1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2012 Samsung Electronics Co.Ltd
4 * Authors:
5 * Eunchul Kim <chulspro.kim@samsung.com>
6 * Jinyoung Jeon <jy0.jeon@samsung.com>
7 * Sangmin Lee <lsmin.lee@samsung.com>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/component.h>
12 #include <linux/kernel.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/property.h>
18 #include <linux/regmap.h>
19
20 #include <drm/drm_fourcc.h>
21 #include <drm/drm_print.h>
22 #include <drm/exynos_drm.h>
23
24 #include "exynos_drm_drv.h"
25 #include "exynos_drm_ipp.h"
26 #include "regs-gsc.h"
27
28 /*
29 * GSC stands for General SCaler and
30 * supports image scaler/rotator and input/output DMA operations.
31 * input DMA reads image data from the memory.
32 * output DMA writes image data to memory.
33 * GSC supports image rotation and image effect functions.
34 */
35
36
37 #define GSC_MAX_CLOCKS 8
38 #define GSC_MAX_SRC 4
39 #define GSC_MAX_DST 16
40 #define GSC_RESET_TIMEOUT 50
41 #define GSC_BUF_STOP 1
42 #define GSC_BUF_START 2
43 #define GSC_REG_SZ 16
44 #define GSC_WIDTH_ITU_709 1280
45 #define GSC_SC_UP_MAX_RATIO 65536
46 #define GSC_SC_DOWN_RATIO_7_8 74898
47 #define GSC_SC_DOWN_RATIO_6_8 87381
48 #define GSC_SC_DOWN_RATIO_5_8 104857
49 #define GSC_SC_DOWN_RATIO_4_8 131072
50 #define GSC_SC_DOWN_RATIO_3_8 174762
51 #define GSC_SC_DOWN_RATIO_2_8 262144
52 #define GSC_CROP_MAX 8192
53 #define GSC_CROP_MIN 32
54 #define GSC_SCALE_MAX 4224
55 #define GSC_SCALE_MIN 32
56 #define GSC_COEF_RATIO 7
57 #define GSC_COEF_PHASE 9
58 #define GSC_COEF_ATTR 16
59 #define GSC_COEF_H_8T 8
60 #define GSC_COEF_V_4T 4
61 #define GSC_COEF_DEPTH 3
62 #define GSC_AUTOSUSPEND_DELAY 2000
63
64 #define get_gsc_context(dev) dev_get_drvdata(dev)
65 #define gsc_read(offset) readl(ctx->regs + (offset))
66 #define gsc_write(cfg, offset) writel(cfg, ctx->regs + (offset))
67
68 /*
69 * A structure of scaler.
70 *
71 * @range: narrow, wide.
72 * @pre_shfactor: pre sclaer shift factor.
73 * @pre_hratio: horizontal ratio of the prescaler.
74 * @pre_vratio: vertical ratio of the prescaler.
75 * @main_hratio: the main scaler's horizontal ratio.
76 * @main_vratio: the main scaler's vertical ratio.
77 */
78 struct gsc_scaler {
79 bool range;
80 u32 pre_shfactor;
81 u32 pre_hratio;
82 u32 pre_vratio;
83 unsigned long main_hratio;
84 unsigned long main_vratio;
85 };
86
87 /*
88 * A structure of gsc context.
89 *
90 * @regs: memory mapped io registers.
91 * @gsc_clk: gsc gate clock.
92 * @sc: scaler infomations.
93 * @id: gsc id.
94 * @irq: irq number.
95 * @rotation: supports rotation of src.
96 */
97 struct gsc_context {
98 struct exynos_drm_ipp ipp;
99 struct drm_device *drm_dev;
100 void *dma_priv;
101 struct device *dev;
102 struct exynos_drm_ipp_task *task;
103 struct exynos_drm_ipp_formats *formats;
104 unsigned int num_formats;
105
106 void __iomem *regs;
107 const char *const *clk_names;
108 struct clk *clocks[GSC_MAX_CLOCKS];
109 int num_clocks;
110 struct gsc_scaler sc;
111 int id;
112 int irq;
113 bool rotation;
114 };
115
116 /**
117 * struct gsc_driverdata - per device type driver data for init time.
118 *
119 * @limits: picture size limits array
120 * @num_limits: number of items in the aforementioned array
121 * @clk_names: names of clocks needed by this variant
122 * @num_clocks: the number of clocks needed by this variant
123 */
124 struct gsc_driverdata {
125 const struct drm_exynos_ipp_limit *limits;
126 int num_limits;
127 const char *clk_names[GSC_MAX_CLOCKS];
128 int num_clocks;
129 };
130
131 /* 8-tap Filter Coefficient */
132 static const int h_coef_8t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_H_8T] = {
133 { /* Ratio <= 65536 (~8:8) */
134 { 0, 0, 0, 128, 0, 0, 0, 0 },
135 { -1, 2, -6, 127, 7, -2, 1, 0 },
136 { -1, 4, -12, 125, 16, -5, 1, 0 },
137 { -1, 5, -15, 120, 25, -8, 2, 0 },
138 { -1, 6, -18, 114, 35, -10, 3, -1 },
139 { -1, 6, -20, 107, 46, -13, 4, -1 },
140 { -2, 7, -21, 99, 57, -16, 5, -1 },
141 { -1, 6, -20, 89, 68, -18, 5, -1 },
142 { -1, 6, -20, 79, 79, -20, 6, -1 },
143 { -1, 5, -18, 68, 89, -20, 6, -1 },
144 { -1, 5, -16, 57, 99, -21, 7, -2 },
145 { -1, 4, -13, 46, 107, -20, 6, -1 },
146 { -1, 3, -10, 35, 114, -18, 6, -1 },
147 { 0, 2, -8, 25, 120, -15, 5, -1 },
148 { 0, 1, -5, 16, 125, -12, 4, -1 },
149 { 0, 1, -2, 7, 127, -6, 2, -1 }
150 }, { /* 65536 < Ratio <= 74898 (~8:7) */
151 { 3, -8, 14, 111, 13, -8, 3, 0 },
152 { 2, -6, 7, 112, 21, -10, 3, -1 },
153 { 2, -4, 1, 110, 28, -12, 4, -1 },
154 { 1, -2, -3, 106, 36, -13, 4, -1 },
155 { 1, -1, -7, 103, 44, -15, 4, -1 },
156 { 1, 1, -11, 97, 53, -16, 4, -1 },
157 { 0, 2, -13, 91, 61, -16, 4, -1 },
158 { 0, 3, -15, 85, 69, -17, 4, -1 },
159 { 0, 3, -16, 77, 77, -16, 3, 0 },
160 { -1, 4, -17, 69, 85, -15, 3, 0 },
161 { -1, 4, -16, 61, 91, -13, 2, 0 },
162 { -1, 4, -16, 53, 97, -11, 1, 1 },
163 { -1, 4, -15, 44, 103, -7, -1, 1 },
164 { -1, 4, -13, 36, 106, -3, -2, 1 },
165 { -1, 4, -12, 28, 110, 1, -4, 2 },
166 { -1, 3, -10, 21, 112, 7, -6, 2 }
167 }, { /* 74898 < Ratio <= 87381 (~8:6) */
168 { 2, -11, 25, 96, 25, -11, 2, 0 },
169 { 2, -10, 19, 96, 31, -12, 2, 0 },
170 { 2, -9, 14, 94, 37, -12, 2, 0 },
171 { 2, -8, 10, 92, 43, -12, 1, 0 },
172 { 2, -7, 5, 90, 49, -12, 1, 0 },
173 { 2, -5, 1, 86, 55, -12, 0, 1 },
174 { 2, -4, -2, 82, 61, -11, -1, 1 },
175 { 1, -3, -5, 77, 67, -9, -1, 1 },
176 { 1, -2, -7, 72, 72, -7, -2, 1 },
177 { 1, -1, -9, 67, 77, -5, -3, 1 },
178 { 1, -1, -11, 61, 82, -2, -4, 2 },
179 { 1, 0, -12, 55, 86, 1, -5, 2 },
180 { 0, 1, -12, 49, 90, 5, -7, 2 },
181 { 0, 1, -12, 43, 92, 10, -8, 2 },
182 { 0, 2, -12, 37, 94, 14, -9, 2 },
183 { 0, 2, -12, 31, 96, 19, -10, 2 }
184 }, { /* 87381 < Ratio <= 104857 (~8:5) */
185 { -1, -8, 33, 80, 33, -8, -1, 0 },
186 { -1, -8, 28, 80, 37, -7, -2, 1 },
187 { 0, -8, 24, 79, 41, -7, -2, 1 },
188 { 0, -8, 20, 78, 46, -6, -3, 1 },
189 { 0, -8, 16, 76, 50, -4, -3, 1 },
190 { 0, -7, 13, 74, 54, -3, -4, 1 },
191 { 1, -7, 10, 71, 58, -1, -5, 1 },
192 { 1, -6, 6, 68, 62, 1, -5, 1 },
193 { 1, -6, 4, 65, 65, 4, -6, 1 },
194 { 1, -5, 1, 62, 68, 6, -6, 1 },
195 { 1, -5, -1, 58, 71, 10, -7, 1 },
196 { 1, -4, -3, 54, 74, 13, -7, 0 },
197 { 1, -3, -4, 50, 76, 16, -8, 0 },
198 { 1, -3, -6, 46, 78, 20, -8, 0 },
199 { 1, -2, -7, 41, 79, 24, -8, 0 },
200 { 1, -2, -7, 37, 80, 28, -8, -1 }
201 }, { /* 104857 < Ratio <= 131072 (~8:4) */
202 { -3, 0, 35, 64, 35, 0, -3, 0 },
203 { -3, -1, 32, 64, 38, 1, -3, 0 },
204 { -2, -2, 29, 63, 41, 2, -3, 0 },
205 { -2, -3, 27, 63, 43, 4, -4, 0 },
206 { -2, -3, 24, 61, 46, 6, -4, 0 },
207 { -2, -3, 21, 60, 49, 7, -4, 0 },
208 { -1, -4, 19, 59, 51, 9, -4, -1 },
209 { -1, -4, 16, 57, 53, 12, -4, -1 },
210 { -1, -4, 14, 55, 55, 14, -4, -1 },
211 { -1, -4, 12, 53, 57, 16, -4, -1 },
212 { -1, -4, 9, 51, 59, 19, -4, -1 },
213 { 0, -4, 7, 49, 60, 21, -3, -2 },
214 { 0, -4, 6, 46, 61, 24, -3, -2 },
215 { 0, -4, 4, 43, 63, 27, -3, -2 },
216 { 0, -3, 2, 41, 63, 29, -2, -2 },
217 { 0, -3, 1, 38, 64, 32, -1, -3 }
218 }, { /* 131072 < Ratio <= 174762 (~8:3) */
219 { -1, 8, 33, 48, 33, 8, -1, 0 },
220 { -1, 7, 31, 49, 35, 9, -1, -1 },
221 { -1, 6, 30, 49, 36, 10, -1, -1 },
222 { -1, 5, 28, 48, 38, 12, -1, -1 },
223 { -1, 4, 26, 48, 39, 13, 0, -1 },
224 { -1, 3, 24, 47, 41, 15, 0, -1 },
225 { -1, 2, 23, 47, 42, 16, 0, -1 },
226 { -1, 2, 21, 45, 43, 18, 1, -1 },
227 { -1, 1, 19, 45, 45, 19, 1, -1 },
228 { -1, 1, 18, 43, 45, 21, 2, -1 },
229 { -1, 0, 16, 42, 47, 23, 2, -1 },
230 { -1, 0, 15, 41, 47, 24, 3, -1 },
231 { -1, 0, 13, 39, 48, 26, 4, -1 },
232 { -1, -1, 12, 38, 48, 28, 5, -1 },
233 { -1, -1, 10, 36, 49, 30, 6, -1 },
234 { -1, -1, 9, 35, 49, 31, 7, -1 }
235 }, { /* 174762 < Ratio <= 262144 (~8:2) */
236 { 2, 13, 30, 38, 30, 13, 2, 0 },
237 { 2, 12, 29, 38, 30, 14, 3, 0 },
238 { 2, 11, 28, 38, 31, 15, 3, 0 },
239 { 2, 10, 26, 38, 32, 16, 4, 0 },
240 { 1, 10, 26, 37, 33, 17, 4, 0 },
241 { 1, 9, 24, 37, 34, 18, 5, 0 },
242 { 1, 8, 24, 37, 34, 19, 5, 0 },
243 { 1, 7, 22, 36, 35, 20, 6, 1 },
244 { 1, 6, 21, 36, 36, 21, 6, 1 },
245 { 1, 6, 20, 35, 36, 22, 7, 1 },
246 { 0, 5, 19, 34, 37, 24, 8, 1 },
247 { 0, 5, 18, 34, 37, 24, 9, 1 },
248 { 0, 4, 17, 33, 37, 26, 10, 1 },
249 { 0, 4, 16, 32, 38, 26, 10, 2 },
250 { 0, 3, 15, 31, 38, 28, 11, 2 },
251 { 0, 3, 14, 30, 38, 29, 12, 2 }
252 }
253 };
254
255 /* 4-tap Filter Coefficient */
256 static const int v_coef_4t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_V_4T] = {
257 { /* Ratio <= 65536 (~8:8) */
258 { 0, 128, 0, 0 },
259 { -4, 127, 5, 0 },
260 { -6, 124, 11, -1 },
261 { -8, 118, 19, -1 },
262 { -8, 111, 27, -2 },
263 { -8, 102, 37, -3 },
264 { -8, 92, 48, -4 },
265 { -7, 81, 59, -5 },
266 { -6, 70, 70, -6 },
267 { -5, 59, 81, -7 },
268 { -4, 48, 92, -8 },
269 { -3, 37, 102, -8 },
270 { -2, 27, 111, -8 },
271 { -1, 19, 118, -8 },
272 { -1, 11, 124, -6 },
273 { 0, 5, 127, -4 }
274 }, { /* 65536 < Ratio <= 74898 (~8:7) */
275 { 8, 112, 8, 0 },
276 { 4, 111, 14, -1 },
277 { 1, 109, 20, -2 },
278 { -2, 105, 27, -2 },
279 { -3, 100, 34, -3 },
280 { -5, 93, 43, -3 },
281 { -5, 86, 51, -4 },
282 { -5, 77, 60, -4 },
283 { -5, 69, 69, -5 },
284 { -4, 60, 77, -5 },
285 { -4, 51, 86, -5 },
286 { -3, 43, 93, -5 },
287 { -3, 34, 100, -3 },
288 { -2, 27, 105, -2 },
289 { -2, 20, 109, 1 },
290 { -1, 14, 111, 4 }
291 }, { /* 74898 < Ratio <= 87381 (~8:6) */
292 { 16, 96, 16, 0 },
293 { 12, 97, 21, -2 },
294 { 8, 96, 26, -2 },
295 { 5, 93, 32, -2 },
296 { 2, 89, 39, -2 },
297 { 0, 84, 46, -2 },
298 { -1, 79, 53, -3 },
299 { -2, 73, 59, -2 },
300 { -2, 66, 66, -2 },
301 { -2, 59, 73, -2 },
302 { -3, 53, 79, -1 },
303 { -2, 46, 84, 0 },
304 { -2, 39, 89, 2 },
305 { -2, 32, 93, 5 },
306 { -2, 26, 96, 8 },
307 { -2, 21, 97, 12 }
308 }, { /* 87381 < Ratio <= 104857 (~8:5) */
309 { 22, 84, 22, 0 },
310 { 18, 85, 26, -1 },
311 { 14, 84, 31, -1 },
312 { 11, 82, 36, -1 },
313 { 8, 79, 42, -1 },
314 { 6, 76, 47, -1 },
315 { 4, 72, 52, 0 },
316 { 2, 68, 58, 0 },
317 { 1, 63, 63, 1 },
318 { 0, 58, 68, 2 },
319 { 0, 52, 72, 4 },
320 { -1, 47, 76, 6 },
321 { -1, 42, 79, 8 },
322 { -1, 36, 82, 11 },
323 { -1, 31, 84, 14 },
324 { -1, 26, 85, 18 }
325 }, { /* 104857 < Ratio <= 131072 (~8:4) */
326 { 26, 76, 26, 0 },
327 { 22, 76, 30, 0 },
328 { 19, 75, 34, 0 },
329 { 16, 73, 38, 1 },
330 { 13, 71, 43, 1 },
331 { 10, 69, 47, 2 },
332 { 8, 66, 51, 3 },
333 { 6, 63, 55, 4 },
334 { 5, 59, 59, 5 },
335 { 4, 55, 63, 6 },
336 { 3, 51, 66, 8 },
337 { 2, 47, 69, 10 },
338 { 1, 43, 71, 13 },
339 { 1, 38, 73, 16 },
340 { 0, 34, 75, 19 },
341 { 0, 30, 76, 22 }
342 }, { /* 131072 < Ratio <= 174762 (~8:3) */
343 { 29, 70, 29, 0 },
344 { 26, 68, 32, 2 },
345 { 23, 67, 36, 2 },
346 { 20, 66, 39, 3 },
347 { 17, 65, 43, 3 },
348 { 15, 63, 46, 4 },
349 { 12, 61, 50, 5 },
350 { 10, 58, 53, 7 },
351 { 8, 56, 56, 8 },
352 { 7, 53, 58, 10 },
353 { 5, 50, 61, 12 },
354 { 4, 46, 63, 15 },
355 { 3, 43, 65, 17 },
356 { 3, 39, 66, 20 },
357 { 2, 36, 67, 23 },
358 { 2, 32, 68, 26 }
359 }, { /* 174762 < Ratio <= 262144 (~8:2) */
360 { 32, 64, 32, 0 },
361 { 28, 63, 34, 3 },
362 { 25, 62, 37, 4 },
363 { 22, 62, 40, 4 },
364 { 19, 61, 43, 5 },
365 { 17, 59, 46, 6 },
366 { 15, 58, 48, 7 },
367 { 13, 55, 51, 9 },
368 { 11, 53, 53, 11 },
369 { 9, 51, 55, 13 },
370 { 7, 48, 58, 15 },
371 { 6, 46, 59, 17 },
372 { 5, 43, 61, 19 },
373 { 4, 40, 62, 22 },
374 { 4, 37, 62, 25 },
375 { 3, 34, 63, 28 }
376 }
377 };
378
gsc_sw_reset(struct gsc_context * ctx)379 static int gsc_sw_reset(struct gsc_context *ctx)
380 {
381 u32 cfg;
382 int count = GSC_RESET_TIMEOUT;
383
384 /* s/w reset */
385 cfg = (GSC_SW_RESET_SRESET);
386 gsc_write(cfg, GSC_SW_RESET);
387
388 /* wait s/w reset complete */
389 while (count--) {
390 cfg = gsc_read(GSC_SW_RESET);
391 if (!cfg)
392 break;
393 usleep_range(1000, 2000);
394 }
395
396 if (cfg) {
397 DRM_DEV_ERROR(ctx->dev, "failed to reset gsc h/w.\n");
398 return -EBUSY;
399 }
400
401 /* reset sequence */
402 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
403 cfg |= (GSC_IN_BASE_ADDR_MASK |
404 GSC_IN_BASE_ADDR_PINGPONG(0));
405 gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
406 gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
407 gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
408
409 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
410 cfg |= (GSC_OUT_BASE_ADDR_MASK |
411 GSC_OUT_BASE_ADDR_PINGPONG(0));
412 gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK);
413 gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK);
414 gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
415
416 return 0;
417 }
418
gsc_handle_irq(struct gsc_context * ctx,bool enable,bool overflow,bool done)419 static void gsc_handle_irq(struct gsc_context *ctx, bool enable,
420 bool overflow, bool done)
421 {
422 u32 cfg;
423
424 DRM_DEV_DEBUG_KMS(ctx->dev, "enable[%d]overflow[%d]level[%d]\n",
425 enable, overflow, done);
426
427 cfg = gsc_read(GSC_IRQ);
428 cfg |= (GSC_IRQ_OR_MASK | GSC_IRQ_FRMDONE_MASK);
429
430 if (enable)
431 cfg |= GSC_IRQ_ENABLE;
432 else
433 cfg &= ~GSC_IRQ_ENABLE;
434
435 if (overflow)
436 cfg &= ~GSC_IRQ_OR_MASK;
437 else
438 cfg |= GSC_IRQ_OR_MASK;
439
440 if (done)
441 cfg &= ~GSC_IRQ_FRMDONE_MASK;
442 else
443 cfg |= GSC_IRQ_FRMDONE_MASK;
444
445 gsc_write(cfg, GSC_IRQ);
446 }
447
448
gsc_src_set_fmt(struct gsc_context * ctx,u32 fmt,bool tiled)449 static void gsc_src_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled)
450 {
451 u32 cfg;
452
453 DRM_DEV_DEBUG_KMS(ctx->dev, "fmt[0x%x]\n", fmt);
454
455 cfg = gsc_read(GSC_IN_CON);
456 cfg &= ~(GSC_IN_RGB_TYPE_MASK | GSC_IN_YUV422_1P_ORDER_MASK |
457 GSC_IN_CHROMA_ORDER_MASK | GSC_IN_FORMAT_MASK |
458 GSC_IN_TILE_TYPE_MASK | GSC_IN_TILE_MODE |
459 GSC_IN_CHROM_STRIDE_SEL_MASK | GSC_IN_RB_SWAP_MASK);
460
461 switch (fmt) {
462 case DRM_FORMAT_RGB565:
463 cfg |= GSC_IN_RGB565;
464 break;
465 case DRM_FORMAT_XRGB8888:
466 case DRM_FORMAT_ARGB8888:
467 cfg |= GSC_IN_XRGB8888;
468 break;
469 case DRM_FORMAT_BGRX8888:
470 cfg |= (GSC_IN_XRGB8888 | GSC_IN_RB_SWAP);
471 break;
472 case DRM_FORMAT_YUYV:
473 cfg |= (GSC_IN_YUV422_1P |
474 GSC_IN_YUV422_1P_ORDER_LSB_Y |
475 GSC_IN_CHROMA_ORDER_CBCR);
476 break;
477 case DRM_FORMAT_YVYU:
478 cfg |= (GSC_IN_YUV422_1P |
479 GSC_IN_YUV422_1P_ORDER_LSB_Y |
480 GSC_IN_CHROMA_ORDER_CRCB);
481 break;
482 case DRM_FORMAT_UYVY:
483 cfg |= (GSC_IN_YUV422_1P |
484 GSC_IN_YUV422_1P_OEDER_LSB_C |
485 GSC_IN_CHROMA_ORDER_CBCR);
486 break;
487 case DRM_FORMAT_VYUY:
488 cfg |= (GSC_IN_YUV422_1P |
489 GSC_IN_YUV422_1P_OEDER_LSB_C |
490 GSC_IN_CHROMA_ORDER_CRCB);
491 break;
492 case DRM_FORMAT_NV21:
493 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_2P);
494 break;
495 case DRM_FORMAT_NV61:
496 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV422_2P);
497 break;
498 case DRM_FORMAT_YUV422:
499 cfg |= GSC_IN_YUV422_3P;
500 break;
501 case DRM_FORMAT_YUV420:
502 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_3P);
503 break;
504 case DRM_FORMAT_YVU420:
505 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_3P);
506 break;
507 case DRM_FORMAT_NV12:
508 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_2P);
509 break;
510 case DRM_FORMAT_NV16:
511 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV422_2P);
512 break;
513 }
514
515 if (tiled)
516 cfg |= (GSC_IN_TILE_C_16x8 | GSC_IN_TILE_MODE);
517
518 gsc_write(cfg, GSC_IN_CON);
519 }
520
gsc_src_set_transf(struct gsc_context * ctx,unsigned int rotation)521 static void gsc_src_set_transf(struct gsc_context *ctx, unsigned int rotation)
522 {
523 unsigned int degree = rotation & DRM_MODE_ROTATE_MASK;
524 u32 cfg;
525
526 cfg = gsc_read(GSC_IN_CON);
527 cfg &= ~GSC_IN_ROT_MASK;
528
529 switch (degree) {
530 case DRM_MODE_ROTATE_0:
531 if (rotation & DRM_MODE_REFLECT_X)
532 cfg |= GSC_IN_ROT_XFLIP;
533 if (rotation & DRM_MODE_REFLECT_Y)
534 cfg |= GSC_IN_ROT_YFLIP;
535 break;
536 case DRM_MODE_ROTATE_90:
537 cfg |= GSC_IN_ROT_90;
538 if (rotation & DRM_MODE_REFLECT_X)
539 cfg |= GSC_IN_ROT_XFLIP;
540 if (rotation & DRM_MODE_REFLECT_Y)
541 cfg |= GSC_IN_ROT_YFLIP;
542 break;
543 case DRM_MODE_ROTATE_180:
544 cfg |= GSC_IN_ROT_180;
545 if (rotation & DRM_MODE_REFLECT_X)
546 cfg &= ~GSC_IN_ROT_XFLIP;
547 if (rotation & DRM_MODE_REFLECT_Y)
548 cfg &= ~GSC_IN_ROT_YFLIP;
549 break;
550 case DRM_MODE_ROTATE_270:
551 cfg |= GSC_IN_ROT_270;
552 if (rotation & DRM_MODE_REFLECT_X)
553 cfg &= ~GSC_IN_ROT_XFLIP;
554 if (rotation & DRM_MODE_REFLECT_Y)
555 cfg &= ~GSC_IN_ROT_YFLIP;
556 break;
557 }
558
559 gsc_write(cfg, GSC_IN_CON);
560
561 ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0;
562 }
563
gsc_src_set_size(struct gsc_context * ctx,struct exynos_drm_ipp_buffer * buf)564 static void gsc_src_set_size(struct gsc_context *ctx,
565 struct exynos_drm_ipp_buffer *buf)
566 {
567 struct gsc_scaler *sc = &ctx->sc;
568 u32 cfg;
569
570 /* pixel offset */
571 cfg = (GSC_SRCIMG_OFFSET_X(buf->rect.x) |
572 GSC_SRCIMG_OFFSET_Y(buf->rect.y));
573 gsc_write(cfg, GSC_SRCIMG_OFFSET);
574
575 /* cropped size */
576 cfg = (GSC_CROPPED_WIDTH(buf->rect.w) |
577 GSC_CROPPED_HEIGHT(buf->rect.h));
578 gsc_write(cfg, GSC_CROPPED_SIZE);
579
580 /* original size */
581 cfg = gsc_read(GSC_SRCIMG_SIZE);
582 cfg &= ~(GSC_SRCIMG_HEIGHT_MASK |
583 GSC_SRCIMG_WIDTH_MASK);
584
585 cfg |= (GSC_SRCIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) |
586 GSC_SRCIMG_HEIGHT(buf->buf.height));
587
588 gsc_write(cfg, GSC_SRCIMG_SIZE);
589
590 cfg = gsc_read(GSC_IN_CON);
591 cfg &= ~GSC_IN_RGB_TYPE_MASK;
592
593 if (buf->rect.w >= GSC_WIDTH_ITU_709)
594 if (sc->range)
595 cfg |= GSC_IN_RGB_HD_WIDE;
596 else
597 cfg |= GSC_IN_RGB_HD_NARROW;
598 else
599 if (sc->range)
600 cfg |= GSC_IN_RGB_SD_WIDE;
601 else
602 cfg |= GSC_IN_RGB_SD_NARROW;
603
604 gsc_write(cfg, GSC_IN_CON);
605 }
606
gsc_src_set_buf_seq(struct gsc_context * ctx,u32 buf_id,bool enqueue)607 static void gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
608 bool enqueue)
609 {
610 bool masked = !enqueue;
611 u32 cfg;
612 u32 mask = 0x00000001 << buf_id;
613
614 /* mask register set */
615 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
616
617 /* sequence id */
618 cfg &= ~mask;
619 cfg |= masked << buf_id;
620 gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
621 gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
622 gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
623 }
624
gsc_src_set_addr(struct gsc_context * ctx,u32 buf_id,struct exynos_drm_ipp_buffer * buf)625 static void gsc_src_set_addr(struct gsc_context *ctx, u32 buf_id,
626 struct exynos_drm_ipp_buffer *buf)
627 {
628 /* address register set */
629 gsc_write(buf->dma_addr[0], GSC_IN_BASE_ADDR_Y(buf_id));
630 gsc_write(buf->dma_addr[1], GSC_IN_BASE_ADDR_CB(buf_id));
631 gsc_write(buf->dma_addr[2], GSC_IN_BASE_ADDR_CR(buf_id));
632
633 gsc_src_set_buf_seq(ctx, buf_id, true);
634 }
635
gsc_dst_set_fmt(struct gsc_context * ctx,u32 fmt,bool tiled)636 static void gsc_dst_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled)
637 {
638 u32 cfg;
639
640 DRM_DEV_DEBUG_KMS(ctx->dev, "fmt[0x%x]\n", fmt);
641
642 cfg = gsc_read(GSC_OUT_CON);
643 cfg &= ~(GSC_OUT_RGB_TYPE_MASK | GSC_OUT_YUV422_1P_ORDER_MASK |
644 GSC_OUT_CHROMA_ORDER_MASK | GSC_OUT_FORMAT_MASK |
645 GSC_OUT_CHROM_STRIDE_SEL_MASK | GSC_OUT_RB_SWAP_MASK |
646 GSC_OUT_GLOBAL_ALPHA_MASK);
647
648 switch (fmt) {
649 case DRM_FORMAT_RGB565:
650 cfg |= GSC_OUT_RGB565;
651 break;
652 case DRM_FORMAT_ARGB8888:
653 case DRM_FORMAT_XRGB8888:
654 cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_GLOBAL_ALPHA(0xff));
655 break;
656 case DRM_FORMAT_BGRX8888:
657 cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP);
658 break;
659 case DRM_FORMAT_YUYV:
660 cfg |= (GSC_OUT_YUV422_1P |
661 GSC_OUT_YUV422_1P_ORDER_LSB_Y |
662 GSC_OUT_CHROMA_ORDER_CBCR);
663 break;
664 case DRM_FORMAT_YVYU:
665 cfg |= (GSC_OUT_YUV422_1P |
666 GSC_OUT_YUV422_1P_ORDER_LSB_Y |
667 GSC_OUT_CHROMA_ORDER_CRCB);
668 break;
669 case DRM_FORMAT_UYVY:
670 cfg |= (GSC_OUT_YUV422_1P |
671 GSC_OUT_YUV422_1P_OEDER_LSB_C |
672 GSC_OUT_CHROMA_ORDER_CBCR);
673 break;
674 case DRM_FORMAT_VYUY:
675 cfg |= (GSC_OUT_YUV422_1P |
676 GSC_OUT_YUV422_1P_OEDER_LSB_C |
677 GSC_OUT_CHROMA_ORDER_CRCB);
678 break;
679 case DRM_FORMAT_NV21:
680 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_2P);
681 break;
682 case DRM_FORMAT_NV61:
683 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV422_2P);
684 break;
685 case DRM_FORMAT_YUV422:
686 cfg |= GSC_OUT_YUV422_3P;
687 break;
688 case DRM_FORMAT_YUV420:
689 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_3P);
690 break;
691 case DRM_FORMAT_YVU420:
692 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_3P);
693 break;
694 case DRM_FORMAT_NV12:
695 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_2P);
696 break;
697 case DRM_FORMAT_NV16:
698 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV422_2P);
699 break;
700 }
701
702 if (tiled)
703 cfg |= (GSC_IN_TILE_C_16x8 | GSC_OUT_TILE_MODE);
704
705 gsc_write(cfg, GSC_OUT_CON);
706 }
707
gsc_get_ratio_shift(struct gsc_context * ctx,u32 src,u32 dst,u32 * ratio)708 static int gsc_get_ratio_shift(struct gsc_context *ctx, u32 src, u32 dst,
709 u32 *ratio)
710 {
711 DRM_DEV_DEBUG_KMS(ctx->dev, "src[%d]dst[%d]\n", src, dst);
712
713 if (src >= dst * 8) {
714 DRM_DEV_ERROR(ctx->dev, "failed to make ratio and shift.\n");
715 return -EINVAL;
716 } else if (src >= dst * 4)
717 *ratio = 4;
718 else if (src >= dst * 2)
719 *ratio = 2;
720 else
721 *ratio = 1;
722
723 return 0;
724 }
725
gsc_get_prescaler_shfactor(u32 hratio,u32 vratio,u32 * shfactor)726 static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor)
727 {
728 if (hratio == 4 && vratio == 4)
729 *shfactor = 4;
730 else if ((hratio == 4 && vratio == 2) ||
731 (hratio == 2 && vratio == 4))
732 *shfactor = 3;
733 else if ((hratio == 4 && vratio == 1) ||
734 (hratio == 1 && vratio == 4) ||
735 (hratio == 2 && vratio == 2))
736 *shfactor = 2;
737 else if (hratio == 1 && vratio == 1)
738 *shfactor = 0;
739 else
740 *shfactor = 1;
741 }
742
gsc_set_prescaler(struct gsc_context * ctx,struct gsc_scaler * sc,struct drm_exynos_ipp_task_rect * src,struct drm_exynos_ipp_task_rect * dst)743 static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc,
744 struct drm_exynos_ipp_task_rect *src,
745 struct drm_exynos_ipp_task_rect *dst)
746 {
747 u32 cfg;
748 u32 src_w, src_h, dst_w, dst_h;
749 int ret = 0;
750
751 src_w = src->w;
752 src_h = src->h;
753
754 if (ctx->rotation) {
755 dst_w = dst->h;
756 dst_h = dst->w;
757 } else {
758 dst_w = dst->w;
759 dst_h = dst->h;
760 }
761
762 ret = gsc_get_ratio_shift(ctx, src_w, dst_w, &sc->pre_hratio);
763 if (ret) {
764 DRM_DEV_ERROR(ctx->dev, "failed to get ratio horizontal.\n");
765 return ret;
766 }
767
768 ret = gsc_get_ratio_shift(ctx, src_h, dst_h, &sc->pre_vratio);
769 if (ret) {
770 DRM_DEV_ERROR(ctx->dev, "failed to get ratio vertical.\n");
771 return ret;
772 }
773
774 DRM_DEV_DEBUG_KMS(ctx->dev, "pre_hratio[%d]pre_vratio[%d]\n",
775 sc->pre_hratio, sc->pre_vratio);
776
777 sc->main_hratio = (src_w << 16) / dst_w;
778 sc->main_vratio = (src_h << 16) / dst_h;
779
780 DRM_DEV_DEBUG_KMS(ctx->dev, "main_hratio[%ld]main_vratio[%ld]\n",
781 sc->main_hratio, sc->main_vratio);
782
783 gsc_get_prescaler_shfactor(sc->pre_hratio, sc->pre_vratio,
784 &sc->pre_shfactor);
785
786 DRM_DEV_DEBUG_KMS(ctx->dev, "pre_shfactor[%d]\n", sc->pre_shfactor);
787
788 cfg = (GSC_PRESC_SHFACTOR(sc->pre_shfactor) |
789 GSC_PRESC_H_RATIO(sc->pre_hratio) |
790 GSC_PRESC_V_RATIO(sc->pre_vratio));
791 gsc_write(cfg, GSC_PRE_SCALE_RATIO);
792
793 return ret;
794 }
795
gsc_set_h_coef(struct gsc_context * ctx,unsigned long main_hratio)796 static void gsc_set_h_coef(struct gsc_context *ctx, unsigned long main_hratio)
797 {
798 int i, j, k, sc_ratio;
799
800 if (main_hratio <= GSC_SC_UP_MAX_RATIO)
801 sc_ratio = 0;
802 else if (main_hratio <= GSC_SC_DOWN_RATIO_7_8)
803 sc_ratio = 1;
804 else if (main_hratio <= GSC_SC_DOWN_RATIO_6_8)
805 sc_ratio = 2;
806 else if (main_hratio <= GSC_SC_DOWN_RATIO_5_8)
807 sc_ratio = 3;
808 else if (main_hratio <= GSC_SC_DOWN_RATIO_4_8)
809 sc_ratio = 4;
810 else if (main_hratio <= GSC_SC_DOWN_RATIO_3_8)
811 sc_ratio = 5;
812 else
813 sc_ratio = 6;
814
815 for (i = 0; i < GSC_COEF_PHASE; i++)
816 for (j = 0; j < GSC_COEF_H_8T; j++)
817 for (k = 0; k < GSC_COEF_DEPTH; k++)
818 gsc_write(h_coef_8t[sc_ratio][i][j],
819 GSC_HCOEF(i, j, k));
820 }
821
gsc_set_v_coef(struct gsc_context * ctx,unsigned long main_vratio)822 static void gsc_set_v_coef(struct gsc_context *ctx, unsigned long main_vratio)
823 {
824 int i, j, k, sc_ratio;
825
826 if (main_vratio <= GSC_SC_UP_MAX_RATIO)
827 sc_ratio = 0;
828 else if (main_vratio <= GSC_SC_DOWN_RATIO_7_8)
829 sc_ratio = 1;
830 else if (main_vratio <= GSC_SC_DOWN_RATIO_6_8)
831 sc_ratio = 2;
832 else if (main_vratio <= GSC_SC_DOWN_RATIO_5_8)
833 sc_ratio = 3;
834 else if (main_vratio <= GSC_SC_DOWN_RATIO_4_8)
835 sc_ratio = 4;
836 else if (main_vratio <= GSC_SC_DOWN_RATIO_3_8)
837 sc_ratio = 5;
838 else
839 sc_ratio = 6;
840
841 for (i = 0; i < GSC_COEF_PHASE; i++)
842 for (j = 0; j < GSC_COEF_V_4T; j++)
843 for (k = 0; k < GSC_COEF_DEPTH; k++)
844 gsc_write(v_coef_4t[sc_ratio][i][j],
845 GSC_VCOEF(i, j, k));
846 }
847
gsc_set_scaler(struct gsc_context * ctx,struct gsc_scaler * sc)848 static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc)
849 {
850 u32 cfg;
851
852 DRM_DEV_DEBUG_KMS(ctx->dev, "main_hratio[%ld]main_vratio[%ld]\n",
853 sc->main_hratio, sc->main_vratio);
854
855 gsc_set_h_coef(ctx, sc->main_hratio);
856 cfg = GSC_MAIN_H_RATIO_VALUE(sc->main_hratio);
857 gsc_write(cfg, GSC_MAIN_H_RATIO);
858
859 gsc_set_v_coef(ctx, sc->main_vratio);
860 cfg = GSC_MAIN_V_RATIO_VALUE(sc->main_vratio);
861 gsc_write(cfg, GSC_MAIN_V_RATIO);
862 }
863
gsc_dst_set_size(struct gsc_context * ctx,struct exynos_drm_ipp_buffer * buf)864 static void gsc_dst_set_size(struct gsc_context *ctx,
865 struct exynos_drm_ipp_buffer *buf)
866 {
867 struct gsc_scaler *sc = &ctx->sc;
868 u32 cfg;
869
870 /* pixel offset */
871 cfg = (GSC_DSTIMG_OFFSET_X(buf->rect.x) |
872 GSC_DSTIMG_OFFSET_Y(buf->rect.y));
873 gsc_write(cfg, GSC_DSTIMG_OFFSET);
874
875 /* scaled size */
876 if (ctx->rotation)
877 cfg = (GSC_SCALED_WIDTH(buf->rect.h) |
878 GSC_SCALED_HEIGHT(buf->rect.w));
879 else
880 cfg = (GSC_SCALED_WIDTH(buf->rect.w) |
881 GSC_SCALED_HEIGHT(buf->rect.h));
882 gsc_write(cfg, GSC_SCALED_SIZE);
883
884 /* original size */
885 cfg = gsc_read(GSC_DSTIMG_SIZE);
886 cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK);
887 cfg |= GSC_DSTIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) |
888 GSC_DSTIMG_HEIGHT(buf->buf.height);
889 gsc_write(cfg, GSC_DSTIMG_SIZE);
890
891 cfg = gsc_read(GSC_OUT_CON);
892 cfg &= ~GSC_OUT_RGB_TYPE_MASK;
893
894 if (buf->rect.w >= GSC_WIDTH_ITU_709)
895 if (sc->range)
896 cfg |= GSC_OUT_RGB_HD_WIDE;
897 else
898 cfg |= GSC_OUT_RGB_HD_NARROW;
899 else
900 if (sc->range)
901 cfg |= GSC_OUT_RGB_SD_WIDE;
902 else
903 cfg |= GSC_OUT_RGB_SD_NARROW;
904
905 gsc_write(cfg, GSC_OUT_CON);
906 }
907
gsc_dst_get_buf_seq(struct gsc_context * ctx)908 static int gsc_dst_get_buf_seq(struct gsc_context *ctx)
909 {
910 u32 cfg, i, buf_num = GSC_REG_SZ;
911 u32 mask = 0x00000001;
912
913 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
914
915 for (i = 0; i < GSC_REG_SZ; i++)
916 if (cfg & (mask << i))
917 buf_num--;
918
919 DRM_DEV_DEBUG_KMS(ctx->dev, "buf_num[%d]\n", buf_num);
920
921 return buf_num;
922 }
923
gsc_dst_set_buf_seq(struct gsc_context * ctx,u32 buf_id,bool enqueue)924 static void gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
925 bool enqueue)
926 {
927 bool masked = !enqueue;
928 u32 cfg;
929 u32 mask = 0x00000001 << buf_id;
930
931 /* mask register set */
932 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
933
934 /* sequence id */
935 cfg &= ~mask;
936 cfg |= masked << buf_id;
937 gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK);
938 gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK);
939 gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
940
941 /* interrupt enable */
942 if (enqueue && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START)
943 gsc_handle_irq(ctx, true, false, true);
944
945 /* interrupt disable */
946 if (!enqueue && gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP)
947 gsc_handle_irq(ctx, false, false, true);
948 }
949
gsc_dst_set_addr(struct gsc_context * ctx,u32 buf_id,struct exynos_drm_ipp_buffer * buf)950 static void gsc_dst_set_addr(struct gsc_context *ctx,
951 u32 buf_id, struct exynos_drm_ipp_buffer *buf)
952 {
953 /* address register set */
954 gsc_write(buf->dma_addr[0], GSC_OUT_BASE_ADDR_Y(buf_id));
955 gsc_write(buf->dma_addr[1], GSC_OUT_BASE_ADDR_CB(buf_id));
956 gsc_write(buf->dma_addr[2], GSC_OUT_BASE_ADDR_CR(buf_id));
957
958 gsc_dst_set_buf_seq(ctx, buf_id, true);
959 }
960
gsc_get_src_buf_index(struct gsc_context * ctx)961 static int gsc_get_src_buf_index(struct gsc_context *ctx)
962 {
963 u32 cfg, curr_index, i;
964 u32 buf_id = GSC_MAX_SRC;
965
966 DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
967
968 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
969 curr_index = GSC_IN_CURR_GET_INDEX(cfg);
970
971 for (i = curr_index; i < GSC_MAX_SRC; i++) {
972 if (!((cfg >> i) & 0x1)) {
973 buf_id = i;
974 break;
975 }
976 }
977
978 DRM_DEV_DEBUG_KMS(ctx->dev, "cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
979 curr_index, buf_id);
980
981 if (buf_id == GSC_MAX_SRC) {
982 DRM_DEV_ERROR(ctx->dev, "failed to get in buffer index.\n");
983 return -EINVAL;
984 }
985
986 gsc_src_set_buf_seq(ctx, buf_id, false);
987
988 return buf_id;
989 }
990
gsc_get_dst_buf_index(struct gsc_context * ctx)991 static int gsc_get_dst_buf_index(struct gsc_context *ctx)
992 {
993 u32 cfg, curr_index, i;
994 u32 buf_id = GSC_MAX_DST;
995
996 DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
997
998 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
999 curr_index = GSC_OUT_CURR_GET_INDEX(cfg);
1000
1001 for (i = curr_index; i < GSC_MAX_DST; i++) {
1002 if (!((cfg >> i) & 0x1)) {
1003 buf_id = i;
1004 break;
1005 }
1006 }
1007
1008 if (buf_id == GSC_MAX_DST) {
1009 DRM_DEV_ERROR(ctx->dev, "failed to get out buffer index.\n");
1010 return -EINVAL;
1011 }
1012
1013 gsc_dst_set_buf_seq(ctx, buf_id, false);
1014
1015 DRM_DEV_DEBUG_KMS(ctx->dev, "cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
1016 curr_index, buf_id);
1017
1018 return buf_id;
1019 }
1020
gsc_irq_handler(int irq,void * dev_id)1021 static irqreturn_t gsc_irq_handler(int irq, void *dev_id)
1022 {
1023 struct gsc_context *ctx = dev_id;
1024 u32 status;
1025 int err = 0;
1026
1027 DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
1028
1029 status = gsc_read(GSC_IRQ);
1030 if (status & GSC_IRQ_STATUS_OR_IRQ) {
1031 dev_err(ctx->dev, "occurred overflow at %d, status 0x%x.\n",
1032 ctx->id, status);
1033 err = -EINVAL;
1034 }
1035
1036 if (status & GSC_IRQ_STATUS_OR_FRM_DONE) {
1037 int src_buf_id, dst_buf_id;
1038
1039 dev_dbg(ctx->dev, "occurred frame done at %d, status 0x%x.\n",
1040 ctx->id, status);
1041
1042 src_buf_id = gsc_get_src_buf_index(ctx);
1043 dst_buf_id = gsc_get_dst_buf_index(ctx);
1044
1045 DRM_DEV_DEBUG_KMS(ctx->dev, "buf_id_src[%d]buf_id_dst[%d]\n",
1046 src_buf_id, dst_buf_id);
1047
1048 if (src_buf_id < 0 || dst_buf_id < 0)
1049 err = -EINVAL;
1050 }
1051
1052 if (ctx->task) {
1053 struct exynos_drm_ipp_task *task = ctx->task;
1054
1055 ctx->task = NULL;
1056 pm_runtime_mark_last_busy(ctx->dev);
1057 pm_runtime_put_autosuspend(ctx->dev);
1058 exynos_drm_ipp_task_done(task, err);
1059 }
1060
1061 return IRQ_HANDLED;
1062 }
1063
gsc_reset(struct gsc_context * ctx)1064 static int gsc_reset(struct gsc_context *ctx)
1065 {
1066 struct gsc_scaler *sc = &ctx->sc;
1067 int ret;
1068
1069 /* reset h/w block */
1070 ret = gsc_sw_reset(ctx);
1071 if (ret < 0) {
1072 dev_err(ctx->dev, "failed to reset hardware.\n");
1073 return ret;
1074 }
1075
1076 /* scaler setting */
1077 memset(&ctx->sc, 0x0, sizeof(ctx->sc));
1078 sc->range = true;
1079
1080 return 0;
1081 }
1082
gsc_start(struct gsc_context * ctx)1083 static void gsc_start(struct gsc_context *ctx)
1084 {
1085 u32 cfg;
1086
1087 gsc_handle_irq(ctx, true, false, true);
1088
1089 /* enable one shot */
1090 cfg = gsc_read(GSC_ENABLE);
1091 cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK |
1092 GSC_ENABLE_CLK_GATE_MODE_MASK);
1093 cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT;
1094 gsc_write(cfg, GSC_ENABLE);
1095
1096 /* src dma memory */
1097 cfg = gsc_read(GSC_IN_CON);
1098 cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK);
1099 cfg |= GSC_IN_PATH_MEMORY;
1100 gsc_write(cfg, GSC_IN_CON);
1101
1102 /* dst dma memory */
1103 cfg = gsc_read(GSC_OUT_CON);
1104 cfg |= GSC_OUT_PATH_MEMORY;
1105 gsc_write(cfg, GSC_OUT_CON);
1106
1107 gsc_set_scaler(ctx, &ctx->sc);
1108
1109 cfg = gsc_read(GSC_ENABLE);
1110 cfg |= GSC_ENABLE_ON;
1111 gsc_write(cfg, GSC_ENABLE);
1112 }
1113
gsc_commit(struct exynos_drm_ipp * ipp,struct exynos_drm_ipp_task * task)1114 static int gsc_commit(struct exynos_drm_ipp *ipp,
1115 struct exynos_drm_ipp_task *task)
1116 {
1117 struct gsc_context *ctx = container_of(ipp, struct gsc_context, ipp);
1118 int ret;
1119
1120 ret = pm_runtime_resume_and_get(ctx->dev);
1121 if (ret < 0) {
1122 dev_err(ctx->dev, "failed to enable GScaler device.\n");
1123 return ret;
1124 }
1125
1126 ctx->task = task;
1127
1128 ret = gsc_reset(ctx);
1129 if (ret) {
1130 pm_runtime_put_autosuspend(ctx->dev);
1131 ctx->task = NULL;
1132 return ret;
1133 }
1134
1135 gsc_src_set_fmt(ctx, task->src.buf.fourcc, task->src.buf.modifier);
1136 gsc_src_set_transf(ctx, task->transform.rotation);
1137 gsc_src_set_size(ctx, &task->src);
1138 gsc_src_set_addr(ctx, 0, &task->src);
1139 gsc_dst_set_fmt(ctx, task->dst.buf.fourcc, task->dst.buf.modifier);
1140 gsc_dst_set_size(ctx, &task->dst);
1141 gsc_dst_set_addr(ctx, 0, &task->dst);
1142 gsc_set_prescaler(ctx, &ctx->sc, &task->src.rect, &task->dst.rect);
1143 gsc_start(ctx);
1144
1145 return 0;
1146 }
1147
gsc_abort(struct exynos_drm_ipp * ipp,struct exynos_drm_ipp_task * task)1148 static void gsc_abort(struct exynos_drm_ipp *ipp,
1149 struct exynos_drm_ipp_task *task)
1150 {
1151 struct gsc_context *ctx =
1152 container_of(ipp, struct gsc_context, ipp);
1153
1154 gsc_reset(ctx);
1155 if (ctx->task) {
1156 struct exynos_drm_ipp_task *task = ctx->task;
1157
1158 ctx->task = NULL;
1159 pm_runtime_mark_last_busy(ctx->dev);
1160 pm_runtime_put_autosuspend(ctx->dev);
1161 exynos_drm_ipp_task_done(task, -EIO);
1162 }
1163 }
1164
1165 static const struct exynos_drm_ipp_funcs ipp_funcs = {
1166 .commit = gsc_commit,
1167 .abort = gsc_abort,
1168 };
1169
gsc_bind(struct device * dev,struct device * master,void * data)1170 static int gsc_bind(struct device *dev, struct device *master, void *data)
1171 {
1172 struct gsc_context *ctx = dev_get_drvdata(dev);
1173 struct drm_device *drm_dev = data;
1174 struct exynos_drm_ipp *ipp = &ctx->ipp;
1175
1176 ctx->drm_dev = drm_dev;
1177 ipp->drm_dev = drm_dev;
1178 exynos_drm_register_dma(drm_dev, dev, &ctx->dma_priv);
1179
1180 exynos_drm_ipp_register(dev, ipp, &ipp_funcs,
1181 DRM_EXYNOS_IPP_CAP_CROP | DRM_EXYNOS_IPP_CAP_ROTATE |
1182 DRM_EXYNOS_IPP_CAP_SCALE | DRM_EXYNOS_IPP_CAP_CONVERT,
1183 ctx->formats, ctx->num_formats, "gsc");
1184
1185 dev_info(dev, "The exynos gscaler has been probed successfully\n");
1186
1187 return 0;
1188 }
1189
gsc_unbind(struct device * dev,struct device * master,void * data)1190 static void gsc_unbind(struct device *dev, struct device *master,
1191 void *data)
1192 {
1193 struct gsc_context *ctx = dev_get_drvdata(dev);
1194 struct drm_device *drm_dev = data;
1195 struct exynos_drm_ipp *ipp = &ctx->ipp;
1196
1197 exynos_drm_ipp_unregister(dev, ipp);
1198 exynos_drm_unregister_dma(drm_dev, dev, &ctx->dma_priv);
1199 }
1200
1201 static const struct component_ops gsc_component_ops = {
1202 .bind = gsc_bind,
1203 .unbind = gsc_unbind,
1204 };
1205
1206 static const unsigned int gsc_formats[] = {
1207 DRM_FORMAT_ARGB8888,
1208 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_BGRX8888,
1209 DRM_FORMAT_NV12, DRM_FORMAT_NV16, DRM_FORMAT_NV21, DRM_FORMAT_NV61,
1210 DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU,
1211 DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422,
1212 };
1213
1214 static const unsigned int gsc_tiled_formats[] = {
1215 DRM_FORMAT_NV12, DRM_FORMAT_NV21,
1216 };
1217
gsc_probe(struct platform_device * pdev)1218 static int gsc_probe(struct platform_device *pdev)
1219 {
1220 struct device *dev = &pdev->dev;
1221 const struct gsc_driverdata *driver_data;
1222 struct exynos_drm_ipp_formats *formats;
1223 struct gsc_context *ctx;
1224 int num_formats, ret, i, j;
1225
1226 ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
1227 if (!ctx)
1228 return -ENOMEM;
1229
1230 driver_data = device_get_match_data(dev);
1231 ctx->dev = dev;
1232 ctx->num_clocks = driver_data->num_clocks;
1233 ctx->clk_names = driver_data->clk_names;
1234
1235 /* construct formats/limits array */
1236 num_formats = ARRAY_SIZE(gsc_formats) + ARRAY_SIZE(gsc_tiled_formats);
1237 formats = devm_kcalloc(dev, num_formats, sizeof(*formats), GFP_KERNEL);
1238 if (!formats)
1239 return -ENOMEM;
1240
1241 /* linear formats */
1242 for (i = 0; i < ARRAY_SIZE(gsc_formats); i++) {
1243 formats[i].fourcc = gsc_formats[i];
1244 formats[i].type = DRM_EXYNOS_IPP_FORMAT_SOURCE |
1245 DRM_EXYNOS_IPP_FORMAT_DESTINATION;
1246 formats[i].limits = driver_data->limits;
1247 formats[i].num_limits = driver_data->num_limits;
1248 }
1249
1250 /* tiled formats */
1251 for (j = i, i = 0; i < ARRAY_SIZE(gsc_tiled_formats); j++, i++) {
1252 formats[j].fourcc = gsc_tiled_formats[i];
1253 formats[j].modifier = DRM_FORMAT_MOD_SAMSUNG_16_16_TILE;
1254 formats[j].type = DRM_EXYNOS_IPP_FORMAT_SOURCE |
1255 DRM_EXYNOS_IPP_FORMAT_DESTINATION;
1256 formats[j].limits = driver_data->limits;
1257 formats[j].num_limits = driver_data->num_limits;
1258 }
1259
1260 ctx->formats = formats;
1261 ctx->num_formats = num_formats;
1262
1263 /* clock control */
1264 for (i = 0; i < ctx->num_clocks; i++) {
1265 ctx->clocks[i] = devm_clk_get(dev, ctx->clk_names[i]);
1266 if (IS_ERR(ctx->clocks[i])) {
1267 dev_err(dev, "failed to get clock: %s\n",
1268 ctx->clk_names[i]);
1269 return PTR_ERR(ctx->clocks[i]);
1270 }
1271 }
1272
1273 ctx->regs = devm_platform_ioremap_resource(pdev, 0);
1274 if (IS_ERR(ctx->regs))
1275 return PTR_ERR(ctx->regs);
1276
1277 /* resource irq */
1278 ctx->irq = platform_get_irq(pdev, 0);
1279 if (ctx->irq < 0)
1280 return ctx->irq;
1281
1282 ret = devm_request_irq(dev, ctx->irq, gsc_irq_handler, 0,
1283 dev_name(dev), ctx);
1284 if (ret < 0) {
1285 dev_err(dev, "failed to request irq.\n");
1286 return ret;
1287 }
1288
1289 /* context initailization */
1290 ctx->id = pdev->id;
1291
1292 platform_set_drvdata(pdev, ctx);
1293
1294 pm_runtime_use_autosuspend(dev);
1295 pm_runtime_set_autosuspend_delay(dev, GSC_AUTOSUSPEND_DELAY);
1296 pm_runtime_enable(dev);
1297
1298 ret = component_add(dev, &gsc_component_ops);
1299 if (ret)
1300 goto err_pm_dis;
1301
1302 dev_info(dev, "drm gsc registered successfully.\n");
1303
1304 return 0;
1305
1306 err_pm_dis:
1307 pm_runtime_dont_use_autosuspend(dev);
1308 pm_runtime_disable(dev);
1309 return ret;
1310 }
1311
gsc_remove(struct platform_device * pdev)1312 static void gsc_remove(struct platform_device *pdev)
1313 {
1314 struct device *dev = &pdev->dev;
1315
1316 component_del(dev, &gsc_component_ops);
1317 pm_runtime_dont_use_autosuspend(dev);
1318 pm_runtime_disable(dev);
1319 }
1320
gsc_runtime_suspend(struct device * dev)1321 static int __maybe_unused gsc_runtime_suspend(struct device *dev)
1322 {
1323 struct gsc_context *ctx = get_gsc_context(dev);
1324 int i;
1325
1326 DRM_DEV_DEBUG_KMS(dev, "id[%d]\n", ctx->id);
1327
1328 for (i = ctx->num_clocks - 1; i >= 0; i--)
1329 clk_disable_unprepare(ctx->clocks[i]);
1330
1331 return 0;
1332 }
1333
gsc_runtime_resume(struct device * dev)1334 static int __maybe_unused gsc_runtime_resume(struct device *dev)
1335 {
1336 struct gsc_context *ctx = get_gsc_context(dev);
1337 int i, ret;
1338
1339 DRM_DEV_DEBUG_KMS(dev, "id[%d]\n", ctx->id);
1340
1341 for (i = 0; i < ctx->num_clocks; i++) {
1342 ret = clk_prepare_enable(ctx->clocks[i]);
1343 if (ret) {
1344 while (--i >= 0)
1345 clk_disable_unprepare(ctx->clocks[i]);
1346 return ret;
1347 }
1348 }
1349 return 0;
1350 }
1351
1352 static const struct dev_pm_ops gsc_pm_ops = {
1353 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1354 pm_runtime_force_resume)
1355 SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL)
1356 };
1357
1358 static const struct drm_exynos_ipp_limit gsc_5250_limits[] = {
1359 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
1360 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
1361 { IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2048 }, .v = { 16, 2048 }) },
1362 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1363 .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1364 };
1365
1366 static const struct drm_exynos_ipp_limit gsc_5420_limits[] = {
1367 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
1368 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
1369 { IPP_SIZE_LIMIT(ROTATED, .h = { 16, 2016 }, .v = { 8, 2016 }) },
1370 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1371 .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1372 };
1373
1374 static const struct drm_exynos_ipp_limit gsc_5433_limits[] = {
1375 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 8191, 16 }, .v = { 16, 8191, 2 }) },
1376 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 1 }, .v = { 8, 3344, 1 }) },
1377 { IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2047 }, .v = { 8, 8191 }) },
1378 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1379 .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1380 };
1381
1382 static struct gsc_driverdata gsc_exynos5250_drvdata = {
1383 .clk_names = {"gscl"},
1384 .num_clocks = 1,
1385 .limits = gsc_5250_limits,
1386 .num_limits = ARRAY_SIZE(gsc_5250_limits),
1387 };
1388
1389 static struct gsc_driverdata gsc_exynos5420_drvdata = {
1390 .clk_names = {"gscl"},
1391 .num_clocks = 1,
1392 .limits = gsc_5420_limits,
1393 .num_limits = ARRAY_SIZE(gsc_5420_limits),
1394 };
1395
1396 static struct gsc_driverdata gsc_exynos5433_drvdata = {
1397 .clk_names = {"pclk", "aclk", "aclk_xiu", "aclk_gsclbend"},
1398 .num_clocks = 4,
1399 .limits = gsc_5433_limits,
1400 .num_limits = ARRAY_SIZE(gsc_5433_limits),
1401 };
1402
1403 static const struct of_device_id exynos_drm_gsc_of_match[] = {
1404 {
1405 .compatible = "samsung,exynos5-gsc",
1406 .data = &gsc_exynos5250_drvdata,
1407 }, {
1408 .compatible = "samsung,exynos5250-gsc",
1409 .data = &gsc_exynos5250_drvdata,
1410 }, {
1411 .compatible = "samsung,exynos5420-gsc",
1412 .data = &gsc_exynos5420_drvdata,
1413 }, {
1414 .compatible = "samsung,exynos5433-gsc",
1415 .data = &gsc_exynos5433_drvdata,
1416 }, {
1417 },
1418 };
1419 MODULE_DEVICE_TABLE(of, exynos_drm_gsc_of_match);
1420
1421 struct platform_driver gsc_driver = {
1422 .probe = gsc_probe,
1423 .remove_new = gsc_remove,
1424 .driver = {
1425 .name = "exynos-drm-gsc",
1426 .pm = &gsc_pm_ops,
1427 .of_match_table = exynos_drm_gsc_of_match,
1428 },
1429 };
1430