1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3
4 #include "pvr_ccb.h"
5 #include "pvr_device.h"
6 #include "pvr_device_info.h"
7 #include "pvr_fw.h"
8 #include "pvr_fw_info.h"
9 #include "pvr_fw_startstop.h"
10 #include "pvr_fw_trace.h"
11 #include "pvr_gem.h"
12 #include "pvr_power.h"
13 #include "pvr_rogue_fwif_dev_info.h"
14 #include "pvr_rogue_heap_config.h"
15 #include "pvr_vm.h"
16
17 #include <drm/drm_drv.h>
18 #include <drm/drm_managed.h>
19 #include <drm/drm_mm.h>
20 #include <linux/clk.h>
21 #include <linux/firmware.h>
22 #include <linux/math.h>
23 #include <linux/minmax.h>
24 #include <linux/sizes.h>
25
26 #define FW_MAX_SUPPORTED_MAJOR_VERSION 1
27
28 #define FW_BOOT_TIMEOUT_USEC 5000000
29
30 /* Config heap occupies top 192k of the firmware heap. */
31 #define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K
32 #define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
33
34 /* Main firmware allocations should come from the remainder of the heap. */
35 #define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE
36
37 /* Offsets from start of configuration area of FW heap. */
38 #define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0
39 #define PVR_ROGUE_FWIF_OSINIT_OFFSET \
40 (PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
41 #define PVR_ROGUE_FWIF_SYSINIT_OFFSET \
42 (PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
43
44 #define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K
45
46 #define PVR_SYNC_OBJ_SIZE sizeof(u32)
47
48 const struct pvr_fw_layout_entry *
pvr_fw_find_layout_entry(struct pvr_device * pvr_dev,enum pvr_fw_section_id id)49 pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id)
50 {
51 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
52 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
53 u32 entry;
54
55 for (entry = 0; entry < num_layout_entries; entry++) {
56 if (layout_entries[entry].id == id)
57 return &layout_entries[entry];
58 }
59
60 return NULL;
61 }
62
63 static const struct pvr_fw_layout_entry *
pvr_fw_find_private_data(struct pvr_device * pvr_dev)64 pvr_fw_find_private_data(struct pvr_device *pvr_dev)
65 {
66 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
67 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
68 u32 entry;
69
70 for (entry = 0; entry < num_layout_entries; entry++) {
71 if (layout_entries[entry].id == META_PRIVATE_DATA ||
72 layout_entries[entry].id == MIPS_PRIVATE_DATA ||
73 layout_entries[entry].id == RISCV_PRIVATE_DATA)
74 return &layout_entries[entry];
75 }
76
77 return NULL;
78 }
79
80 #define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64)
81
82 /**
83 * pvr_fw_validate() - Parse firmware header and check compatibility
84 * @pvr_dev: Device pointer.
85 *
86 * Returns:
87 * * 0 on success, or
88 * * -EINVAL if firmware is incompatible.
89 */
90 static int
pvr_fw_validate(struct pvr_device * pvr_dev)91 pvr_fw_validate(struct pvr_device *pvr_dev)
92 {
93 struct drm_device *drm_dev = from_pvr_device(pvr_dev);
94 const struct firmware *firmware = pvr_dev->fw_dev.firmware;
95 const struct pvr_fw_layout_entry *layout_entries;
96 const struct pvr_fw_info_header *header;
97 const u8 *fw = firmware->data;
98 u32 fw_offset = firmware->size - SZ_4K;
99 u32 layout_table_size;
100 u32 entry;
101
102 if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE))
103 return -EINVAL;
104
105 header = (const struct pvr_fw_info_header *)&fw[fw_offset];
106
107 if (header->info_version != PVR_FW_INFO_VERSION) {
108 drm_err(drm_dev, "Unsupported fw info version %u\n",
109 header->info_version);
110 return -EINVAL;
111 }
112
113 if (header->header_len != sizeof(struct pvr_fw_info_header) ||
114 header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) ||
115 header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) {
116 drm_err(drm_dev, "FW info format mismatch\n");
117 return -EINVAL;
118 }
119
120 if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ||
121 header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION ||
122 header->fw_version_major == 0) {
123 drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n",
124 header->fw_version_major, header->fw_version_minor,
125 header->fw_version_build,
126 (header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : "");
127 return -EINVAL;
128 }
129
130 if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) {
131 struct pvr_gpu_id fw_gpu_id;
132
133 packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id);
134 drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n",
135 fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c,
136 pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c);
137 return -EINVAL;
138 }
139
140 fw_offset += header->header_len;
141 layout_table_size =
142 header->layout_entry_size * header->layout_entry_num;
143 if ((fw_offset + layout_table_size) > firmware->size)
144 return -EINVAL;
145
146 layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset];
147 for (entry = 0; entry < header->layout_entry_num; entry++) {
148 u32 start_addr = layout_entries[entry].base_addr;
149 u32 end_addr = start_addr + layout_entries[entry].alloc_size;
150
151 if (start_addr >= end_addr)
152 return -EINVAL;
153 }
154
155 fw_offset = (firmware->size - SZ_4K) - header->device_info_size;
156
157 drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major,
158 header->fw_version_minor, header->fw_version_build);
159
160 pvr_dev->fw_version.major = header->fw_version_major;
161 pvr_dev->fw_version.minor = header->fw_version_minor;
162
163 pvr_dev->fw_dev.header = header;
164 pvr_dev->fw_dev.layout_entries = layout_entries;
165
166 return 0;
167 }
168
169 static int
pvr_fw_get_device_info(struct pvr_device * pvr_dev)170 pvr_fw_get_device_info(struct pvr_device *pvr_dev)
171 {
172 const struct firmware *firmware = pvr_dev->fw_dev.firmware;
173 struct pvr_fw_device_info_header *header;
174 const u8 *fw = firmware->data;
175 const u64 *dev_info;
176 u32 fw_offset;
177
178 fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size;
179
180 header = (struct pvr_fw_device_info_header *)&fw[fw_offset];
181 dev_info = (u64 *)(header + 1);
182
183 pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size);
184 dev_info += header->brn_mask_size;
185
186 pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size);
187 dev_info += header->ern_mask_size;
188
189 return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size,
190 header->feature_param_size);
191 }
192
193 static void
layout_get_sizes(struct pvr_device * pvr_dev)194 layout_get_sizes(struct pvr_device *pvr_dev)
195 {
196 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
197 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
198 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
199
200 fw_mem->code_alloc_size = 0;
201 fw_mem->data_alloc_size = 0;
202 fw_mem->core_code_alloc_size = 0;
203 fw_mem->core_data_alloc_size = 0;
204
205 /* Extract section sizes from FW layout table. */
206 for (u32 entry = 0; entry < num_layout_entries; entry++) {
207 switch (layout_entries[entry].type) {
208 case FW_CODE:
209 fw_mem->code_alloc_size += layout_entries[entry].alloc_size;
210 break;
211 case FW_DATA:
212 fw_mem->data_alloc_size += layout_entries[entry].alloc_size;
213 break;
214 case FW_COREMEM_CODE:
215 fw_mem->core_code_alloc_size +=
216 layout_entries[entry].alloc_size;
217 break;
218 case FW_COREMEM_DATA:
219 fw_mem->core_data_alloc_size +=
220 layout_entries[entry].alloc_size;
221 break;
222 case NONE:
223 break;
224 }
225 }
226 }
227
228 int
pvr_fw_find_mmu_segment(struct pvr_device * pvr_dev,u32 addr,u32 size,void * fw_code_ptr,void * fw_data_ptr,void * fw_core_code_ptr,void * fw_core_data_ptr,void ** host_addr_out)229 pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr,
230 void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr,
231 void **host_addr_out)
232 {
233 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
234 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
235 u32 end_addr = addr + size;
236 int entry = 0;
237
238 /* Ensure requested range is not zero, and size is not causing addr to overflow. */
239 if (end_addr <= addr)
240 return -EINVAL;
241
242 for (entry = 0; entry < num_layout_entries; entry++) {
243 u32 entry_start_addr = layout_entries[entry].base_addr;
244 u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size;
245
246 if (addr >= entry_start_addr && addr < entry_end_addr &&
247 end_addr > entry_start_addr && end_addr <= entry_end_addr) {
248 switch (layout_entries[entry].type) {
249 case FW_CODE:
250 *host_addr_out = fw_code_ptr;
251 break;
252
253 case FW_DATA:
254 *host_addr_out = fw_data_ptr;
255 break;
256
257 case FW_COREMEM_CODE:
258 *host_addr_out = fw_core_code_ptr;
259 break;
260
261 case FW_COREMEM_DATA:
262 *host_addr_out = fw_core_data_ptr;
263 break;
264
265 default:
266 return -EINVAL;
267 }
268 /* Direct Mem write to mapped memory */
269 addr -= layout_entries[entry].base_addr;
270 addr += layout_entries[entry].alloc_offset;
271
272 /*
273 * Add offset to pointer to FW allocation only if that
274 * allocation is available
275 */
276 *(u8 **)host_addr_out += addr;
277 return 0;
278 }
279 }
280
281 return -EINVAL;
282 }
283
284 static int
pvr_fw_create_fwif_connection_ctl(struct pvr_device * pvr_dev)285 pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev)
286 {
287 struct drm_device *drm_dev = from_pvr_device(pvr_dev);
288 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
289
290 fw_dev->fwif_connection_ctl =
291 pvr_fw_object_create_and_map_offset(pvr_dev,
292 fw_dev->fw_heap_info.config_offset +
293 PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET,
294 sizeof(*fw_dev->fwif_connection_ctl),
295 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
296 NULL, NULL,
297 &fw_dev->mem.fwif_connection_ctl_obj);
298 if (IS_ERR(fw_dev->fwif_connection_ctl)) {
299 drm_err(drm_dev,
300 "Unable to allocate FWIF connection control memory\n");
301 return PTR_ERR(fw_dev->fwif_connection_ctl);
302 }
303
304 return 0;
305 }
306
307 static void
pvr_fw_fini_fwif_connection_ctl(struct pvr_device * pvr_dev)308 pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev)
309 {
310 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
311
312 pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj);
313 }
314
315 static void
fw_osinit_init(void * cpu_ptr,void * priv)316 fw_osinit_init(void *cpu_ptr, void *priv)
317 {
318 struct rogue_fwif_osinit *fwif_osinit = cpu_ptr;
319 struct pvr_device *pvr_dev = priv;
320 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
321 struct pvr_fw_mem *fw_mem = &fw_dev->mem;
322
323 fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr;
324 fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr;
325 pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj,
326 &fwif_osinit->kernel_ccb_rtn_slots_fw_addr);
327
328 fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr;
329 fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr;
330
331 fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0;
332 fwif_osinit->work_est_firmware_ccb_fw_addr = 0;
333
334 pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj,
335 &fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr);
336 pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr);
337
338 fwif_osinit->hwr_debug_dump_limit = 0;
339
340 rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc);
341 rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc);
342 }
343
344 static void
fw_osdata_init(void * cpu_ptr,void * priv)345 fw_osdata_init(void *cpu_ptr, void *priv)
346 {
347 struct rogue_fwif_osdata *fwif_osdata = cpu_ptr;
348 struct pvr_device *pvr_dev = priv;
349 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
350
351 pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr);
352 }
353
354 static void
fw_fault_page_init(void * cpu_ptr,void * priv)355 fw_fault_page_init(void *cpu_ptr, void *priv)
356 {
357 u32 *fault_page = cpu_ptr;
358
359 for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++)
360 fault_page[i] = 0xdeadbee0;
361 }
362
363 static void
fw_sysinit_init(void * cpu_ptr,void * priv)364 fw_sysinit_init(void *cpu_ptr, void *priv)
365 {
366 struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr;
367 struct pvr_device *pvr_dev = priv;
368 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
369 struct pvr_fw_mem *fw_mem = &fw_dev->mem;
370 dma_addr_t fault_dma_addr = 0;
371 u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
372
373 WARN_ON(!clock_speed_hz);
374
375 WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr));
376 fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr;
377
378 fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE;
379 fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE;
380
381 pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr);
382 pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj,
383 &fwif_sysinit->trace_buf_ctl_fw_addr);
384 pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr);
385 pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj,
386 &fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr);
387 if (fw_mem->core_data_obj) {
388 pvr_fw_object_get_fw_addr(fw_mem->core_data_obj,
389 &fwif_sysinit->coremem_data_store.fw_addr);
390 }
391
392 /* Currently unsupported. */
393 fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0;
394 fwif_sysinit->counter_dump_ctl.size_in_dwords = 0;
395
396 /* Skip alignment checks. */
397 fwif_sysinit->align_checks = 0;
398
399 fwif_sysinit->filter_flags = 0;
400 fwif_sysinit->hw_perf_filter = 0;
401 fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE;
402 fwif_sysinit->initial_core_clock_speed = clock_speed_hz;
403 fwif_sysinit->active_pm_latency_ms = 0;
404 fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF;
405 fwif_sysinit->firmware_started = false;
406 fwif_sysinit->marker_val = 1;
407
408 memset(&fwif_sysinit->bvnc_km_feature_flags, 0,
409 sizeof(fwif_sysinit->bvnc_km_feature_flags));
410 }
411
412 #define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4
413
414 static void
fw_sysdata_init(void * cpu_ptr,void * priv)415 fw_sysdata_init(void *cpu_ptr, void *priv)
416 {
417 struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr;
418 struct pvr_device *pvr_dev = priv;
419 u32 slc_size_in_kilobytes = 0;
420 u32 config_flags = 0;
421
422 WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes));
423
424 if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB)
425 config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP;
426
427 fwif_sysdata->config_flags = config_flags;
428 }
429
430 static void
fw_runtime_cfg_init(void * cpu_ptr,void * priv)431 fw_runtime_cfg_init(void *cpu_ptr, void *priv)
432 {
433 struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr;
434 struct pvr_device *pvr_dev = priv;
435 u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
436
437 WARN_ON(!clock_speed_hz);
438
439 runtime_cfg->core_clock_speed = clock_speed_hz;
440 runtime_cfg->active_pm_latency_ms = 0;
441 runtime_cfg->active_pm_latency_persistant = true;
442 WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters,
443 &runtime_cfg->default_dusts_num_init) != 0);
444 }
445
446 static void
fw_gpu_util_fwcb_init(void * cpu_ptr,void * priv)447 fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv)
448 {
449 struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr;
450
451 gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE;
452 }
453
454 static int
pvr_fw_create_structures(struct pvr_device * pvr_dev)455 pvr_fw_create_structures(struct pvr_device *pvr_dev)
456 {
457 struct drm_device *drm_dev = from_pvr_device(pvr_dev);
458 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
459 struct pvr_fw_mem *fw_mem = &fw_dev->mem;
460 int err;
461
462 fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync),
463 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
464 NULL, NULL, &fw_mem->power_sync_obj);
465 if (IS_ERR(fw_dev->power_sync)) {
466 drm_err(drm_dev, "Unable to allocate FW power_sync structure\n");
467 return PTR_ERR(fw_dev->power_sync);
468 }
469
470 fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf),
471 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
472 NULL, NULL, &fw_mem->hwrinfobuf_obj);
473 if (IS_ERR(fw_dev->hwrinfobuf)) {
474 drm_err(drm_dev,
475 "Unable to allocate FW hwrinfobuf structure\n");
476 err = PTR_ERR(fw_dev->hwrinfobuf);
477 goto err_release_power_sync;
478 }
479
480 err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE,
481 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
482 NULL, NULL, &fw_mem->mmucache_sync_obj);
483 if (err) {
484 drm_err(drm_dev,
485 "Unable to allocate MMU cache sync object\n");
486 goto err_release_hwrinfobuf;
487 }
488
489 fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev,
490 sizeof(*fw_dev->fwif_sysdata),
491 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
492 fw_sysdata_init, pvr_dev,
493 &fw_mem->sysdata_obj);
494 if (IS_ERR(fw_dev->fwif_sysdata)) {
495 drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n");
496 err = PTR_ERR(fw_dev->fwif_sysdata);
497 goto err_release_mmucache_sync_obj;
498 }
499
500 err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE,
501 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
502 fw_fault_page_init, NULL, &fw_mem->fault_page_obj);
503 if (err) {
504 drm_err(drm_dev, "Unable to allocate FW fault page\n");
505 goto err_release_sysdata;
506 }
507
508 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb),
509 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
510 fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj);
511 if (err) {
512 drm_err(drm_dev, "Unable to allocate GPU util FWCB\n");
513 goto err_release_fault_page;
514 }
515
516 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg),
517 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
518 fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj);
519 if (err) {
520 drm_err(drm_dev, "Unable to allocate FW runtime config\n");
521 goto err_release_gpu_util_fwcb;
522 }
523
524 err = pvr_fw_trace_init(pvr_dev);
525 if (err)
526 goto err_release_runtime_cfg;
527
528 fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev,
529 sizeof(*fw_dev->fwif_osdata),
530 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
531 fw_osdata_init, pvr_dev,
532 &fw_mem->osdata_obj);
533 if (IS_ERR(fw_dev->fwif_osdata)) {
534 drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n");
535 err = PTR_ERR(fw_dev->fwif_osdata);
536 goto err_fw_trace_fini;
537 }
538
539 fw_dev->fwif_osinit =
540 pvr_fw_object_create_and_map_offset(pvr_dev,
541 fw_dev->fw_heap_info.config_offset +
542 PVR_ROGUE_FWIF_OSINIT_OFFSET,
543 sizeof(*fw_dev->fwif_osinit),
544 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
545 fw_osinit_init, pvr_dev, &fw_mem->osinit_obj);
546 if (IS_ERR(fw_dev->fwif_osinit)) {
547 drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n");
548 err = PTR_ERR(fw_dev->fwif_osinit);
549 goto err_release_osdata;
550 }
551
552 fw_dev->fwif_sysinit =
553 pvr_fw_object_create_and_map_offset(pvr_dev,
554 fw_dev->fw_heap_info.config_offset +
555 PVR_ROGUE_FWIF_SYSINIT_OFFSET,
556 sizeof(*fw_dev->fwif_sysinit),
557 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
558 fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj);
559 if (IS_ERR(fw_dev->fwif_sysinit)) {
560 drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n");
561 err = PTR_ERR(fw_dev->fwif_sysinit);
562 goto err_release_osinit;
563 }
564
565 return 0;
566
567 err_release_osinit:
568 pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
569
570 err_release_osdata:
571 pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
572
573 err_fw_trace_fini:
574 pvr_fw_trace_fini(pvr_dev);
575
576 err_release_runtime_cfg:
577 pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
578
579 err_release_gpu_util_fwcb:
580 pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
581
582 err_release_fault_page:
583 pvr_fw_object_destroy(fw_mem->fault_page_obj);
584
585 err_release_sysdata:
586 pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
587
588 err_release_mmucache_sync_obj:
589 pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
590
591 err_release_hwrinfobuf:
592 pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
593
594 err_release_power_sync:
595 pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
596
597 return err;
598 }
599
600 static void
pvr_fw_destroy_structures(struct pvr_device * pvr_dev)601 pvr_fw_destroy_structures(struct pvr_device *pvr_dev)
602 {
603 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
604 struct pvr_fw_mem *fw_mem = &fw_dev->mem;
605
606 pvr_fw_trace_fini(pvr_dev);
607 pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
608 pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
609 pvr_fw_object_destroy(fw_mem->fault_page_obj);
610 pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
611 pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj);
612
613 pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
614 pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
615 pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
616 pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
617 pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
618 }
619
620 /**
621 * pvr_fw_process() - Process firmware image, allocate FW memory and create boot
622 * arguments
623 * @pvr_dev: Device pointer.
624 *
625 * Returns:
626 * * 0 on success, or
627 * * Any error returned by pvr_fw_object_create_and_map_offset(), or
628 * * Any error returned by pvr_fw_object_create_and_map().
629 */
630 static int
pvr_fw_process(struct pvr_device * pvr_dev)631 pvr_fw_process(struct pvr_device *pvr_dev)
632 {
633 struct drm_device *drm_dev = from_pvr_device(pvr_dev);
634 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
635 const u8 *fw = pvr_dev->fw_dev.firmware->data;
636 const struct pvr_fw_layout_entry *private_data;
637 u8 *fw_code_ptr;
638 u8 *fw_data_ptr;
639 u8 *fw_core_code_ptr;
640 u8 *fw_core_data_ptr;
641 int err;
642
643 layout_get_sizes(pvr_dev);
644
645 private_data = pvr_fw_find_private_data(pvr_dev);
646 if (!private_data)
647 return -EINVAL;
648
649 /* Allocate and map memory for firmware sections. */
650
651 /*
652 * Code allocation must be at the start of the firmware heap, otherwise
653 * firmware processor will be unable to boot.
654 *
655 * This has the useful side-effect that for every other object in the
656 * driver, a firmware address of 0 is invalid.
657 */
658 fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size,
659 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
660 NULL, NULL, &fw_mem->code_obj);
661 if (IS_ERR(fw_code_ptr)) {
662 drm_err(drm_dev, "Unable to allocate FW code memory\n");
663 return PTR_ERR(fw_code_ptr);
664 }
665
666 if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) {
667 u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask;
668
669 fw_data_ptr =
670 pvr_fw_object_create_and_map_offset(pvr_dev, base_addr,
671 fw_mem->data_alloc_size,
672 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
673 NULL, NULL, &fw_mem->data_obj);
674 } else {
675 fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size,
676 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
677 NULL, NULL, &fw_mem->data_obj);
678 }
679 if (IS_ERR(fw_data_ptr)) {
680 drm_err(drm_dev, "Unable to allocate FW data memory\n");
681 err = PTR_ERR(fw_data_ptr);
682 goto err_free_fw_code_obj;
683 }
684
685 /* Core code and data sections are optional. */
686 if (fw_mem->core_code_alloc_size) {
687 fw_core_code_ptr =
688 pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size,
689 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
690 NULL, NULL, &fw_mem->core_code_obj);
691 if (IS_ERR(fw_core_code_ptr)) {
692 drm_err(drm_dev,
693 "Unable to allocate FW core code memory\n");
694 err = PTR_ERR(fw_core_code_ptr);
695 goto err_free_fw_data_obj;
696 }
697 } else {
698 fw_core_code_ptr = NULL;
699 }
700
701 if (fw_mem->core_data_alloc_size) {
702 fw_core_data_ptr =
703 pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size,
704 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
705 NULL, NULL, &fw_mem->core_data_obj);
706 if (IS_ERR(fw_core_data_ptr)) {
707 drm_err(drm_dev,
708 "Unable to allocate FW core data memory\n");
709 err = PTR_ERR(fw_core_data_ptr);
710 goto err_free_fw_core_code_obj;
711 }
712 } else {
713 fw_core_data_ptr = NULL;
714 }
715
716 fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL);
717 fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL);
718 if (fw_mem->core_code_alloc_size)
719 fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL);
720 if (fw_mem->core_data_alloc_size)
721 fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL);
722
723 if (!fw_mem->code || !fw_mem->data ||
724 (!fw_mem->core_code && fw_mem->core_code_alloc_size) ||
725 (!fw_mem->core_data && fw_mem->core_data_alloc_size)) {
726 err = -ENOMEM;
727 goto err_free_kdata;
728 }
729
730 err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw,
731 fw_mem->code, fw_mem->data, fw_mem->core_code,
732 fw_mem->core_data, fw_mem->core_code_alloc_size);
733
734 if (err)
735 goto err_free_fw_core_data_obj;
736
737 memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size);
738 memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size);
739 if (fw_mem->core_code)
740 memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size);
741 if (fw_mem->core_data)
742 memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size);
743
744 /* We're finished with the firmware section memory on the CPU, unmap. */
745 if (fw_core_data_ptr)
746 pvr_fw_object_vunmap(fw_mem->core_data_obj);
747 if (fw_core_code_ptr)
748 pvr_fw_object_vunmap(fw_mem->core_code_obj);
749 pvr_fw_object_vunmap(fw_mem->data_obj);
750 fw_data_ptr = NULL;
751 pvr_fw_object_vunmap(fw_mem->code_obj);
752 fw_code_ptr = NULL;
753
754 err = pvr_fw_create_fwif_connection_ctl(pvr_dev);
755 if (err)
756 goto err_free_fw_core_data_obj;
757
758 return 0;
759
760 err_free_kdata:
761 kfree(fw_mem->core_data);
762 kfree(fw_mem->core_code);
763 kfree(fw_mem->data);
764 kfree(fw_mem->code);
765
766 err_free_fw_core_data_obj:
767 if (fw_core_data_ptr)
768 pvr_fw_object_unmap_and_destroy(fw_mem->core_data_obj);
769
770 err_free_fw_core_code_obj:
771 if (fw_core_code_ptr)
772 pvr_fw_object_unmap_and_destroy(fw_mem->core_code_obj);
773
774 err_free_fw_data_obj:
775 if (fw_data_ptr)
776 pvr_fw_object_vunmap(fw_mem->data_obj);
777 pvr_fw_object_destroy(fw_mem->data_obj);
778
779 err_free_fw_code_obj:
780 if (fw_code_ptr)
781 pvr_fw_object_vunmap(fw_mem->code_obj);
782 pvr_fw_object_destroy(fw_mem->code_obj);
783
784 return err;
785 }
786
787 static int
pvr_copy_to_fw(struct pvr_fw_object * dest_obj,u8 * src_ptr,u32 size)788 pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size)
789 {
790 u8 *dest_ptr = pvr_fw_object_vmap(dest_obj);
791
792 if (IS_ERR(dest_ptr))
793 return PTR_ERR(dest_ptr);
794
795 memcpy(dest_ptr, src_ptr, size);
796
797 pvr_fw_object_vunmap(dest_obj);
798
799 return 0;
800 }
801
802 static int
pvr_fw_reinit_code_data(struct pvr_device * pvr_dev)803 pvr_fw_reinit_code_data(struct pvr_device *pvr_dev)
804 {
805 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
806 int err;
807
808 err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size);
809 if (err)
810 return err;
811
812 err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size);
813 if (err)
814 return err;
815
816 if (fw_mem->core_code) {
817 err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code,
818 fw_mem->core_code_alloc_size);
819 if (err)
820 return err;
821 }
822
823 if (fw_mem->core_data) {
824 err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data,
825 fw_mem->core_data_alloc_size);
826 if (err)
827 return err;
828 }
829
830 return 0;
831 }
832
833 static void
pvr_fw_cleanup(struct pvr_device * pvr_dev)834 pvr_fw_cleanup(struct pvr_device *pvr_dev)
835 {
836 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
837
838 pvr_fw_fini_fwif_connection_ctl(pvr_dev);
839 if (fw_mem->core_code_obj)
840 pvr_fw_object_destroy(fw_mem->core_code_obj);
841 if (fw_mem->core_data_obj)
842 pvr_fw_object_destroy(fw_mem->core_data_obj);
843 pvr_fw_object_destroy(fw_mem->code_obj);
844 pvr_fw_object_destroy(fw_mem->data_obj);
845 }
846
847 /**
848 * pvr_wait_for_fw_boot() - Wait for firmware to finish booting
849 * @pvr_dev: Target PowerVR device.
850 *
851 * Returns:
852 * * 0 on success, or
853 * * -%ETIMEDOUT if firmware fails to boot within timeout.
854 */
855 int
pvr_wait_for_fw_boot(struct pvr_device * pvr_dev)856 pvr_wait_for_fw_boot(struct pvr_device *pvr_dev)
857 {
858 ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC);
859 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
860
861 while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) {
862 if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started))
863 return 0;
864 }
865
866 return -ETIMEDOUT;
867 }
868
869 /*
870 * pvr_fw_heap_info_init() - Calculate size and masks for FW heap
871 * @pvr_dev: Target PowerVR device.
872 * @log2_size: Log2 of raw heap size.
873 * @reserved_size: Size of reserved area of heap, in bytes. May be zero.
874 */
875 void
pvr_fw_heap_info_init(struct pvr_device * pvr_dev,u32 log2_size,u32 reserved_size)876 pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size)
877 {
878 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
879
880 fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE;
881 fw_dev->fw_heap_info.log2_size = log2_size;
882 fw_dev->fw_heap_info.reserved_size = reserved_size;
883 fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size;
884 fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1;
885 fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size -
886 PVR_ROGUE_FW_CONFIG_HEAP_SIZE;
887 fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size -
888 (PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size);
889 }
890
891 /**
892 * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information
893 * @pvr_dev: Target PowerVR device.
894 *
895 * This function must be called before querying device information.
896 *
897 * Returns:
898 * * 0 on success, or
899 * * -%EINVAL if firmware validation fails.
900 */
901 int
pvr_fw_validate_init_device_info(struct pvr_device * pvr_dev)902 pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev)
903 {
904 int err;
905
906 err = pvr_fw_validate(pvr_dev);
907 if (err)
908 return err;
909
910 return pvr_fw_get_device_info(pvr_dev);
911 }
912
913 /**
914 * pvr_fw_init() - Initialise and boot firmware
915 * @pvr_dev: Target PowerVR device
916 *
917 * On successful completion of the function the PowerVR device will be
918 * initialised and ready to use.
919 *
920 * Returns:
921 * * 0 on success,
922 * * -%EINVAL on invalid firmware image,
923 * * -%ENOMEM on out of memory, or
924 * * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout.
925 */
926 int
pvr_fw_init(struct pvr_device * pvr_dev)927 pvr_fw_init(struct pvr_device *pvr_dev)
928 {
929 u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT;
930 u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn);
931 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
932 int err;
933
934 if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META)
935 fw_dev->defs = &pvr_fw_defs_meta;
936 else if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_MIPS)
937 fw_dev->defs = &pvr_fw_defs_mips;
938 else
939 return -EINVAL;
940
941 err = fw_dev->defs->init(pvr_dev);
942 if (err)
943 return err;
944
945 drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size);
946 fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE;
947 spin_lock_init(&fw_dev->fw_mm_lock);
948
949 INIT_LIST_HEAD(&fw_dev->fw_objs.list);
950 err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock);
951 if (err)
952 goto err_mm_takedown;
953
954 err = pvr_fw_process(pvr_dev);
955 if (err)
956 goto err_mm_takedown;
957
958 /* Initialise KCCB and FWCCB. */
959 err = pvr_kccb_init(pvr_dev);
960 if (err)
961 goto err_fw_cleanup;
962
963 err = pvr_fwccb_init(pvr_dev);
964 if (err)
965 goto err_kccb_fini;
966
967 /* Allocate memory for KCCB return slots. */
968 pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size,
969 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
970 NULL, NULL, &pvr_dev->kccb.rtn_obj);
971 if (IS_ERR(pvr_dev->kccb.rtn)) {
972 err = PTR_ERR(pvr_dev->kccb.rtn);
973 goto err_fwccb_fini;
974 }
975
976 err = pvr_fw_create_structures(pvr_dev);
977 if (err)
978 goto err_kccb_rtn_release;
979
980 err = pvr_fw_start(pvr_dev);
981 if (err)
982 goto err_destroy_structures;
983
984 err = pvr_wait_for_fw_boot(pvr_dev);
985 if (err) {
986 drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n");
987 goto err_fw_stop;
988 }
989
990 fw_dev->booted = true;
991
992 return 0;
993
994 err_fw_stop:
995 pvr_fw_stop(pvr_dev);
996
997 err_destroy_structures:
998 pvr_fw_destroy_structures(pvr_dev);
999
1000 err_kccb_rtn_release:
1001 pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1002
1003 err_fwccb_fini:
1004 pvr_ccb_fini(&pvr_dev->fwccb);
1005
1006 err_kccb_fini:
1007 pvr_kccb_fini(pvr_dev);
1008
1009 err_fw_cleanup:
1010 pvr_fw_cleanup(pvr_dev);
1011
1012 err_mm_takedown:
1013 drm_mm_takedown(&fw_dev->fw_mm);
1014
1015 if (fw_dev->defs->fini)
1016 fw_dev->defs->fini(pvr_dev);
1017
1018 return err;
1019 }
1020
1021 /**
1022 * pvr_fw_fini() - Shutdown firmware processor and free associated memory
1023 * @pvr_dev: Target PowerVR device
1024 */
1025 void
pvr_fw_fini(struct pvr_device * pvr_dev)1026 pvr_fw_fini(struct pvr_device *pvr_dev)
1027 {
1028 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1029
1030 fw_dev->booted = false;
1031
1032 pvr_fw_destroy_structures(pvr_dev);
1033 pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1034
1035 /*
1036 * Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has
1037 * been unregistered at this point so no new work should be being submitted.
1038 */
1039 pvr_ccb_fini(&pvr_dev->fwccb);
1040 pvr_kccb_fini(pvr_dev);
1041 pvr_fw_cleanup(pvr_dev);
1042
1043 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1044 WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list));
1045 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1046
1047 drm_mm_takedown(&fw_dev->fw_mm);
1048
1049 if (fw_dev->defs->fini)
1050 fw_dev->defs->fini(pvr_dev);
1051 }
1052
1053 /**
1054 * pvr_fw_mts_schedule() - Schedule work via an MTS kick
1055 * @pvr_dev: Target PowerVR device
1056 * @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_*
1057 */
1058 void
pvr_fw_mts_schedule(struct pvr_device * pvr_dev,u32 val)1059 pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val)
1060 {
1061 /* Ensure memory is flushed before kicking MTS. */
1062 wmb();
1063
1064 pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val);
1065
1066 /* Ensure the MTS kick goes through before continuing. */
1067 mb();
1068 }
1069
1070 /**
1071 * pvr_fw_structure_cleanup() - Send FW cleanup request for an object
1072 * @pvr_dev: Target PowerVR device.
1073 * @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type.
1074 * @fw_obj: Pointer to FW object containing object to cleanup.
1075 * @offset: Offset within FW object of object to cleanup.
1076 *
1077 * Returns:
1078 * * 0 on success,
1079 * * -EBUSY if object is busy,
1080 * * -ETIMEDOUT on timeout, or
1081 * * -EIO if device is lost.
1082 */
1083 int
pvr_fw_structure_cleanup(struct pvr_device * pvr_dev,u32 type,struct pvr_fw_object * fw_obj,u32 offset)1084 pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj,
1085 u32 offset)
1086 {
1087 struct rogue_fwif_kccb_cmd cmd;
1088 int slot_nr;
1089 int idx;
1090 int err;
1091 u32 rtn;
1092
1093 struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data;
1094
1095 down_read(&pvr_dev->reset_sem);
1096
1097 if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) {
1098 err = -EIO;
1099 goto err_up_read;
1100 }
1101
1102 cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP;
1103 cmd.kccb_flags = 0;
1104 cleanup_req->cleanup_type = type;
1105
1106 switch (type) {
1107 case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT:
1108 pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1109 &cleanup_req->cleanup_data.context_fw_addr);
1110 break;
1111 case ROGUE_FWIF_CLEANUP_HWRTDATA:
1112 pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1113 &cleanup_req->cleanup_data.hwrt_data_fw_addr);
1114 break;
1115 case ROGUE_FWIF_CLEANUP_FREELIST:
1116 pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1117 &cleanup_req->cleanup_data.freelist_fw_addr);
1118 break;
1119 default:
1120 err = -EINVAL;
1121 goto err_drm_dev_exit;
1122 }
1123
1124 err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr);
1125 if (err)
1126 goto err_drm_dev_exit;
1127
1128 err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn);
1129 if (err)
1130 goto err_drm_dev_exit;
1131
1132 if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY)
1133 err = -EBUSY;
1134
1135 err_drm_dev_exit:
1136 drm_dev_exit(idx);
1137
1138 err_up_read:
1139 up_read(&pvr_dev->reset_sem);
1140
1141 return err;
1142 }
1143
1144 /**
1145 * pvr_fw_object_fw_map() - Map a FW object in firmware address space
1146 * @pvr_dev: Device pointer.
1147 * @fw_obj: FW object to map.
1148 * @dev_addr: Desired address in device space, if a specific address is
1149 * required. 0 otherwise.
1150 *
1151 * Returns:
1152 * * 0 on success, or
1153 * * -%EINVAL if @fw_obj is already mapped but has no references, or
1154 * * Any error returned by DRM.
1155 */
1156 static int
pvr_fw_object_fw_map(struct pvr_device * pvr_dev,struct pvr_fw_object * fw_obj,u64 dev_addr)1157 pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr)
1158 {
1159 struct pvr_gem_object *pvr_obj = fw_obj->gem;
1160 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1161 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1162
1163 int err;
1164
1165 spin_lock(&fw_dev->fw_mm_lock);
1166
1167 if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1168 err = -EINVAL;
1169 goto err_unlock;
1170 }
1171
1172 if (!dev_addr) {
1173 /*
1174 * Allocate from the main heap only (firmware heap minus
1175 * config space).
1176 */
1177 err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node,
1178 gem_obj->size, 0, 0,
1179 fw_dev->fw_heap_info.gpu_addr,
1180 fw_dev->fw_heap_info.gpu_addr +
1181 fw_dev->fw_heap_info.size, 0);
1182 if (err)
1183 goto err_unlock;
1184 } else {
1185 fw_obj->fw_mm_node.start = dev_addr;
1186 fw_obj->fw_mm_node.size = gem_obj->size;
1187 err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node);
1188 if (err)
1189 goto err_unlock;
1190 }
1191
1192 spin_unlock(&fw_dev->fw_mm_lock);
1193
1194 /* Map object on GPU. */
1195 err = fw_dev->defs->vm_map(pvr_dev, fw_obj);
1196 if (err)
1197 goto err_remove_node;
1198
1199 fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base);
1200
1201 return 0;
1202
1203 err_remove_node:
1204 spin_lock(&fw_dev->fw_mm_lock);
1205 drm_mm_remove_node(&fw_obj->fw_mm_node);
1206
1207 err_unlock:
1208 spin_unlock(&fw_dev->fw_mm_lock);
1209
1210 return err;
1211 }
1212
1213 /**
1214 * pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object
1215 * @fw_obj: FW object to unmap.
1216 *
1217 * Returns:
1218 * * 0 on success, or
1219 * * -%EINVAL if object is not currently mapped.
1220 */
1221 static int
pvr_fw_object_fw_unmap(struct pvr_fw_object * fw_obj)1222 pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj)
1223 {
1224 struct pvr_gem_object *pvr_obj = fw_obj->gem;
1225 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1226 struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1227 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1228
1229 fw_dev->defs->vm_unmap(pvr_dev, fw_obj);
1230
1231 spin_lock(&fw_dev->fw_mm_lock);
1232
1233 if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1234 spin_unlock(&fw_dev->fw_mm_lock);
1235 return -EINVAL;
1236 }
1237
1238 drm_mm_remove_node(&fw_obj->fw_mm_node);
1239
1240 spin_unlock(&fw_dev->fw_mm_lock);
1241
1242 return 0;
1243 }
1244
1245 static void *
pvr_fw_object_create_and_map_common(struct pvr_device * pvr_dev,size_t size,u64 flags,u64 dev_addr,void (* init)(void * cpu_ptr,void * priv),void * init_priv,struct pvr_fw_object ** fw_obj_out)1246 pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size,
1247 u64 flags, u64 dev_addr,
1248 void (*init)(void *cpu_ptr, void *priv),
1249 void *init_priv, struct pvr_fw_object **fw_obj_out)
1250 {
1251 struct pvr_fw_object *fw_obj;
1252 void *cpu_ptr;
1253 int err;
1254
1255 /* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */
1256 flags |= DRM_PVR_BO_PM_FW_PROTECT;
1257
1258 fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL);
1259 if (!fw_obj)
1260 return ERR_PTR(-ENOMEM);
1261
1262 INIT_LIST_HEAD(&fw_obj->node);
1263 fw_obj->init = init;
1264 fw_obj->init_priv = init_priv;
1265
1266 fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags);
1267 if (IS_ERR(fw_obj->gem)) {
1268 err = PTR_ERR(fw_obj->gem);
1269 fw_obj->gem = NULL;
1270 goto err_put_object;
1271 }
1272
1273 err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr);
1274 if (err)
1275 goto err_put_object;
1276
1277 cpu_ptr = pvr_fw_object_vmap(fw_obj);
1278 if (IS_ERR(cpu_ptr)) {
1279 err = PTR_ERR(cpu_ptr);
1280 goto err_put_object;
1281 }
1282
1283 *fw_obj_out = fw_obj;
1284
1285 if (fw_obj->init)
1286 fw_obj->init(cpu_ptr, fw_obj->init_priv);
1287
1288 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1289 list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list);
1290 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1291
1292 return cpu_ptr;
1293
1294 err_put_object:
1295 pvr_fw_object_destroy(fw_obj);
1296
1297 return ERR_PTR(err);
1298 }
1299
1300 /**
1301 * pvr_fw_object_create() - Create a FW object and map to firmware
1302 * @pvr_dev: PowerVR device pointer.
1303 * @size: Size of object, in bytes.
1304 * @flags: Options which affect both this operation and future mapping
1305 * operations performed on the returned object. Must be a combination of
1306 * DRM_PVR_BO_* and/or PVR_BO_* flags.
1307 * @init: Initialisation callback.
1308 * @init_priv: Private pointer to pass to initialisation callback.
1309 * @fw_obj_out: Pointer to location to store created object pointer.
1310 *
1311 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1312 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1313 * set.
1314 *
1315 * Returns:
1316 * * 0 on success, or
1317 * * Any error returned by pvr_fw_object_create_common().
1318 */
1319 int
pvr_fw_object_create(struct pvr_device * pvr_dev,size_t size,u64 flags,void (* init)(void * cpu_ptr,void * priv),void * init_priv,struct pvr_fw_object ** fw_obj_out)1320 pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags,
1321 void (*init)(void *cpu_ptr, void *priv), void *init_priv,
1322 struct pvr_fw_object **fw_obj_out)
1323 {
1324 void *cpu_ptr;
1325
1326 cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1327 fw_obj_out);
1328 if (IS_ERR(cpu_ptr))
1329 return PTR_ERR(cpu_ptr);
1330
1331 pvr_fw_object_vunmap(*fw_obj_out);
1332
1333 return 0;
1334 }
1335
1336 /**
1337 * pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU
1338 * @pvr_dev: PowerVR device pointer.
1339 * @size: Size of object, in bytes.
1340 * @flags: Options which affect both this operation and future mapping
1341 * operations performed on the returned object. Must be a combination of
1342 * DRM_PVR_BO_* and/or PVR_BO_* flags.
1343 * @init: Initialisation callback.
1344 * @init_priv: Private pointer to pass to initialisation callback.
1345 * @fw_obj_out: Pointer to location to store created object pointer.
1346 *
1347 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1348 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1349 * set.
1350 *
1351 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1352 * mapping.
1353 *
1354 * Returns:
1355 * * Pointer to CPU mapping of newly created object, or
1356 * * Any error returned by pvr_fw_object_create(), or
1357 * * Any error returned by pvr_fw_object_vmap().
1358 */
1359 void *
pvr_fw_object_create_and_map(struct pvr_device * pvr_dev,size_t size,u64 flags,void (* init)(void * cpu_ptr,void * priv),void * init_priv,struct pvr_fw_object ** fw_obj_out)1360 pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags,
1361 void (*init)(void *cpu_ptr, void *priv),
1362 void *init_priv, struct pvr_fw_object **fw_obj_out)
1363 {
1364 return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1365 fw_obj_out);
1366 }
1367
1368 /**
1369 * pvr_fw_object_create_and_map_offset() - Create a FW object and map to
1370 * firmware at the provided offset and to the CPU.
1371 * @pvr_dev: PowerVR device pointer.
1372 * @dev_offset: Base address of desired FW mapping, offset from start of FW heap.
1373 * @size: Size of object, in bytes.
1374 * @flags: Options which affect both this operation and future mapping
1375 * operations performed on the returned object. Must be a combination of
1376 * DRM_PVR_BO_* and/or PVR_BO_* flags.
1377 * @init: Initialisation callback.
1378 * @init_priv: Private pointer to pass to initialisation callback.
1379 * @fw_obj_out: Pointer to location to store created object pointer.
1380 *
1381 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1382 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1383 * set.
1384 *
1385 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1386 * mapping.
1387 *
1388 * Returns:
1389 * * Pointer to CPU mapping of newly created object, or
1390 * * Any error returned by pvr_fw_object_create(), or
1391 * * Any error returned by pvr_fw_object_vmap().
1392 */
1393 void *
pvr_fw_object_create_and_map_offset(struct pvr_device * pvr_dev,u32 dev_offset,size_t size,u64 flags,void (* init)(void * cpu_ptr,void * priv),void * init_priv,struct pvr_fw_object ** fw_obj_out)1394 pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev,
1395 u32 dev_offset, size_t size, u64 flags,
1396 void (*init)(void *cpu_ptr, void *priv),
1397 void *init_priv, struct pvr_fw_object **fw_obj_out)
1398 {
1399 u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset;
1400
1401 return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv,
1402 fw_obj_out);
1403 }
1404
1405 /**
1406 * pvr_fw_object_destroy() - Destroy a pvr_fw_object
1407 * @fw_obj: Pointer to object to destroy.
1408 */
pvr_fw_object_destroy(struct pvr_fw_object * fw_obj)1409 void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj)
1410 {
1411 struct pvr_gem_object *pvr_obj = fw_obj->gem;
1412 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1413 struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1414
1415 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1416 list_del(&fw_obj->node);
1417 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1418
1419 if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1420 /* If we can't unmap, leak the memory. */
1421 if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj)))
1422 return;
1423 }
1424
1425 if (fw_obj->gem)
1426 pvr_gem_object_put(fw_obj->gem);
1427
1428 kfree(fw_obj);
1429 }
1430
1431 /**
1432 * pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with
1433 * given offset.
1434 * @fw_obj: Pointer to object.
1435 * @offset: Desired offset from start of object.
1436 * @fw_addr_out: Location to store address to.
1437 */
pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object * fw_obj,u32 offset,u32 * fw_addr_out)1438 void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out)
1439 {
1440 struct pvr_gem_object *pvr_obj = fw_obj->gem;
1441 struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev);
1442
1443 *fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset);
1444 }
1445
1446 /*
1447 * pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW
1448 * structures
1449 * @pvr_dev: Device pointer
1450 *
1451 * If this function returns an error then the caller must regard the device as lost.
1452 *
1453 * Returns:
1454 * * 0 on success, or
1455 * * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all().
1456 */
1457 int
pvr_fw_hard_reset(struct pvr_device * pvr_dev)1458 pvr_fw_hard_reset(struct pvr_device *pvr_dev)
1459 {
1460 struct list_head *pos;
1461 int err;
1462
1463 /* Reset all FW objects */
1464 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1465
1466 list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) {
1467 struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node);
1468 void *cpu_ptr = pvr_fw_object_vmap(fw_obj);
1469
1470 WARN_ON(IS_ERR(cpu_ptr));
1471
1472 if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) {
1473 memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem));
1474
1475 if (fw_obj->init)
1476 fw_obj->init(cpu_ptr, fw_obj->init_priv);
1477 }
1478
1479 pvr_fw_object_vunmap(fw_obj);
1480 }
1481
1482 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1483
1484 err = pvr_fw_reinit_code_data(pvr_dev);
1485 if (err)
1486 return err;
1487
1488 return 0;
1489 }
1490