1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SN Platform GRU Driver
4 *
5 * MMUOPS callbacks + TLB flushing
6 *
7 * This file handles emu notifier callbacks from the core kernel. The callbacks
8 * are used to update the TLB in the GRU as a result of changes in the
9 * state of a process address space. This file also handles TLB invalidates
10 * from the GRU driver.
11 *
12 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/hugetlb.h>
22 #include <linux/delay.h>
23 #include <linux/timex.h>
24 #include <linux/srcu.h>
25 #include <asm/processor.h>
26 #include "gru.h"
27 #include "grutables.h"
28 #include <asm/uv/uv_hub.h>
29
30 #define gru_random() get_cycles()
31
32 /* ---------------------------------- TLB Invalidation functions --------
33 * get_tgh_handle
34 *
35 * Find a TGH to use for issuing a TLB invalidate. For GRUs that are on the
36 * local blade, use a fixed TGH that is a function of the blade-local cpu
37 * number. Normally, this TGH is private to the cpu & no contention occurs for
38 * the TGH. For offblade GRUs, select a random TGH in the range above the
39 * private TGHs. A spinlock is required to access this TGH & the lock must be
40 * released when the invalidate is completes. This sucks, but it is the best we
41 * can do.
42 *
43 * Note that the spinlock is IN the TGH handle so locking does not involve
44 * additional cache lines.
45 *
46 */
get_off_blade_tgh(struct gru_state * gru)47 static inline int get_off_blade_tgh(struct gru_state *gru)
48 {
49 int n;
50
51 n = GRU_NUM_TGH - gru->gs_tgh_first_remote;
52 n = gru_random() % n;
53 n += gru->gs_tgh_first_remote;
54 return n;
55 }
56
get_on_blade_tgh(struct gru_state * gru)57 static inline int get_on_blade_tgh(struct gru_state *gru)
58 {
59 return uv_blade_processor_id() >> gru->gs_tgh_local_shift;
60 }
61
get_lock_tgh_handle(struct gru_state * gru)62 static struct gru_tlb_global_handle *get_lock_tgh_handle(struct gru_state
63 *gru)
64 {
65 struct gru_tlb_global_handle *tgh;
66 int n;
67
68 if (uv_numa_blade_id() == gru->gs_blade_id)
69 n = get_on_blade_tgh(gru);
70 else
71 n = get_off_blade_tgh(gru);
72 tgh = get_tgh_by_index(gru, n);
73 lock_tgh_handle(tgh);
74
75 return tgh;
76 }
77
get_unlock_tgh_handle(struct gru_tlb_global_handle * tgh)78 static void get_unlock_tgh_handle(struct gru_tlb_global_handle *tgh)
79 {
80 unlock_tgh_handle(tgh);
81 }
82
83 /*
84 * gru_flush_tlb_range
85 *
86 * General purpose TLB invalidation function. This function scans every GRU in
87 * the ENTIRE system (partition) looking for GRUs where the specified MM has
88 * been accessed by the GRU. For each GRU found, the TLB must be invalidated OR
89 * the ASID invalidated. Invalidating an ASID causes a new ASID to be assigned
90 * on the next fault. This effectively flushes the ENTIRE TLB for the MM at the
91 * cost of (possibly) a large number of future TLBmisses.
92 *
93 * The current algorithm is optimized based on the following (somewhat true)
94 * assumptions:
95 * - GRU contexts are not loaded into a GRU unless a reference is made to
96 * the data segment or control block (this is true, not an assumption).
97 * If a DS/CB is referenced, the user will also issue instructions that
98 * cause TLBmisses. It is not necessary to optimize for the case where
99 * contexts are loaded but no instructions cause TLB misses. (I know
100 * this will happen but I'm not optimizing for it).
101 * - GRU instructions to invalidate TLB entries are SLOOOOWWW - normally
102 * a few usec but in unusual cases, it could be longer. Avoid if
103 * possible.
104 * - intrablade process migration between cpus is not frequent but is
105 * common.
106 * - a GRU context is not typically migrated to a different GRU on the
107 * blade because of intrablade migration
108 * - interblade migration is rare. Processes migrate their GRU context to
109 * the new blade.
110 * - if interblade migration occurs, migration back to the original blade
111 * is very very rare (ie., no optimization for this case)
112 * - most GRU instruction operate on a subset of the user REGIONS. Code
113 * & shared library regions are not likely targets of GRU instructions.
114 *
115 * To help improve the efficiency of TLB invalidation, the GMS data
116 * structure is maintained for EACH address space (MM struct). The GMS is
117 * also the structure that contains the pointer to the mmu callout
118 * functions. This structure is linked to the mm_struct for the address space
119 * using the mmu "register" function. The mmu interfaces are used to
120 * provide the callbacks for TLB invalidation. The GMS contains:
121 *
122 * - asid[maxgrus] array. ASIDs are assigned to a GRU when a context is
123 * loaded into the GRU.
124 * - asidmap[maxgrus]. bitmap to make it easier to find non-zero asids in
125 * the above array
126 * - ctxbitmap[maxgrus]. Indicates the contexts that are currently active
127 * in the GRU for the address space. This bitmap must be passed to the
128 * GRU to do an invalidate.
129 *
130 * The current algorithm for invalidating TLBs is:
131 * - scan the asidmap for GRUs where the context has been loaded, ie,
132 * asid is non-zero.
133 * - for each gru found:
134 * - if the ctxtmap is non-zero, there are active contexts in the
135 * GRU. TLB invalidate instructions must be issued to the GRU.
136 * - if the ctxtmap is zero, no context is active. Set the ASID to
137 * zero to force a full TLB invalidation. This is fast but will
138 * cause a lot of TLB misses if the context is reloaded onto the
139 * GRU
140 *
141 */
142
gru_flush_tlb_range(struct gru_mm_struct * gms,unsigned long start,unsigned long len)143 void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
144 unsigned long len)
145 {
146 struct gru_state *gru;
147 struct gru_mm_tracker *asids;
148 struct gru_tlb_global_handle *tgh;
149 unsigned long num;
150 int grupagesize, pagesize, pageshift, gid, asid;
151
152 /* ZZZ TODO - handle huge pages */
153 pageshift = PAGE_SHIFT;
154 pagesize = (1UL << pageshift);
155 grupagesize = GRU_PAGESIZE(pageshift);
156 num = min(((len + pagesize - 1) >> pageshift), GRUMAXINVAL);
157
158 STAT(flush_tlb);
159 gru_dbg(grudev, "gms %p, start 0x%lx, len 0x%lx, asidmap 0x%lx\n", gms,
160 start, len, gms->ms_asidmap[0]);
161
162 spin_lock(&gms->ms_asid_lock);
163 for_each_gru_in_bitmap(gid, gms->ms_asidmap) {
164 STAT(flush_tlb_gru);
165 gru = GID_TO_GRU(gid);
166 asids = gms->ms_asids + gid;
167 asid = asids->mt_asid;
168 if (asids->mt_ctxbitmap && asid) {
169 STAT(flush_tlb_gru_tgh);
170 asid = GRUASID(asid, start);
171 gru_dbg(grudev,
172 " FLUSH gruid %d, asid 0x%x, vaddr 0x%lx, vamask 0x%x, num %ld, cbmap 0x%x\n",
173 gid, asid, start, grupagesize, num, asids->mt_ctxbitmap);
174 tgh = get_lock_tgh_handle(gru);
175 tgh_invalidate(tgh, start, ~0, asid, grupagesize, 0,
176 num - 1, asids->mt_ctxbitmap);
177 get_unlock_tgh_handle(tgh);
178 } else {
179 STAT(flush_tlb_gru_zero_asid);
180 asids->mt_asid = 0;
181 __clear_bit(gru->gs_gid, gms->ms_asidmap);
182 gru_dbg(grudev,
183 " CLEARASID gruid %d, asid 0x%x, cbtmap 0x%x, asidmap 0x%lx\n",
184 gid, asid, asids->mt_ctxbitmap,
185 gms->ms_asidmap[0]);
186 }
187 }
188 spin_unlock(&gms->ms_asid_lock);
189 }
190
191 /*
192 * Flush the entire TLB on a chiplet.
193 */
gru_flush_all_tlb(struct gru_state * gru)194 void gru_flush_all_tlb(struct gru_state *gru)
195 {
196 struct gru_tlb_global_handle *tgh;
197
198 gru_dbg(grudev, "gid %d\n", gru->gs_gid);
199 tgh = get_lock_tgh_handle(gru);
200 tgh_invalidate(tgh, 0, ~0, 0, 1, 1, GRUMAXINVAL - 1, 0xffff);
201 get_unlock_tgh_handle(tgh);
202 }
203
204 /*
205 * MMUOPS notifier callout functions
206 */
gru_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)207 static int gru_invalidate_range_start(struct mmu_notifier *mn,
208 const struct mmu_notifier_range *range)
209 {
210 struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
211 ms_notifier);
212
213 STAT(mmu_invalidate_range);
214 atomic_inc(&gms->ms_range_active);
215 gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx, act %d\n", gms,
216 range->start, range->end, atomic_read(&gms->ms_range_active));
217 gru_flush_tlb_range(gms, range->start, range->end - range->start);
218
219 return 0;
220 }
221
gru_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)222 static void gru_invalidate_range_end(struct mmu_notifier *mn,
223 const struct mmu_notifier_range *range)
224 {
225 struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
226 ms_notifier);
227
228 /* ..._and_test() provides needed barrier */
229 (void)atomic_dec_and_test(&gms->ms_range_active);
230
231 wake_up_all(&gms->ms_wait_queue);
232 gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx\n",
233 gms, range->start, range->end);
234 }
235
gru_alloc_notifier(struct mm_struct * mm)236 static struct mmu_notifier *gru_alloc_notifier(struct mm_struct *mm)
237 {
238 struct gru_mm_struct *gms;
239
240 gms = kzalloc(sizeof(*gms), GFP_KERNEL);
241 if (!gms)
242 return ERR_PTR(-ENOMEM);
243 STAT(gms_alloc);
244 spin_lock_init(&gms->ms_asid_lock);
245 init_waitqueue_head(&gms->ms_wait_queue);
246
247 return &gms->ms_notifier;
248 }
249
gru_free_notifier(struct mmu_notifier * mn)250 static void gru_free_notifier(struct mmu_notifier *mn)
251 {
252 kfree(container_of(mn, struct gru_mm_struct, ms_notifier));
253 STAT(gms_free);
254 }
255
256 static const struct mmu_notifier_ops gru_mmuops = {
257 .invalidate_range_start = gru_invalidate_range_start,
258 .invalidate_range_end = gru_invalidate_range_end,
259 .alloc_notifier = gru_alloc_notifier,
260 .free_notifier = gru_free_notifier,
261 };
262
gru_register_mmu_notifier(void)263 struct gru_mm_struct *gru_register_mmu_notifier(void)
264 {
265 struct mmu_notifier *mn;
266
267 mn = mmu_notifier_get_locked(&gru_mmuops, current->mm);
268 if (IS_ERR(mn))
269 return ERR_CAST(mn);
270
271 return container_of(mn, struct gru_mm_struct, ms_notifier);
272 }
273
gru_drop_mmu_notifier(struct gru_mm_struct * gms)274 void gru_drop_mmu_notifier(struct gru_mm_struct *gms)
275 {
276 mmu_notifier_put(&gms->ms_notifier);
277 }
278
279 /*
280 * Setup TGH parameters. There are:
281 * - 24 TGH handles per GRU chiplet
282 * - a portion (MAX_LOCAL_TGH) of the handles are reserved for
283 * use by blade-local cpus
284 * - the rest are used by off-blade cpus. This usage is
285 * less frequent than blade-local usage.
286 *
287 * For now, use 16 handles for local flushes, 8 for remote flushes. If the blade
288 * has less tan or equal to 16 cpus, each cpu has a unique handle that it can
289 * use.
290 */
291 #define MAX_LOCAL_TGH 16
292
gru_tgh_flush_init(struct gru_state * gru)293 void gru_tgh_flush_init(struct gru_state *gru)
294 {
295 int cpus, shift = 0, n;
296
297 cpus = uv_blade_nr_possible_cpus(gru->gs_blade_id);
298
299 /* n = cpus rounded up to next power of 2 */
300 if (cpus) {
301 n = 1 << fls(cpus - 1);
302
303 /*
304 * shift count for converting local cpu# to TGH index
305 * 0 if cpus <= MAX_LOCAL_TGH,
306 * 1 if cpus <= 2*MAX_LOCAL_TGH,
307 * etc
308 */
309 shift = max(0, fls(n - 1) - fls(MAX_LOCAL_TGH - 1));
310 }
311 gru->gs_tgh_local_shift = shift;
312
313 /* first starting TGH index to use for remote purges */
314 gru->gs_tgh_first_remote = (cpus + (1 << shift) - 1) >> shift;
315
316 }
317