1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_ringbuffer.h"
20 #include "msm_gem.h"
21
22 struct msm_gem_submit;
23 struct msm_gpu_perfcntr;
24 struct msm_gpu_state;
25 struct msm_file_private;
26
27 struct msm_gpu_config {
28 const char *ioname;
29 unsigned int nr_rings;
30 };
31
32 /* So far, with hardware that I've seen to date, we can have:
33 * + zero, one, or two z180 2d cores
34 * + a3xx or a2xx 3d core, which share a common CP (the firmware
35 * for the CP seems to implement some different PM4 packet types
36 * but the basics of cmdstream submission are the same)
37 *
38 * Which means that the eventual complete "class" hierarchy, once
39 * support for all past and present hw is in place, becomes:
40 * + msm_gpu
41 * + adreno_gpu
42 * + a3xx_gpu
43 * + a2xx_gpu
44 * + z180_gpu
45 */
46 struct msm_gpu_funcs {
47 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
48 uint32_t param, uint64_t *value, uint32_t *len);
49 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
50 uint32_t param, uint64_t value, uint32_t len);
51 int (*hw_init)(struct msm_gpu *gpu);
52
53 /**
54 * @ucode_load: Optional hook to upload fw to GEM objs
55 */
56 int (*ucode_load)(struct msm_gpu *gpu);
57
58 int (*pm_suspend)(struct msm_gpu *gpu);
59 int (*pm_resume)(struct msm_gpu *gpu);
60 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
61 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
62 irqreturn_t (*irq)(struct msm_gpu *irq);
63 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
64 void (*recover)(struct msm_gpu *gpu);
65 void (*destroy)(struct msm_gpu *gpu);
66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
67 /* show GPU status in debugfs: */
68 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
69 struct drm_printer *p);
70 /* for generation specific debugfs: */
71 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
72 #endif
73 /* note: gpu_busy() can assume that we have been pm_resumed */
74 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
75 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
76 int (*gpu_state_put)(struct msm_gpu_state *state);
77 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
78 /* note: gpu_set_freq() can assume that we have been pm_resumed */
79 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
80 bool suspended);
81 struct msm_gem_address_space *(*create_address_space)
82 (struct msm_gpu *gpu, struct platform_device *pdev);
83 struct msm_gem_address_space *(*create_private_address_space)
84 (struct msm_gpu *gpu);
85 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86
87 /**
88 * progress: Has the GPU made progress?
89 *
90 * Return true if GPU position in cmdstream has advanced (or changed)
91 * since the last call. To avoid false negatives, this should account
92 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93 */
94 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95 };
96
97 /* Additional state for iommu faults: */
98 struct msm_gpu_fault_info {
99 u64 ttbr0;
100 unsigned long iova;
101 int flags;
102 const char *type;
103 const char *block;
104
105 /* Information about what we think/expect is the current SMMU state,
106 * for example expected_ttbr0 should match smmu_info.ttbr0 which
107 * was read back from SMMU registers.
108 */
109 phys_addr_t pgtbl_ttbr0;
110 u64 ptes[4];
111 int asid;
112 };
113
114 /**
115 * struct msm_gpu_devfreq - devfreq related state
116 */
117 struct msm_gpu_devfreq {
118 /** devfreq: devfreq instance */
119 struct devfreq *devfreq;
120
121 /** lock: lock for "suspended", "busy_cycles", and "time" */
122 struct mutex lock;
123
124 /**
125 * idle_freq:
126 *
127 * Shadow frequency used while the GPU is idle. From the PoV of
128 * the devfreq governor, we are continuing to sample busyness and
129 * adjust frequency while the GPU is idle, but we use this shadow
130 * value as the GPU is actually clamped to minimum frequency while
131 * it is inactive.
132 */
133 unsigned long idle_freq;
134
135 /**
136 * boost_constraint:
137 *
138 * A PM QoS constraint to boost min freq for a period of time
139 * until the boost expires.
140 */
141 struct dev_pm_qos_request boost_freq;
142
143 /**
144 * busy_cycles: Last busy counter value, for calculating elapsed busy
145 * cycles since last sampling period.
146 */
147 u64 busy_cycles;
148
149 /** time: Time of last sampling period. */
150 ktime_t time;
151
152 /** idle_time: Time of last transition to idle: */
153 ktime_t idle_time;
154
155 /**
156 * idle_work:
157 *
158 * Used to delay clamping to idle freq on active->idle transition.
159 */
160 struct msm_hrtimer_work idle_work;
161
162 /**
163 * boost_work:
164 *
165 * Used to reset the boost_constraint after the boost period has
166 * elapsed
167 */
168 struct msm_hrtimer_work boost_work;
169
170 /** suspended: tracks if we're suspended */
171 bool suspended;
172 };
173
174 struct msm_gpu {
175 const char *name;
176 struct drm_device *dev;
177 struct platform_device *pdev;
178 const struct msm_gpu_funcs *funcs;
179
180 struct adreno_smmu_priv adreno_smmu;
181
182 /* performance counters (hw & sw): */
183 spinlock_t perf_lock;
184 bool perfcntr_active;
185 struct {
186 bool active;
187 ktime_t time;
188 } last_sample;
189 uint32_t totaltime, activetime; /* sw counters */
190 uint32_t last_cntrs[5]; /* hw counters */
191 const struct msm_gpu_perfcntr *perfcntrs;
192 uint32_t num_perfcntrs;
193
194 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
195 int nr_rings;
196
197 /**
198 * sysprof_active:
199 *
200 * The count of contexts that have enabled system profiling.
201 */
202 refcount_t sysprof_active;
203
204 /**
205 * lock:
206 *
207 * General lock for serializing all the gpu things.
208 *
209 * TODO move to per-ring locking where feasible (ie. submit/retire
210 * path, etc)
211 */
212 struct mutex lock;
213
214 /**
215 * active_submits:
216 *
217 * The number of submitted but not yet retired submits, used to
218 * determine transitions between active and idle.
219 *
220 * Protected by active_lock
221 */
222 int active_submits;
223
224 /** lock: protects active_submits and idle/active transitions */
225 struct mutex active_lock;
226
227 /* does gpu need hw_init? */
228 bool needs_hw_init;
229
230 /**
231 * global_faults: number of GPU hangs not attributed to a particular
232 * address space
233 */
234 int global_faults;
235
236 void __iomem *mmio;
237 int irq;
238
239 struct msm_gem_address_space *aspace;
240
241 /* Power Control: */
242 struct regulator *gpu_reg, *gpu_cx;
243 struct clk_bulk_data *grp_clks;
244 int nr_clocks;
245 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
246 uint32_t fast_rate;
247
248 /* Hang and Inactivity Detection:
249 */
250 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
251
252 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
253 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
254 struct timer_list hangcheck_timer;
255
256 /* work for handling GPU recovery: */
257 struct kthread_work recover_work;
258
259 /** retire_event: notified when submits are retired: */
260 wait_queue_head_t retire_event;
261
262 /* work for handling active-list retiring: */
263 struct kthread_work retire_work;
264
265 /* worker for retire/recover: */
266 struct kthread_worker *worker;
267
268 struct drm_gem_object *memptrs_bo;
269
270 struct msm_gpu_devfreq devfreq;
271
272 uint32_t suspend_count;
273
274 struct msm_gpu_state *crashstate;
275
276 /* True if the hardware supports expanded apriv (a650 and newer) */
277 bool hw_apriv;
278
279 /**
280 * @allow_relocs: allow relocs in SUBMIT ioctl
281 *
282 * Mesa won't use relocs for driver version 1.4.0 and later. This
283 * switch-over happened early enough in mesa a6xx bringup that we
284 * can disallow relocs for a6xx and newer.
285 */
286 bool allow_relocs;
287
288 struct thermal_cooling_device *cooling;
289 };
290
dev_to_gpu(struct device * dev)291 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
292 {
293 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
294
295 if (!adreno_smmu)
296 return NULL;
297
298 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
299 }
300
301 /* It turns out that all targets use the same ringbuffer size */
302 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
303 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
304
305 #define MSM_GPU_RB_CNTL_DEFAULT \
306 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
307 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
308
msm_gpu_active(struct msm_gpu * gpu)309 static inline bool msm_gpu_active(struct msm_gpu *gpu)
310 {
311 int i;
312
313 for (i = 0; i < gpu->nr_rings; i++) {
314 struct msm_ringbuffer *ring = gpu->rb[i];
315
316 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
317 return true;
318 }
319
320 return false;
321 }
322
323 /* Perf-Counters:
324 * The select_reg and select_val are just there for the benefit of the child
325 * class that actually enables the perf counter.. but msm_gpu base class
326 * will handle sampling/displaying the counters.
327 */
328
329 struct msm_gpu_perfcntr {
330 uint32_t select_reg;
331 uint32_t sample_reg;
332 uint32_t select_val;
333 const char *name;
334 };
335
336 /*
337 * The number of priority levels provided by drm gpu scheduler. The
338 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
339 * cases, so we don't use it (no need for kernel generated jobs).
340 */
341 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
342
343 /**
344 * struct msm_file_private - per-drm_file context
345 *
346 * @queuelock: synchronizes access to submitqueues list
347 * @submitqueues: list of &msm_gpu_submitqueue created by userspace
348 * @queueid: counter incremented each time a submitqueue is created,
349 * used to assign &msm_gpu_submitqueue.id
350 * @aspace: the per-process GPU address-space
351 * @ref: reference count
352 * @seqno: unique per process seqno
353 */
354 struct msm_file_private {
355 rwlock_t queuelock;
356 struct list_head submitqueues;
357 int queueid;
358 struct msm_gem_address_space *aspace;
359 struct kref ref;
360 int seqno;
361
362 /**
363 * sysprof:
364 *
365 * The value of MSM_PARAM_SYSPROF set by userspace. This is
366 * intended to be used by system profiling tools like Mesa's
367 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
368 *
369 * Setting a value of 1 will preserve performance counters across
370 * context switches. Setting a value of 2 will in addition
371 * suppress suspend. (Performance counters lose state across
372 * power collapse, which is undesirable for profiling in some
373 * cases.)
374 *
375 * The value automatically reverts to zero when the drm device
376 * file is closed.
377 */
378 int sysprof;
379
380 /**
381 * comm: Overridden task comm, see MSM_PARAM_COMM
382 *
383 * Accessed under msm_gpu::lock
384 */
385 char *comm;
386
387 /**
388 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
389 *
390 * Accessed under msm_gpu::lock
391 */
392 char *cmdline;
393
394 /**
395 * elapsed:
396 *
397 * The total (cumulative) elapsed time GPU was busy with rendering
398 * from this context in ns.
399 */
400 uint64_t elapsed_ns;
401
402 /**
403 * cycles:
404 *
405 * The total (cumulative) GPU cycles elapsed attributed to this
406 * context.
407 */
408 uint64_t cycles;
409
410 /**
411 * entities:
412 *
413 * Table of per-priority-level sched entities used by submitqueues
414 * associated with this &drm_file. Because some userspace apps
415 * make assumptions about rendering from multiple gl contexts
416 * (of the same priority) within the process happening in FIFO
417 * order without requiring any fencing beyond MakeCurrent(), we
418 * create at most one &drm_sched_entity per-process per-priority-
419 * level.
420 */
421 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
422
423 /**
424 * ctx_mem:
425 *
426 * Total amount of memory of GEM buffers with handles attached for
427 * this context.
428 */
429 atomic64_t ctx_mem;
430 };
431
432 /**
433 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
434 *
435 * @gpu: the gpu instance
436 * @prio: the userspace priority level
437 * @ring_nr: [out] the ringbuffer the userspace priority maps to
438 * @sched_prio: [out] the gpu scheduler priority level which the userspace
439 * priority maps to
440 *
441 * With drm/scheduler providing it's own level of prioritization, our total
442 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
443 * Each ring is associated with it's own scheduler instance. However, our
444 * UABI is that lower numerical values are higher priority. So mapping the
445 * single userspace priority level into ring_nr and sched_prio takes some
446 * care. The userspace provided priority (when a submitqueue is created)
447 * is mapped to ring nr and scheduler priority as such:
448 *
449 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES
450 * sched_prio = NR_SCHED_PRIORITIES -
451 * (userspace_prio % NR_SCHED_PRIORITIES) - 1
452 *
453 * This allows generations without preemption (nr_rings==1) to have some
454 * amount of prioritization, and provides more priority levels for gens
455 * that do have preemption.
456 */
msm_gpu_convert_priority(struct msm_gpu * gpu,int prio,unsigned * ring_nr,enum drm_sched_priority * sched_prio)457 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
458 unsigned *ring_nr, enum drm_sched_priority *sched_prio)
459 {
460 unsigned rn, sp;
461
462 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
463
464 /* invert sched priority to map to higher-numeric-is-higher-
465 * priority convention
466 */
467 sp = NR_SCHED_PRIORITIES - sp - 1;
468
469 if (rn >= gpu->nr_rings)
470 return -EINVAL;
471
472 *ring_nr = rn;
473 *sched_prio = sp;
474
475 return 0;
476 }
477
478 /**
479 * struct msm_gpu_submitqueues - Userspace created context.
480 *
481 * A submitqueue is associated with a gl context or vk queue (or equiv)
482 * in userspace.
483 *
484 * @id: userspace id for the submitqueue, unique within the drm_file
485 * @flags: userspace flags for the submitqueue, specified at creation
486 * (currently unusued)
487 * @ring_nr: the ringbuffer used by this submitqueue, which is determined
488 * by the submitqueue's priority
489 * @faults: the number of GPU hangs associated with this submitqueue
490 * @last_fence: the sequence number of the last allocated fence (for error
491 * checking)
492 * @ctx: the per-drm_file context associated with the submitqueue (ie.
493 * which set of pgtables do submits jobs associated with the
494 * submitqueue use)
495 * @node: node in the context's list of submitqueues
496 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
497 * seqno, protected by submitqueue lock
498 * @idr_lock: for serializing access to fence_idr
499 * @lock: submitqueue lock for serializing submits on a queue
500 * @ref: reference count
501 * @entity: the submit job-queue
502 */
503 struct msm_gpu_submitqueue {
504 int id;
505 u32 flags;
506 u32 ring_nr;
507 int faults;
508 uint32_t last_fence;
509 struct msm_file_private *ctx;
510 struct list_head node;
511 struct idr fence_idr;
512 struct spinlock idr_lock;
513 struct mutex lock;
514 struct kref ref;
515 struct drm_sched_entity *entity;
516 };
517
518 struct msm_gpu_state_bo {
519 u64 iova;
520 size_t size;
521 u32 flags;
522 void *data;
523 bool encoded;
524 char name[32];
525 };
526
527 struct msm_gpu_state {
528 struct kref ref;
529 struct timespec64 time;
530
531 struct {
532 u64 iova;
533 u32 fence;
534 u32 seqno;
535 u32 rptr;
536 u32 wptr;
537 void *data;
538 int data_size;
539 bool encoded;
540 } ring[MSM_GPU_MAX_RINGS];
541
542 int nr_registers;
543 u32 *registers;
544
545 u32 rbbm_status;
546
547 char *comm;
548 char *cmd;
549
550 struct msm_gpu_fault_info fault_info;
551
552 int nr_bos;
553 struct msm_gpu_state_bo *bos;
554 };
555
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)556 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
557 {
558 writel(data, gpu->mmio + (reg << 2));
559 }
560
gpu_read(struct msm_gpu * gpu,u32 reg)561 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
562 {
563 return readl(gpu->mmio + (reg << 2));
564 }
565
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)566 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
567 {
568 msm_rmw(gpu->mmio + (reg << 2), mask, or);
569 }
570
gpu_read64(struct msm_gpu * gpu,u32 reg)571 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
572 {
573 u64 val;
574
575 /*
576 * Why not a readq here? Two reasons: 1) many of the LO registers are
577 * not quad word aligned and 2) the GPU hardware designers have a bit
578 * of a history of putting registers where they fit, especially in
579 * spins. The longer a GPU family goes the higher the chance that
580 * we'll get burned. We could do a series of validity checks if we
581 * wanted to, but really is a readq() that much better? Nah.
582 */
583
584 /*
585 * For some lo/hi registers (like perfcounters), the hi value is latched
586 * when the lo is read, so make sure to read the lo first to trigger
587 * that
588 */
589 val = (u64) readl(gpu->mmio + (reg << 2));
590 val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
591
592 return val;
593 }
594
gpu_write64(struct msm_gpu * gpu,u32 reg,u64 val)595 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
596 {
597 /* Why not a writeq here? Read the screed above */
598 writel(lower_32_bits(val), gpu->mmio + (reg << 2));
599 writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
600 }
601
602 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
603 int msm_gpu_pm_resume(struct msm_gpu *gpu);
604
605 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
606 struct drm_printer *p);
607
608 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
609 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
610 u32 id);
611 int msm_submitqueue_create(struct drm_device *drm,
612 struct msm_file_private *ctx,
613 u32 prio, u32 flags, u32 *id);
614 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
615 struct drm_msm_submitqueue_query *args);
616 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
617 void msm_submitqueue_close(struct msm_file_private *ctx);
618
619 void msm_submitqueue_destroy(struct kref *kref);
620
621 int msm_file_private_set_sysprof(struct msm_file_private *ctx,
622 struct msm_gpu *gpu, int sysprof);
623 void __msm_file_private_destroy(struct kref *kref);
624
msm_file_private_put(struct msm_file_private * ctx)625 static inline void msm_file_private_put(struct msm_file_private *ctx)
626 {
627 kref_put(&ctx->ref, __msm_file_private_destroy);
628 }
629
msm_file_private_get(struct msm_file_private * ctx)630 static inline struct msm_file_private *msm_file_private_get(
631 struct msm_file_private *ctx)
632 {
633 kref_get(&ctx->ref);
634 return ctx;
635 }
636
637 void msm_devfreq_init(struct msm_gpu *gpu);
638 void msm_devfreq_cleanup(struct msm_gpu *gpu);
639 void msm_devfreq_resume(struct msm_gpu *gpu);
640 void msm_devfreq_suspend(struct msm_gpu *gpu);
641 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
642 void msm_devfreq_active(struct msm_gpu *gpu);
643 void msm_devfreq_idle(struct msm_gpu *gpu);
644
645 int msm_gpu_hw_init(struct msm_gpu *gpu);
646
647 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
648 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
649 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
650 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
651
652 void msm_gpu_retire(struct msm_gpu *gpu);
653 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
654
655 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
656 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
657 const char *name, struct msm_gpu_config *config);
658
659 struct msm_gem_address_space *
660 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
661
662 void msm_gpu_cleanup(struct msm_gpu *gpu);
663
664 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
665 bool adreno_has_gpu(struct device_node *node);
666 void __init adreno_register(void);
667 void __exit adreno_unregister(void);
668
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)669 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
670 {
671 if (queue)
672 kref_put(&queue->ref, msm_submitqueue_destroy);
673 }
674
msm_gpu_crashstate_get(struct msm_gpu * gpu)675 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
676 {
677 struct msm_gpu_state *state = NULL;
678
679 mutex_lock(&gpu->lock);
680
681 if (gpu->crashstate) {
682 kref_get(&gpu->crashstate->ref);
683 state = gpu->crashstate;
684 }
685
686 mutex_unlock(&gpu->lock);
687
688 return state;
689 }
690
msm_gpu_crashstate_put(struct msm_gpu * gpu)691 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
692 {
693 mutex_lock(&gpu->lock);
694
695 if (gpu->crashstate) {
696 if (gpu->funcs->gpu_state_put(gpu->crashstate))
697 gpu->crashstate = NULL;
698 }
699
700 mutex_unlock(&gpu->lock);
701 }
702
703 void msm_gpu_fault_crashstate_capture(struct msm_gpu *gpu, struct msm_gpu_fault_info *fault_info);
704
705 /*
706 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
707 * support expanded privileges
708 */
709 #define check_apriv(gpu, flags) \
710 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
711
712
713 #endif /* __MSM_GPU_H__ */
714