1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SN Platform GRU Driver
4 *
5 * DRIVER TABLE MANAGER + GRU CONTEXT LOAD/UNLOAD
6 *
7 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/device.h>
16 #include <linux/list.h>
17 #include <linux/err.h>
18 #include <linux/prefetch.h>
19 #include <asm/uv/uv_hub.h>
20 #include "gru.h"
21 #include "grutables.h"
22 #include "gruhandles.h"
23
24 unsigned long gru_options __read_mostly;
25
26 static struct device_driver gru_driver = {
27 .name = "gru"
28 };
29
30 static struct device gru_device = {
31 .init_name = "",
32 .driver = &gru_driver,
33 };
34
35 struct device *grudev = &gru_device;
36
37 /*
38 * Select a gru fault map to be used by the current cpu. Note that
39 * multiple cpus may be using the same map.
40 * ZZZ should be inline but did not work on emulator
41 */
gru_cpu_fault_map_id(void)42 int gru_cpu_fault_map_id(void)
43 {
44 int cpu = smp_processor_id();
45 int id, core;
46
47 core = uv_cpu_core_number(cpu);
48 id = core + UV_MAX_INT_CORES * uv_cpu_socket_number(cpu);
49 return id;
50 }
51
52 /*--------- ASID Management -------------------------------------------
53 *
54 * Initially, assign asids sequentially from MIN_ASID .. MAX_ASID.
55 * Once MAX is reached, flush the TLB & start over. However,
56 * some asids may still be in use. There won't be many (percentage wise) still
57 * in use. Search active contexts & determine the value of the first
58 * asid in use ("x"s below). Set "limit" to this value.
59 * This defines a block of assignable asids.
60 *
61 * When "limit" is reached, search forward from limit+1 and determine the
62 * next block of assignable asids.
63 *
64 * Repeat until MAX_ASID is reached, then start over again.
65 *
66 * Each time MAX_ASID is reached, increment the asid generation. Since
67 * the search for in-use asids only checks contexts with GRUs currently
68 * assigned, asids in some contexts will be missed. Prior to loading
69 * a context, the asid generation of the GTS asid is rechecked. If it
70 * doesn't match the current generation, a new asid will be assigned.
71 *
72 * 0---------------x------------x---------------------x----|
73 * ^-next ^-limit ^-MAX_ASID
74 *
75 * All asid manipulation & context loading/unloading is protected by the
76 * gs_lock.
77 */
78
79 /* Hit the asid limit. Start over */
gru_wrap_asid(struct gru_state * gru)80 static int gru_wrap_asid(struct gru_state *gru)
81 {
82 gru_dbg(grudev, "gid %d\n", gru->gs_gid);
83 STAT(asid_wrap);
84 gru->gs_asid_gen++;
85 return MIN_ASID;
86 }
87
88 /* Find the next chunk of unused asids */
gru_reset_asid_limit(struct gru_state * gru,int asid)89 static int gru_reset_asid_limit(struct gru_state *gru, int asid)
90 {
91 int i, gid, inuse_asid, limit;
92
93 gru_dbg(grudev, "gid %d, asid 0x%x\n", gru->gs_gid, asid);
94 STAT(asid_next);
95 limit = MAX_ASID;
96 if (asid >= limit)
97 asid = gru_wrap_asid(gru);
98 gru_flush_all_tlb(gru);
99 gid = gru->gs_gid;
100 again:
101 for (i = 0; i < GRU_NUM_CCH; i++) {
102 if (!gru->gs_gts[i] || is_kernel_context(gru->gs_gts[i]))
103 continue;
104 inuse_asid = gru->gs_gts[i]->ts_gms->ms_asids[gid].mt_asid;
105 gru_dbg(grudev, "gid %d, gts %p, gms %p, inuse 0x%x, cxt %d\n",
106 gru->gs_gid, gru->gs_gts[i], gru->gs_gts[i]->ts_gms,
107 inuse_asid, i);
108 if (inuse_asid == asid) {
109 asid += ASID_INC;
110 if (asid >= limit) {
111 /*
112 * empty range: reset the range limit and
113 * start over
114 */
115 limit = MAX_ASID;
116 if (asid >= MAX_ASID)
117 asid = gru_wrap_asid(gru);
118 goto again;
119 }
120 }
121
122 if ((inuse_asid > asid) && (inuse_asid < limit))
123 limit = inuse_asid;
124 }
125 gru->gs_asid_limit = limit;
126 gru->gs_asid = asid;
127 gru_dbg(grudev, "gid %d, new asid 0x%x, new_limit 0x%x\n", gru->gs_gid,
128 asid, limit);
129 return asid;
130 }
131
132 /* Assign a new ASID to a thread context. */
gru_assign_asid(struct gru_state * gru)133 static int gru_assign_asid(struct gru_state *gru)
134 {
135 int asid;
136
137 gru->gs_asid += ASID_INC;
138 asid = gru->gs_asid;
139 if (asid >= gru->gs_asid_limit)
140 asid = gru_reset_asid_limit(gru, asid);
141
142 gru_dbg(grudev, "gid %d, asid 0x%x\n", gru->gs_gid, asid);
143 return asid;
144 }
145
146 /*
147 * Clear n bits in a word. Return a word indicating the bits that were cleared.
148 * Optionally, build an array of chars that contain the bit numbers allocated.
149 */
reserve_resources(unsigned long * p,int n,int mmax,signed char * idx)150 static unsigned long reserve_resources(unsigned long *p, int n, int mmax,
151 signed char *idx)
152 {
153 unsigned long bits = 0;
154 int i;
155
156 while (n--) {
157 i = find_first_bit(p, mmax);
158 if (i == mmax)
159 BUG();
160 __clear_bit(i, p);
161 __set_bit(i, &bits);
162 if (idx)
163 *idx++ = i;
164 }
165 return bits;
166 }
167
gru_reserve_cb_resources(struct gru_state * gru,int cbr_au_count,signed char * cbmap)168 unsigned long gru_reserve_cb_resources(struct gru_state *gru, int cbr_au_count,
169 signed char *cbmap)
170 {
171 return reserve_resources(&gru->gs_cbr_map, cbr_au_count, GRU_CBR_AU,
172 cbmap);
173 }
174
gru_reserve_ds_resources(struct gru_state * gru,int dsr_au_count,signed char * dsmap)175 unsigned long gru_reserve_ds_resources(struct gru_state *gru, int dsr_au_count,
176 signed char *dsmap)
177 {
178 return reserve_resources(&gru->gs_dsr_map, dsr_au_count, GRU_DSR_AU,
179 dsmap);
180 }
181
reserve_gru_resources(struct gru_state * gru,struct gru_thread_state * gts)182 static void reserve_gru_resources(struct gru_state *gru,
183 struct gru_thread_state *gts)
184 {
185 gru->gs_active_contexts++;
186 gts->ts_cbr_map =
187 gru_reserve_cb_resources(gru, gts->ts_cbr_au_count,
188 gts->ts_cbr_idx);
189 gts->ts_dsr_map =
190 gru_reserve_ds_resources(gru, gts->ts_dsr_au_count, NULL);
191 }
192
free_gru_resources(struct gru_state * gru,struct gru_thread_state * gts)193 static void free_gru_resources(struct gru_state *gru,
194 struct gru_thread_state *gts)
195 {
196 gru->gs_active_contexts--;
197 gru->gs_cbr_map |= gts->ts_cbr_map;
198 gru->gs_dsr_map |= gts->ts_dsr_map;
199 }
200
201 /*
202 * Check if a GRU has sufficient free resources to satisfy an allocation
203 * request. Note: GRU locks may or may not be held when this is called. If
204 * not held, recheck after acquiring the appropriate locks.
205 *
206 * Returns 1 if sufficient resources, 0 if not
207 */
check_gru_resources(struct gru_state * gru,int cbr_au_count,int dsr_au_count,int max_active_contexts)208 static int check_gru_resources(struct gru_state *gru, int cbr_au_count,
209 int dsr_au_count, int max_active_contexts)
210 {
211 return hweight64(gru->gs_cbr_map) >= cbr_au_count
212 && hweight64(gru->gs_dsr_map) >= dsr_au_count
213 && gru->gs_active_contexts < max_active_contexts;
214 }
215
216 /*
217 * TLB manangment requires tracking all GRU chiplets that have loaded a GSEG
218 * context.
219 */
gru_load_mm_tracker(struct gru_state * gru,struct gru_thread_state * gts)220 static int gru_load_mm_tracker(struct gru_state *gru,
221 struct gru_thread_state *gts)
222 {
223 struct gru_mm_struct *gms = gts->ts_gms;
224 struct gru_mm_tracker *asids = &gms->ms_asids[gru->gs_gid];
225 unsigned short ctxbitmap = (1 << gts->ts_ctxnum);
226 int asid;
227
228 spin_lock(&gms->ms_asid_lock);
229 asid = asids->mt_asid;
230
231 spin_lock(&gru->gs_asid_lock);
232 if (asid == 0 || (asids->mt_ctxbitmap == 0 && asids->mt_asid_gen !=
233 gru->gs_asid_gen)) {
234 asid = gru_assign_asid(gru);
235 asids->mt_asid = asid;
236 asids->mt_asid_gen = gru->gs_asid_gen;
237 STAT(asid_new);
238 } else {
239 STAT(asid_reuse);
240 }
241 spin_unlock(&gru->gs_asid_lock);
242
243 BUG_ON(asids->mt_ctxbitmap & ctxbitmap);
244 asids->mt_ctxbitmap |= ctxbitmap;
245 if (!test_bit(gru->gs_gid, gms->ms_asidmap))
246 __set_bit(gru->gs_gid, gms->ms_asidmap);
247 spin_unlock(&gms->ms_asid_lock);
248
249 gru_dbg(grudev,
250 "gid %d, gts %p, gms %p, ctxnum %d, asid 0x%x, asidmap 0x%lx\n",
251 gru->gs_gid, gts, gms, gts->ts_ctxnum, asid,
252 gms->ms_asidmap[0]);
253 return asid;
254 }
255
gru_unload_mm_tracker(struct gru_state * gru,struct gru_thread_state * gts)256 static void gru_unload_mm_tracker(struct gru_state *gru,
257 struct gru_thread_state *gts)
258 {
259 struct gru_mm_struct *gms = gts->ts_gms;
260 struct gru_mm_tracker *asids;
261 unsigned short ctxbitmap;
262
263 asids = &gms->ms_asids[gru->gs_gid];
264 ctxbitmap = (1 << gts->ts_ctxnum);
265 spin_lock(&gms->ms_asid_lock);
266 spin_lock(&gru->gs_asid_lock);
267 BUG_ON((asids->mt_ctxbitmap & ctxbitmap) != ctxbitmap);
268 asids->mt_ctxbitmap ^= ctxbitmap;
269 gru_dbg(grudev, "gid %d, gts %p, gms %p, ctxnum %d, asidmap 0x%lx\n",
270 gru->gs_gid, gts, gms, gts->ts_ctxnum, gms->ms_asidmap[0]);
271 spin_unlock(&gru->gs_asid_lock);
272 spin_unlock(&gms->ms_asid_lock);
273 }
274
275 /*
276 * Decrement the reference count on a GTS structure. Free the structure
277 * if the reference count goes to zero.
278 */
gts_drop(struct gru_thread_state * gts)279 void gts_drop(struct gru_thread_state *gts)
280 {
281 if (gts && refcount_dec_and_test(>s->ts_refcnt)) {
282 if (gts->ts_gms)
283 gru_drop_mmu_notifier(gts->ts_gms);
284 kfree(gts);
285 STAT(gts_free);
286 }
287 }
288
289 /*
290 * Locate the GTS structure for the current thread.
291 */
gru_find_current_gts_nolock(struct gru_vma_data * vdata,int tsid)292 static struct gru_thread_state *gru_find_current_gts_nolock(struct gru_vma_data
293 *vdata, int tsid)
294 {
295 struct gru_thread_state *gts;
296
297 list_for_each_entry(gts, &vdata->vd_head, ts_next)
298 if (gts->ts_tsid == tsid)
299 return gts;
300 return NULL;
301 }
302
303 /*
304 * Allocate a thread state structure.
305 */
gru_alloc_gts(struct vm_area_struct * vma,int cbr_au_count,int dsr_au_count,unsigned char tlb_preload_count,int options,int tsid)306 struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma,
307 int cbr_au_count, int dsr_au_count,
308 unsigned char tlb_preload_count, int options, int tsid)
309 {
310 struct gru_thread_state *gts;
311 struct gru_mm_struct *gms;
312 int bytes;
313
314 bytes = DSR_BYTES(dsr_au_count) + CBR_BYTES(cbr_au_count);
315 bytes += sizeof(struct gru_thread_state);
316 gts = kmalloc(bytes, GFP_KERNEL);
317 if (!gts)
318 return ERR_PTR(-ENOMEM);
319
320 STAT(gts_alloc);
321 memset(gts, 0, sizeof(struct gru_thread_state)); /* zero out header */
322 refcount_set(>s->ts_refcnt, 1);
323 mutex_init(>s->ts_ctxlock);
324 gts->ts_cbr_au_count = cbr_au_count;
325 gts->ts_dsr_au_count = dsr_au_count;
326 gts->ts_tlb_preload_count = tlb_preload_count;
327 gts->ts_user_options = options;
328 gts->ts_user_blade_id = -1;
329 gts->ts_user_chiplet_id = -1;
330 gts->ts_tsid = tsid;
331 gts->ts_ctxnum = NULLCTX;
332 gts->ts_tlb_int_select = -1;
333 gts->ts_cch_req_slice = -1;
334 gts->ts_sizeavail = GRU_SIZEAVAIL(PAGE_SHIFT);
335 if (vma) {
336 gts->ts_mm = current->mm;
337 gts->ts_vma = vma;
338 gms = gru_register_mmu_notifier();
339 if (IS_ERR(gms))
340 goto err;
341 gts->ts_gms = gms;
342 }
343
344 gru_dbg(grudev, "alloc gts %p\n", gts);
345 return gts;
346
347 err:
348 gts_drop(gts);
349 return ERR_CAST(gms);
350 }
351
352 /*
353 * Allocate a vma private data structure.
354 */
gru_alloc_vma_data(struct vm_area_struct * vma,int tsid)355 struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, int tsid)
356 {
357 struct gru_vma_data *vdata = NULL;
358
359 vdata = kmalloc(sizeof(*vdata), GFP_KERNEL);
360 if (!vdata)
361 return NULL;
362
363 STAT(vdata_alloc);
364 INIT_LIST_HEAD(&vdata->vd_head);
365 spin_lock_init(&vdata->vd_lock);
366 gru_dbg(grudev, "alloc vdata %p\n", vdata);
367 return vdata;
368 }
369
370 /*
371 * Find the thread state structure for the current thread.
372 */
gru_find_thread_state(struct vm_area_struct * vma,int tsid)373 struct gru_thread_state *gru_find_thread_state(struct vm_area_struct *vma,
374 int tsid)
375 {
376 struct gru_vma_data *vdata = vma->vm_private_data;
377 struct gru_thread_state *gts;
378
379 spin_lock(&vdata->vd_lock);
380 gts = gru_find_current_gts_nolock(vdata, tsid);
381 spin_unlock(&vdata->vd_lock);
382 gru_dbg(grudev, "vma %p, gts %p\n", vma, gts);
383 return gts;
384 }
385
386 /*
387 * Allocate a new thread state for a GSEG. Note that races may allow
388 * another thread to race to create a gts.
389 */
gru_alloc_thread_state(struct vm_area_struct * vma,int tsid)390 struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct *vma,
391 int tsid)
392 {
393 struct gru_vma_data *vdata = vma->vm_private_data;
394 struct gru_thread_state *gts, *ngts;
395
396 gts = gru_alloc_gts(vma, vdata->vd_cbr_au_count,
397 vdata->vd_dsr_au_count,
398 vdata->vd_tlb_preload_count,
399 vdata->vd_user_options, tsid);
400 if (IS_ERR(gts))
401 return gts;
402
403 spin_lock(&vdata->vd_lock);
404 ngts = gru_find_current_gts_nolock(vdata, tsid);
405 if (ngts) {
406 gts_drop(gts);
407 gts = ngts;
408 STAT(gts_double_allocate);
409 } else {
410 list_add(>s->ts_next, &vdata->vd_head);
411 }
412 spin_unlock(&vdata->vd_lock);
413 gru_dbg(grudev, "vma %p, gts %p\n", vma, gts);
414 return gts;
415 }
416
417 /*
418 * Free the GRU context assigned to the thread state.
419 */
gru_free_gru_context(struct gru_thread_state * gts)420 static void gru_free_gru_context(struct gru_thread_state *gts)
421 {
422 struct gru_state *gru;
423
424 gru = gts->ts_gru;
425 gru_dbg(grudev, "gts %p, gid %d\n", gts, gru->gs_gid);
426
427 spin_lock(&gru->gs_lock);
428 gru->gs_gts[gts->ts_ctxnum] = NULL;
429 free_gru_resources(gru, gts);
430 BUG_ON(test_bit(gts->ts_ctxnum, &gru->gs_context_map) == 0);
431 __clear_bit(gts->ts_ctxnum, &gru->gs_context_map);
432 gts->ts_ctxnum = NULLCTX;
433 gts->ts_gru = NULL;
434 gts->ts_blade = -1;
435 spin_unlock(&gru->gs_lock);
436
437 gts_drop(gts);
438 STAT(free_context);
439 }
440
441 /*
442 * Prefetching cachelines help hardware performance.
443 * (Strictly a performance enhancement. Not functionally required).
444 */
prefetch_data(void * p,int num,int stride)445 static void prefetch_data(void *p, int num, int stride)
446 {
447 while (num-- > 0) {
448 prefetchw(p);
449 p += stride;
450 }
451 }
452
gru_copy_handle(void * d,void * s)453 static inline long gru_copy_handle(void *d, void *s)
454 {
455 memcpy(d, s, GRU_HANDLE_BYTES);
456 return GRU_HANDLE_BYTES;
457 }
458
gru_prefetch_context(void * gseg,void * cb,void * cbe,unsigned long cbrmap,unsigned long length)459 static void gru_prefetch_context(void *gseg, void *cb, void *cbe,
460 unsigned long cbrmap, unsigned long length)
461 {
462 int i, scr;
463
464 prefetch_data(gseg + GRU_DS_BASE, length / GRU_CACHE_LINE_BYTES,
465 GRU_CACHE_LINE_BYTES);
466
467 for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
468 prefetch_data(cb, 1, GRU_CACHE_LINE_BYTES);
469 prefetch_data(cbe + i * GRU_HANDLE_STRIDE, 1,
470 GRU_CACHE_LINE_BYTES);
471 cb += GRU_HANDLE_STRIDE;
472 }
473 }
474
gru_load_context_data(void * save,void * grubase,int ctxnum,unsigned long cbrmap,unsigned long dsrmap,int data_valid)475 static void gru_load_context_data(void *save, void *grubase, int ctxnum,
476 unsigned long cbrmap, unsigned long dsrmap,
477 int data_valid)
478 {
479 void *gseg, *cb, *cbe;
480 unsigned long length;
481 int i, scr;
482
483 gseg = grubase + ctxnum * GRU_GSEG_STRIDE;
484 cb = gseg + GRU_CB_BASE;
485 cbe = grubase + GRU_CBE_BASE;
486 length = hweight64(dsrmap) * GRU_DSR_AU_BYTES;
487 gru_prefetch_context(gseg, cb, cbe, cbrmap, length);
488
489 for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
490 if (data_valid) {
491 save += gru_copy_handle(cb, save);
492 save += gru_copy_handle(cbe + i * GRU_HANDLE_STRIDE,
493 save);
494 } else {
495 memset(cb, 0, GRU_CACHE_LINE_BYTES);
496 memset(cbe + i * GRU_HANDLE_STRIDE, 0,
497 GRU_CACHE_LINE_BYTES);
498 }
499 /* Flush CBE to hide race in context restart */
500 mb();
501 gru_flush_cache(cbe + i * GRU_HANDLE_STRIDE);
502 cb += GRU_HANDLE_STRIDE;
503 }
504
505 if (data_valid)
506 memcpy(gseg + GRU_DS_BASE, save, length);
507 else
508 memset(gseg + GRU_DS_BASE, 0, length);
509 }
510
gru_unload_context_data(void * save,void * grubase,int ctxnum,unsigned long cbrmap,unsigned long dsrmap)511 static void gru_unload_context_data(void *save, void *grubase, int ctxnum,
512 unsigned long cbrmap, unsigned long dsrmap)
513 {
514 void *gseg, *cb, *cbe;
515 unsigned long length;
516 int i, scr;
517
518 gseg = grubase + ctxnum * GRU_GSEG_STRIDE;
519 cb = gseg + GRU_CB_BASE;
520 cbe = grubase + GRU_CBE_BASE;
521 length = hweight64(dsrmap) * GRU_DSR_AU_BYTES;
522
523 /* CBEs may not be coherent. Flush them from cache */
524 for_each_cbr_in_allocation_map(i, &cbrmap, scr)
525 gru_flush_cache(cbe + i * GRU_HANDLE_STRIDE);
526 mb(); /* Let the CL flush complete */
527
528 gru_prefetch_context(gseg, cb, cbe, cbrmap, length);
529
530 for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
531 save += gru_copy_handle(save, cb);
532 save += gru_copy_handle(save, cbe + i * GRU_HANDLE_STRIDE);
533 cb += GRU_HANDLE_STRIDE;
534 }
535 memcpy(save, gseg + GRU_DS_BASE, length);
536 }
537
gru_unload_context(struct gru_thread_state * gts,int savestate)538 void gru_unload_context(struct gru_thread_state *gts, int savestate)
539 {
540 struct gru_state *gru = gts->ts_gru;
541 struct gru_context_configuration_handle *cch;
542 int ctxnum = gts->ts_ctxnum;
543
544 if (!is_kernel_context(gts))
545 zap_vma_ptes(gts->ts_vma, UGRUADDR(gts), GRU_GSEG_PAGESIZE);
546 cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
547
548 gru_dbg(grudev, "gts %p, cbrmap 0x%lx, dsrmap 0x%lx\n",
549 gts, gts->ts_cbr_map, gts->ts_dsr_map);
550 lock_cch_handle(cch);
551 if (cch_interrupt_sync(cch))
552 BUG();
553
554 if (!is_kernel_context(gts))
555 gru_unload_mm_tracker(gru, gts);
556 if (savestate) {
557 gru_unload_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr,
558 ctxnum, gts->ts_cbr_map,
559 gts->ts_dsr_map);
560 gts->ts_data_valid = 1;
561 }
562
563 if (cch_deallocate(cch))
564 BUG();
565 unlock_cch_handle(cch);
566
567 gru_free_gru_context(gts);
568 }
569
570 /*
571 * Load a GRU context by copying it from the thread data structure in memory
572 * to the GRU.
573 */
gru_load_context(struct gru_thread_state * gts)574 void gru_load_context(struct gru_thread_state *gts)
575 {
576 struct gru_state *gru = gts->ts_gru;
577 struct gru_context_configuration_handle *cch;
578 int i, err, asid, ctxnum = gts->ts_ctxnum;
579
580 cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
581 lock_cch_handle(cch);
582 cch->tfm_fault_bit_enable =
583 (gts->ts_user_options == GRU_OPT_MISS_FMM_POLL
584 || gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
585 cch->tlb_int_enable = (gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
586 if (cch->tlb_int_enable) {
587 gts->ts_tlb_int_select = gru_cpu_fault_map_id();
588 cch->tlb_int_select = gts->ts_tlb_int_select;
589 }
590 if (gts->ts_cch_req_slice >= 0) {
591 cch->req_slice_set_enable = 1;
592 cch->req_slice = gts->ts_cch_req_slice;
593 } else {
594 cch->req_slice_set_enable =0;
595 }
596 cch->tfm_done_bit_enable = 0;
597 cch->dsr_allocation_map = gts->ts_dsr_map;
598 cch->cbr_allocation_map = gts->ts_cbr_map;
599
600 if (is_kernel_context(gts)) {
601 cch->unmap_enable = 1;
602 cch->tfm_done_bit_enable = 1;
603 cch->cb_int_enable = 1;
604 cch->tlb_int_select = 0; /* For now, ints go to cpu 0 */
605 } else {
606 cch->unmap_enable = 0;
607 cch->tfm_done_bit_enable = 0;
608 cch->cb_int_enable = 0;
609 asid = gru_load_mm_tracker(gru, gts);
610 for (i = 0; i < 8; i++) {
611 cch->asid[i] = asid + i;
612 cch->sizeavail[i] = gts->ts_sizeavail;
613 }
614 }
615
616 err = cch_allocate(cch);
617 if (err) {
618 gru_dbg(grudev,
619 "err %d: cch %p, gts %p, cbr 0x%lx, dsr 0x%lx\n",
620 err, cch, gts, gts->ts_cbr_map, gts->ts_dsr_map);
621 BUG();
622 }
623
624 gru_load_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr, ctxnum,
625 gts->ts_cbr_map, gts->ts_dsr_map, gts->ts_data_valid);
626
627 if (cch_start(cch))
628 BUG();
629 unlock_cch_handle(cch);
630
631 gru_dbg(grudev, "gid %d, gts %p, cbrmap 0x%lx, dsrmap 0x%lx, tie %d, tis %d\n",
632 gts->ts_gru->gs_gid, gts, gts->ts_cbr_map, gts->ts_dsr_map,
633 (gts->ts_user_options == GRU_OPT_MISS_FMM_INTR), gts->ts_tlb_int_select);
634 }
635
636 /*
637 * Update fields in an active CCH:
638 * - retarget interrupts on local blade
639 * - update sizeavail mask
640 */
gru_update_cch(struct gru_thread_state * gts)641 int gru_update_cch(struct gru_thread_state *gts)
642 {
643 struct gru_context_configuration_handle *cch;
644 struct gru_state *gru = gts->ts_gru;
645 int i, ctxnum = gts->ts_ctxnum, ret = 0;
646
647 cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
648
649 lock_cch_handle(cch);
650 if (cch->state == CCHSTATE_ACTIVE) {
651 if (gru->gs_gts[gts->ts_ctxnum] != gts)
652 goto exit;
653 if (cch_interrupt(cch))
654 BUG();
655 for (i = 0; i < 8; i++)
656 cch->sizeavail[i] = gts->ts_sizeavail;
657 gts->ts_tlb_int_select = gru_cpu_fault_map_id();
658 cch->tlb_int_select = gru_cpu_fault_map_id();
659 cch->tfm_fault_bit_enable =
660 (gts->ts_user_options == GRU_OPT_MISS_FMM_POLL
661 || gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
662 if (cch_start(cch))
663 BUG();
664 ret = 1;
665 }
666 exit:
667 unlock_cch_handle(cch);
668 return ret;
669 }
670
671 /*
672 * Update CCH tlb interrupt select. Required when all the following is true:
673 * - task's GRU context is loaded into a GRU
674 * - task is using interrupt notification for TLB faults
675 * - task has migrated to a different cpu on the same blade where
676 * it was previously running.
677 */
gru_retarget_intr(struct gru_thread_state * gts)678 static int gru_retarget_intr(struct gru_thread_state *gts)
679 {
680 if (gts->ts_tlb_int_select < 0
681 || gts->ts_tlb_int_select == gru_cpu_fault_map_id())
682 return 0;
683
684 gru_dbg(grudev, "retarget from %d to %d\n", gts->ts_tlb_int_select,
685 gru_cpu_fault_map_id());
686 return gru_update_cch(gts);
687 }
688
689 /*
690 * Check if a GRU context is allowed to use a specific chiplet. By default
691 * a context is assigned to any blade-local chiplet. However, users can
692 * override this.
693 * Returns 1 if assignment allowed, 0 otherwise
694 */
gru_check_chiplet_assignment(struct gru_state * gru,struct gru_thread_state * gts)695 static int gru_check_chiplet_assignment(struct gru_state *gru,
696 struct gru_thread_state *gts)
697 {
698 int blade_id;
699 int chiplet_id;
700
701 blade_id = gts->ts_user_blade_id;
702 if (blade_id < 0)
703 blade_id = uv_numa_blade_id();
704
705 chiplet_id = gts->ts_user_chiplet_id;
706 return gru->gs_blade_id == blade_id &&
707 (chiplet_id < 0 || chiplet_id == gru->gs_chiplet_id);
708 }
709
710 /*
711 * Unload the gru context if it is not assigned to the correct blade or
712 * chiplet. Misassignment can occur if the process migrates to a different
713 * blade or if the user changes the selected blade/chiplet.
714 */
gru_check_context_placement(struct gru_thread_state * gts)715 int gru_check_context_placement(struct gru_thread_state *gts)
716 {
717 struct gru_state *gru;
718 int ret = 0;
719
720 /*
721 * If the current task is the context owner, verify that the
722 * context is correctly placed. This test is skipped for non-owner
723 * references. Pthread apps use non-owner references to the CBRs.
724 */
725 gru = gts->ts_gru;
726 /*
727 * If gru or gts->ts_tgid_owner isn't initialized properly, return
728 * success to indicate that the caller does not need to unload the
729 * gru context.The caller is responsible for their inspection and
730 * reinitialization if needed.
731 */
732 if (!gru || gts->ts_tgid_owner != current->tgid)
733 return ret;
734
735 if (!gru_check_chiplet_assignment(gru, gts)) {
736 STAT(check_context_unload);
737 ret = -EINVAL;
738 } else if (gru_retarget_intr(gts)) {
739 STAT(check_context_retarget_intr);
740 }
741
742 return ret;
743 }
744
745
746 /*
747 * Insufficient GRU resources available on the local blade. Steal a context from
748 * a process. This is a hack until a _real_ resource scheduler is written....
749 */
750 #define next_ctxnum(n) ((n) < GRU_NUM_CCH - 2 ? (n) + 1 : 0)
751 #define next_gru(b, g) (((g) < &(b)->bs_grus[GRU_CHIPLETS_PER_BLADE - 1]) ? \
752 ((g)+1) : &(b)->bs_grus[0])
753
is_gts_stealable(struct gru_thread_state * gts,struct gru_blade_state * bs)754 static int is_gts_stealable(struct gru_thread_state *gts,
755 struct gru_blade_state *bs)
756 {
757 if (is_kernel_context(gts))
758 return down_write_trylock(&bs->bs_kgts_sema);
759 else
760 return mutex_trylock(>s->ts_ctxlock);
761 }
762
gts_stolen(struct gru_thread_state * gts,struct gru_blade_state * bs)763 static void gts_stolen(struct gru_thread_state *gts,
764 struct gru_blade_state *bs)
765 {
766 if (is_kernel_context(gts)) {
767 up_write(&bs->bs_kgts_sema);
768 STAT(steal_kernel_context);
769 } else {
770 mutex_unlock(>s->ts_ctxlock);
771 STAT(steal_user_context);
772 }
773 }
774
gru_steal_context(struct gru_thread_state * gts)775 void gru_steal_context(struct gru_thread_state *gts)
776 {
777 struct gru_blade_state *blade;
778 struct gru_state *gru, *gru0;
779 struct gru_thread_state *ngts = NULL;
780 int ctxnum, ctxnum0, flag = 0, cbr, dsr;
781 int blade_id;
782
783 blade_id = gts->ts_user_blade_id;
784 if (blade_id < 0)
785 blade_id = uv_numa_blade_id();
786 cbr = gts->ts_cbr_au_count;
787 dsr = gts->ts_dsr_au_count;
788
789 blade = gru_base[blade_id];
790 spin_lock(&blade->bs_lock);
791
792 ctxnum = next_ctxnum(blade->bs_lru_ctxnum);
793 gru = blade->bs_lru_gru;
794 if (ctxnum == 0)
795 gru = next_gru(blade, gru);
796 blade->bs_lru_gru = gru;
797 blade->bs_lru_ctxnum = ctxnum;
798 ctxnum0 = ctxnum;
799 gru0 = gru;
800 while (1) {
801 if (gru_check_chiplet_assignment(gru, gts)) {
802 if (check_gru_resources(gru, cbr, dsr, GRU_NUM_CCH))
803 break;
804 spin_lock(&gru->gs_lock);
805 for (; ctxnum < GRU_NUM_CCH; ctxnum++) {
806 if (flag && gru == gru0 && ctxnum == ctxnum0)
807 break;
808 ngts = gru->gs_gts[ctxnum];
809 /*
810 * We are grabbing locks out of order, so trylock is
811 * needed. GTSs are usually not locked, so the odds of
812 * success are high. If trylock fails, try to steal a
813 * different GSEG.
814 */
815 if (ngts && is_gts_stealable(ngts, blade))
816 break;
817 ngts = NULL;
818 }
819 spin_unlock(&gru->gs_lock);
820 if (ngts || (flag && gru == gru0 && ctxnum == ctxnum0))
821 break;
822 }
823 if (flag && gru == gru0)
824 break;
825 flag = 1;
826 ctxnum = 0;
827 gru = next_gru(blade, gru);
828 }
829 spin_unlock(&blade->bs_lock);
830
831 if (ngts) {
832 gts->ustats.context_stolen++;
833 ngts->ts_steal_jiffies = jiffies;
834 gru_unload_context(ngts, is_kernel_context(ngts) ? 0 : 1);
835 gts_stolen(ngts, blade);
836 } else {
837 STAT(steal_context_failed);
838 }
839 gru_dbg(grudev,
840 "stole gid %d, ctxnum %d from gts %p. Need cb %d, ds %d;"
841 " avail cb %ld, ds %ld\n",
842 gru->gs_gid, ctxnum, ngts, cbr, dsr, hweight64(gru->gs_cbr_map),
843 hweight64(gru->gs_dsr_map));
844 }
845
846 /*
847 * Assign a gru context.
848 */
gru_assign_context_number(struct gru_state * gru)849 static int gru_assign_context_number(struct gru_state *gru)
850 {
851 int ctxnum;
852
853 ctxnum = find_first_zero_bit(&gru->gs_context_map, GRU_NUM_CCH);
854 __set_bit(ctxnum, &gru->gs_context_map);
855 return ctxnum;
856 }
857
858 /*
859 * Scan the GRUs on the local blade & assign a GRU context.
860 */
gru_assign_gru_context(struct gru_thread_state * gts)861 struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts)
862 {
863 struct gru_state *gru, *grux;
864 int i, max_active_contexts;
865 int blade_id = gts->ts_user_blade_id;
866
867 if (blade_id < 0)
868 blade_id = uv_numa_blade_id();
869 again:
870 gru = NULL;
871 max_active_contexts = GRU_NUM_CCH;
872 for_each_gru_on_blade(grux, blade_id, i) {
873 if (!gru_check_chiplet_assignment(grux, gts))
874 continue;
875 if (check_gru_resources(grux, gts->ts_cbr_au_count,
876 gts->ts_dsr_au_count,
877 max_active_contexts)) {
878 gru = grux;
879 max_active_contexts = grux->gs_active_contexts;
880 if (max_active_contexts == 0)
881 break;
882 }
883 }
884
885 if (gru) {
886 spin_lock(&gru->gs_lock);
887 if (!check_gru_resources(gru, gts->ts_cbr_au_count,
888 gts->ts_dsr_au_count, GRU_NUM_CCH)) {
889 spin_unlock(&gru->gs_lock);
890 goto again;
891 }
892 reserve_gru_resources(gru, gts);
893 gts->ts_gru = gru;
894 gts->ts_blade = gru->gs_blade_id;
895 gts->ts_ctxnum = gru_assign_context_number(gru);
896 refcount_inc(>s->ts_refcnt);
897 gru->gs_gts[gts->ts_ctxnum] = gts;
898 spin_unlock(&gru->gs_lock);
899
900 STAT(assign_context);
901 gru_dbg(grudev,
902 "gseg %p, gts %p, gid %d, ctx %d, cbr %d, dsr %d\n",
903 gseg_virtual_address(gts->ts_gru, gts->ts_ctxnum), gts,
904 gts->ts_gru->gs_gid, gts->ts_ctxnum,
905 gts->ts_cbr_au_count, gts->ts_dsr_au_count);
906 } else {
907 gru_dbg(grudev, "failed to allocate a GTS %s\n", "");
908 STAT(assign_context_failed);
909 }
910
911 return gru;
912 }
913
914 /*
915 * gru_nopage
916 *
917 * Map the user's GRU segment
918 *
919 * Note: gru segments alway mmaped on GRU_GSEG_PAGESIZE boundaries.
920 */
gru_fault(struct vm_fault * vmf)921 vm_fault_t gru_fault(struct vm_fault *vmf)
922 {
923 struct vm_area_struct *vma = vmf->vma;
924 struct gru_thread_state *gts;
925 unsigned long paddr, vaddr;
926 unsigned long expires;
927
928 vaddr = vmf->address;
929 gru_dbg(grudev, "vma %p, vaddr 0x%lx (0x%lx)\n",
930 vma, vaddr, GSEG_BASE(vaddr));
931 STAT(nopfn);
932
933 /* The following check ensures vaddr is a valid address in the VMA */
934 gts = gru_find_thread_state(vma, TSID(vaddr, vma));
935 if (!gts)
936 return VM_FAULT_SIGBUS;
937
938 again:
939 mutex_lock(>s->ts_ctxlock);
940
941 if (gru_check_context_placement(gts)) {
942 mutex_unlock(>s->ts_ctxlock);
943 gru_unload_context(gts, 1);
944 return VM_FAULT_NOPAGE;
945 }
946
947 if (!gts->ts_gru) {
948 STAT(load_user_context);
949 if (!gru_assign_gru_context(gts)) {
950 mutex_unlock(>s->ts_ctxlock);
951 set_current_state(TASK_INTERRUPTIBLE);
952 schedule_timeout(GRU_ASSIGN_DELAY); /* true hack ZZZ */
953 expires = gts->ts_steal_jiffies + GRU_STEAL_DELAY;
954 if (time_before(expires, jiffies))
955 gru_steal_context(gts);
956 goto again;
957 }
958 gru_load_context(gts);
959 paddr = gseg_physical_address(gts->ts_gru, gts->ts_ctxnum);
960 remap_pfn_range(vma, vaddr & ~(GRU_GSEG_PAGESIZE - 1),
961 paddr >> PAGE_SHIFT, GRU_GSEG_PAGESIZE,
962 vma->vm_page_prot);
963 }
964
965 mutex_unlock(>s->ts_ctxlock);
966
967 return VM_FAULT_NOPAGE;
968 }
969
970