1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
4 *
5 * 2005-2010 (c) Aeroflex Gaisler AB
6 *
7 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
8 * available in the GRLIB VHDL IP core library.
9 *
10 * Full documentation of both cores can be found here:
11 * https://www.gaisler.com/products/grlib/grip.pdf
12 *
13 * The Gigabit version supports scatter/gather DMA, any alignment of
14 * buffers and checksum offloading.
15 *
16 * Contributors: Kristoffer Glembo
17 * Daniel Hellstrom
18 * Marko Isomaki
19 */
20
21 #include <linux/dma-mapping.h>
22 #include <linux/module.h>
23 #include <linux/uaccess.h>
24 #include <linux/interrupt.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/skbuff.h>
29 #include <linux/io.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/of.h>
33 #include <linux/of_net.h>
34 #include <linux/platform_device.h>
35 #include <linux/slab.h>
36 #include <asm/cacheflush.h>
37 #include <asm/byteorder.h>
38
39 #ifdef CONFIG_SPARC
40 #include <asm/idprom.h>
41 #endif
42
43 #include "greth.h"
44
45 #define GRETH_DEF_MSG_ENABLE \
46 (NETIF_MSG_DRV | \
47 NETIF_MSG_PROBE | \
48 NETIF_MSG_LINK | \
49 NETIF_MSG_IFDOWN | \
50 NETIF_MSG_IFUP | \
51 NETIF_MSG_RX_ERR | \
52 NETIF_MSG_TX_ERR)
53
54 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
55 module_param(greth_debug, int, 0);
56 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
57
58 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
59 static int macaddr[6];
60 module_param_array(macaddr, int, NULL, 0);
61 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
62
63 static int greth_edcl = 1;
64 module_param(greth_edcl, int, 0);
65 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
66
67 static int greth_open(struct net_device *dev);
68 static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
69 struct net_device *dev);
70 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
71 struct net_device *dev);
72 static int greth_rx(struct net_device *dev, int limit);
73 static int greth_rx_gbit(struct net_device *dev, int limit);
74 static void greth_clean_tx(struct net_device *dev);
75 static void greth_clean_tx_gbit(struct net_device *dev);
76 static irqreturn_t greth_interrupt(int irq, void *dev_id);
77 static int greth_close(struct net_device *dev);
78 static int greth_set_mac_add(struct net_device *dev, void *p);
79 static void greth_set_multicast_list(struct net_device *dev);
80
81 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
82 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
83 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
84 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
85
86 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
87 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
88 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
89
greth_print_rx_packet(void * addr,int len)90 static void greth_print_rx_packet(void *addr, int len)
91 {
92 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
93 addr, len, true);
94 }
95
greth_print_tx_packet(struct sk_buff * skb)96 static void greth_print_tx_packet(struct sk_buff *skb)
97 {
98 int i;
99 int length;
100
101 if (skb_shinfo(skb)->nr_frags == 0)
102 length = skb->len;
103 else
104 length = skb_headlen(skb);
105
106 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
107 skb->data, length, true);
108
109 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
110
111 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
112 skb_frag_address(&skb_shinfo(skb)->frags[i]),
113 skb_frag_size(&skb_shinfo(skb)->frags[i]), true);
114 }
115 }
116
greth_enable_tx(struct greth_private * greth)117 static inline void greth_enable_tx(struct greth_private *greth)
118 {
119 wmb();
120 GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
121 }
122
greth_enable_tx_and_irq(struct greth_private * greth)123 static inline void greth_enable_tx_and_irq(struct greth_private *greth)
124 {
125 wmb(); /* BDs must been written to memory before enabling TX */
126 GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI);
127 }
128
greth_disable_tx(struct greth_private * greth)129 static inline void greth_disable_tx(struct greth_private *greth)
130 {
131 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
132 }
133
greth_enable_rx(struct greth_private * greth)134 static inline void greth_enable_rx(struct greth_private *greth)
135 {
136 wmb();
137 GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
138 }
139
greth_disable_rx(struct greth_private * greth)140 static inline void greth_disable_rx(struct greth_private *greth)
141 {
142 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
143 }
144
greth_enable_irqs(struct greth_private * greth)145 static inline void greth_enable_irqs(struct greth_private *greth)
146 {
147 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
148 }
149
greth_disable_irqs(struct greth_private * greth)150 static inline void greth_disable_irqs(struct greth_private *greth)
151 {
152 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
153 }
154
greth_write_bd(u32 * bd,u32 val)155 static inline void greth_write_bd(u32 *bd, u32 val)
156 {
157 __raw_writel(cpu_to_be32(val), bd);
158 }
159
greth_read_bd(u32 * bd)160 static inline u32 greth_read_bd(u32 *bd)
161 {
162 return be32_to_cpu(__raw_readl(bd));
163 }
164
greth_clean_rings(struct greth_private * greth)165 static void greth_clean_rings(struct greth_private *greth)
166 {
167 int i;
168 struct greth_bd *rx_bdp = greth->rx_bd_base;
169 struct greth_bd *tx_bdp = greth->tx_bd_base;
170
171 if (greth->gbit_mac) {
172
173 /* Free and unmap RX buffers */
174 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
175 if (greth->rx_skbuff[i] != NULL) {
176 dev_kfree_skb(greth->rx_skbuff[i]);
177 dma_unmap_single(greth->dev,
178 greth_read_bd(&rx_bdp->addr),
179 MAX_FRAME_SIZE+NET_IP_ALIGN,
180 DMA_FROM_DEVICE);
181 }
182 }
183
184 /* TX buffers */
185 while (greth->tx_free < GRETH_TXBD_NUM) {
186
187 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
188 int nr_frags = skb_shinfo(skb)->nr_frags;
189 tx_bdp = greth->tx_bd_base + greth->tx_last;
190 greth->tx_last = NEXT_TX(greth->tx_last);
191
192 dma_unmap_single(greth->dev,
193 greth_read_bd(&tx_bdp->addr),
194 skb_headlen(skb),
195 DMA_TO_DEVICE);
196
197 for (i = 0; i < nr_frags; i++) {
198 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
199 tx_bdp = greth->tx_bd_base + greth->tx_last;
200
201 dma_unmap_page(greth->dev,
202 greth_read_bd(&tx_bdp->addr),
203 skb_frag_size(frag),
204 DMA_TO_DEVICE);
205
206 greth->tx_last = NEXT_TX(greth->tx_last);
207 }
208 greth->tx_free += nr_frags+1;
209 dev_kfree_skb(skb);
210 }
211
212
213 } else { /* 10/100 Mbps MAC */
214
215 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
216 kfree(greth->rx_bufs[i]);
217 dma_unmap_single(greth->dev,
218 greth_read_bd(&rx_bdp->addr),
219 MAX_FRAME_SIZE,
220 DMA_FROM_DEVICE);
221 }
222 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
223 kfree(greth->tx_bufs[i]);
224 dma_unmap_single(greth->dev,
225 greth_read_bd(&tx_bdp->addr),
226 MAX_FRAME_SIZE,
227 DMA_TO_DEVICE);
228 }
229 }
230 }
231
greth_init_rings(struct greth_private * greth)232 static int greth_init_rings(struct greth_private *greth)
233 {
234 struct sk_buff *skb;
235 struct greth_bd *rx_bd, *tx_bd;
236 u32 dma_addr;
237 int i;
238
239 rx_bd = greth->rx_bd_base;
240 tx_bd = greth->tx_bd_base;
241
242 /* Initialize descriptor rings and buffers */
243 if (greth->gbit_mac) {
244
245 for (i = 0; i < GRETH_RXBD_NUM; i++) {
246 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
247 if (skb == NULL) {
248 if (netif_msg_ifup(greth))
249 dev_err(greth->dev, "Error allocating DMA ring.\n");
250 goto cleanup;
251 }
252 skb_reserve(skb, NET_IP_ALIGN);
253 dma_addr = dma_map_single(greth->dev,
254 skb->data,
255 MAX_FRAME_SIZE+NET_IP_ALIGN,
256 DMA_FROM_DEVICE);
257
258 if (dma_mapping_error(greth->dev, dma_addr)) {
259 if (netif_msg_ifup(greth))
260 dev_err(greth->dev, "Could not create initial DMA mapping\n");
261 dev_kfree_skb(skb);
262 goto cleanup;
263 }
264 greth->rx_skbuff[i] = skb;
265 greth_write_bd(&rx_bd[i].addr, dma_addr);
266 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
267 }
268
269 } else {
270
271 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
272 for (i = 0; i < GRETH_RXBD_NUM; i++) {
273
274 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
275
276 if (greth->rx_bufs[i] == NULL) {
277 if (netif_msg_ifup(greth))
278 dev_err(greth->dev, "Error allocating DMA ring.\n");
279 goto cleanup;
280 }
281
282 dma_addr = dma_map_single(greth->dev,
283 greth->rx_bufs[i],
284 MAX_FRAME_SIZE,
285 DMA_FROM_DEVICE);
286
287 if (dma_mapping_error(greth->dev, dma_addr)) {
288 if (netif_msg_ifup(greth))
289 dev_err(greth->dev, "Could not create initial DMA mapping\n");
290 goto cleanup;
291 }
292 greth_write_bd(&rx_bd[i].addr, dma_addr);
293 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
294 }
295 for (i = 0; i < GRETH_TXBD_NUM; i++) {
296
297 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
298
299 if (greth->tx_bufs[i] == NULL) {
300 if (netif_msg_ifup(greth))
301 dev_err(greth->dev, "Error allocating DMA ring.\n");
302 goto cleanup;
303 }
304
305 dma_addr = dma_map_single(greth->dev,
306 greth->tx_bufs[i],
307 MAX_FRAME_SIZE,
308 DMA_TO_DEVICE);
309
310 if (dma_mapping_error(greth->dev, dma_addr)) {
311 if (netif_msg_ifup(greth))
312 dev_err(greth->dev, "Could not create initial DMA mapping\n");
313 goto cleanup;
314 }
315 greth_write_bd(&tx_bd[i].addr, dma_addr);
316 greth_write_bd(&tx_bd[i].stat, 0);
317 }
318 }
319 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
320 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
321
322 /* Initialize pointers. */
323 greth->rx_cur = 0;
324 greth->tx_next = 0;
325 greth->tx_last = 0;
326 greth->tx_free = GRETH_TXBD_NUM;
327
328 /* Initialize descriptor base address */
329 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
330 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
331
332 return 0;
333
334 cleanup:
335 greth_clean_rings(greth);
336 return -ENOMEM;
337 }
338
greth_open(struct net_device * dev)339 static int greth_open(struct net_device *dev)
340 {
341 struct greth_private *greth = netdev_priv(dev);
342 int err;
343
344 err = greth_init_rings(greth);
345 if (err) {
346 if (netif_msg_ifup(greth))
347 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
348 return err;
349 }
350
351 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
352 if (err) {
353 if (netif_msg_ifup(greth))
354 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
355 greth_clean_rings(greth);
356 return err;
357 }
358
359 if (netif_msg_ifup(greth))
360 dev_dbg(&dev->dev, " starting queue\n");
361 netif_start_queue(dev);
362
363 GRETH_REGSAVE(greth->regs->status, 0xFF);
364
365 napi_enable(&greth->napi);
366
367 greth_enable_irqs(greth);
368 greth_enable_tx(greth);
369 greth_enable_rx(greth);
370 return 0;
371
372 }
373
greth_close(struct net_device * dev)374 static int greth_close(struct net_device *dev)
375 {
376 struct greth_private *greth = netdev_priv(dev);
377
378 napi_disable(&greth->napi);
379
380 greth_disable_irqs(greth);
381 greth_disable_tx(greth);
382 greth_disable_rx(greth);
383
384 netif_stop_queue(dev);
385
386 free_irq(greth->irq, (void *) dev);
387
388 greth_clean_rings(greth);
389
390 return 0;
391 }
392
393 static netdev_tx_t
greth_start_xmit(struct sk_buff * skb,struct net_device * dev)394 greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
395 {
396 struct greth_private *greth = netdev_priv(dev);
397 struct greth_bd *bdp;
398 int err = NETDEV_TX_OK;
399 u32 status, dma_addr, ctrl;
400 unsigned long flags;
401
402 /* Clean TX Ring */
403 greth_clean_tx(greth->netdev);
404
405 if (unlikely(greth->tx_free <= 0)) {
406 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
407 ctrl = GRETH_REGLOAD(greth->regs->control);
408 /* Enable TX IRQ only if not already in poll() routine */
409 if (ctrl & GRETH_RXI)
410 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
411 netif_stop_queue(dev);
412 spin_unlock_irqrestore(&greth->devlock, flags);
413 return NETDEV_TX_BUSY;
414 }
415
416 if (netif_msg_pktdata(greth))
417 greth_print_tx_packet(skb);
418
419
420 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
421 dev->stats.tx_errors++;
422 goto out;
423 }
424
425 bdp = greth->tx_bd_base + greth->tx_next;
426 dma_addr = greth_read_bd(&bdp->addr);
427
428 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
429
430 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
431
432 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN);
433 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN;
434
435 /* Wrap around descriptor ring */
436 if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
437 status |= GRETH_BD_WR;
438 }
439
440 greth->tx_next = NEXT_TX(greth->tx_next);
441 greth->tx_free--;
442
443 /* Write descriptor control word and enable transmission */
444 greth_write_bd(&bdp->stat, status);
445 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
446 greth_enable_tx(greth);
447 spin_unlock_irqrestore(&greth->devlock, flags);
448
449 out:
450 dev_kfree_skb(skb);
451 return err;
452 }
453
greth_num_free_bds(u16 tx_last,u16 tx_next)454 static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next)
455 {
456 if (tx_next < tx_last)
457 return (tx_last - tx_next) - 1;
458 else
459 return GRETH_TXBD_NUM - (tx_next - tx_last) - 1;
460 }
461
462 static netdev_tx_t
greth_start_xmit_gbit(struct sk_buff * skb,struct net_device * dev)463 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
464 {
465 struct greth_private *greth = netdev_priv(dev);
466 struct greth_bd *bdp;
467 u32 status, dma_addr;
468 int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
469 unsigned long flags;
470 u16 tx_last;
471
472 nr_frags = skb_shinfo(skb)->nr_frags;
473 tx_last = greth->tx_last;
474 rmb(); /* tx_last is updated by the poll task */
475
476 if (greth_num_free_bds(tx_last, greth->tx_next) < nr_frags + 1) {
477 netif_stop_queue(dev);
478 err = NETDEV_TX_BUSY;
479 goto out;
480 }
481
482 if (netif_msg_pktdata(greth))
483 greth_print_tx_packet(skb);
484
485 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
486 dev->stats.tx_errors++;
487 goto len_error;
488 }
489
490 /* Save skb pointer. */
491 greth->tx_skbuff[greth->tx_next] = skb;
492
493 /* Linear buf */
494 if (nr_frags != 0)
495 status = GRETH_TXBD_MORE;
496 else
497 status = GRETH_BD_IE;
498
499 if (skb->ip_summed == CHECKSUM_PARTIAL)
500 status |= GRETH_TXBD_CSALL;
501 status |= skb_headlen(skb) & GRETH_BD_LEN;
502 if (greth->tx_next == GRETH_TXBD_NUM_MASK)
503 status |= GRETH_BD_WR;
504
505
506 bdp = greth->tx_bd_base + greth->tx_next;
507 greth_write_bd(&bdp->stat, status);
508 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
509
510 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
511 goto map_error;
512
513 greth_write_bd(&bdp->addr, dma_addr);
514
515 curr_tx = NEXT_TX(greth->tx_next);
516
517 /* Frags */
518 for (i = 0; i < nr_frags; i++) {
519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
520 greth->tx_skbuff[curr_tx] = NULL;
521 bdp = greth->tx_bd_base + curr_tx;
522
523 status = GRETH_BD_EN;
524 if (skb->ip_summed == CHECKSUM_PARTIAL)
525 status |= GRETH_TXBD_CSALL;
526 status |= skb_frag_size(frag) & GRETH_BD_LEN;
527
528 /* Wrap around descriptor ring */
529 if (curr_tx == GRETH_TXBD_NUM_MASK)
530 status |= GRETH_BD_WR;
531
532 /* More fragments left */
533 if (i < nr_frags - 1)
534 status |= GRETH_TXBD_MORE;
535 else
536 status |= GRETH_BD_IE; /* enable IRQ on last fragment */
537
538 greth_write_bd(&bdp->stat, status);
539
540 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag),
541 DMA_TO_DEVICE);
542
543 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
544 goto frag_map_error;
545
546 greth_write_bd(&bdp->addr, dma_addr);
547
548 curr_tx = NEXT_TX(curr_tx);
549 }
550
551 wmb();
552
553 /* Enable the descriptor chain by enabling the first descriptor */
554 bdp = greth->tx_bd_base + greth->tx_next;
555 greth_write_bd(&bdp->stat,
556 greth_read_bd(&bdp->stat) | GRETH_BD_EN);
557
558 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
559 greth->tx_next = curr_tx;
560 greth_enable_tx_and_irq(greth);
561 spin_unlock_irqrestore(&greth->devlock, flags);
562
563 return NETDEV_TX_OK;
564
565 frag_map_error:
566 /* Unmap SKB mappings that succeeded and disable descriptor */
567 for (i = 0; greth->tx_next + i != curr_tx; i++) {
568 bdp = greth->tx_bd_base + greth->tx_next + i;
569 dma_unmap_single(greth->dev,
570 greth_read_bd(&bdp->addr),
571 greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
572 DMA_TO_DEVICE);
573 greth_write_bd(&bdp->stat, 0);
574 }
575 map_error:
576 if (net_ratelimit())
577 dev_warn(greth->dev, "Could not create TX DMA mapping\n");
578 len_error:
579 dev_kfree_skb(skb);
580 out:
581 return err;
582 }
583
greth_interrupt(int irq,void * dev_id)584 static irqreturn_t greth_interrupt(int irq, void *dev_id)
585 {
586 struct net_device *dev = dev_id;
587 struct greth_private *greth;
588 u32 status, ctrl;
589 irqreturn_t retval = IRQ_NONE;
590
591 greth = netdev_priv(dev);
592
593 spin_lock(&greth->devlock);
594
595 /* Get the interrupt events that caused us to be here. */
596 status = GRETH_REGLOAD(greth->regs->status);
597
598 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
599 * set regardless of whether IRQ is enabled or not. Especially
600 * important when shared IRQ.
601 */
602 ctrl = GRETH_REGLOAD(greth->regs->control);
603
604 /* Handle rx and tx interrupts through poll */
605 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) ||
606 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) {
607 retval = IRQ_HANDLED;
608
609 /* Disable interrupts and schedule poll() */
610 greth_disable_irqs(greth);
611 napi_schedule(&greth->napi);
612 }
613
614 spin_unlock(&greth->devlock);
615
616 return retval;
617 }
618
greth_clean_tx(struct net_device * dev)619 static void greth_clean_tx(struct net_device *dev)
620 {
621 struct greth_private *greth;
622 struct greth_bd *bdp;
623 u32 stat;
624
625 greth = netdev_priv(dev);
626
627 while (1) {
628 bdp = greth->tx_bd_base + greth->tx_last;
629 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
630 mb();
631 stat = greth_read_bd(&bdp->stat);
632
633 if (unlikely(stat & GRETH_BD_EN))
634 break;
635
636 if (greth->tx_free == GRETH_TXBD_NUM)
637 break;
638
639 /* Check status for errors */
640 if (unlikely(stat & GRETH_TXBD_STATUS)) {
641 dev->stats.tx_errors++;
642 if (stat & GRETH_TXBD_ERR_AL)
643 dev->stats.tx_aborted_errors++;
644 if (stat & GRETH_TXBD_ERR_UE)
645 dev->stats.tx_fifo_errors++;
646 }
647 dev->stats.tx_packets++;
648 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last];
649 greth->tx_last = NEXT_TX(greth->tx_last);
650 greth->tx_free++;
651 }
652
653 if (greth->tx_free > 0) {
654 netif_wake_queue(dev);
655 }
656 }
657
greth_update_tx_stats(struct net_device * dev,u32 stat)658 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
659 {
660 /* Check status for errors */
661 if (unlikely(stat & GRETH_TXBD_STATUS)) {
662 dev->stats.tx_errors++;
663 if (stat & GRETH_TXBD_ERR_AL)
664 dev->stats.tx_aborted_errors++;
665 if (stat & GRETH_TXBD_ERR_UE)
666 dev->stats.tx_fifo_errors++;
667 if (stat & GRETH_TXBD_ERR_LC)
668 dev->stats.tx_aborted_errors++;
669 }
670 dev->stats.tx_packets++;
671 }
672
greth_clean_tx_gbit(struct net_device * dev)673 static void greth_clean_tx_gbit(struct net_device *dev)
674 {
675 struct greth_private *greth;
676 struct greth_bd *bdp, *bdp_last_frag;
677 struct sk_buff *skb = NULL;
678 u32 stat;
679 int nr_frags, i;
680 u16 tx_last;
681
682 greth = netdev_priv(dev);
683 tx_last = greth->tx_last;
684
685 while (tx_last != greth->tx_next) {
686
687 skb = greth->tx_skbuff[tx_last];
688
689 nr_frags = skb_shinfo(skb)->nr_frags;
690
691 /* We only clean fully completed SKBs */
692 bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags);
693
694 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
695 mb();
696 stat = greth_read_bd(&bdp_last_frag->stat);
697
698 if (stat & GRETH_BD_EN)
699 break;
700
701 greth->tx_skbuff[tx_last] = NULL;
702
703 greth_update_tx_stats(dev, stat);
704 dev->stats.tx_bytes += skb->len;
705
706 bdp = greth->tx_bd_base + tx_last;
707
708 tx_last = NEXT_TX(tx_last);
709
710 dma_unmap_single(greth->dev,
711 greth_read_bd(&bdp->addr),
712 skb_headlen(skb),
713 DMA_TO_DEVICE);
714
715 for (i = 0; i < nr_frags; i++) {
716 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
717 bdp = greth->tx_bd_base + tx_last;
718
719 dma_unmap_page(greth->dev,
720 greth_read_bd(&bdp->addr),
721 skb_frag_size(frag),
722 DMA_TO_DEVICE);
723
724 tx_last = NEXT_TX(tx_last);
725 }
726 dev_kfree_skb(skb);
727 }
728 if (skb) { /* skb is set only if the above while loop was entered */
729 wmb();
730 greth->tx_last = tx_last;
731
732 if (netif_queue_stopped(dev) &&
733 (greth_num_free_bds(tx_last, greth->tx_next) >
734 (MAX_SKB_FRAGS+1)))
735 netif_wake_queue(dev);
736 }
737 }
738
greth_rx(struct net_device * dev,int limit)739 static int greth_rx(struct net_device *dev, int limit)
740 {
741 struct greth_private *greth;
742 struct greth_bd *bdp;
743 struct sk_buff *skb;
744 int pkt_len;
745 int bad, count;
746 u32 status, dma_addr;
747 unsigned long flags;
748
749 greth = netdev_priv(dev);
750
751 for (count = 0; count < limit; ++count) {
752
753 bdp = greth->rx_bd_base + greth->rx_cur;
754 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
755 mb();
756 status = greth_read_bd(&bdp->stat);
757
758 if (unlikely(status & GRETH_BD_EN)) {
759 break;
760 }
761
762 dma_addr = greth_read_bd(&bdp->addr);
763 bad = 0;
764
765 /* Check status for errors. */
766 if (unlikely(status & GRETH_RXBD_STATUS)) {
767 if (status & GRETH_RXBD_ERR_FT) {
768 dev->stats.rx_length_errors++;
769 bad = 1;
770 }
771 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
772 dev->stats.rx_frame_errors++;
773 bad = 1;
774 }
775 if (status & GRETH_RXBD_ERR_CRC) {
776 dev->stats.rx_crc_errors++;
777 bad = 1;
778 }
779 }
780 if (unlikely(bad)) {
781 dev->stats.rx_errors++;
782
783 } else {
784
785 pkt_len = status & GRETH_BD_LEN;
786
787 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
788
789 if (unlikely(skb == NULL)) {
790
791 if (net_ratelimit())
792 dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
793
794 dev->stats.rx_dropped++;
795
796 } else {
797 skb_reserve(skb, NET_IP_ALIGN);
798
799 dma_sync_single_for_cpu(greth->dev,
800 dma_addr,
801 pkt_len,
802 DMA_FROM_DEVICE);
803
804 if (netif_msg_pktdata(greth))
805 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
806
807 skb_put_data(skb, phys_to_virt(dma_addr),
808 pkt_len);
809
810 skb->protocol = eth_type_trans(skb, dev);
811 dev->stats.rx_bytes += pkt_len;
812 dev->stats.rx_packets++;
813 netif_receive_skb(skb);
814 }
815 }
816
817 status = GRETH_BD_EN | GRETH_BD_IE;
818 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
819 status |= GRETH_BD_WR;
820 }
821
822 wmb();
823 greth_write_bd(&bdp->stat, status);
824
825 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
826
827 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */
828 greth_enable_rx(greth);
829 spin_unlock_irqrestore(&greth->devlock, flags);
830
831 greth->rx_cur = NEXT_RX(greth->rx_cur);
832 }
833
834 return count;
835 }
836
hw_checksummed(u32 status)837 static inline int hw_checksummed(u32 status)
838 {
839
840 if (status & GRETH_RXBD_IP_FRAG)
841 return 0;
842
843 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
844 return 0;
845
846 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
847 return 0;
848
849 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
850 return 0;
851
852 return 1;
853 }
854
greth_rx_gbit(struct net_device * dev,int limit)855 static int greth_rx_gbit(struct net_device *dev, int limit)
856 {
857 struct greth_private *greth;
858 struct greth_bd *bdp;
859 struct sk_buff *skb, *newskb;
860 int pkt_len;
861 int bad, count = 0;
862 u32 status, dma_addr;
863 unsigned long flags;
864
865 greth = netdev_priv(dev);
866
867 for (count = 0; count < limit; ++count) {
868
869 bdp = greth->rx_bd_base + greth->rx_cur;
870 skb = greth->rx_skbuff[greth->rx_cur];
871 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
872 mb();
873 status = greth_read_bd(&bdp->stat);
874 bad = 0;
875
876 if (status & GRETH_BD_EN)
877 break;
878
879 /* Check status for errors. */
880 if (unlikely(status & GRETH_RXBD_STATUS)) {
881
882 if (status & GRETH_RXBD_ERR_FT) {
883 dev->stats.rx_length_errors++;
884 bad = 1;
885 } else if (status &
886 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
887 dev->stats.rx_frame_errors++;
888 bad = 1;
889 } else if (status & GRETH_RXBD_ERR_CRC) {
890 dev->stats.rx_crc_errors++;
891 bad = 1;
892 }
893 }
894
895 /* Allocate new skb to replace current, not needed if the
896 * current skb can be reused */
897 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) {
898 skb_reserve(newskb, NET_IP_ALIGN);
899
900 dma_addr = dma_map_single(greth->dev,
901 newskb->data,
902 MAX_FRAME_SIZE + NET_IP_ALIGN,
903 DMA_FROM_DEVICE);
904
905 if (!dma_mapping_error(greth->dev, dma_addr)) {
906 /* Process the incoming frame. */
907 pkt_len = status & GRETH_BD_LEN;
908
909 dma_unmap_single(greth->dev,
910 greth_read_bd(&bdp->addr),
911 MAX_FRAME_SIZE + NET_IP_ALIGN,
912 DMA_FROM_DEVICE);
913
914 if (netif_msg_pktdata(greth))
915 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
916
917 skb_put(skb, pkt_len);
918
919 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status))
920 skb->ip_summed = CHECKSUM_UNNECESSARY;
921 else
922 skb_checksum_none_assert(skb);
923
924 skb->protocol = eth_type_trans(skb, dev);
925 dev->stats.rx_packets++;
926 dev->stats.rx_bytes += pkt_len;
927 netif_receive_skb(skb);
928
929 greth->rx_skbuff[greth->rx_cur] = newskb;
930 greth_write_bd(&bdp->addr, dma_addr);
931 } else {
932 if (net_ratelimit())
933 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
934 dev_kfree_skb(newskb);
935 /* reusing current skb, so it is a drop */
936 dev->stats.rx_dropped++;
937 }
938 } else if (bad) {
939 /* Bad Frame transfer, the skb is reused */
940 dev->stats.rx_dropped++;
941 } else {
942 /* Failed Allocating a new skb. This is rather stupid
943 * but the current "filled" skb is reused, as if
944 * transfer failure. One could argue that RX descriptor
945 * table handling should be divided into cleaning and
946 * filling as the TX part of the driver
947 */
948 if (net_ratelimit())
949 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
950 /* reusing current skb, so it is a drop */
951 dev->stats.rx_dropped++;
952 }
953
954 status = GRETH_BD_EN | GRETH_BD_IE;
955 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
956 status |= GRETH_BD_WR;
957 }
958
959 wmb();
960 greth_write_bd(&bdp->stat, status);
961 spin_lock_irqsave(&greth->devlock, flags);
962 greth_enable_rx(greth);
963 spin_unlock_irqrestore(&greth->devlock, flags);
964 greth->rx_cur = NEXT_RX(greth->rx_cur);
965 }
966
967 return count;
968
969 }
970
greth_poll(struct napi_struct * napi,int budget)971 static int greth_poll(struct napi_struct *napi, int budget)
972 {
973 struct greth_private *greth;
974 int work_done = 0;
975 unsigned long flags;
976 u32 mask, ctrl;
977 greth = container_of(napi, struct greth_private, napi);
978
979 restart_txrx_poll:
980 if (greth->gbit_mac) {
981 greth_clean_tx_gbit(greth->netdev);
982 work_done += greth_rx_gbit(greth->netdev, budget - work_done);
983 } else {
984 if (netif_queue_stopped(greth->netdev))
985 greth_clean_tx(greth->netdev);
986 work_done += greth_rx(greth->netdev, budget - work_done);
987 }
988
989 if (work_done < budget) {
990
991 spin_lock_irqsave(&greth->devlock, flags);
992
993 ctrl = GRETH_REGLOAD(greth->regs->control);
994 if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) ||
995 (!greth->gbit_mac && netif_queue_stopped(greth->netdev))) {
996 GRETH_REGSAVE(greth->regs->control,
997 ctrl | GRETH_TXI | GRETH_RXI);
998 mask = GRETH_INT_RX | GRETH_INT_RE |
999 GRETH_INT_TX | GRETH_INT_TE;
1000 } else {
1001 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI);
1002 mask = GRETH_INT_RX | GRETH_INT_RE;
1003 }
1004
1005 if (GRETH_REGLOAD(greth->regs->status) & mask) {
1006 GRETH_REGSAVE(greth->regs->control, ctrl);
1007 spin_unlock_irqrestore(&greth->devlock, flags);
1008 goto restart_txrx_poll;
1009 } else {
1010 napi_complete_done(napi, work_done);
1011 spin_unlock_irqrestore(&greth->devlock, flags);
1012 }
1013 }
1014
1015 return work_done;
1016 }
1017
greth_set_mac_add(struct net_device * dev,void * p)1018 static int greth_set_mac_add(struct net_device *dev, void *p)
1019 {
1020 struct sockaddr *addr = p;
1021 struct greth_private *greth;
1022 struct greth_regs *regs;
1023
1024 greth = netdev_priv(dev);
1025 regs = greth->regs;
1026
1027 if (!is_valid_ether_addr(addr->sa_data))
1028 return -EADDRNOTAVAIL;
1029
1030 eth_hw_addr_set(dev, addr->sa_data);
1031 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1032 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1033 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1034
1035 return 0;
1036 }
1037
greth_hash_get_index(__u8 * addr)1038 static u32 greth_hash_get_index(__u8 *addr)
1039 {
1040 return (ether_crc(6, addr)) & 0x3F;
1041 }
1042
greth_set_hash_filter(struct net_device * dev)1043 static void greth_set_hash_filter(struct net_device *dev)
1044 {
1045 struct netdev_hw_addr *ha;
1046 struct greth_private *greth = netdev_priv(dev);
1047 struct greth_regs *regs = greth->regs;
1048 u32 mc_filter[2];
1049 unsigned int bitnr;
1050
1051 mc_filter[0] = mc_filter[1] = 0;
1052
1053 netdev_for_each_mc_addr(ha, dev) {
1054 bitnr = greth_hash_get_index(ha->addr);
1055 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1056 }
1057
1058 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
1059 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
1060 }
1061
greth_set_multicast_list(struct net_device * dev)1062 static void greth_set_multicast_list(struct net_device *dev)
1063 {
1064 int cfg;
1065 struct greth_private *greth = netdev_priv(dev);
1066 struct greth_regs *regs = greth->regs;
1067
1068 cfg = GRETH_REGLOAD(regs->control);
1069 if (dev->flags & IFF_PROMISC)
1070 cfg |= GRETH_CTRL_PR;
1071 else
1072 cfg &= ~GRETH_CTRL_PR;
1073
1074 if (greth->multicast) {
1075 if (dev->flags & IFF_ALLMULTI) {
1076 GRETH_REGSAVE(regs->hash_msb, -1);
1077 GRETH_REGSAVE(regs->hash_lsb, -1);
1078 cfg |= GRETH_CTRL_MCEN;
1079 GRETH_REGSAVE(regs->control, cfg);
1080 return;
1081 }
1082
1083 if (netdev_mc_empty(dev)) {
1084 cfg &= ~GRETH_CTRL_MCEN;
1085 GRETH_REGSAVE(regs->control, cfg);
1086 return;
1087 }
1088
1089 /* Setup multicast filter */
1090 greth_set_hash_filter(dev);
1091 cfg |= GRETH_CTRL_MCEN;
1092 }
1093 GRETH_REGSAVE(regs->control, cfg);
1094 }
1095
greth_get_msglevel(struct net_device * dev)1096 static u32 greth_get_msglevel(struct net_device *dev)
1097 {
1098 struct greth_private *greth = netdev_priv(dev);
1099 return greth->msg_enable;
1100 }
1101
greth_set_msglevel(struct net_device * dev,u32 value)1102 static void greth_set_msglevel(struct net_device *dev, u32 value)
1103 {
1104 struct greth_private *greth = netdev_priv(dev);
1105 greth->msg_enable = value;
1106 }
1107
greth_get_regs_len(struct net_device * dev)1108 static int greth_get_regs_len(struct net_device *dev)
1109 {
1110 return sizeof(struct greth_regs);
1111 }
1112
greth_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1113 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1114 {
1115 struct greth_private *greth = netdev_priv(dev);
1116
1117 strscpy(info->driver, dev_driver_string(greth->dev),
1118 sizeof(info->driver));
1119 strscpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info));
1120 }
1121
greth_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)1122 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
1123 {
1124 int i;
1125 struct greth_private *greth = netdev_priv(dev);
1126 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
1127 u32 *buff = p;
1128
1129 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
1130 buff[i] = greth_read_bd(&greth_regs[i]);
1131 }
1132
1133 static const struct ethtool_ops greth_ethtool_ops = {
1134 .get_msglevel = greth_get_msglevel,
1135 .set_msglevel = greth_set_msglevel,
1136 .get_drvinfo = greth_get_drvinfo,
1137 .get_regs_len = greth_get_regs_len,
1138 .get_regs = greth_get_regs,
1139 .get_link = ethtool_op_get_link,
1140 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1141 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1142 };
1143
1144 static struct net_device_ops greth_netdev_ops = {
1145 .ndo_open = greth_open,
1146 .ndo_stop = greth_close,
1147 .ndo_start_xmit = greth_start_xmit,
1148 .ndo_set_mac_address = greth_set_mac_add,
1149 .ndo_validate_addr = eth_validate_addr,
1150 };
1151
wait_for_mdio(struct greth_private * greth)1152 static inline int wait_for_mdio(struct greth_private *greth)
1153 {
1154 unsigned long timeout = jiffies + 4*HZ/100;
1155 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
1156 if (time_after(jiffies, timeout))
1157 return 0;
1158 }
1159 return 1;
1160 }
1161
greth_mdio_read(struct mii_bus * bus,int phy,int reg)1162 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
1163 {
1164 struct greth_private *greth = bus->priv;
1165 int data;
1166
1167 if (!wait_for_mdio(greth))
1168 return -EBUSY;
1169
1170 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
1171
1172 if (!wait_for_mdio(greth))
1173 return -EBUSY;
1174
1175 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
1176 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
1177 return data;
1178
1179 } else {
1180 return -1;
1181 }
1182 }
1183
greth_mdio_write(struct mii_bus * bus,int phy,int reg,u16 val)1184 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
1185 {
1186 struct greth_private *greth = bus->priv;
1187
1188 if (!wait_for_mdio(greth))
1189 return -EBUSY;
1190
1191 GRETH_REGSAVE(greth->regs->mdio,
1192 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
1193
1194 if (!wait_for_mdio(greth))
1195 return -EBUSY;
1196
1197 return 0;
1198 }
1199
greth_link_change(struct net_device * dev)1200 static void greth_link_change(struct net_device *dev)
1201 {
1202 struct greth_private *greth = netdev_priv(dev);
1203 struct phy_device *phydev = dev->phydev;
1204 unsigned long flags;
1205 int status_change = 0;
1206 u32 ctrl;
1207
1208 spin_lock_irqsave(&greth->devlock, flags);
1209
1210 if (phydev->link) {
1211
1212 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
1213 ctrl = GRETH_REGLOAD(greth->regs->control) &
1214 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB);
1215
1216 if (phydev->duplex)
1217 ctrl |= GRETH_CTRL_FD;
1218
1219 if (phydev->speed == SPEED_100)
1220 ctrl |= GRETH_CTRL_SP;
1221 else if (phydev->speed == SPEED_1000)
1222 ctrl |= GRETH_CTRL_GB;
1223
1224 GRETH_REGSAVE(greth->regs->control, ctrl);
1225 greth->speed = phydev->speed;
1226 greth->duplex = phydev->duplex;
1227 status_change = 1;
1228 }
1229 }
1230
1231 if (phydev->link != greth->link) {
1232 if (!phydev->link) {
1233 greth->speed = 0;
1234 greth->duplex = -1;
1235 }
1236 greth->link = phydev->link;
1237
1238 status_change = 1;
1239 }
1240
1241 spin_unlock_irqrestore(&greth->devlock, flags);
1242
1243 if (status_change) {
1244 if (phydev->link)
1245 pr_debug("%s: link up (%d/%s)\n",
1246 dev->name, phydev->speed,
1247 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
1248 else
1249 pr_debug("%s: link down\n", dev->name);
1250 }
1251 }
1252
greth_mdio_probe(struct net_device * dev)1253 static int greth_mdio_probe(struct net_device *dev)
1254 {
1255 struct greth_private *greth = netdev_priv(dev);
1256 struct phy_device *phy = NULL;
1257 int ret;
1258
1259 /* Find the first PHY */
1260 phy = phy_find_first(greth->mdio);
1261
1262 if (!phy) {
1263 if (netif_msg_probe(greth))
1264 dev_err(&dev->dev, "no PHY found\n");
1265 return -ENXIO;
1266 }
1267
1268 ret = phy_connect_direct(dev, phy, &greth_link_change,
1269 greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII);
1270 if (ret) {
1271 if (netif_msg_ifup(greth))
1272 dev_err(&dev->dev, "could not attach to PHY\n");
1273 return ret;
1274 }
1275
1276 if (greth->gbit_mac)
1277 phy_set_max_speed(phy, SPEED_1000);
1278 else
1279 phy_set_max_speed(phy, SPEED_100);
1280
1281 linkmode_copy(phy->advertising, phy->supported);
1282
1283 greth->link = 0;
1284 greth->speed = 0;
1285 greth->duplex = -1;
1286
1287 return 0;
1288 }
1289
greth_mdio_init(struct greth_private * greth)1290 static int greth_mdio_init(struct greth_private *greth)
1291 {
1292 int ret;
1293 unsigned long timeout;
1294 struct net_device *ndev = greth->netdev;
1295
1296 greth->mdio = mdiobus_alloc();
1297 if (!greth->mdio) {
1298 return -ENOMEM;
1299 }
1300
1301 greth->mdio->name = "greth-mdio";
1302 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
1303 greth->mdio->read = greth_mdio_read;
1304 greth->mdio->write = greth_mdio_write;
1305 greth->mdio->priv = greth;
1306
1307 ret = mdiobus_register(greth->mdio);
1308 if (ret) {
1309 goto error;
1310 }
1311
1312 ret = greth_mdio_probe(greth->netdev);
1313 if (ret) {
1314 if (netif_msg_probe(greth))
1315 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
1316 goto unreg_mdio;
1317 }
1318
1319 phy_start(ndev->phydev);
1320
1321 /* If Ethernet debug link is used make autoneg happen right away */
1322 if (greth->edcl && greth_edcl == 1) {
1323 phy_start_aneg(ndev->phydev);
1324 timeout = jiffies + 6*HZ;
1325 while (!phy_aneg_done(ndev->phydev) &&
1326 time_before(jiffies, timeout)) {
1327 }
1328 phy_read_status(ndev->phydev);
1329 greth_link_change(greth->netdev);
1330 }
1331
1332 return 0;
1333
1334 unreg_mdio:
1335 mdiobus_unregister(greth->mdio);
1336 error:
1337 mdiobus_free(greth->mdio);
1338 return ret;
1339 }
1340
1341 /* Initialize the GRETH MAC */
greth_of_probe(struct platform_device * ofdev)1342 static int greth_of_probe(struct platform_device *ofdev)
1343 {
1344 struct net_device *dev;
1345 struct greth_private *greth;
1346 struct greth_regs *regs;
1347
1348 int i;
1349 int err;
1350 int tmp;
1351 u8 addr[ETH_ALEN];
1352 unsigned long timeout;
1353
1354 dev = alloc_etherdev(sizeof(struct greth_private));
1355
1356 if (dev == NULL)
1357 return -ENOMEM;
1358
1359 greth = netdev_priv(dev);
1360 greth->netdev = dev;
1361 greth->dev = &ofdev->dev;
1362
1363 if (greth_debug > 0)
1364 greth->msg_enable = greth_debug;
1365 else
1366 greth->msg_enable = GRETH_DEF_MSG_ENABLE;
1367
1368 spin_lock_init(&greth->devlock);
1369
1370 greth->regs = of_ioremap(&ofdev->resource[0], 0,
1371 resource_size(&ofdev->resource[0]),
1372 "grlib-greth regs");
1373
1374 if (greth->regs == NULL) {
1375 if (netif_msg_probe(greth))
1376 dev_err(greth->dev, "ioremap failure.\n");
1377 err = -EIO;
1378 goto error1;
1379 }
1380
1381 regs = greth->regs;
1382 greth->irq = ofdev->archdata.irqs[0];
1383
1384 dev_set_drvdata(greth->dev, dev);
1385 SET_NETDEV_DEV(dev, greth->dev);
1386
1387 if (netif_msg_probe(greth))
1388 dev_dbg(greth->dev, "resetting controller.\n");
1389
1390 /* Reset the controller. */
1391 GRETH_REGSAVE(regs->control, GRETH_RESET);
1392
1393 /* Wait for MAC to reset itself */
1394 timeout = jiffies + HZ/100;
1395 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
1396 if (time_after(jiffies, timeout)) {
1397 err = -EIO;
1398 if (netif_msg_probe(greth))
1399 dev_err(greth->dev, "timeout when waiting for reset.\n");
1400 goto error2;
1401 }
1402 }
1403
1404 /* Get default PHY address */
1405 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
1406
1407 /* Check if we have GBIT capable MAC */
1408 tmp = GRETH_REGLOAD(regs->control);
1409 greth->gbit_mac = (tmp >> 27) & 1;
1410
1411 /* Check for multicast capability */
1412 greth->multicast = (tmp >> 25) & 1;
1413
1414 greth->edcl = (tmp >> 31) & 1;
1415
1416 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1417 * it doesn't interfere with the software */
1418 if (greth->edcl != 0)
1419 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
1420
1421 /* Check if MAC can handle MDIO interrupts */
1422 greth->mdio_int_en = (tmp >> 26) & 1;
1423
1424 err = greth_mdio_init(greth);
1425 if (err) {
1426 if (netif_msg_probe(greth))
1427 dev_err(greth->dev, "failed to register MDIO bus\n");
1428 goto error2;
1429 }
1430
1431 /* Allocate TX descriptor ring in coherent memory */
1432 greth->tx_bd_base = dma_alloc_coherent(greth->dev, 1024,
1433 &greth->tx_bd_base_phys,
1434 GFP_KERNEL);
1435 if (!greth->tx_bd_base) {
1436 err = -ENOMEM;
1437 goto error3;
1438 }
1439
1440 /* Allocate RX descriptor ring in coherent memory */
1441 greth->rx_bd_base = dma_alloc_coherent(greth->dev, 1024,
1442 &greth->rx_bd_base_phys,
1443 GFP_KERNEL);
1444 if (!greth->rx_bd_base) {
1445 err = -ENOMEM;
1446 goto error4;
1447 }
1448
1449 /* Get MAC address from: module param, OF property or ID prom */
1450 for (i = 0; i < 6; i++) {
1451 if (macaddr[i] != 0)
1452 break;
1453 }
1454 if (i == 6) {
1455 err = of_get_mac_address(ofdev->dev.of_node, addr);
1456 if (!err) {
1457 for (i = 0; i < 6; i++)
1458 macaddr[i] = (unsigned int) addr[i];
1459 } else {
1460 #ifdef CONFIG_SPARC
1461 for (i = 0; i < 6; i++)
1462 macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
1463 #endif
1464 }
1465 }
1466
1467 for (i = 0; i < 6; i++)
1468 addr[i] = macaddr[i];
1469 eth_hw_addr_set(dev, addr);
1470
1471 macaddr[5]++;
1472
1473 if (!is_valid_ether_addr(&dev->dev_addr[0])) {
1474 if (netif_msg_probe(greth))
1475 dev_err(greth->dev, "no valid ethernet address, aborting.\n");
1476 err = -EINVAL;
1477 goto error5;
1478 }
1479
1480 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1481 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1482 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1483
1484 /* Clear all pending interrupts except PHY irq */
1485 GRETH_REGSAVE(regs->status, 0xFF);
1486
1487 if (greth->gbit_mac) {
1488 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1489 NETIF_F_RXCSUM;
1490 dev->features = dev->hw_features | NETIF_F_HIGHDMA;
1491 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
1492 }
1493
1494 if (greth->multicast) {
1495 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list;
1496 dev->flags |= IFF_MULTICAST;
1497 } else {
1498 dev->flags &= ~IFF_MULTICAST;
1499 }
1500
1501 dev->netdev_ops = &greth_netdev_ops;
1502 dev->ethtool_ops = &greth_ethtool_ops;
1503
1504 err = register_netdev(dev);
1505 if (err) {
1506 if (netif_msg_probe(greth))
1507 dev_err(greth->dev, "netdevice registration failed.\n");
1508 goto error5;
1509 }
1510
1511 /* setup NAPI */
1512 netif_napi_add(dev, &greth->napi, greth_poll);
1513
1514 return 0;
1515
1516 error5:
1517 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1518 error4:
1519 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1520 error3:
1521 mdiobus_unregister(greth->mdio);
1522 error2:
1523 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
1524 error1:
1525 free_netdev(dev);
1526 return err;
1527 }
1528
greth_of_remove(struct platform_device * of_dev)1529 static void greth_of_remove(struct platform_device *of_dev)
1530 {
1531 struct net_device *ndev = platform_get_drvdata(of_dev);
1532 struct greth_private *greth = netdev_priv(ndev);
1533
1534 /* Free descriptor areas */
1535 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1536
1537 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1538
1539 if (ndev->phydev)
1540 phy_stop(ndev->phydev);
1541 mdiobus_unregister(greth->mdio);
1542
1543 unregister_netdev(ndev);
1544
1545 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
1546
1547 free_netdev(ndev);
1548 }
1549
1550 static const struct of_device_id greth_of_match[] = {
1551 {
1552 .name = "GAISLER_ETHMAC",
1553 },
1554 {
1555 .name = "01_01d",
1556 },
1557 {},
1558 };
1559
1560 MODULE_DEVICE_TABLE(of, greth_of_match);
1561
1562 static struct platform_driver greth_of_driver = {
1563 .driver = {
1564 .name = "grlib-greth",
1565 .of_match_table = greth_of_match,
1566 },
1567 .probe = greth_of_probe,
1568 .remove = greth_of_remove,
1569 };
1570
1571 module_platform_driver(greth_of_driver);
1572
1573 MODULE_AUTHOR("Aeroflex Gaisler AB.");
1574 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1575 MODULE_LICENSE("GPL");
1576