) {
1060 		xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
1061 			  action[0], g2h_fence.error, g2h_fence.hint);
1062 		ret = -EIO;
1063 	}
1064 
1065 	if (ret > 0)
1066 		ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data;
1067 
1068 	mutex_unlock(&ct->lock);
1069 
1070 	return ret;
1071 }
1072 
1073 /**
1074  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
1075  * @ct: the &xe_guc_ct
1076  * @action: the dword array with `HXG Request`_ message (can't be NULL)
1077  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
1078  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
1079  *
1080  * Send a `HXG Request`_ message to the GuC over CT communication channel and
1081  * blocks until GuC replies with a `HXG Response`_ message.
1082  *
1083  * For non-blocking communication with GuC use xe_guc_ct_send().
1084  *
1085  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
1086  *
1087  * Return: response length (in dwords) if &response_buffer was not NULL, or
1088  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
1089  *         a negative error code on failure.
1090  */
xe_guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)1091 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
1092 			u32 *response_buffer)
1093 {
1094 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
1095 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
1096 }
1097 ALLOW_ERROR_INJECTION(xe_guc_ct_send_recv, ERRNO);
1098 
xe_guc_ct_send_recv_no_fail(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)1099 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
1100 				u32 len, u32 *response_buffer)
1101 {
1102 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
1103 }
1104 
msg_to_hxg(u32 * msg)1105 static u32 *msg_to_hxg(u32 *msg)
1106 {
1107 	return msg + GUC_CTB_MSG_MIN_LEN;
1108 }
1109 
msg_len_to_hxg_len(u32 len)1110 static u32 msg_len_to_hxg_len(u32 len)
1111 {
1112 	return len - GUC_CTB_MSG_MIN_LEN;
1113 }
1114 
parse_g2h_event(struct xe_guc_ct * ct,u32 * msg,u32 len)1115 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
1116 {
1117 	u32 *hxg = msg_to_hxg(msg);
1118 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1119 
1120 	lockdep_assert_held(&ct->lock);
1121 
1122 	switch (action) {
1123 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1124 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1125 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1126 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1127 		g2h_release_space(ct, len);
1128 	}
1129 
1130 	return 0;
1131 }
1132 
guc_crash_process_msg(struct xe_guc_ct * ct,u32 action)1133 static int guc_crash_process_msg(struct xe_guc_ct *ct, u32 action)
1134 {
1135 	struct xe_gt *gt = ct_to_gt(ct);
1136 
1137 	if (action == XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
1138 		xe_gt_err(gt, "GuC Crash dump notification\n");
1139 	else if (action == XE_GUC_ACTION_NOTIFY_EXCEPTION)
1140 		xe_gt_err(gt, "GuC Exception notification\n");
1141 	else
1142 		xe_gt_err(gt, "Unknown GuC crash notification: 0x%04X\n", action);
1143 
1144 	CT_DEAD(ct, NULL, CRASH);
1145 
1146 	kick_reset(ct);
1147 
1148 	return 0;
1149 }
1150 
parse_g2h_response(struct xe_guc_ct * ct,u32 * msg,u32 len)1151 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
1152 {
1153 	struct xe_gt *gt =  ct_to_gt(ct);
1154 	u32 *hxg = msg_to_hxg(msg);
1155 	u32 hxg_len = msg_len_to_hxg_len(len);
1156 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
1157 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1158 	struct g2h_fence *g2h_fence;
1159 
1160 	lockdep_assert_held(&ct->lock);
1161 
1162 	/*
1163 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
1164 	 * Those messages should never fail, so if we do get an error back it
1165 	 * means we're likely doing an illegal operation and the GuC is
1166 	 * rejecting it. We have no way to inform the code that submitted the
1167 	 * H2G that the message was rejected, so we need to escalate the
1168 	 * failure to trigger a reset.
1169 	 */
1170 	if (fence & CT_SEQNO_UNTRACKED) {
1171 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
1172 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
1173 				  fence,
1174 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
1175 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
1176 		else
1177 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
1178 				  type, fence);
1179 		CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE);
1180 
1181 		return -EPROTO;
1182 	}
1183 
1184 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
1185 	if (unlikely(!g2h_fence)) {
1186 		/* Don't tear down channel, as send could've timed out */
1187 		/* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */
1188 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1189 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1190 		return 0;
1191 	}
1192 
1193 	xe_gt_assert(gt, fence == g2h_fence->seqno);
1194 
1195 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1196 		g2h_fence->fail = true;
1197 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1198 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1199 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1200 		g2h_fence->retry = true;
1201 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1202 	} else if (g2h_fence->response_buffer) {
1203 		g2h_fence->response_len = hxg_len;
1204 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1205 	} else {
1206 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1207 	}
1208 
1209 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1210 
1211 	g2h_fence->done = true;
1212 	smp_mb();
1213 
1214 	wake_up_all(&ct->g2h_fence_wq);
1215 
1216 	return 0;
1217 }
1218 
parse_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1219 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1220 {
1221 	struct xe_gt *gt = ct_to_gt(ct);
1222 	u32 *hxg = msg_to_hxg(msg);
1223 	u32 origin, type;
1224 	int ret;
1225 
1226 	lockdep_assert_held(&ct->lock);
1227 
1228 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1229 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1230 		xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1231 			  origin);
1232 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN);
1233 
1234 		return -EPROTO;
1235 	}
1236 
1237 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1238 	switch (type) {
1239 	case GUC_HXG_TYPE_EVENT:
1240 		ret = parse_g2h_event(ct, msg, len);
1241 		break;
1242 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1243 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1244 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1245 		ret = parse_g2h_response(ct, msg, len);
1246 		break;
1247 	default:
1248 		xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1249 			  type);
1250 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE);
1251 
1252 		ret = -EOPNOTSUPP;
1253 	}
1254 
1255 	return ret;
1256 }
1257 
process_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1258 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1259 {
1260 	struct xe_guc *guc = ct_to_guc(ct);
1261 	struct xe_gt *gt = ct_to_gt(ct);
1262 	u32 hxg_len = msg_len_to_hxg_len(len);
1263 	u32 *hxg = msg_to_hxg(msg);
1264 	u32 action, adj_len;
1265 	u32 *payload;
1266 	int ret = 0;
1267 
1268 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1269 		return 0;
1270 
1271 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1272 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1273 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1274 
1275 	switch (action) {
1276 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1277 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1278 		break;
1279 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1280 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1281 		break;
1282 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1283 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1284 		break;
1285 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1286 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1287 							      adj_len);
1288 		break;
1289 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1290 		/* Selftest only at the moment */
1291 		break;
1292 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1293 		ret = xe_guc_error_capture_handler(guc, payload, adj_len);
1294 		break;
1295 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1296 		/* FIXME: Handle this */
1297 		break;
1298 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1299 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1300 								 adj_len);
1301 		break;
1302 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1303 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1304 		break;
1305 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1306 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1307 							   adj_len);
1308 		break;
1309 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1310 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1311 							   adj_len);
1312 		break;
1313 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1314 		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1315 		break;
1316 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1317 		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1318 		break;
1319 	case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1320 		ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1321 		break;
1322 	case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1323 		ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1324 		break;
1325 	case XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1326 	case XE_GUC_ACTION_NOTIFY_EXCEPTION:
1327 		ret = guc_crash_process_msg(ct, action);
1328 		break;
1329 	default:
1330 		xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1331 	}
1332 
1333 	if (ret) {
1334 		xe_gt_err(gt, "G2H action %#04x failed (%pe) len %u msg %*ph\n",
1335 			  action, ERR_PTR(ret), hxg_len, (int)sizeof(u32) * hxg_len, hxg);
1336 		CT_DEAD(ct, NULL, PROCESS_FAILED);
1337 	}
1338 
1339 	return 0;
1340 }
1341 
g2h_read(struct xe_guc_ct * ct,u32 * msg,bool fast_path)1342 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1343 {
1344 	struct xe_device *xe = ct_to_xe(ct);
1345 	struct xe_gt *gt = ct_to_gt(ct);
1346 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1347 	u32 tail, head, len, desc_status;
1348 	s32 avail;
1349 	u32 action;
1350 	u32 *hxg;
1351 
1352 	xe_gt_assert(gt, xe_guc_ct_initialized(ct));
1353 	lockdep_assert_held(&ct->fast_lock);
1354 
1355 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1356 		return -ENODEV;
1357 
1358 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1359 		return -ECANCELED;
1360 
1361 	if (g2h->info.broken)
1362 		return -EPIPE;
1363 
1364 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1365 
1366 	desc_status = desc_read(xe, g2h, status);
1367 	if (desc_status) {
1368 		if (desc_status & GUC_CTB_STATUS_DISABLED) {
1369 			/*
1370 			 * Potentially valid if a CLIENT_RESET request resulted in
1371 			 * contexts/engines being reset. But should never happen as
1372 			 * no contexts should be active when CLIENT_RESET is sent.
1373 			 */
1374 			xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n");
1375 			desc_status &= ~GUC_CTB_STATUS_DISABLED;
1376 		}
1377 
1378 		if (desc_status) {
1379 			xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status);
1380 			goto corrupted;
1381 		}
1382 	}
1383 
1384 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
1385 		u32 desc_tail = desc_read(xe, g2h, tail);
1386 		/*
1387 		u32 desc_head = desc_read(xe, g2h, head);
1388 
1389 		 * info.head and desc_head are updated back-to-back at the end of
1390 		 * this function and nowhere else. Hence, they cannot be different
1391 		 * unless two g2h_read calls are running concurrently. Which is not
1392 		 * possible because it is guarded by ct->fast_lock. And yet, some
1393 		 * discrete platforms are regularly hitting this error :(.
1394 		 *
1395 		 * desc_head rolling backwards shouldn't cause any noticeable
1396 		 * problems - just a delay in GuC being allowed to proceed past that
1397 		 * point in the queue. So for now, just disable the error until it
1398 		 * can be root caused.
1399 		 *
1400 		if (g2h->info.head != desc_head) {
1401 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH);
1402 			xe_gt_err(gt, "CT read: head was modified %u != %u\n",
1403 				  desc_head, g2h->info.head);
1404 			goto corrupted;
1405 		}
1406 		 */
1407 
1408 		if (g2h->info.head > g2h->info.size) {
1409 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1410 			xe_gt_err(gt, "CT read: head out of range: %u vs %u\n",
1411 				  g2h->info.head, g2h->info.size);
1412 			goto corrupted;
1413 		}
1414 
1415 		if (desc_tail >= g2h->info.size) {
1416 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1417 			xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n",
1418 				  desc_tail, g2h->info.size);
1419 			goto corrupted;
1420 		}
1421 	}
1422 
1423 	/* Calculate DW available to read */
1424 	tail = desc_read(xe, g2h, tail);
1425 	avail = tail - g2h->info.head;
1426 	if (unlikely(avail == 0))
1427 		return 0;
1428 
1429 	if (avail < 0)
1430 		avail += g2h->info.size;
1431 
1432 	/* Read header */
1433 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1434 			   sizeof(u32));
1435 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1436 	if (len > avail) {
1437 		xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1438 			  avail, len);
1439 		goto corrupted;
1440 	}
1441 
1442 	head = (g2h->info.head + 1) % g2h->info.size;
1443 	avail = len - 1;
1444 
1445 	/* Read G2H message */
1446 	if (avail + head > g2h->info.size) {
1447 		u32 avail_til_wrap = g2h->info.size - head;
1448 
1449 		xe_map_memcpy_from(xe, msg + 1,
1450 				   &g2h->cmds, sizeof(u32) * head,
1451 				   avail_til_wrap * sizeof(u32));
1452 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1453 				   &g2h->cmds, 0,
1454 				   (avail - avail_til_wrap) * sizeof(u32));
1455 	} else {
1456 		xe_map_memcpy_from(xe, msg + 1,
1457 				   &g2h->cmds, sizeof(u32) * head,
1458 				   avail * sizeof(u32));
1459 	}
1460 
1461 	hxg = msg_to_hxg(msg);
1462 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1463 
1464 	if (fast_path) {
1465 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1466 			return 0;
1467 
1468 		switch (action) {
1469 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1470 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1471 			break;	/* Process these in fast-path */
1472 		default:
1473 			return 0;
1474 		}
1475 	}
1476 
1477 	/* Update local / descriptor header */
1478 	g2h->info.head = (head + avail) % g2h->info.size;
1479 	desc_write(xe, g2h, head, g2h->info.head);
1480 
1481 	trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1482 			     action, len, g2h->info.head, tail);
1483 
1484 	return len;
1485 
1486 corrupted:
1487 	CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ);
1488 	return -EPROTO;
1489 }
1490 
g2h_fast_path(struct xe_guc_ct * ct,u32 * msg,u32 len)1491 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1492 {
1493 	struct xe_gt *gt = ct_to_gt(ct);
1494 	struct xe_guc *guc = ct_to_guc(ct);
1495 	u32 hxg_len = msg_len_to_hxg_len(len);
1496 	u32 *hxg = msg_to_hxg(msg);
1497 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1498 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1499 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1500 	int ret = 0;
1501 
1502 	switch (action) {
1503 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1504 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1505 		break;
1506 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1507 		__g2h_release_space(ct, len);
1508 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1509 							   adj_len);
1510 		break;
1511 	default:
1512 		xe_gt_warn(gt, "NOT_POSSIBLE");
1513 	}
1514 
1515 	if (ret) {
1516 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1517 			  action, ERR_PTR(ret));
1518 		CT_DEAD(ct, NULL, FAST_G2H);
1519 	}
1520 }
1521 
1522 /**
1523  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1524  * @ct: GuC CT object
1525  *
1526  * Anything related to page faults is critical for performance, process these
1527  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1528  * waiters or queue another worker.
1529  */
xe_guc_ct_fast_path(struct xe_guc_ct * ct)1530 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1531 {
1532 	struct xe_device *xe = ct_to_xe(ct);
1533 	bool ongoing;
1534 	int len;
1535 
1536 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1537 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1538 		return;
1539 
1540 	spin_lock(&ct->fast_lock);
1541 	do {
1542 		len = g2h_read(ct, ct->fast_msg, true);
1543 		if (len > 0)
1544 			g2h_fast_path(ct, ct->fast_msg, len);
1545 	} while (len > 0);
1546 	spin_unlock(&ct->fast_lock);
1547 
1548 	if (ongoing)
1549 		xe_pm_runtime_put(xe);
1550 }
1551 
1552 /* Returns less than zero on error, 0 on done, 1 on more available */
dequeue_one_g2h(struct xe_guc_ct * ct)1553 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1554 {
1555 	int len;
1556 	int ret;
1557 
1558 	lockdep_assert_held(&ct->lock);
1559 
1560 	spin_lock_irq(&ct->fast_lock);
1561 	len = g2h_read(ct, ct->msg, false);
1562 	spin_unlock_irq(&ct->fast_lock);
1563 	if (len <= 0)
1564 		return len;
1565 
1566 	ret = parse_g2h_msg(ct, ct->msg, len);
1567 	if (unlikely(ret < 0))
1568 		return ret;
1569 
1570 	ret = process_g2h_msg(ct, ct->msg, len);
1571 	if (unlikely(ret < 0))
1572 		return ret;
1573 
1574 	return 1;
1575 }
1576 
receive_g2h(struct xe_guc_ct * ct)1577 static void receive_g2h(struct xe_guc_ct *ct)
1578 {
1579 	bool ongoing;
1580 	int ret;
1581 
1582 	/*
1583 	 * Normal users must always hold mem_access.ref around CT calls. However
1584 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1585 	 * at this stage we can't rely on mem_access.ref and even the
1586 	 * callback_task will be different than current.  For such cases we just
1587 	 * need to ensure we always process the responses from any blocking
1588 	 * ct_send requests or where we otherwise expect some response when
1589 	 * initiated from those callbacks (which will need to wait for the below
1590 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1591 	 * the device has suspended to the point that the CT communication has
1592 	 * been disabled.
1593 	 *
1594 	 * If we are inside the runtime pm callback, we can be the only task
1595 	 * still issuing CT requests (since that requires having the
1596 	 * mem_access.ref).  It seems like it might in theory be possible to
1597 	 * receive unsolicited events from the GuC just as we are
1598 	 * suspending-resuming, but those will currently anyway be lost when
1599 	 * eventually exiting from suspend, hence no need to wake up the device
1600 	 * here. If we ever need something stronger than get_if_ongoing() then
1601 	 * we need to be careful with blocking the pm callbacks from getting CT
1602 	 * responses, if the worker here is blocked on those callbacks
1603 	 * completing, creating a deadlock.
1604 	 */
1605 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1606 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1607 		return;
1608 
1609 	do {
1610 		mutex_lock(&ct->lock);
1611 		ret = dequeue_one_g2h(ct);
1612 		mutex_unlock(&ct->lock);
1613 
1614 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1615 			xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret);
1616 			CT_DEAD(ct, NULL, G2H_RECV);
1617 			kick_reset(ct);
1618 		}
1619 	} while (ret == 1);
1620 
1621 	if (ongoing)
1622 		xe_pm_runtime_put(ct_to_xe(ct));
1623 }
1624 
g2h_worker_func(struct work_struct * w)1625 static void g2h_worker_func(struct work_struct *w)
1626 {
1627 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1628 
1629 	receive_g2h(ct);
1630 }
1631 
guc_ct_snapshot_alloc(struct xe_guc_ct * ct,bool atomic,bool want_ctb)1632 static struct xe_guc_ct_snapshot *guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic,
1633 							bool want_ctb)
1634 {
1635 	struct xe_guc_ct_snapshot *snapshot;
1636 
1637 	snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL);
1638 	if (!snapshot)
1639 		return NULL;
1640 
1641 	if (ct->bo && want_ctb) {
1642 		snapshot->ctb_size = ct->bo->size;
1643 		snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL);
1644 	}
1645 
1646 	return snapshot;
1647 }
1648 
guc_ctb_snapshot_capture(struct xe_device * xe,struct guc_ctb * ctb,struct guc_ctb_snapshot * snapshot)1649 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1650 				     struct guc_ctb_snapshot *snapshot)
1651 {
1652 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1653 			   sizeof(struct guc_ct_buffer_desc));
1654 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1655 }
1656 
guc_ctb_snapshot_print(struct guc_ctb_snapshot * snapshot,struct drm_printer * p)1657 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1658 				   struct drm_printer *p)
1659 {
1660 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1661 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1662 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1663 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1664 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1665 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1666 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1667 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1668 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1669 }
1670 
guc_ct_snapshot_capture(struct xe_guc_ct * ct,bool atomic,bool want_ctb)1671 static struct xe_guc_ct_snapshot *guc_ct_snapshot_capture(struct xe_guc_ct *ct, bool atomic,
1672 							  bool want_ctb)
1673 {
1674 	struct xe_device *xe = ct_to_xe(ct);
1675 	struct xe_guc_ct_snapshot *snapshot;
1676 
1677 	snapshot = guc_ct_snapshot_alloc(ct, atomic, want_ctb);
1678 	if (!snapshot) {
1679 		xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n");
1680 		return NULL;
1681 	}
1682 
1683 	if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
1684 		snapshot->ct_enabled = true;
1685 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1686 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g);
1687 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h);
1688 	}
1689 
1690 	if (ct->bo && snapshot->ctb)
1691 		xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size);
1692 
1693 	return snapshot;
1694 }
1695 
1696 /**
1697  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1698  * @ct: GuC CT object.
1699  *
1700  * This can be printed out in a later stage like during dev_coredump
1701  * analysis. This is safe to be called during atomic context.
1702  *
1703  * Returns: a GuC CT snapshot object that must be freed by the caller
1704  * by using `xe_guc_ct_snapshot_free`.
1705  */
xe_guc_ct_snapshot_capture(struct xe_guc_ct * ct)1706 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct)
1707 {
1708 	return guc_ct_snapshot_capture(ct, true, true);
1709 }
1710 
1711 /**
1712  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1713  * @snapshot: GuC CT snapshot object.
1714  * @p: drm_printer where it will be printed out.
1715  *
1716  * This function prints out a given GuC CT snapshot object.
1717  */
xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot * snapshot,struct drm_printer * p)1718 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1719 			      struct drm_printer *p)
1720 {
1721 	if (!snapshot)
1722 		return;
1723 
1724 	if (snapshot->ct_enabled) {
1725 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
1726 		guc_ctb_snapshot_print(&snapshot->h2g, p);
1727 
1728 		drm_puts(p, "G2H CTB (all sizes in DW):\n");
1729 		guc_ctb_snapshot_print(&snapshot->g2h, p);
1730 		drm_printf(p, "\tg2h outstanding: %d\n",
1731 			   snapshot->g2h_outstanding);
1732 
1733 		if (snapshot->ctb) {
1734 			drm_printf(p, "[CTB].length: 0x%zx\n", snapshot->ctb_size);
1735 			xe_print_blob_ascii85(p, "[CTB].data", '\n',
1736 					      snapshot->ctb, 0, snapshot->ctb_size);
1737 		}
1738 	} else {
1739 		drm_puts(p, "CT disabled\n");
1740 	}
1741 }
1742 
1743 /**
1744  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1745  * @snapshot: GuC CT snapshot object.
1746  *
1747  * This function free all the memory that needed to be allocated at capture
1748  * time.
1749  */
xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot * snapshot)1750 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1751 {
1752 	if (!snapshot)
1753 		return;
1754 
1755 	kfree(snapshot->ctb);
1756 	kfree(snapshot);
1757 }
1758 
1759 /**
1760  * xe_guc_ct_print - GuC CT Print.
1761  * @ct: GuC CT.
1762  * @p: drm_printer where it will be printed out.
1763  * @want_ctb: Should the full CTB content be dumped (vs just the headers)
1764  *
1765  * This function will quickly capture a snapshot of the CT state
1766  * and immediately print it out.
1767  */
xe_guc_ct_print(struct xe_guc_ct * ct,struct drm_printer * p,bool want_ctb)1768 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool want_ctb)
1769 {
1770 	struct xe_guc_ct_snapshot *snapshot;
1771 
1772 	snapshot = guc_ct_snapshot_capture(ct, false, want_ctb);
1773 	xe_guc_ct_snapshot_print(snapshot, p);
1774 	xe_guc_ct_snapshot_free(snapshot);
1775 }
1776 
1777 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
ct_dead_capture(struct xe_guc_ct * ct,struct guc_ctb * ctb,u32 reason_code)1778 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code)
1779 {
1780 	struct xe_guc_log_snapshot *snapshot_log;
1781 	struct xe_guc_ct_snapshot *snapshot_ct;
1782 	struct xe_guc *guc = ct_to_guc(ct);
1783 	unsigned long flags;
1784 	bool have_capture;
1785 
1786 	if (ctb)
1787 		ctb->info.broken = true;
1788 
1789 	/* Ignore further errors after the first dump until a reset */
1790 	if (ct->dead.reported)
1791 		return;
1792 
1793 	spin_lock_irqsave(&ct->dead.lock, flags);
1794 
1795 	/* And only capture one dump at a time */
1796 	have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE);
1797 	ct->dead.reason |= (1 << reason_code) |
1798 			   (1 << CT_DEAD_STATE_CAPTURE);
1799 
1800 	spin_unlock_irqrestore(&ct->dead.lock, flags);
1801 
1802 	if (have_capture)
1803 		return;
1804 
1805 	snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true);
1806 	snapshot_ct = xe_guc_ct_snapshot_capture((ct));
1807 
1808 	spin_lock_irqsave(&ct->dead.lock, flags);
1809 
1810 	if (ct->dead.snapshot_log || ct->dead.snapshot_ct) {
1811 		xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n");
1812 		xe_guc_log_snapshot_free(snapshot_log);
1813 		xe_guc_ct_snapshot_free(snapshot_ct);
1814 	} else {
1815 		ct->dead.snapshot_log = snapshot_log;
1816 		ct->dead.snapshot_ct = snapshot_ct;
1817 	}
1818 
1819 	spin_unlock_irqrestore(&ct->dead.lock, flags);
1820 
1821 	queue_work(system_unbound_wq, &(ct)->dead.worker);
1822 }
1823 
ct_dead_print(struct xe_dead_ct * dead)1824 static void ct_dead_print(struct xe_dead_ct *dead)
1825 {
1826 	struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead);
1827 	struct xe_device *xe = ct_to_xe(ct);
1828 	struct xe_gt *gt = ct_to_gt(ct);
1829 	static int g_count;
1830 	struct drm_printer ip = xe_gt_info_printer(gt);
1831 	struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count);
1832 
1833 	if (!dead->reason) {
1834 		xe_gt_err(gt, "CTB is dead for no reason!?\n");
1835 		return;
1836 	}
1837 
1838 
1839 	/* Can't generate a genuine core dump at this point, so just do the good bits */
1840 	drm_puts(&lp, "**** Xe Device Coredump ****\n");
1841 	drm_printf(&lp, "Reason: CTB is dead - 0x%X\n", dead->reason);
1842 	xe_device_snapshot_print(xe, &lp);
1843 
1844 	drm_printf(&lp, "**** GT #%d ****\n", gt->info.id);
1845 	drm_printf(&lp, "\tTile: %d\n", gt->tile->id);
1846 
1847 	drm_puts(&lp, "**** GuC Log ****\n");
1848 	xe_guc_log_snapshot_print(dead->snapshot_log, &lp);
1849 
1850 	drm_puts(&lp, "**** GuC CT ****\n");
1851 	xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp);
1852 
1853 	drm_puts(&lp, "Done.\n");
1854 }
1855 
ct_dead_worker_func(struct work_struct * w)1856 static void ct_dead_worker_func(struct work_struct *w)
1857 {
1858 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker);
1859 
1860 	if (!ct->dead.reported) {
1861 		ct->dead.reported = true;
1862 		ct_dead_print(&ct->dead);
1863 	}
1864 
1865 	spin_lock_irq(&ct->dead.lock);
1866 
1867 	xe_guc_log_snapshot_free(ct->dead.snapshot_log);
1868 	ct->dead.snapshot_log = NULL;
1869 	xe_guc_ct_snapshot_free(ct->dead.snapshot_ct);
1870 	ct->dead.snapshot_ct = NULL;
1871 
1872 	if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) {
1873 		/* A reset has occurred so re-arm the error reporting */
1874 		ct->dead.reason = 0;
1875 		ct->dead.reported = false;
1876 	}
1877 
1878 	spin_unlock_irq(&ct->dead.lock);
1879 }
1880 #endif
1881