1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN driver for Geschwister Schneider USB/CAN devices
3 * and bytewerk.org candleLight USB CAN interfaces.
4 *
5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7 * Copyright (C) 2016 Hubert Denkmair
8 * Copyright (c) 2023 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
9 *
10 * Many thanks to all socketcan devs!
11 */
12
13 #include <linux/bitfield.h>
14 #include <linux/clocksource.h>
15 #include <linux/ethtool.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/signal.h>
20 #include <linux/timecounter.h>
21 #include <linux/units.h>
22 #include <linux/usb.h>
23 #include <linux/workqueue.h>
24
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 #include <linux/can/rx-offload.h>
29
30 /* Device specific constants */
31 #define USB_GS_USB_1_VENDOR_ID 0x1d50
32 #define USB_GS_USB_1_PRODUCT_ID 0x606f
33
34 #define USB_CANDLELIGHT_VENDOR_ID 0x1209
35 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
36
37 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
38 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
39
40 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
41 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
42
43 #define USB_XYLANTA_SAINT3_VENDOR_ID 0x16d0
44 #define USB_XYLANTA_SAINT3_PRODUCT_ID 0x0f30
45
46 #define USB_CANNECTIVITY_VENDOR_ID 0x1209
47 #define USB_CANNECTIVITY_PRODUCT_ID 0xca01
48
49 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
50 * for timer overflow (will be after ~71 minutes)
51 */
52 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
53 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
54 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
55 CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
56
57 /* Device specific constants */
58 enum gs_usb_breq {
59 GS_USB_BREQ_HOST_FORMAT = 0,
60 GS_USB_BREQ_BITTIMING,
61 GS_USB_BREQ_MODE,
62 GS_USB_BREQ_BERR,
63 GS_USB_BREQ_BT_CONST,
64 GS_USB_BREQ_DEVICE_CONFIG,
65 GS_USB_BREQ_TIMESTAMP,
66 GS_USB_BREQ_IDENTIFY,
67 GS_USB_BREQ_GET_USER_ID,
68 GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
69 GS_USB_BREQ_SET_USER_ID,
70 GS_USB_BREQ_DATA_BITTIMING,
71 GS_USB_BREQ_BT_CONST_EXT,
72 GS_USB_BREQ_SET_TERMINATION,
73 GS_USB_BREQ_GET_TERMINATION,
74 GS_USB_BREQ_GET_STATE,
75 };
76
77 enum gs_can_mode {
78 /* reset a channel. turns it off */
79 GS_CAN_MODE_RESET = 0,
80 /* starts a channel */
81 GS_CAN_MODE_START
82 };
83
84 enum gs_can_state {
85 GS_CAN_STATE_ERROR_ACTIVE = 0,
86 GS_CAN_STATE_ERROR_WARNING,
87 GS_CAN_STATE_ERROR_PASSIVE,
88 GS_CAN_STATE_BUS_OFF,
89 GS_CAN_STATE_STOPPED,
90 GS_CAN_STATE_SLEEPING
91 };
92
93 enum gs_can_identify_mode {
94 GS_CAN_IDENTIFY_OFF = 0,
95 GS_CAN_IDENTIFY_ON
96 };
97
98 enum gs_can_termination_state {
99 GS_CAN_TERMINATION_STATE_OFF = 0,
100 GS_CAN_TERMINATION_STATE_ON
101 };
102
103 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
104 #define GS_USB_TERMINATION_ENABLED 120
105
106 /* data types passed between host and device */
107
108 /* The firmware on the original USB2CAN by Geschwister Schneider
109 * Technologie Entwicklungs- und Vertriebs UG exchanges all data
110 * between the host and the device in host byte order. This is done
111 * with the struct gs_host_config::byte_order member, which is sent
112 * first to indicate the desired byte order.
113 *
114 * The widely used open source firmware candleLight doesn't support
115 * this feature and exchanges the data in little endian byte order.
116 */
117 struct gs_host_config {
118 __le32 byte_order;
119 } __packed;
120
121 struct gs_device_config {
122 u8 reserved1;
123 u8 reserved2;
124 u8 reserved3;
125 u8 icount;
126 __le32 sw_version;
127 __le32 hw_version;
128 } __packed;
129
130 #define GS_CAN_MODE_NORMAL 0
131 #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
132 #define GS_CAN_MODE_LOOP_BACK BIT(1)
133 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
134 #define GS_CAN_MODE_ONE_SHOT BIT(3)
135 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
136 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */
137 /* GS_CAN_FEATURE_USER_ID BIT(6) */
138 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
139 #define GS_CAN_MODE_FD BIT(8)
140 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
141 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
142 /* GS_CAN_FEATURE_TERMINATION BIT(11) */
143 #define GS_CAN_MODE_BERR_REPORTING BIT(12)
144 /* GS_CAN_FEATURE_GET_STATE BIT(13) */
145
146 struct gs_device_mode {
147 __le32 mode;
148 __le32 flags;
149 } __packed;
150
151 struct gs_device_state {
152 __le32 state;
153 __le32 rxerr;
154 __le32 txerr;
155 } __packed;
156
157 struct gs_device_bittiming {
158 __le32 prop_seg;
159 __le32 phase_seg1;
160 __le32 phase_seg2;
161 __le32 sjw;
162 __le32 brp;
163 } __packed;
164
165 struct gs_identify_mode {
166 __le32 mode;
167 } __packed;
168
169 struct gs_device_termination_state {
170 __le32 state;
171 } __packed;
172
173 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
174 #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
175 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
176 #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
177 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
178 #define GS_CAN_FEATURE_IDENTIFY BIT(5)
179 #define GS_CAN_FEATURE_USER_ID BIT(6)
180 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
181 #define GS_CAN_FEATURE_FD BIT(8)
182 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
183 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
184 #define GS_CAN_FEATURE_TERMINATION BIT(11)
185 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
186 #define GS_CAN_FEATURE_GET_STATE BIT(13)
187 #define GS_CAN_FEATURE_MASK GENMASK(13, 0)
188
189 /* internal quirks - keep in GS_CAN_FEATURE space for now */
190
191 /* CANtact Pro original firmware:
192 * BREQ DATA_BITTIMING overlaps with GET_USER_ID
193 */
194 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
195
196 struct gs_device_bt_const {
197 __le32 feature;
198 __le32 fclk_can;
199 __le32 tseg1_min;
200 __le32 tseg1_max;
201 __le32 tseg2_min;
202 __le32 tseg2_max;
203 __le32 sjw_max;
204 __le32 brp_min;
205 __le32 brp_max;
206 __le32 brp_inc;
207 } __packed;
208
209 struct gs_device_bt_const_extended {
210 __le32 feature;
211 __le32 fclk_can;
212 __le32 tseg1_min;
213 __le32 tseg1_max;
214 __le32 tseg2_min;
215 __le32 tseg2_max;
216 __le32 sjw_max;
217 __le32 brp_min;
218 __le32 brp_max;
219 __le32 brp_inc;
220
221 __le32 dtseg1_min;
222 __le32 dtseg1_max;
223 __le32 dtseg2_min;
224 __le32 dtseg2_max;
225 __le32 dsjw_max;
226 __le32 dbrp_min;
227 __le32 dbrp_max;
228 __le32 dbrp_inc;
229 } __packed;
230
231 #define GS_CAN_FLAG_OVERFLOW BIT(0)
232 #define GS_CAN_FLAG_FD BIT(1)
233 #define GS_CAN_FLAG_BRS BIT(2)
234 #define GS_CAN_FLAG_ESI BIT(3)
235
236 struct classic_can {
237 u8 data[8];
238 } __packed;
239
240 struct classic_can_ts {
241 u8 data[8];
242 __le32 timestamp_us;
243 } __packed;
244
245 struct classic_can_quirk {
246 u8 data[8];
247 u8 quirk;
248 } __packed;
249
250 struct canfd {
251 u8 data[64];
252 } __packed;
253
254 struct canfd_ts {
255 u8 data[64];
256 __le32 timestamp_us;
257 } __packed;
258
259 struct canfd_quirk {
260 u8 data[64];
261 u8 quirk;
262 } __packed;
263
264 struct gs_host_frame {
265 u32 echo_id;
266 __le32 can_id;
267
268 u8 can_dlc;
269 u8 channel;
270 u8 flags;
271 u8 reserved;
272
273 union {
274 DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
275 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
276 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
277 DECLARE_FLEX_ARRAY(struct canfd, canfd);
278 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
279 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
280 };
281 } __packed;
282 /* The GS USB devices make use of the same flags and masks as in
283 * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
284 */
285
286 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
287 #define GS_MAX_TX_URBS 10
288 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
289 #define GS_MAX_RX_URBS 30
290 #define GS_NAPI_WEIGHT 32
291
292 struct gs_tx_context {
293 struct gs_can *dev;
294 unsigned int echo_id;
295 };
296
297 struct gs_can {
298 struct can_priv can; /* must be the first member */
299
300 struct can_rx_offload offload;
301 struct gs_usb *parent;
302
303 struct net_device *netdev;
304 struct usb_device *udev;
305
306 struct can_bittiming_const bt_const, data_bt_const;
307 unsigned int channel; /* channel number */
308
309 u32 feature;
310 unsigned int hf_size_tx;
311
312 /* This lock prevents a race condition between xmit and receive. */
313 spinlock_t tx_ctx_lock;
314 struct gs_tx_context tx_context[GS_MAX_TX_URBS];
315
316 struct usb_anchor tx_submitted;
317 atomic_t active_tx_urbs;
318 };
319
320 /* usb interface struct */
321 struct gs_usb {
322 struct usb_anchor rx_submitted;
323 struct usb_device *udev;
324
325 /* time counter for hardware timestamps */
326 struct cyclecounter cc;
327 struct timecounter tc;
328 spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
329 struct delayed_work timestamp;
330
331 unsigned int hf_size_rx;
332 u8 active_channels;
333 u8 channel_cnt;
334
335 unsigned int pipe_in;
336 unsigned int pipe_out;
337 struct gs_can *canch[] __counted_by(channel_cnt);
338 };
339
340 /* 'allocate' a tx context.
341 * returns a valid tx context or NULL if there is no space.
342 */
gs_alloc_tx_context(struct gs_can * dev)343 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
344 {
345 int i = 0;
346 unsigned long flags;
347
348 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
349
350 for (; i < GS_MAX_TX_URBS; i++) {
351 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
352 dev->tx_context[i].echo_id = i;
353 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
354 return &dev->tx_context[i];
355 }
356 }
357
358 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
359 return NULL;
360 }
361
362 /* releases a tx context
363 */
gs_free_tx_context(struct gs_tx_context * txc)364 static void gs_free_tx_context(struct gs_tx_context *txc)
365 {
366 txc->echo_id = GS_MAX_TX_URBS;
367 }
368
369 /* Get a tx context by id.
370 */
gs_get_tx_context(struct gs_can * dev,unsigned int id)371 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
372 unsigned int id)
373 {
374 unsigned long flags;
375
376 if (id < GS_MAX_TX_URBS) {
377 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
378 if (dev->tx_context[id].echo_id == id) {
379 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
380 return &dev->tx_context[id];
381 }
382 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
383 }
384 return NULL;
385 }
386
gs_cmd_reset(struct gs_can * dev)387 static int gs_cmd_reset(struct gs_can *dev)
388 {
389 struct gs_device_mode dm = {
390 .mode = cpu_to_le32(GS_CAN_MODE_RESET),
391 };
392
393 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
394 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
395 dev->channel, 0, &dm, sizeof(dm), 1000,
396 GFP_KERNEL);
397 }
398
gs_usb_get_timestamp(const struct gs_usb * parent,u32 * timestamp_p)399 static inline int gs_usb_get_timestamp(const struct gs_usb *parent,
400 u32 *timestamp_p)
401 {
402 __le32 timestamp;
403 int rc;
404
405 rc = usb_control_msg_recv(parent->udev, 0, GS_USB_BREQ_TIMESTAMP,
406 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
407 0, 0,
408 ×tamp, sizeof(timestamp),
409 USB_CTRL_GET_TIMEOUT,
410 GFP_KERNEL);
411 if (rc)
412 return rc;
413
414 *timestamp_p = le32_to_cpu(timestamp);
415
416 return 0;
417 }
418
gs_usb_timestamp_read(struct cyclecounter * cc)419 static u64 gs_usb_timestamp_read(struct cyclecounter *cc) __must_hold(&dev->tc_lock)
420 {
421 struct gs_usb *parent = container_of(cc, struct gs_usb, cc);
422 u32 timestamp = 0;
423 int err;
424
425 lockdep_assert_held(&parent->tc_lock);
426
427 /* drop lock for synchronous USB transfer */
428 spin_unlock_bh(&parent->tc_lock);
429 err = gs_usb_get_timestamp(parent, ×tamp);
430 spin_lock_bh(&parent->tc_lock);
431 if (err)
432 dev_err(&parent->udev->dev,
433 "Error %d while reading timestamp. HW timestamps may be inaccurate.",
434 err);
435
436 return timestamp;
437 }
438
gs_usb_timestamp_work(struct work_struct * work)439 static void gs_usb_timestamp_work(struct work_struct *work)
440 {
441 struct delayed_work *delayed_work = to_delayed_work(work);
442 struct gs_usb *parent;
443
444 parent = container_of(delayed_work, struct gs_usb, timestamp);
445 spin_lock_bh(&parent->tc_lock);
446 timecounter_read(&parent->tc);
447 spin_unlock_bh(&parent->tc_lock);
448
449 schedule_delayed_work(&parent->timestamp,
450 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
451 }
452
gs_usb_skb_set_timestamp(struct gs_can * dev,struct sk_buff * skb,u32 timestamp)453 static void gs_usb_skb_set_timestamp(struct gs_can *dev,
454 struct sk_buff *skb, u32 timestamp)
455 {
456 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
457 struct gs_usb *parent = dev->parent;
458 u64 ns;
459
460 spin_lock_bh(&parent->tc_lock);
461 ns = timecounter_cyc2time(&parent->tc, timestamp);
462 spin_unlock_bh(&parent->tc_lock);
463
464 hwtstamps->hwtstamp = ns_to_ktime(ns);
465 }
466
gs_usb_timestamp_init(struct gs_usb * parent)467 static void gs_usb_timestamp_init(struct gs_usb *parent)
468 {
469 struct cyclecounter *cc = &parent->cc;
470
471 cc->read = gs_usb_timestamp_read;
472 cc->mask = CYCLECOUNTER_MASK(32);
473 cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
474 cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
475
476 spin_lock_init(&parent->tc_lock);
477 spin_lock_bh(&parent->tc_lock);
478 timecounter_init(&parent->tc, &parent->cc, ktime_get_real_ns());
479 spin_unlock_bh(&parent->tc_lock);
480
481 INIT_DELAYED_WORK(&parent->timestamp, gs_usb_timestamp_work);
482 schedule_delayed_work(&parent->timestamp,
483 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
484 }
485
gs_usb_timestamp_stop(struct gs_usb * parent)486 static void gs_usb_timestamp_stop(struct gs_usb *parent)
487 {
488 cancel_delayed_work_sync(&parent->timestamp);
489 }
490
gs_update_state(struct gs_can * dev,struct can_frame * cf)491 static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
492 {
493 struct can_device_stats *can_stats = &dev->can.can_stats;
494
495 if (cf->can_id & CAN_ERR_RESTARTED) {
496 dev->can.state = CAN_STATE_ERROR_ACTIVE;
497 can_stats->restarts++;
498 } else if (cf->can_id & CAN_ERR_BUSOFF) {
499 dev->can.state = CAN_STATE_BUS_OFF;
500 can_stats->bus_off++;
501 } else if (cf->can_id & CAN_ERR_CRTL) {
502 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
503 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
504 dev->can.state = CAN_STATE_ERROR_WARNING;
505 can_stats->error_warning++;
506 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
507 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
508 dev->can.state = CAN_STATE_ERROR_PASSIVE;
509 can_stats->error_passive++;
510 } else {
511 dev->can.state = CAN_STATE_ERROR_ACTIVE;
512 }
513 }
514 }
515
gs_usb_set_timestamp(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)516 static u32 gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
517 const struct gs_host_frame *hf)
518 {
519 u32 timestamp;
520
521 if (hf->flags & GS_CAN_FLAG_FD)
522 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
523 else
524 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
525
526 if (skb)
527 gs_usb_skb_set_timestamp(dev, skb, timestamp);
528
529 return timestamp;
530 }
531
gs_usb_rx_offload(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)532 static void gs_usb_rx_offload(struct gs_can *dev, struct sk_buff *skb,
533 const struct gs_host_frame *hf)
534 {
535 struct can_rx_offload *offload = &dev->offload;
536 int rc;
537
538 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
539 const u32 ts = gs_usb_set_timestamp(dev, skb, hf);
540
541 rc = can_rx_offload_queue_timestamp(offload, skb, ts);
542 } else {
543 rc = can_rx_offload_queue_tail(offload, skb);
544 }
545
546 if (rc)
547 dev->netdev->stats.rx_fifo_errors++;
548 }
549
550 static unsigned int
gs_usb_get_echo_skb(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)551 gs_usb_get_echo_skb(struct gs_can *dev, struct sk_buff *skb,
552 const struct gs_host_frame *hf)
553 {
554 struct can_rx_offload *offload = &dev->offload;
555 const u32 echo_id = hf->echo_id;
556 unsigned int len;
557
558 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
559 const u32 ts = gs_usb_set_timestamp(dev, skb, hf);
560
561 len = can_rx_offload_get_echo_skb_queue_timestamp(offload, echo_id,
562 ts, NULL);
563 } else {
564 len = can_rx_offload_get_echo_skb_queue_tail(offload, echo_id,
565 NULL);
566 }
567
568 return len;
569 }
570
gs_usb_receive_bulk_callback(struct urb * urb)571 static void gs_usb_receive_bulk_callback(struct urb *urb)
572 {
573 struct gs_usb *parent = urb->context;
574 struct gs_can *dev;
575 struct net_device *netdev;
576 int rc;
577 struct net_device_stats *stats;
578 struct gs_host_frame *hf = urb->transfer_buffer;
579 struct gs_tx_context *txc;
580 struct can_frame *cf;
581 struct canfd_frame *cfd;
582 struct sk_buff *skb;
583
584 BUG_ON(!parent);
585
586 switch (urb->status) {
587 case 0: /* success */
588 break;
589 case -ENOENT:
590 case -ESHUTDOWN:
591 return;
592 default:
593 /* do not resubmit aborted urbs. eg: when device goes down */
594 return;
595 }
596
597 /* device reports out of range channel id */
598 if (hf->channel >= parent->channel_cnt)
599 goto device_detach;
600
601 dev = parent->canch[hf->channel];
602
603 netdev = dev->netdev;
604 stats = &netdev->stats;
605
606 if (!netif_device_present(netdev))
607 return;
608
609 if (!netif_running(netdev))
610 goto resubmit_urb;
611
612 if (hf->echo_id == -1) { /* normal rx */
613 if (hf->flags & GS_CAN_FLAG_FD) {
614 skb = alloc_canfd_skb(netdev, &cfd);
615 if (!skb)
616 return;
617
618 cfd->can_id = le32_to_cpu(hf->can_id);
619 cfd->len = can_fd_dlc2len(hf->can_dlc);
620 if (hf->flags & GS_CAN_FLAG_BRS)
621 cfd->flags |= CANFD_BRS;
622 if (hf->flags & GS_CAN_FLAG_ESI)
623 cfd->flags |= CANFD_ESI;
624
625 memcpy(cfd->data, hf->canfd->data, cfd->len);
626 } else {
627 skb = alloc_can_skb(netdev, &cf);
628 if (!skb)
629 return;
630
631 cf->can_id = le32_to_cpu(hf->can_id);
632 can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
633
634 memcpy(cf->data, hf->classic_can->data, 8);
635
636 /* ERROR frames tell us information about the controller */
637 if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
638 gs_update_state(dev, cf);
639 }
640
641 gs_usb_rx_offload(dev, skb, hf);
642 } else { /* echo_id == hf->echo_id */
643 if (hf->echo_id >= GS_MAX_TX_URBS) {
644 netdev_err(netdev,
645 "Unexpected out of range echo id %u\n",
646 hf->echo_id);
647 goto resubmit_urb;
648 }
649
650 txc = gs_get_tx_context(dev, hf->echo_id);
651
652 /* bad devices send bad echo_ids. */
653 if (!txc) {
654 netdev_err(netdev,
655 "Unexpected unused echo id %u\n",
656 hf->echo_id);
657 goto resubmit_urb;
658 }
659
660 skb = dev->can.echo_skb[hf->echo_id];
661 stats->tx_packets++;
662 stats->tx_bytes += gs_usb_get_echo_skb(dev, skb, hf);
663 gs_free_tx_context(txc);
664
665 atomic_dec(&dev->active_tx_urbs);
666
667 netif_wake_queue(netdev);
668 }
669
670 if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
671 stats->rx_over_errors++;
672 stats->rx_errors++;
673
674 skb = alloc_can_err_skb(netdev, &cf);
675 if (!skb)
676 goto resubmit_urb;
677
678 cf->can_id |= CAN_ERR_CRTL;
679 cf->len = CAN_ERR_DLC;
680 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
681
682 gs_usb_rx_offload(dev, skb, hf);
683 }
684
685 can_rx_offload_irq_finish(&dev->offload);
686
687 resubmit_urb:
688 usb_fill_bulk_urb(urb, parent->udev,
689 parent->pipe_in,
690 hf, dev->parent->hf_size_rx,
691 gs_usb_receive_bulk_callback, parent);
692
693 rc = usb_submit_urb(urb, GFP_ATOMIC);
694
695 /* USB failure take down all interfaces */
696 if (rc == -ENODEV) {
697 device_detach:
698 for (rc = 0; rc < parent->channel_cnt; rc++) {
699 if (parent->canch[rc])
700 netif_device_detach(parent->canch[rc]->netdev);
701 }
702 }
703 }
704
gs_usb_set_bittiming(struct net_device * netdev)705 static int gs_usb_set_bittiming(struct net_device *netdev)
706 {
707 struct gs_can *dev = netdev_priv(netdev);
708 struct can_bittiming *bt = &dev->can.bittiming;
709 struct gs_device_bittiming dbt = {
710 .prop_seg = cpu_to_le32(bt->prop_seg),
711 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
712 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
713 .sjw = cpu_to_le32(bt->sjw),
714 .brp = cpu_to_le32(bt->brp),
715 };
716
717 /* request bit timings */
718 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
719 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
720 dev->channel, 0, &dbt, sizeof(dbt), 1000,
721 GFP_KERNEL);
722 }
723
gs_usb_set_data_bittiming(struct net_device * netdev)724 static int gs_usb_set_data_bittiming(struct net_device *netdev)
725 {
726 struct gs_can *dev = netdev_priv(netdev);
727 struct can_bittiming *bt = &dev->can.fd.data_bittiming;
728 struct gs_device_bittiming dbt = {
729 .prop_seg = cpu_to_le32(bt->prop_seg),
730 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
731 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
732 .sjw = cpu_to_le32(bt->sjw),
733 .brp = cpu_to_le32(bt->brp),
734 };
735 u8 request = GS_USB_BREQ_DATA_BITTIMING;
736
737 if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
738 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
739
740 /* request data bit timings */
741 return usb_control_msg_send(dev->udev, 0, request,
742 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
743 dev->channel, 0, &dbt, sizeof(dbt), 1000,
744 GFP_KERNEL);
745 }
746
gs_usb_xmit_callback(struct urb * urb)747 static void gs_usb_xmit_callback(struct urb *urb)
748 {
749 struct gs_tx_context *txc = urb->context;
750 struct gs_can *dev = txc->dev;
751 struct net_device *netdev = dev->netdev;
752
753 if (urb->status)
754 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
755 }
756
gs_can_start_xmit(struct sk_buff * skb,struct net_device * netdev)757 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
758 struct net_device *netdev)
759 {
760 struct gs_can *dev = netdev_priv(netdev);
761 struct net_device_stats *stats = &dev->netdev->stats;
762 struct urb *urb;
763 struct gs_host_frame *hf;
764 struct can_frame *cf;
765 struct canfd_frame *cfd;
766 int rc;
767 unsigned int idx;
768 struct gs_tx_context *txc;
769
770 if (can_dev_dropped_skb(netdev, skb))
771 return NETDEV_TX_OK;
772
773 /* find an empty context to keep track of transmission */
774 txc = gs_alloc_tx_context(dev);
775 if (!txc)
776 return NETDEV_TX_BUSY;
777
778 /* create a URB, and a buffer for it */
779 urb = usb_alloc_urb(0, GFP_ATOMIC);
780 if (!urb)
781 goto nomem_urb;
782
783 hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
784 if (!hf)
785 goto nomem_hf;
786
787 idx = txc->echo_id;
788
789 if (idx >= GS_MAX_TX_URBS) {
790 netdev_err(netdev, "Invalid tx context %u\n", idx);
791 goto badidx;
792 }
793
794 hf->echo_id = idx;
795 hf->channel = dev->channel;
796 hf->flags = 0;
797 hf->reserved = 0;
798
799 if (can_is_canfd_skb(skb)) {
800 cfd = (struct canfd_frame *)skb->data;
801
802 hf->can_id = cpu_to_le32(cfd->can_id);
803 hf->can_dlc = can_fd_len2dlc(cfd->len);
804 hf->flags |= GS_CAN_FLAG_FD;
805 if (cfd->flags & CANFD_BRS)
806 hf->flags |= GS_CAN_FLAG_BRS;
807 if (cfd->flags & CANFD_ESI)
808 hf->flags |= GS_CAN_FLAG_ESI;
809
810 memcpy(hf->canfd->data, cfd->data, cfd->len);
811 } else {
812 cf = (struct can_frame *)skb->data;
813
814 hf->can_id = cpu_to_le32(cf->can_id);
815 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
816
817 memcpy(hf->classic_can->data, cf->data, cf->len);
818 }
819
820 usb_fill_bulk_urb(urb, dev->udev,
821 dev->parent->pipe_out,
822 hf, dev->hf_size_tx,
823 gs_usb_xmit_callback, txc);
824
825 urb->transfer_flags |= URB_FREE_BUFFER;
826 usb_anchor_urb(urb, &dev->tx_submitted);
827
828 can_put_echo_skb(skb, netdev, idx, 0);
829
830 atomic_inc(&dev->active_tx_urbs);
831
832 rc = usb_submit_urb(urb, GFP_ATOMIC);
833 if (unlikely(rc)) { /* usb send failed */
834 atomic_dec(&dev->active_tx_urbs);
835
836 can_free_echo_skb(netdev, idx, NULL);
837 gs_free_tx_context(txc);
838
839 usb_unanchor_urb(urb);
840
841 if (rc == -ENODEV) {
842 netif_device_detach(netdev);
843 } else {
844 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
845 stats->tx_dropped++;
846 }
847 } else {
848 /* Slow down tx path */
849 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
850 netif_stop_queue(netdev);
851 }
852
853 /* let usb core take care of this urb */
854 usb_free_urb(urb);
855
856 return NETDEV_TX_OK;
857
858 badidx:
859 kfree(hf);
860 nomem_hf:
861 usb_free_urb(urb);
862
863 nomem_urb:
864 gs_free_tx_context(txc);
865 dev_kfree_skb(skb);
866 stats->tx_dropped++;
867 return NETDEV_TX_OK;
868 }
869
gs_can_open(struct net_device * netdev)870 static int gs_can_open(struct net_device *netdev)
871 {
872 struct gs_can *dev = netdev_priv(netdev);
873 struct gs_usb *parent = dev->parent;
874 struct gs_device_mode dm = {
875 .mode = cpu_to_le32(GS_CAN_MODE_START),
876 };
877 struct gs_host_frame *hf;
878 struct urb *urb = NULL;
879 u32 ctrlmode;
880 u32 flags = 0;
881 int rc, i;
882
883 rc = open_candev(netdev);
884 if (rc)
885 return rc;
886
887 ctrlmode = dev->can.ctrlmode;
888 if (ctrlmode & CAN_CTRLMODE_FD) {
889 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
890 dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
891 else
892 dev->hf_size_tx = struct_size(hf, canfd, 1);
893 } else {
894 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
895 dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
896 else
897 dev->hf_size_tx = struct_size(hf, classic_can, 1);
898 }
899
900 can_rx_offload_enable(&dev->offload);
901
902 if (!parent->active_channels) {
903 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
904 gs_usb_timestamp_init(parent);
905
906 for (i = 0; i < GS_MAX_RX_URBS; i++) {
907 u8 *buf;
908
909 /* alloc rx urb */
910 urb = usb_alloc_urb(0, GFP_KERNEL);
911 if (!urb) {
912 rc = -ENOMEM;
913 goto out_usb_kill_anchored_urbs;
914 }
915
916 /* alloc rx buffer */
917 buf = kmalloc(dev->parent->hf_size_rx,
918 GFP_KERNEL);
919 if (!buf) {
920 rc = -ENOMEM;
921 goto out_usb_free_urb;
922 }
923
924 /* fill, anchor, and submit rx urb */
925 usb_fill_bulk_urb(urb,
926 dev->udev,
927 dev->parent->pipe_in,
928 buf,
929 dev->parent->hf_size_rx,
930 gs_usb_receive_bulk_callback, parent);
931 urb->transfer_flags |= URB_FREE_BUFFER;
932
933 usb_anchor_urb(urb, &parent->rx_submitted);
934
935 rc = usb_submit_urb(urb, GFP_KERNEL);
936 if (rc) {
937 if (rc == -ENODEV)
938 netif_device_detach(dev->netdev);
939
940 netdev_err(netdev,
941 "usb_submit_urb() failed, error %pe\n",
942 ERR_PTR(rc));
943
944 goto out_usb_unanchor_urb;
945 }
946
947 /* Drop reference,
948 * USB core will take care of freeing it
949 */
950 usb_free_urb(urb);
951 }
952 }
953
954 /* flags */
955 if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
956 flags |= GS_CAN_MODE_LOOP_BACK;
957
958 if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
959 flags |= GS_CAN_MODE_LISTEN_ONLY;
960
961 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
962 flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
963
964 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
965 flags |= GS_CAN_MODE_ONE_SHOT;
966
967 if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
968 flags |= GS_CAN_MODE_BERR_REPORTING;
969
970 if (ctrlmode & CAN_CTRLMODE_FD)
971 flags |= GS_CAN_MODE_FD;
972
973 /* if hardware supports timestamps, enable it */
974 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
975 flags |= GS_CAN_MODE_HW_TIMESTAMP;
976
977 /* finally start device */
978 dev->can.state = CAN_STATE_ERROR_ACTIVE;
979 dm.flags = cpu_to_le32(flags);
980 rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
981 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
982 dev->channel, 0, &dm, sizeof(dm), 1000,
983 GFP_KERNEL);
984 if (rc) {
985 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
986 dev->can.state = CAN_STATE_STOPPED;
987
988 goto out_usb_kill_anchored_urbs;
989 }
990
991 parent->active_channels++;
992 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
993 netif_start_queue(netdev);
994
995 return 0;
996
997 out_usb_unanchor_urb:
998 usb_unanchor_urb(urb);
999 out_usb_free_urb:
1000 usb_free_urb(urb);
1001 out_usb_kill_anchored_urbs:
1002 if (!parent->active_channels) {
1003 usb_kill_anchored_urbs(&dev->tx_submitted);
1004
1005 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1006 gs_usb_timestamp_stop(parent);
1007 }
1008
1009 can_rx_offload_disable(&dev->offload);
1010 close_candev(netdev);
1011
1012 return rc;
1013 }
1014
gs_usb_get_state(const struct net_device * netdev,struct can_berr_counter * bec,enum can_state * state)1015 static int gs_usb_get_state(const struct net_device *netdev,
1016 struct can_berr_counter *bec,
1017 enum can_state *state)
1018 {
1019 struct gs_can *dev = netdev_priv(netdev);
1020 struct gs_device_state ds;
1021 int rc;
1022
1023 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
1024 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1025 dev->channel, 0,
1026 &ds, sizeof(ds),
1027 USB_CTRL_GET_TIMEOUT,
1028 GFP_KERNEL);
1029 if (rc)
1030 return rc;
1031
1032 if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
1033 return -EOPNOTSUPP;
1034
1035 *state = le32_to_cpu(ds.state);
1036 bec->txerr = le32_to_cpu(ds.txerr);
1037 bec->rxerr = le32_to_cpu(ds.rxerr);
1038
1039 return 0;
1040 }
1041
gs_usb_can_get_berr_counter(const struct net_device * netdev,struct can_berr_counter * bec)1042 static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
1043 struct can_berr_counter *bec)
1044 {
1045 enum can_state state;
1046
1047 return gs_usb_get_state(netdev, bec, &state);
1048 }
1049
gs_can_close(struct net_device * netdev)1050 static int gs_can_close(struct net_device *netdev)
1051 {
1052 int rc;
1053 struct gs_can *dev = netdev_priv(netdev);
1054 struct gs_usb *parent = dev->parent;
1055
1056 netif_stop_queue(netdev);
1057
1058 /* Stop polling */
1059 parent->active_channels--;
1060 if (!parent->active_channels) {
1061 usb_kill_anchored_urbs(&parent->rx_submitted);
1062
1063 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1064 gs_usb_timestamp_stop(parent);
1065 }
1066
1067 /* Stop sending URBs */
1068 usb_kill_anchored_urbs(&dev->tx_submitted);
1069 atomic_set(&dev->active_tx_urbs, 0);
1070
1071 dev->can.state = CAN_STATE_STOPPED;
1072
1073 /* reset the device */
1074 gs_cmd_reset(dev);
1075
1076 /* reset tx contexts */
1077 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1078 dev->tx_context[rc].dev = dev;
1079 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1080 }
1081
1082 can_rx_offload_disable(&dev->offload);
1083
1084 /* close the netdev */
1085 close_candev(netdev);
1086
1087 return 0;
1088 }
1089
gs_can_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1090 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1091 {
1092 const struct gs_can *dev = netdev_priv(netdev);
1093
1094 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1095 return can_eth_ioctl_hwts(netdev, ifr, cmd);
1096
1097 return -EOPNOTSUPP;
1098 }
1099
1100 static const struct net_device_ops gs_usb_netdev_ops = {
1101 .ndo_open = gs_can_open,
1102 .ndo_stop = gs_can_close,
1103 .ndo_start_xmit = gs_can_start_xmit,
1104 .ndo_change_mtu = can_change_mtu,
1105 .ndo_eth_ioctl = gs_can_eth_ioctl,
1106 };
1107
gs_usb_set_identify(struct net_device * netdev,bool do_identify)1108 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1109 {
1110 struct gs_can *dev = netdev_priv(netdev);
1111 struct gs_identify_mode imode;
1112
1113 if (do_identify)
1114 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1115 else
1116 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1117
1118 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1119 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1120 dev->channel, 0, &imode, sizeof(imode), 100,
1121 GFP_KERNEL);
1122 }
1123
1124 /* blink LED's for finding the this interface */
gs_usb_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1125 static int gs_usb_set_phys_id(struct net_device *netdev,
1126 enum ethtool_phys_id_state state)
1127 {
1128 const struct gs_can *dev = netdev_priv(netdev);
1129 int rc = 0;
1130
1131 if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1132 return -EOPNOTSUPP;
1133
1134 switch (state) {
1135 case ETHTOOL_ID_ACTIVE:
1136 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1137 break;
1138 case ETHTOOL_ID_INACTIVE:
1139 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1140 break;
1141 default:
1142 break;
1143 }
1144
1145 return rc;
1146 }
1147
gs_usb_get_ts_info(struct net_device * netdev,struct kernel_ethtool_ts_info * info)1148 static int gs_usb_get_ts_info(struct net_device *netdev,
1149 struct kernel_ethtool_ts_info *info)
1150 {
1151 struct gs_can *dev = netdev_priv(netdev);
1152
1153 /* report if device supports HW timestamps */
1154 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1155 return can_ethtool_op_get_ts_info_hwts(netdev, info);
1156
1157 return ethtool_op_get_ts_info(netdev, info);
1158 }
1159
1160 static const struct ethtool_ops gs_usb_ethtool_ops = {
1161 .set_phys_id = gs_usb_set_phys_id,
1162 .get_ts_info = gs_usb_get_ts_info,
1163 };
1164
gs_usb_get_termination(struct net_device * netdev,u16 * term)1165 static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1166 {
1167 struct gs_can *dev = netdev_priv(netdev);
1168 struct gs_device_termination_state term_state;
1169 int rc;
1170
1171 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1172 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1173 dev->channel, 0,
1174 &term_state, sizeof(term_state), 1000,
1175 GFP_KERNEL);
1176 if (rc)
1177 return rc;
1178
1179 if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1180 *term = GS_USB_TERMINATION_ENABLED;
1181 else
1182 *term = GS_USB_TERMINATION_DISABLED;
1183
1184 return 0;
1185 }
1186
gs_usb_set_termination(struct net_device * netdev,u16 term)1187 static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1188 {
1189 struct gs_can *dev = netdev_priv(netdev);
1190 struct gs_device_termination_state term_state;
1191
1192 if (term == GS_USB_TERMINATION_ENABLED)
1193 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1194 else
1195 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1196
1197 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1198 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1199 dev->channel, 0,
1200 &term_state, sizeof(term_state), 1000,
1201 GFP_KERNEL);
1202 }
1203
1204 static const u16 gs_usb_termination_const[] = {
1205 GS_USB_TERMINATION_DISABLED,
1206 GS_USB_TERMINATION_ENABLED
1207 };
1208
gs_make_candev(unsigned int channel,struct usb_interface * intf,struct gs_device_config * dconf)1209 static struct gs_can *gs_make_candev(unsigned int channel,
1210 struct usb_interface *intf,
1211 struct gs_device_config *dconf)
1212 {
1213 struct gs_can *dev;
1214 struct net_device *netdev;
1215 int rc;
1216 struct gs_device_bt_const_extended bt_const_extended;
1217 struct gs_device_bt_const bt_const;
1218 u32 feature;
1219
1220 /* fetch bit timing constants */
1221 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1222 GS_USB_BREQ_BT_CONST,
1223 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1224 channel, 0, &bt_const, sizeof(bt_const), 1000,
1225 GFP_KERNEL);
1226
1227 if (rc) {
1228 dev_err(&intf->dev,
1229 "Couldn't get bit timing const for channel %d (%pe)\n",
1230 channel, ERR_PTR(rc));
1231 return ERR_PTR(rc);
1232 }
1233
1234 /* create netdev */
1235 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1236 if (!netdev) {
1237 dev_err(&intf->dev, "Couldn't allocate candev\n");
1238 return ERR_PTR(-ENOMEM);
1239 }
1240
1241 dev = netdev_priv(netdev);
1242
1243 netdev->netdev_ops = &gs_usb_netdev_ops;
1244 netdev->ethtool_ops = &gs_usb_ethtool_ops;
1245
1246 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1247 netdev->dev_id = channel;
1248 netdev->dev_port = channel;
1249
1250 /* dev setup */
1251 strcpy(dev->bt_const.name, KBUILD_MODNAME);
1252 dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1253 dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1254 dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1255 dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1256 dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1257 dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1258 dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1259 dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1260
1261 dev->udev = interface_to_usbdev(intf);
1262 dev->netdev = netdev;
1263 dev->channel = channel;
1264
1265 init_usb_anchor(&dev->tx_submitted);
1266 atomic_set(&dev->active_tx_urbs, 0);
1267 spin_lock_init(&dev->tx_ctx_lock);
1268 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1269 dev->tx_context[rc].dev = dev;
1270 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1271 }
1272
1273 /* can setup */
1274 dev->can.state = CAN_STATE_STOPPED;
1275 dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1276 dev->can.bittiming_const = &dev->bt_const;
1277 dev->can.do_set_bittiming = gs_usb_set_bittiming;
1278
1279 dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1280
1281 feature = le32_to_cpu(bt_const.feature);
1282 dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1283 if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1284 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1285
1286 if (feature & GS_CAN_FEATURE_LOOP_BACK)
1287 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1288
1289 if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1290 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1291
1292 if (feature & GS_CAN_FEATURE_ONE_SHOT)
1293 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1294
1295 if (feature & GS_CAN_FEATURE_FD) {
1296 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1297 /* The data bit timing will be overwritten, if
1298 * GS_CAN_FEATURE_BT_CONST_EXT is set.
1299 */
1300 dev->can.fd.data_bittiming_const = &dev->bt_const;
1301 dev->can.fd.do_set_data_bittiming = gs_usb_set_data_bittiming;
1302 }
1303
1304 if (feature & GS_CAN_FEATURE_TERMINATION) {
1305 rc = gs_usb_get_termination(netdev, &dev->can.termination);
1306 if (rc) {
1307 dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1308
1309 dev_info(&intf->dev,
1310 "Disabling termination support for channel %d (%pe)\n",
1311 channel, ERR_PTR(rc));
1312 } else {
1313 dev->can.termination_const = gs_usb_termination_const;
1314 dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1315 dev->can.do_set_termination = gs_usb_set_termination;
1316 }
1317 }
1318
1319 if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1320 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1321
1322 if (feature & GS_CAN_FEATURE_GET_STATE)
1323 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1324
1325 /* The CANtact Pro from LinkLayer Labs is based on the
1326 * LPC54616 µC, which is affected by the NXP LPC USB transfer
1327 * erratum. However, the current firmware (version 2) doesn't
1328 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1329 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1330 * this issue.
1331 *
1332 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1333 * CANtact Pro firmware uses a request value, which is already
1334 * used by the candleLight firmware for a different purpose
1335 * (GS_USB_BREQ_GET_USER_ID). Set the feature
1336 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1337 * issue.
1338 */
1339 if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1340 dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1341 dev->udev->manufacturer && dev->udev->product &&
1342 !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1343 !strcmp(dev->udev->product, "CANtact Pro") &&
1344 (le32_to_cpu(dconf->sw_version) <= 2))
1345 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1346 GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1347
1348 /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1349 if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1350 feature & GS_CAN_FEATURE_IDENTIFY))
1351 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1352
1353 /* fetch extended bit timing constants if device has feature
1354 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1355 */
1356 if (feature & GS_CAN_FEATURE_FD &&
1357 feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1358 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1359 GS_USB_BREQ_BT_CONST_EXT,
1360 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1361 channel, 0, &bt_const_extended,
1362 sizeof(bt_const_extended),
1363 1000, GFP_KERNEL);
1364 if (rc) {
1365 dev_err(&intf->dev,
1366 "Couldn't get extended bit timing const for channel %d (%pe)\n",
1367 channel, ERR_PTR(rc));
1368 goto out_free_candev;
1369 }
1370
1371 strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1372 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1373 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1374 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1375 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1376 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1377 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1378 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1379 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1380
1381 dev->can.fd.data_bittiming_const = &dev->data_bt_const;
1382 }
1383
1384 can_rx_offload_add_manual(netdev, &dev->offload, GS_NAPI_WEIGHT);
1385 SET_NETDEV_DEV(netdev, &intf->dev);
1386
1387 rc = register_candev(dev->netdev);
1388 if (rc) {
1389 dev_err(&intf->dev,
1390 "Couldn't register candev for channel %d (%pe)\n",
1391 channel, ERR_PTR(rc));
1392 goto out_can_rx_offload_del;
1393 }
1394
1395 return dev;
1396
1397 out_can_rx_offload_del:
1398 can_rx_offload_del(&dev->offload);
1399 out_free_candev:
1400 free_candev(dev->netdev);
1401 return ERR_PTR(rc);
1402 }
1403
gs_destroy_candev(struct gs_can * dev)1404 static void gs_destroy_candev(struct gs_can *dev)
1405 {
1406 unregister_candev(dev->netdev);
1407 can_rx_offload_del(&dev->offload);
1408 free_candev(dev->netdev);
1409 }
1410
gs_usb_probe(struct usb_interface * intf,const struct usb_device_id * id)1411 static int gs_usb_probe(struct usb_interface *intf,
1412 const struct usb_device_id *id)
1413 {
1414 struct usb_device *udev = interface_to_usbdev(intf);
1415 struct usb_endpoint_descriptor *ep_in, *ep_out;
1416 struct gs_host_frame *hf;
1417 struct gs_usb *parent;
1418 struct gs_host_config hconf = {
1419 .byte_order = cpu_to_le32(0x0000beef),
1420 };
1421 struct gs_device_config dconf;
1422 unsigned int icount, i;
1423 int rc;
1424
1425 rc = usb_find_common_endpoints(intf->cur_altsetting,
1426 &ep_in, &ep_out, NULL, NULL);
1427 if (rc) {
1428 dev_err(&intf->dev, "Required endpoints not found\n");
1429 return rc;
1430 }
1431
1432 /* send host config */
1433 rc = usb_control_msg_send(udev, 0,
1434 GS_USB_BREQ_HOST_FORMAT,
1435 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1436 1, intf->cur_altsetting->desc.bInterfaceNumber,
1437 &hconf, sizeof(hconf), 1000,
1438 GFP_KERNEL);
1439 if (rc) {
1440 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1441 return rc;
1442 }
1443
1444 /* read device config */
1445 rc = usb_control_msg_recv(udev, 0,
1446 GS_USB_BREQ_DEVICE_CONFIG,
1447 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1448 1, intf->cur_altsetting->desc.bInterfaceNumber,
1449 &dconf, sizeof(dconf), 1000,
1450 GFP_KERNEL);
1451 if (rc) {
1452 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1453 rc);
1454 return rc;
1455 }
1456
1457 icount = dconf.icount + 1;
1458 dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1459
1460 if (icount > type_max(parent->channel_cnt)) {
1461 dev_err(&intf->dev,
1462 "Driver cannot handle more that %u CAN interfaces\n",
1463 type_max(parent->channel_cnt));
1464 return -EINVAL;
1465 }
1466
1467 parent = kzalloc(struct_size(parent, canch, icount), GFP_KERNEL);
1468 if (!parent)
1469 return -ENOMEM;
1470
1471 parent->channel_cnt = icount;
1472
1473 init_usb_anchor(&parent->rx_submitted);
1474
1475 usb_set_intfdata(intf, parent);
1476 parent->udev = udev;
1477
1478 /* store the detected endpoints */
1479 parent->pipe_in = usb_rcvbulkpipe(parent->udev, ep_in->bEndpointAddress);
1480 parent->pipe_out = usb_sndbulkpipe(parent->udev, ep_out->bEndpointAddress);
1481
1482 for (i = 0; i < icount; i++) {
1483 unsigned int hf_size_rx = 0;
1484
1485 parent->canch[i] = gs_make_candev(i, intf, &dconf);
1486 if (IS_ERR_OR_NULL(parent->canch[i])) {
1487 /* save error code to return later */
1488 rc = PTR_ERR(parent->canch[i]);
1489
1490 /* on failure destroy previously created candevs */
1491 icount = i;
1492 for (i = 0; i < icount; i++)
1493 gs_destroy_candev(parent->canch[i]);
1494
1495 usb_kill_anchored_urbs(&parent->rx_submitted);
1496 kfree(parent);
1497 return rc;
1498 }
1499 parent->canch[i]->parent = parent;
1500
1501 /* set RX packet size based on FD and if hardware
1502 * timestamps are supported.
1503 */
1504 if (parent->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1505 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1506 hf_size_rx = struct_size(hf, canfd_ts, 1);
1507 else
1508 hf_size_rx = struct_size(hf, canfd, 1);
1509 } else {
1510 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1511 hf_size_rx = struct_size(hf, classic_can_ts, 1);
1512 else
1513 hf_size_rx = struct_size(hf, classic_can, 1);
1514 }
1515 parent->hf_size_rx = max(parent->hf_size_rx, hf_size_rx);
1516 }
1517
1518 return 0;
1519 }
1520
gs_usb_disconnect(struct usb_interface * intf)1521 static void gs_usb_disconnect(struct usb_interface *intf)
1522 {
1523 struct gs_usb *parent = usb_get_intfdata(intf);
1524 unsigned int i;
1525
1526 usb_set_intfdata(intf, NULL);
1527
1528 if (!parent) {
1529 dev_err(&intf->dev, "Disconnect (nodata)\n");
1530 return;
1531 }
1532
1533 for (i = 0; i < parent->channel_cnt; i++)
1534 if (parent->canch[i])
1535 gs_destroy_candev(parent->canch[i]);
1536
1537 kfree(parent);
1538 }
1539
1540 static const struct usb_device_id gs_usb_table[] = {
1541 { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1542 USB_GS_USB_1_PRODUCT_ID, 0) },
1543 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1544 USB_CANDLELIGHT_PRODUCT_ID, 0) },
1545 { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1546 USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1547 { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1548 USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1549 { USB_DEVICE_INTERFACE_NUMBER(USB_XYLANTA_SAINT3_VENDOR_ID,
1550 USB_XYLANTA_SAINT3_PRODUCT_ID, 0) },
1551 { USB_DEVICE_INTERFACE_NUMBER(USB_CANNECTIVITY_VENDOR_ID,
1552 USB_CANNECTIVITY_PRODUCT_ID, 0) },
1553 {} /* Terminating entry */
1554 };
1555
1556 MODULE_DEVICE_TABLE(usb, gs_usb_table);
1557
1558 static struct usb_driver gs_usb_driver = {
1559 .name = KBUILD_MODNAME,
1560 .probe = gs_usb_probe,
1561 .disconnect = gs_usb_disconnect,
1562 .id_table = gs_usb_table,
1563 };
1564
1565 module_usb_driver(gs_usb_driver);
1566
1567 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1568 MODULE_DESCRIPTION(
1569 "Socket CAN device driver for Geschwister Schneider Technologie-, "
1570 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1571 "and bytewerk.org candleLight USB CAN interfaces.");
1572 MODULE_LICENSE("GPL v2");
1573